Simultaneous enhancement in charge separation and interfacial charge transfer of BiVO4 photoanode for photoelectrochemical water oxidation
1A facile method for preparing Cu(I) vanadate-BiVO4 p-n heterojuction photoanode.2Role of Cu(I) vanadate in improving the kinetics of charge transport was uncovered.3Efficient interfacial charge transfer and high photostability was achieved. Bismuth vanadate (BiVO4) has been identified as one of the...
Saved in:
Published in | Journal of the Taiwan Institute of Chemical Engineers Vol. 111; pp. 80 - 89 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1876-1070 1876-1089 |
DOI | 10.1016/j.jtice.2020.05.012 |
Cover
Abstract | 1A facile method for preparing Cu(I) vanadate-BiVO4 p-n heterojuction photoanode.2Role of Cu(I) vanadate in improving the kinetics of charge transport was uncovered.3Efficient interfacial charge transfer and high photostability was achieved.
Bismuth vanadate (BiVO4) has been identified as one of the promising photoanode materials for photoelectrochemical (PEC) water splitting. Nevertheless, the serious charge recombination and sluggish kinetics of oxygen evolution reaction (OER) are the main factors limiting its PEC performance. In this contribution, copper incorporated nanostructured BiVO4 photoanodes (nanoCu:BiVO4) were prepared by converting the electrodeposited BiOI nanosheets in the presence of copper and vanadium sources and subsequent thermal treatment. nanoCu:BiVO4 prepared with a suitable amount of copper consists of well-interconnected BiVO4 nanoparticles coated with p-type Cu(I) vanadate. The well-interconnected structure improved the kinetics of the charge transport, whereas n–p heterojunction formed between BiVO4 and Cu(I) vanadate remarkably improved the efficiencies of charge separation and interfacial charge transfer. Further improvement in OER kinetics and photostability of nanoCu:BiVO4 was demonstrated by interfacing nanoCu:BiVO4 with nickel-iron oxyhydroxide based OER catalyst. |
---|---|
AbstractList | 1A facile method for preparing Cu(I) vanadate-BiVO4 p-n heterojuction photoanode.2Role of Cu(I) vanadate in improving the kinetics of charge transport was uncovered.3Efficient interfacial charge transfer and high photostability was achieved.
Bismuth vanadate (BiVO4) has been identified as one of the promising photoanode materials for photoelectrochemical (PEC) water splitting. Nevertheless, the serious charge recombination and sluggish kinetics of oxygen evolution reaction (OER) are the main factors limiting its PEC performance. In this contribution, copper incorporated nanostructured BiVO4 photoanodes (nanoCu:BiVO4) were prepared by converting the electrodeposited BiOI nanosheets in the presence of copper and vanadium sources and subsequent thermal treatment. nanoCu:BiVO4 prepared with a suitable amount of copper consists of well-interconnected BiVO4 nanoparticles coated with p-type Cu(I) vanadate. The well-interconnected structure improved the kinetics of the charge transport, whereas n–p heterojunction formed between BiVO4 and Cu(I) vanadate remarkably improved the efficiencies of charge separation and interfacial charge transfer. Further improvement in OER kinetics and photostability of nanoCu:BiVO4 was demonstrated by interfacing nanoCu:BiVO4 with nickel-iron oxyhydroxide based OER catalyst. |
Author | Lin, Chia-Yu Chueh, Yu-Chien Ko, Ting-Rong Lai, Yi-Hsuan |
Author_xml | – sequence: 1 givenname: Ting-Rong surname: Ko fullname: Ko, Ting-Rong organization: Department of Materials and Optoelectronic Science, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan – sequence: 2 givenname: Yu-Chien surname: Chueh fullname: Chueh, Yu-Chien organization: Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan – sequence: 3 givenname: Yi-Hsuan surname: Lai fullname: Lai, Yi-Hsuan email: yhlai@gs.ncku.edu.tw organization: Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan – sequence: 4 givenname: Chia-Yu surname: Lin fullname: Lin, Chia-Yu email: cyl44@mail.ncku.edu.tw organization: Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan |
BookMark | eNqFkEtOwzAQhi1UJErpCdj4Ag22kzbJggVUvKRKXfDYWvZkTF2ldmW7PK7AqUlbYMECZuOx7O_XzHdMes47JOSUs4wzPjlbZstkATPBBMvYOGNcHJA-r8rJiLOq7v30JTsiwxiXbFslE2LcJx_3drVpk3LoN5GiWygHuEKXqHUUFio8I424VkEl6x1VrukeEgajwKr2-0cKykWDgXpDL-3TvKDrhU9eOd8gNT7sr9gipOBhgSsLHfyq0hZ5s80u_IQcGtVGHH6dA_J4ffUwvR3N5jd304vZCPJJnUZaV1VRQq2KHKBkKLTOx0I3lRBQNww4mryqC4Ol0rwwGpFrKASqQoBuJjwfkHyfC8HHGNDIdbArFd4lZ3JrVC7lzqjcGpVsLDujHVX_osCm3dzd8rb9hz3fs9it9WIxyAgWO9GNDZ0S2Xj7J_8JdQqaHQ |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_2c00433 crossref_primary_10_1002_ceat_202300589 crossref_primary_10_1016_j_matchemphys_2021_124452 crossref_primary_10_1038_s41598_025_92008_6 crossref_primary_10_1016_j_jtice_2023_105121 crossref_primary_10_1016_j_jtice_2024_105786 crossref_primary_10_1016_j_jtice_2022_104554 crossref_primary_10_1021_acsami_2c07857 crossref_primary_10_3390_catal11030381 crossref_primary_10_1016_j_jallcom_2024_177903 crossref_primary_10_1016_j_inoche_2023_111149 crossref_primary_10_1016_j_jpcs_2022_110868 crossref_primary_10_1016_j_jtice_2021_05_052 crossref_primary_10_1021_acsaem_1c00247 crossref_primary_10_1021_acs_energyfuels_4c03487 crossref_primary_10_1039_D2CY00574C crossref_primary_10_1016_j_cej_2021_133607 |
