An improved k-prototypes clustering algorithm for mixed numeric and categorical data
Data objects with mixed numeric and categorical attributes are commonly encountered in real world. The k-prototypes algorithm is one of the principal algorithms for clustering this type of data objects. In this paper, we propose an improved k-prototypes algorithm to cluster mixed data. In our method...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 120; pp. 590 - 596 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
23.11.2013
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 |
| DOI | 10.1016/j.neucom.2013.04.011 |
Cover
| Abstract | Data objects with mixed numeric and categorical attributes are commonly encountered in real world. The k-prototypes algorithm is one of the principal algorithms for clustering this type of data objects. In this paper, we propose an improved k-prototypes algorithm to cluster mixed data. In our method, we first introduce the concept of the distribution centroid for representing the prototype of categorical attributes in a cluster. Then we combine both mean with distribution centroid to represent the prototype of the cluster with mixed attributes, and thus propose a new measure to calculate the dissimilarity between data objects and prototypes of clusters. This measure takes into account the significance of different attributes towards the clustering process. Finally, we present our algorithm for clustering mixed data, and the performance of our method is demonstrated by a series of experiments on four real-world datasets in comparison with that of traditional clustering algorithms.
•We propose a new representation for the prototype of a cluster with mixed attributes.•We give a new measure to assess the dissimilarity between data objects and prototype.•This measure considers the significance of attribute towards clustering process.•Our algorithm can calculate the significance of attribute towards clustering.•Our algorithm achieves better results according to the clustering accuracy. |
|---|---|
| AbstractList | Data objects with mixed numeric and categorical attributes are commonly encountered in real world. The k-prototypes algorithm is one of the principal algorithms for clustering this type of data objects. In this paper, we propose an improved k-prototypes algorithm to cluster mixed data. In our method, we first introduce the concept of the distribution centroid for representing the prototype of categorical attributes in a cluster. Then we combine both mean with distribution centroid to represent the prototype of the cluster with mixed attributes, and thus propose a new measure to calculate the dissimilarity between data objects and prototypes of clusters. This measure takes into account the significance of different attributes towards the clustering process. Finally, we present our algorithm for clustering mixed data, and the performance of our method is demonstrated by a series of experiments on four real-world datasets in comparison with that of traditional clustering algorithms. Data objects with mixed numeric and categorical attributes are commonly encountered in real world. The k-prototypes algorithm is one of the principal algorithms for clustering this type of data objects. In this paper, we propose an improved k-prototypes algorithm to cluster mixed data. In our method, we first introduce the concept of the distribution centroid for representing the prototype of categorical attributes in a cluster. Then we combine both mean with distribution centroid to represent the prototype of the cluster with mixed attributes, and thus propose a new measure to calculate the dissimilarity between data objects and prototypes of clusters. This measure takes into account the significance of different attributes towards the clustering process. Finally, we present our algorithm for clustering mixed data, and the performance of our method is demonstrated by a series of experiments on four real-world datasets in comparison with that of traditional clustering algorithms. •We propose a new representation for the prototype of a cluster with mixed attributes.•We give a new measure to assess the dissimilarity between data objects and prototype.•This measure considers the significance of attribute towards clustering process.•Our algorithm can calculate the significance of attribute towards clustering.•Our algorithm achieves better results according to the clustering accuracy. |
| Author | Wang, Zhe Zhou, Chunguang Bai, Tian Ma, Chao Ji, Jinchao |
| Author_xml | – sequence: 1 givenname: Jinchao surname: Ji fullname: Ji, Jinchao email: jinchao0374@163.com organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 2 givenname: Tian surname: Bai fullname: Bai, Tian email: dayton915@gmail.com organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 3 givenname: Chunguang surname: Zhou fullname: Zhou, Chunguang email: cgzhou@jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 4 givenname: Chao surname: Ma fullname: Ma, Chao email: billmach0913@gmail.com organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 5 givenname: Zhe surname: Wang fullname: Wang, Zhe email: wzj0431@gmail.com organization: College of Computer Science and Technology, Jilin University, Changchun 130012, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27678780$$DView record in Pascal Francis |
| BookMark | eNqFkD1rHDEQhkVwIGfH_8CFmkCaXetrJW0KgzFJHDCkuV7opFlHl13pImlN_O-j40yKFE41A_O8L8Nzjs5iioDQFSU9JVRe7_sIq0tLzwjlPRE9ofQN2lCtWKeZlmdoQ0Y2dIxT9g6dl7InhCrKxg3a3kYclkNOT-Dxz64tNdXnAxTs5rVUyCE-Yjs_phzqjwVPKeMl_G5sXJd2dNhGj52tcCScnbG31b5Hbyc7F7h8mRdo--Xz9u6-e_j-9dvd7UPnuBxrt-NOemGFl2IHwzhRrh1MZHJCkdHLwY2Kksnu2KiJt4oNoDRjbKTAQWjJL9DHU237-tcKpZolFAfzbCOktRg6EMn1MAje0A8vqC3tyynb6EIxhxwWm58NU1JppUnjxIlzOZWSYfqLUGKOrs3enFybo2tDhGmuW-zTPzEXqq0hxZptmP8XvjmFoal6CpBNcQGiAx8yuGp8Cq8X_AHCJZ-g |
| CitedBy_id | crossref_primary_10_1007_s11063_023_11332_y crossref_primary_10_1016_j_patcog_2017_02_001 crossref_primary_10_1016_j_ins_2024_121528 crossref_primary_10_1016_j_eswa_2017_12_013 crossref_primary_10_1109_ACCESS_2021_3057113 crossref_primary_10_3390_su10082614 crossref_primary_10_3233_JIFS_179001 crossref_primary_10_1007_s10462_019_09800_w crossref_primary_10_1016_j_asoc_2017_04_031 crossref_primary_10_1080_0951192X_2018_1509129 crossref_primary_10_1016_j_neucom_2018_03_048 crossref_primary_10_1016_j_patcog_2024_111062 crossref_primary_10_1155_2017_6393652 crossref_primary_10_1007_s10489_018_1324_x crossref_primary_10_1016_j_cie_2022_108164 crossref_primary_10_2147_JPR_S246503 crossref_primary_10_1080_09617353_2024_2369961 crossref_primary_10_3390_math12182884 crossref_primary_10_1007_s00357_016_9208_4 crossref_primary_10_1016_j_neucom_2021_08_050 crossref_primary_10_1007_s13369_019_04121_0 crossref_primary_10_1109_ACCESS_2023_3345466 crossref_primary_10_1016_j_asoc_2016_06_019