Cites_doi | 10.1021/acssuschemeng.5b01038 10.1021/ja207348x 10.1039/c0ee00587h 10.1039/C8NA00209F 10.1021/acs.chemmater.8b01405 10.1557/mrs.2010.5 10.1039/C9SE00246D 10.1021/acsami.5b01489 10.1039/C6SE00001K 10.1021/acsanm.8b00281 10.1039/C3CP55473B 10.1039/C2CS35260E 10.1016/j.cclet.2019.07.058 10.1016/j.crci.2005.03.029 10.1039/c3ee40831k 10.1021/acsomega.8b00532 10.1002/cssc.201000416 10.1021/jp203004v 10.1039/C6EE01845A 10.1038/nenergy.2016.191 10.1039/C5CE00173K 10.1039/C4CP02497D 10.1016/j.isci.2019.08.037 10.1038/ncomms9769 10.1021/ja992541y 10.1021/jz4013257 10.1039/C9SE00558G 10.1039/C2CS35266D 10.1039/c3ee40453f 10.1002/aenm.201501645 10.1002/adfm.201603021 10.1016/j.electacta.2019.134667 10.1038/s41560-017-0057-0 10.1039/C9SE00145J 10.1039/c2ee23187e 10.1038/nmat3684 10.1021/jacs.5b04186 10.1016/j.electacta.2017.01.130 10.1016/j.electacta.2016.06.008 10.1021/acsenergylett.7b00834 10.1039/C8FD00183A 10.1039/C9TA00957D 10.1002/admi.201700540 10.1039/c3ta01175e 10.1016/j.jssc.2015.05.026 10.1002/smll.201400970 10.1557/JMR.2010.0020 10.1039/c1ee02444b 10.1021/acs.jpclett.5b02774 10.1039/C7SE00447H 10.1149/2.0611912jes 10.1039/C9SE00292H 10.1126/science.1246913 10.1039/C4TA04876H 10.1039/C5TA09435F 10.1021/jp209909b 10.1016/j.jes.2018.03.005 10.1039/C6EE00129G 10.1021/nl201766h 10.1039/c2ee22608a 10.1016/j.cej.2020.125176 10.1039/C4RA14318C 10.1016/j.ijhydene.2016.06.068 |
ContentType | Journal Article |
Copyright | 2020 Taiwan Institute of Chemical Engineers |
Copyright_xml | – notice: 2020 Taiwan Institute of Chemical Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jtice.2020.05.012 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1876-1089 |
EndPage | 89 |
ExternalDocumentID | 10_1016_j_jtice_2020_05_012 S1876107020301292 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 8RM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC DU5 EBS EFJIC EFLBG EJD ENUVR EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSG SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c369t-bb8847c9a43cc70e2bb352bd822c9d0c1ef3894fe7ab14fbee1bc42ea42cbd613 |
IEDL.DBID | AIKHN |
ISSN | 1876-1070 |
IngestDate | Thu Apr 24 23:10:01 EDT 2025 Tue Jul 01 00:41:06 EDT 2025 Fri Feb 23 02:46:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photoelectrochemistry Bismuth vanadate Nickel-iron oxyhydroxide-borate Water oxidation Heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-bb8847c9a43cc70e2bb352bd822c9d0c1ef3894fe7ab14fbee1bc42ea42cbd613 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_jtice_2020_05_012 crossref_citationtrail_10_1016_j_jtice_2020_05_012 elsevier_sciencedirect_doi_10_1016_j_jtice_2020_05_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the Taiwan Institute of Chemical Engineers |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lin, Lin, Tsai, Wu (bib0057) 2020; 4 Chang, Wang, Zhang, Zhang, Li, Gong (bib0033) 2015; 137 Kuang, Jia, Ma, Hisatomi, Minegishi, Nishiyama (bib0022) 2017; 2 Osterloh (bib0001) 2013; 42 Lopes, Andrade, Le Formal, Grätzel, Sivula, Mendes (bib0062) 2014; 16 Pinaud, Benck, Seitz, Forman, Chen, Deutsch (bib0002) 2013; 6 Chen, Jaramillo, Deutsch, Kleiman-Shwarsctein, Forman, Gaillard (bib0058) 2010; 25 Osterloh, Parkinson (bib0005) 2011; 36 Huang, He, Du, Chu, Zhang (bib0032) 2015; 3 Kudo, Omori, Kato (bib0021) 1999; 121 Hu, Xiang, Haussener, Berger, Lewis (bib0004) 2013; 6 Zhong, Choi, Gamelin (bib0037) 2011; 133 Wang, Wang, Ling, Tang, Yang, Fitzmorris (bib0006) 2011; 11 Kim, Choi (bib0053) 2014; 343 Liu, Li, Su, Guo (bib0041) 2016; 41 Lamm, Trześniewski, Döscher, Smith, Stefik (bib0019) 2018; 3 Kim, Ping, Galli, Choi (bib0013) 2015; 6 Chiu, Huang, Hsu, Lin, Lai, Lin (bib0038) 2018; 2 Zhang, Lin, Valev, Reisner, Steiner, Baumberg (bib0027) 2014; 10 Kalanur, Hwang, Chae, Joo (bib0008) 2013; 1 Bacha, Nabi, Fu, Li, Cheng, Zhang (bib0034) 2019; 30 Nair, Perkins, Lin, Law (bib0025) 2016; 9 Digdaya, Rodriguez, Ma, Adhyaksa, Garnett, Smets (bib0063) 2016; 4 Hill, Choi (bib0009) 2012; 116 Yang, Zhong, Liu, Du, Yang, He (bib0044) 2019; 166 Shen, Lindley, Chen, Zhang (bib0016) 2016; 9 Mali, Park, Kim, Kim, Patil, Hong (bib0055) 2019; 1 Yang, Lin, Lin, Wang, Wu (bib0015) 2015; 7 Huang, Lin (bib0035) 2019; 321 Sivula, Le Formal, Grätzel (bib0052) 2011; 4 Wu, Onno, Lin (bib0048) 2017; 229 McDonald, Choi (bib0049) 2012; 5 Kuang, Jia, Nishiyama, Yamada, Kudo, Domen (bib0011) 2016; 6 Abdi, Savenije, May, Dam, van de Krol (bib0030) 2013; 4 Aroutiounian, Arakelyan, Shahnazaryan, Stepanyan, Khachaturyan, Turner (bib0051) 2006; 9 He, Li, Zhao, Liu, Zhong, Ning (bib0042) 2018; 1 Regmi, Kshetri, Pandey, Kim, Gyawali, Lee (bib0043) 2019; 75 Hilliard, Baldinozzi, Friedrich, Kressman, Strub, Artero (bib0010) 2017; 1 Hong, Doughty, Osterloh, Zaikina (bib0056) 2019; 7 Kim, Choi (bib0031) 2016; 7 Palaniselvam, Shi, Mettela, Anjum, Li, Katuri (bib0054) 2017; 4 Kim, Choi (bib0026) 2014; 343 Chen, Li, Yi, Zhang, Zhang, Wang (bib0039) 2015; 229 Amano, Mukohara, Sato, Ohno (bib0007) 2019; 3 Zhang, Eslava (bib0018) 2019; 3 Sahoo, Zoellner, Maggard (bib0046) 2015; 3 Lee, Kvit, Choi (bib0012) 2018; 30 Yao, Zhao, Hu, Xie, Wang, Cao (bib0061) 2019; 19 Li, Wang, Jiang, Zheng, Li (bib0064) 2015; 5 Merupo, Velumani, Ordon, Errien, Szade, Kassiba (bib0040) 2015; 17 Lee, Choi (bib0023) 2018; 3 Lin, Lai, Chen, Chen, Kung, Vittal (bib0059) 2011; 4 Liang, Tsubota, Mooij, van de Krol (bib0029) 2011; 115 Huang, Cheng, Lai, Lin (bib0050) 2020; 395 Pilli, Furtak, Brown, Deutsch, Turner, Herring (bib0036) 2011; 4 Warren, Voïtchovsky, Dotan, Leroy, Cornuz, Stellacci (bib0017) 2013; 12 Park, McDonald, Choi (bib0020) 2013; 42 Antony, Bassi, Abdi, Chiam, Ren, Barber (bib0024) 2016; 211 Ahmet, Ma, Jang, Henschel, Stannowski, Lopes (bib0014) 2019; 3 Zhong, Li, Zhao, Fang, Huang, Qian (bib0060) 2016; 26 Harb, Cavallo (bib0045) 2018; 3 Haussener, Xiang, Spurgeon, Ardo, Lewis, Weber (bib0003) 2012; 5 Lai, Lin, Yen, Jiang (bib0028) 2019; 215 Harb, Masih, Takanabe (bib0047) 2014; 16 Sivula (10.1016/j.jtice.2020.05.012_bib0052) 2011; 4 Lopes (10.1016/j.jtice.2020.05.012_bib0062) 2014; 16 Lee (10.1016/j.jtice.2020.05.012_bib0023) 2018; 3 Kalanur (10.1016/j.jtice.2020.05.012_bib0008) 2013; 1 Antony (10.1016/j.jtice.2020.05.012_bib0024) 2016; 211 Kudo (10.1016/j.jtice.2020.05.012_bib0021) 1999; 121 Chang (10.1016/j.jtice.2020.05.012_bib0033) 2015; 137 Bacha (10.1016/j.jtice.2020.05.012_bib0034) 2019; 30 Hu (10.1016/j.jtice.2020.05.012_bib0004) 2013; 6 Zhong (10.1016/j.jtice.2020.05.012_bib0060) 2016; 26 Yang (10.1016/j.jtice.2020.05.012_bib0044) 2019; 166 Haussener (10.1016/j.jtice.2020.05.012_bib0003) 2012; 5 Chiu (10.1016/j.jtice.2020.05.012_bib0038) 2018; 2 Hong (10.1016/j.jtice.2020.05.012_bib0056) 2019; 7 Yang (10.1016/j.jtice.2020.05.012_bib0015) 2015; 7 Shen (10.1016/j.jtice.2020.05.012_bib0016) 2016; 9 Warren (10.1016/j.jtice.2020.05.012_bib0017) 2013; 12 Osterloh (10.1016/j.jtice.2020.05.012_bib0005) 2011; 36 Huang (10.1016/j.jtice.2020.05.012_bib0035) 2019; 321 Hill (10.1016/j.jtice.2020.05.012_bib0009) 2012; 116 Zhang (10.1016/j.jtice.2020.05.012_bib0018) 2019; 3 Lamm (10.1016/j.jtice.2020.05.012_bib0019) 2018; 3 Kim (10.1016/j.jtice.2020.05.012_bib0013) 2015; 6 Abdi (10.1016/j.jtice.2020.05.012_bib0030) 2013; 4 Chen (10.1016/j.jtice.2020.05.012_bib0058) 2010; 25 Regmi (10.1016/j.jtice.2020.05.012_bib0043) 2019; 75 Harb (10.1016/j.jtice.2020.05.012_bib0045) 2018; 3 Pilli (10.1016/j.jtice.2020.05.012_bib0036) 2011; 4 Harb (10.1016/j.jtice.2020.05.012_bib0047) 2014; 16 Liang (10.1016/j.jtice.2020.05.012_bib0029) 2011; 115 Wang (10.1016/j.jtice.2020.05.012_bib0006) 2011; 11 Wu (10.1016/j.jtice.2020.05.012_bib0048) 2017; 229 Hilliard (10.1016/j.jtice.2020.05.012_bib0010) 2017; 1 Liu (10.1016/j.jtice.2020.05.012_bib0041) 2016; 41 Nair (10.1016/j.jtice.2020.05.012_bib0025) 2016; 9 Park (10.1016/j.jtice.2020.05.012_bib0020) 2013; 42 Chen (10.1016/j.jtice.2020.05.012_bib0039) 2015; 229 Osterloh (10.1016/j.jtice.2020.05.012_bib0001) 2013; 42 Ahmet (10.1016/j.jtice.2020.05.012_bib0014) 2019; 3 Palaniselvam (10.1016/j.jtice.2020.05.012_bib0054) 2017; 4 Lee (10.1016/j.jtice.2020.05.012_bib0012) 2018; 30 Lin (10.1016/j.jtice.2020.05.012_bib0057) 2020; 4 Kuang (10.1016/j.jtice.2020.05.012_bib0011) 2016; 6 Digdaya (10.1016/j.jtice.2020.05.012_bib0063) 2016; 4 Huang (10.1016/j.jtice.2020.05.012_bib0050) 2020; 395 Sahoo (10.1016/j.jtice.2020.05.012_bib0046) 2015; 3 Zhang (10.1016/j.jtice.2020.05.012_bib0027) 2014; 10 Lai (10.1016/j.jtice.2020.05.012_bib0028) 2019; 215 Mali (10.1016/j.jtice.2020.05.012_bib0055) 2019; 1 He (10.1016/j.jtice.2020.05.012_bib0042) 2018; 1 Kim (10.1016/j.jtice.2020.05.012_bib0026) 2014; 343 Merupo (10.1016/j.jtice.2020.05.012_bib0040) 2015; 17 Amano (10.1016/j.jtice.2020.05.012_bib0007) 2019; 3 Yao (10.1016/j.jtice.2020.05.012_bib0061) 2019; 19 McDonald (10.1016/j.jtice.2020.05.012_bib0049) 2012; 5 Li (10.1016/j.jtice.2020.05.012_bib0064) 2015; 5 Lin (10.1016/j.jtice.2020.05.012_bib0059) 2011; 4 Aroutiounian (10.1016/j.jtice.2020.05.012_bib0051) 2006; 9 Kim (10.1016/j.jtice.2020.05.012_bib0053) 2014; 343 Pinaud (10.1016/j.jtice.2020.05.012_bib0002) 2013; 6 Kim (10.1016/j.jtice.2020.05.012_bib0031) 2016; 7 Zhong (10.1016/j.jtice.2020.05.012_bib0037) 2011; 133 Kuang (10.1016/j.jtice.2020.05.012_bib0022) 2017; 2 Huang (10.1016/j.jtice.2020.05.012_bib0032) 2015; 3 |
References_xml | – volume: 26 start-page: 7156 year: 2016 end-page: 7163 ident: bib0060 article-title: Enhanced water-splitting performance of Perovskite SrTaO publication-title: Adv Funct Mater – volume: 115 start-page: 17594 year: 2011 end-page: 17598 ident: bib0029 article-title: Highly improved quantum efficiencies for thin film BiVO publication-title: J Phys Chem C – volume: 19 start-page: 976 year: 2019 end-page: 985 ident: bib0061 article-title: The self-passivation mechanism in degradation of BiVO publication-title: iScience – volume: 3 start-page: 1351 year: 2019 end-page: 1364 ident: bib0018 article-title: Understanding charge transfer, defects and surface states at hematite photoanodes publication-title: Sustain Energy Fuels – volume: 1 start-page: 3479 year: 2013 end-page: 3488 ident: bib0008 article-title: Facile growth of aligned WO publication-title: J Mater Chem A – volume: 133 start-page: 18370 year: 2011 end-page: 18377 ident: bib0037 article-title: Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO publication-title: J Am Chem Soc – volume: 41 start-page: 12842 year: 2016 end-page: 12851 ident: bib0041 article-title: Enhanced charge separation in copper incorporated BiVO publication-title: Int J Hydr Energy – volume: 30 start-page: 2225 year: 2019 end-page: 2230 ident: bib0034 article-title: A comparative study of bismuth-based photocatalysts with titanium dioxide for perfluorooctanoic acid degradation publication-title: Chin Chem Lett – volume: 121 start-page: 11459 year: 1999 end-page: 11467 ident: bib0021 article-title: A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO publication-title: J Am Chem Soc – volume: 4 start-page: 2752 year: 2013 end-page: 2757 ident: bib0030 article-title: The origin of slow carrier transport in BiVO publication-title: J Phys Chem Lett – volume: 3 start-page: 112 year: 2018 end-page: 124 ident: bib0019 article-title: Emerging postsynthetic improvements of BiVO publication-title: ACS Energy Lett – volume: 5 start-page: 14374 year: 2015 end-page: 14381 ident: bib0064 article-title: Surfactant-free hydrothermal fabrication of monoclinic BiVO publication-title: RSC Adv – volume: 1 start-page: 799 year: 2019 end-page: 806 ident: bib0055 article-title: Synthesis of nanoporous Mo:BiVO publication-title: Nanoscale Adv – volume: 211 start-page: 173 year: 2016 end-page: 182 ident: bib0024 article-title: Electrospun Mo-BiVO publication-title: Electrochim Acta – volume: 17 start-page: 3366 year: 2015 end-page: 3375 ident: bib0040 article-title: Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO publication-title: CrystEngComm – volume: 25 start-page: 3 year: 2010 end-page: 16 ident: bib0058 article-title: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols publication-title: J Mater Res – volume: 4 start-page: 6842 year: 2016 end-page: 6852 ident: bib0063 article-title: Engineering the kinetics and interfacial energetics of Ni/Ni-Mo catalyzed amorphous silicon carbide photocathodes in alkaline media publication-title: J Mater Chem A – volume: 30 start-page: 4704 year: 2018 end-page: 4712 ident: bib0012 article-title: Enabling solar water oxidation by BiVO publication-title: Chem Mater – volume: 166 start-page: H513 year: 2019 end-page: HH20 ident: bib0044 article-title: Insight into the improvement mechanism of copper oxide/BiVO publication-title: J Electrochem Soc – volume: 7 start-page: 12303 year: 2019 end-page: 12316 ident: bib0056 article-title: Deep eutectic solvent route synthesis of zinc and copper vanadate n-type semiconductors – mapping oxygen vacancies and their effect on photovoltage publication-title: J Mater Chem A – volume: 229 start-page: 129 year: 2017 end-page: 140 ident: bib0048 article-title: CuO nanoparticles decorated nano-dendrite-structured CuBi publication-title: Electrochim Acta – volume: 3 start-page: 2366 year: 2019 end-page: 2379 ident: bib0014 article-title: Demonstration of a 50 cm publication-title: Sustain Energy Fuels – volume: 4 start-page: 5028 year: 2011 end-page: 5034 ident: bib0036 article-title: Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO publication-title: Energy Environ Sci – volume: 5 start-page: 9922 year: 2012 end-page: 9935 ident: bib0003 article-title: Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems publication-title: Energy Environ Sci – volume: 7 start-page: 13314 year: 2015 end-page: 13321 ident: bib0015 article-title: n-Fe publication-title: ACS Appl Mater Interfaces – volume: 4 start-page: 625 year: 2020 end-page: 632 ident: bib0057 article-title: Facile room-temperature growth of nanostructured CuBi publication-title: Sustain Energy Fuels – volume: 9 start-page: 325 year: 2006 end-page: 331 ident: bib0051 article-title: Investigations of the structure of the iron oxide semiconductor-electrolyte interface publication-title: C R Chim – volume: 42 start-page: 2294 year: 2013 end-page: 2320 ident: bib0001 article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting publication-title: Chem Soc Rev – volume: 3 start-page: 3262 year: 2015 end-page: 3273 ident: bib0032 article-title: A General and facile approach to heterostructured core/shell BiVO publication-title: ACS Sustain Chem Eng – volume: 137 start-page: 8356 year: 2015 end-page: 8359 ident: bib0033 article-title: Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co publication-title: J Am Chem Soc – volume: 36 start-page: 17 year: 2011 end-page: 22 ident: bib0005 article-title: Recent developments in solar water-splitting photocatalysis publication-title: MRS Bull – volume: 116 start-page: 7612 year: 2012 end-page: 7620 ident: bib0009 article-title: Effect of electrolytes on the selectivity and stability of n-type WO publication-title: J Phys Chem C – volume: 321 year: 2019 ident: bib0035 article-title: Electrosynthesis, activation, and applications of nickel-iron oxyhydroxide in (photo-)electrochemical water splitting at near neutral condition publication-title: Electrochim Acta – volume: 12 start-page: 842 year: 2013 end-page: 849 ident: bib0017 article-title: Identifying champion nanostructures for solar water-splitting publication-title: Nat Mater – volume: 6 year: 2016 ident: bib0011 article-title: A front-illuminated nanostructured transparent BiVO publication-title: Adv Energy Mater – volume: 6 start-page: 2984 year: 2013 end-page: 2993 ident: bib0004 article-title: An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems publication-title: Energy Environ Sci – volume: 343 start-page: 990 year: 2014 end-page: 994 ident: bib0026 article-title: Nanoporous BiVO publication-title: Science – volume: 2 start-page: 271 year: 2018 end-page: 279 ident: bib0038 article-title: Calcium containing iron oxide as an efficient and robust catalyst in (photo-)electrocatalytic water oxidation at neutral pH publication-title: Sustain Energy Fuels – volume: 343 start-page: 990 year: 2014 end-page: 994 ident: bib0053 article-title: Nanoporous BiVO publication-title: Science – volume: 16 start-page: 16515 year: 2014 end-page: 16523 ident: bib0062 article-title: Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy publication-title: Phys Chem Chem Phys – volume: 10 start-page: 3970 year: 2014 end-page: 3978 ident: bib0027 article-title: Plasmonic enhancement in BiVO publication-title: Small – volume: 215 start-page: 297 year: 2019 end-page: 312 ident: bib0028 article-title: A tandem photoelectrochemical water splitting cell consisting of CuBi publication-title: Faraday Discuss – volume: 3 start-page: 2048 year: 2019 end-page: 2055 ident: bib0007 article-title: Photoelectrochemical water vapor splitting using an ionomer-coated rutile TiO publication-title: Sustain Energy Fuels – volume: 6 year: 2015 ident: bib0013 article-title: Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting publication-title: Nat Commun – volume: 3 start-page: 53 year: 2018 end-page: 60 ident: bib0023 article-title: Enhancing long-term photostability of BiVO publication-title: Nat Energy – volume: 1 start-page: 145 year: 2017 end-page: 153 ident: bib0010 article-title: Mesoporous thin film WO publication-title: Sustain Energy Fuels – volume: 9 start-page: 2744 year: 2016 end-page: 2775 ident: bib0016 article-title: Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics publication-title: Energy Environ Sci – volume: 1 start-page: 2589 year: 2018 end-page: 2599 ident: bib0042 article-title: Fabrication of porous Cu-doped BiVO publication-title: ACS Appl Nano Mater – volume: 4 start-page: 432 year: 2011 end-page: 449 ident: bib0052 article-title: Solar water splitting: progress using hematite (alpha-Fe publication-title: ChemSusChem – volume: 3 start-page: 4501 year: 2015 end-page: 4509 ident: bib0046 article-title: Optical, electronic, and photoelectrochemical properties of the p-type Cu publication-title: J Mater Chem A – volume: 75 start-page: 84 year: 2019 end-page: 97 ident: bib0043 article-title: Understanding the multifunctionality in Cu-doped BiVO publication-title: J Environ Sci – volume: 3 start-page: 6605 year: 2018 end-page: 6610 ident: bib0045 article-title: Insights into the impact of native defects on the conductivity of CuVO publication-title: ACS Omega – volume: 16 start-page: 18198 year: 2014 end-page: 18204 ident: bib0047 article-title: Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO publication-title: Phys Chem Chem Phys – volume: 229 start-page: 141 year: 2015 end-page: 149 ident: bib0039 article-title: Microwave assisted synthesis of sheet-like Cu/BiVO publication-title: J Solid State Chem – volume: 4 start-page: 3448 year: 2011 end-page: 3455 ident: bib0059 article-title: Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode publication-title: Energy Environ Sci – volume: 7 start-page: 447 year: 2016 end-page: 451 ident: bib0031 article-title: Improving stability and photoelectrochemical performance of BiVO publication-title: J Phys Chem Lett – volume: 42 start-page: 2321 year: 2013 end-page: 2337 ident: bib0020 article-title: Progress in bismuth vanadate photoanodes for use in solar water oxidation publication-title: Chem Soc Rev – volume: 11 start-page: 3026 year: 2011 end-page: 3033 ident: bib0006 article-title: Hydrogen-treated TiO publication-title: Nano Lett – volume: 5 start-page: 8553 year: 2012 end-page: 8557 ident: bib0049 article-title: A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO publication-title: Energy Environ Sci – volume: 6 start-page: 1983 year: 2013 end-page: 2002 ident: bib0002 article-title: Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry publication-title: Energy Environ Sci – volume: 4 year: 2017 ident: bib0054 article-title: Vastly enhanced BiVO publication-title: Adv Mater Interfaces – volume: 2 start-page: 16191 year: 2017 ident: bib0022 article-title: Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration publication-title: Nat Energy – volume: 9 start-page: 1412 year: 2016 end-page: 1429 ident: bib0025 article-title: Textured nanoporous Mo:BiVO publication-title: Energy Environ Sci – volume: 395 year: 2020 ident: bib0050 article-title: Sustainable and selective formic acid production from photoelectrochemical methanol reforming at near-neutral pH using nanoporous nickel-iron oxyhydroxide-borate as the electrocatalyst publication-title: Chem Eng J – volume: 3 start-page: 3262 year: 2015 ident: 10.1016/j.jtice.2020.05.012_bib0032 article-title: A General and facile approach to heterostructured core/shell BiVO4/BiOI p-n junction: room-temperature in situ assembly and highly boosted visible-light photocatalysis publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.5b01038 – volume: 133 start-page: 18370 year: 2011 ident: 10.1016/j.jtice.2020.05.012_bib0037 article-title: Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4 publication-title: J Am Chem Soc doi: 10.1021/ja207348x – volume: 4 start-page: 3448 year: 2011 ident: 10.1016/j.jtice.2020.05.012_bib0059 article-title: Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode publication-title: Energy Environ Sci doi: 10.1039/c0ee00587h – volume: 1 start-page: 799 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0055 article-title: Synthesis of nanoporous Mo:BiVO4 thin film photoanodes using the ultrasonic spray technique for visible-light water splitting publication-title: Nanoscale Adv doi: 10.1039/C8NA00209F – volume: 30 start-page: 4704 year: 2018 ident: 10.1016/j.jtice.2020.05.012_bib0012 article-title: Enabling solar water oxidation by BiVO4 photoanodes in basic media publication-title: Chem Mater doi: 10.1021/acs.chemmater.8b01405 – volume: 36 start-page: 17 year: 2011 ident: 10.1016/j.jtice.2020.05.012_bib0005 article-title: Recent developments in solar water-splitting photocatalysis publication-title: MRS Bull doi: 10.1557/mrs.2010.5 – volume: 3 start-page: 2366 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0014 article-title: Demonstration of a 50 cm2 BiVO4 tandem photoelectrochemical-photovoltaic water splitting device publication-title: Sustain Energy Fuels doi: 10.1039/C9SE00246D – volume: 7 start-page: 13314 year: 2015 ident: 10.1016/j.jtice.2020.05.012_bib0015 article-title: n-Fe2O3 to N+-TiO2 heterojunction photoanode for photoelectrochemical water oxidation publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b01489 – volume: 1 start-page: 145 year: 2017 ident: 10.1016/j.jtice.2020.05.012_bib0010 article-title: Mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol-gel dip coating approach publication-title: Sustain Energy Fuels doi: 10.1039/C6SE00001K – volume: 1 start-page: 2589 year: 2018 ident: 10.1016/j.jtice.2020.05.012_bib0042 article-title: Fabrication of porous Cu-doped BiVO4 nanotubes as efficient oxygen-evolving photocatalysts publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.8b00281 – volume: 16 start-page: 16515 year: 2014 ident: 10.1016/j.jtice.2020.05.012_bib0062 article-title: Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy publication-title: Phys Chem Chem Phys doi: 10.1039/C3CP55473B – volume: 42 start-page: 2321 year: 2013 ident: 10.1016/j.jtice.2020.05.012_bib0020 article-title: Progress in bismuth vanadate photoanodes for use in solar water oxidation publication-title: Chem Soc Rev doi: 10.1039/C2CS35260E – volume: 30 start-page: 2225 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0034 article-title: A comparative study of bismuth-based photocatalysts with titanium dioxide for perfluorooctanoic acid degradation publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2019.07.058 – volume: 9 start-page: 325 year: 2006 ident: 10.1016/j.jtice.2020.05.012_bib0051 article-title: Investigations of the structure of the iron oxide semiconductor-electrolyte interface publication-title: C R Chim doi: 10.1016/j.crci.2005.03.029 – volume: 6 start-page: 1983 year: 2013 ident: 10.1016/j.jtice.2020.05.012_bib0002 article-title: Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry publication-title: Energy Environ Sci doi: 10.1039/c3ee40831k – volume: 3 start-page: 6605 year: 2018 ident: 10.1016/j.jtice.2020.05.012_bib0045 article-title: Insights into the impact of native defects on the conductivity of CuVO3 material for photovoltaic application: a first-principles computational study publication-title: ACS Omega doi: 10.1021/acsomega.8b00532 – volume: 4 start-page: 432 year: 2011 ident: 10.1016/j.jtice.2020.05.012_bib0052 article-title: Solar water splitting: progress using hematite (alpha-Fe2O3) photoelectrodes publication-title: ChemSusChem doi: 10.1002/cssc.201000416 – volume: 115 start-page: 17594 year: 2011 ident: 10.1016/j.jtice.2020.05.012_bib0029 article-title: Highly improved quantum efficiencies for thin film BiVO4 photoanodes publication-title: J Phys Chem C doi: 10.1021/jp203004v – volume: 9 start-page: 2744 year: 2016 ident: 10.1016/j.jtice.2020.05.012_bib0016 article-title: Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics publication-title: Energy Environ Sci doi: 10.1039/C6EE01845A – volume: 2 start-page: 16191 year: 2017 ident: 10.1016/j.jtice.2020.05.012_bib0022 article-title: Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration publication-title: Nat Energy doi: 10.1038/nenergy.2016.191 – volume: 17 start-page: 3366 year: 2015 ident: 10.1016/j.jtice.2020.05.012_bib0040 article-title: Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4) publication-title: CrystEngComm doi: 10.1039/C5CE00173K – volume: 16 start-page: 18198 year: 2014 ident: 10.1016/j.jtice.2020.05.012_bib0047 article-title: Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP02497D – volume: 19 start-page: 976 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0061 article-title: The self-passivation mechanism in degradation of BiVO4 photoanode publication-title: iScience doi: 10.1016/j.isci.2019.08.037 – volume: 6 year: 2015 ident: 10.1016/j.jtice.2020.05.012_bib0013 article-title: Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting publication-title: Nat Commun doi: 10.1038/ncomms9769 – volume: 121 start-page: 11459 year: 1999 ident: 10.1016/j.jtice.2020.05.012_bib0021 article-title: A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties publication-title: J Am Chem Soc doi: 10.1021/ja992541y – volume: 4 start-page: 2752 year: 2013 ident: 10.1016/j.jtice.2020.05.012_bib0030 article-title: The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study publication-title: J Phys Chem Lett doi: 10.1021/jz4013257 – volume: 4 start-page: 625 year: 2020 ident: 10.1016/j.jtice.2020.05.012_bib0057 article-title: Facile room-temperature growth of nanostructured CuBi2O4 for selective electrochemical reforming and photoelectrochemical hydrogen evolution reactions publication-title: Sustain Energy Fuels doi: 10.1039/C9SE00558G – volume: 42 start-page: 2294 year: 2013 ident: 10.1016/j.jtice.2020.05.012_bib0001 article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting publication-title: Chem Soc Rev doi: 10.1039/C2CS35266D – volume: 6 start-page: 2984 year: 2013 ident: 10.1016/j.jtice.2020.05.012_bib0004 article-title: An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems publication-title: Energy Environ Sci doi: 10.1039/c3ee40453f – volume: 6 year: 2016 ident: 10.1016/j.jtice.2020.05.012_bib0011 article-title: A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting publication-title: Adv Energy Mater doi: 10.1002/aenm.201501645 – volume: 26 start-page: 7156 year: 2016 ident: 10.1016/j.jtice.2020.05.012_bib0060 article-title: Enhanced water-splitting performance of Perovskite SrTaO2N photoanode film through ameliorating interparticle charge transport publication-title: Adv Funct Mater doi: 10.1002/adfm.201603021 – volume: 321 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0035 article-title: Electrosynthesis, activation, and applications of nickel-iron oxyhydroxide in (photo-)electrochemical water splitting at near neutral condition publication-title: Electrochim Acta doi: 10.1016/j.electacta.2019.134667 – volume: 3 start-page: 53 year: 2018 ident: 10.1016/j.jtice.2020.05.012_bib0023 article-title: Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition publication-title: Nat Energy doi: 10.1038/s41560-017-0057-0 – volume: 3 start-page: 1351 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0018 article-title: Understanding charge transfer, defects and surface states at hematite photoanodes publication-title: Sustain Energy Fuels doi: 10.1039/C9SE00145J – volume: 5 start-page: 9922 year: 2012 ident: 10.1016/j.jtice.2020.05.012_bib0003 article-title: Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems publication-title: Energy Environ Sci doi: 10.1039/c2ee23187e – volume: 12 start-page: 842 year: 2013 ident: 10.1016/j.jtice.2020.05.012_bib0017 article-title: Identifying champion nanostructures for solar water-splitting publication-title: Nat Mater doi: 10.1038/nmat3684 – volume: 137 start-page: 8356 year: 2015 ident: 10.1016/j.jtice.2020.05.012_bib0033 article-title: Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes publication-title: J Am Chem Soc doi: 10.1021/jacs.5b04186 – volume: 229 start-page: 129 year: 2017 ident: 10.1016/j.jtice.2020.05.012_bib0048 article-title: CuO nanoparticles decorated nano-dendrite-structured CuBi2O4 for highly sensitive and selective electrochemical detection of glucose publication-title: Electrochim Acta doi: 10.1016/j.electacta.2017.01.130 – volume: 211 start-page: 173 year: 2016 ident: 10.1016/j.jtice.2020.05.012_bib0024 article-title: Electrospun Mo-BiVO4 for efficient photoelectrochemical water oxidation: direct evidence of improved hole diffusion length and charge separation publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.06.008 – volume: 3 start-page: 112 year: 2018 ident: 10.1016/j.jtice.2020.05.012_bib0019 article-title: Emerging postsynthetic improvements of BiVO4 photoanodes for solar water splitting publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.7b00834 – volume: 215 start-page: 297 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0028 article-title: A tandem photoelectrochemical water splitting cell consisting of CuBi2O4 and BiVO4 synthesized from a single Bi4O5I2 nanosheet template publication-title: Faraday Discuss doi: 10.1039/C8FD00183A – volume: 7 start-page: 12303 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0056 article-title: Deep eutectic solvent route synthesis of zinc and copper vanadate n-type semiconductors – mapping oxygen vacancies and their effect on photovoltage publication-title: J Mater Chem A doi: 10.1039/C9TA00957D – volume: 4 year: 2017 ident: 10.1016/j.jtice.2020.05.012_bib0054 article-title: Vastly enhanced BiVO4 photocatalytic OER performance by NiCoO2 as cocatalyst publication-title: Adv Mater Interfaces doi: 10.1002/admi.201700540 – volume: 1 start-page: 3479 year: 2013 ident: 10.1016/j.jtice.2020.05.012_bib0008 article-title: Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity publication-title: J Mater Chem A doi: 10.1039/c3ta01175e – volume: 229 start-page: 141 year: 2015 ident: 10.1016/j.jtice.2020.05.012_bib0039 article-title: Microwave assisted synthesis of sheet-like Cu/BiVO4 and its activities of various photocatalytic conditions publication-title: J Solid State Chem doi: 10.1016/j.jssc.2015.05.026 – volume: 10 start-page: 3970 year: 2014 ident: 10.1016/j.jtice.2020.05.012_bib0027 article-title: Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting publication-title: Small doi: 10.1002/smll.201400970 – volume: 25 start-page: 3 year: 2010 ident: 10.1016/j.jtice.2020.05.012_bib0058 article-title: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols publication-title: J Mater Res doi: 10.1557/JMR.2010.0020 – volume: 4 start-page: 5028 year: 2011 ident: 10.1016/j.jtice.2020.05.012_bib0036 article-title: Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation publication-title: Energy Environ Sci doi: 10.1039/c1ee02444b – volume: 7 start-page: 447 year: 2016 ident: 10.1016/j.jtice.2020.05.012_bib0031 article-title: Improving stability and photoelectrochemical performance of BiVO4 photoanodes in basic media by adding a ZnFe2O4 layer publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b02774 – volume: 2 start-page: 271 year: 2018 ident: 10.1016/j.jtice.2020.05.012_bib0038 article-title: Calcium containing iron oxide as an efficient and robust catalyst in (photo-)electrocatalytic water oxidation at neutral pH publication-title: Sustain Energy Fuels doi: 10.1039/C7SE00447H – volume: 166 start-page: H513 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0044 article-title: Insight into the improvement mechanism of copper oxide/BiVO4 heterojunction photoanodes for solar water oxidation publication-title: J Electrochem Soc doi: 10.1149/2.0611912jes – volume: 3 start-page: 2048 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0007 article-title: Photoelectrochemical water vapor splitting using an ionomer-coated rutile TiO2 thin layer on titanium microfiber felt as an oxygen-evolving photoanode publication-title: Sustain Energy Fuels doi: 10.1039/C9SE00292H – volume: 343 start-page: 990 year: 2014 ident: 10.1016/j.jtice.2020.05.012_bib0026 article-title: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting publication-title: Science doi: 10.1126/science.1246913 – volume: 3 start-page: 4501 year: 2015 ident: 10.1016/j.jtice.2020.05.012_bib0046 article-title: Optical, electronic, and photoelectrochemical properties of the p-type Cu3-xVO4 semiconductor publication-title: J Mater Chem A doi: 10.1039/C4TA04876H – volume: 4 start-page: 6842 year: 2016 ident: 10.1016/j.jtice.2020.05.012_bib0063 article-title: Engineering the kinetics and interfacial energetics of Ni/Ni-Mo catalyzed amorphous silicon carbide photocathodes in alkaline media publication-title: J Mater Chem A doi: 10.1039/C5TA09435F – volume: 116 start-page: 7612 year: 2012 ident: 10.1016/j.jtice.2020.05.012_bib0009 article-title: Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation publication-title: J Phys Chem C doi: 10.1021/jp209909b – volume: 75 start-page: 84 year: 2019 ident: 10.1016/j.jtice.2020.05.012_bib0043 article-title: Understanding the multifunctionality in Cu-doped BiVO4 semiconductor photocatalyst publication-title: J Environ Sci doi: 10.1016/j.jes.2018.03.005 – volume: 9 start-page: 1412 year: 2016 ident: 10.1016/j.jtice.2020.05.012_bib0025 article-title: Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution publication-title: Energy Environ Sci doi: 10.1039/C6EE00129G – volume: 343 start-page: 990 year: 2014 ident: 10.1016/j.jtice.2020.05.012_bib0053 article-title: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting publication-title: Science doi: 10.1126/science.1246913 – volume: 11 start-page: 3026 year: 2011 ident: 10.1016/j.jtice.2020.05.012_bib0006 article-title: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting publication-title: Nano Lett doi: 10.1021/nl201766h – volume: 5 start-page: 8553 year: 2012 ident: 10.1016/j.jtice.2020.05.012_bib0049 article-title: A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation publication-title: Energy Environ Sci doi: 10.1039/c2ee22608a – volume: 395 year: 2020 ident: 10.1016/j.jtice.2020.05.012_bib0050 article-title: Sustainable and selective formic acid production from photoelectrochemical methanol reforming at near-neutral pH using nanoporous nickel-iron oxyhydroxide-borate as the electrocatalyst publication-title: Chem Eng J doi: 10.1016/j.cej.2020.125176 – volume: 5 start-page: 14374 year: 2015 ident: 10.1016/j.jtice.2020.05.012_bib0064 article-title: Surfactant-free hydrothermal fabrication of monoclinic BiVO4 photocatalyst with oxygen vacancies by copper doping publication-title: RSC Adv doi: 10.1039/C4RA14318C – volume: 41 start-page: 12842 year: 2016 ident: 10.1016/j.jtice.2020.05.012_bib0041 article-title: Enhanced charge separation in copper incorporated BiVO4 with gradient doping concentration profile for photoelectrochemical water splitting publication-title: Int J Hydr Energy doi: 10.1016/j.ijhydene.2016.06.068 |
SSID | ssj0000070225 |
Score | 2.320961 |
Snippet | 1A facile method for preparing Cu(I) vanadate-BiVO4 p-n heterojuction photoanode.2Role of Cu(I) vanadate in improving the kinetics of charge transport was... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 80 |
SubjectTerms | Bismuth vanadate Heterojunction Nickel-iron oxyhydroxide-borate Photoelectrochemistry Water oxidation |
Title | Simultaneous enhancement in charge separation and interfacial charge transfer of BiVO4 photoanode for photoelectrochemical water oxidation |
URI | https://dx.doi.org/10.1016/j.jtice.2020.05.012 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKOwADggKifFQeGAlNnLSNx1KBCkhlKEXdIttxRCrkVG0QTPwAfjV3iYOKhBgYHfmsyHe5e-ec3xFyHnqekIErHcQeDlhIz-F-mDhcJH2fizAJZVHlO-6NpsHdrDurkWF1FwbLKq3vL3164a3tk47dzc4iTTsTDz5kSF7wVxqepoAfbjCI9mGdNAa396Px91ELUtqwov0qijgoU_EPFZVecywzg1SRuSWJJ_s9Rq3FnZtdsmMBIx2U77RHato0yWZ1n3jVJNtrlIL75HOSYo2gMBpSeqrNM2oVTwBpamhBi6TpSpeE35mhwsQUGSOWicCz82pGXsBZvaRZQq_Sp4eALp6zPBMmizUFmFsObQsdZTkH6BvgVhB5T8s-TQdkenP9OBw5tt-Co_wezx0pQ4hViovAV6rvaiYlwDMZA4ZQPHaVpxOAN0Gi-0J6QSK19qQKmBYBUzIGXHBI6iYz-ghvgjNEGsz3wRIgZxKu4HHMfeV3JSzJW4RVOxwpS0aOPTFeoqrqbB4VaolQLZHbjWCxFrn4FlqUXBx_T-9Vqot-mFQE0eIvweP_Cp6QLRyVlWSnpJ4vX_UZYJZctsnG5YfXtpb5Bce37jg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcQAOiKd4kwNHqrVptjVHQKDBxjgMELcoSVPRCaXTKILfwK_GblMEEuLAsW0cVbFrf3Gdz4QcJ1GkNA91gNgjAAvpBSJOskCorB8LlWSJrqp8x73BPb9-7D62yHlzFgbLKr3vr3165a39nY5fzc4szzuTCD5k2LzgrzTMpoAfXuDY1LpNFk6vhoPxV6oFKW1Y1X4VRQKUafiHqkqvKZaZwVaRhTWJJ_s9Rn2LO5erZMUDRnpav9MaaVm3Thab88Qv62T5G6XgBvmY5FgjqJyFLT217gm1ihlAmjta0SJZ-mJrwu_CUeVSiowR80xh7rwZUVZw1s5pkdGz_OGW09lTURbKFamlAHPrS99Cx3jOAfoGuBVE3vO6T9Mmub-8uDsfBL7fQmDinigDrROIVUYoHhvTDy3TGuCZTgFDGJGGJrIZwBue2b7SEc-0tZE2nFnFmdEp4IIt0naFs9t4Epwh0mBxDJYAeyYVKpGmIjZxV8OUYoewZoWl8WTk2BPjWTZVZ1NZqUWiWmTYlTDZDjn5EprVXBx_D-81qpM_TEpCtPhLcPe_gkdkcXB3M5Kjq_Fwjyzhk7qqbJ-0y_mrPQD8UupDb5-fZn3wHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+enhancement+in+charge+separation+and+interfacial+charge+transfer+of+BiVO4+photoanode+for+photoelectrochemical+water+oxidation&rft.jtitle=Journal+of+the+Taiwan+Institute+of+Chemical+Engineers&rft.au=Ko%2C+Ting-Rong&rft.au=Chueh%2C+Yu-Chien&rft.au=Lai%2C+Yi-Hsuan&rft.au=Lin%2C+Chia-Yu&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=1876-1070&rft.eissn=1876-1089&rft.volume=111&rft.spage=80&rft.epage=89&rft_id=info:doi/10.1016%2Fj.jtice.2020.05.012&rft.externalDocID=S1876107020301292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1876-1070&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1876-1070&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1876-1070&client=summon |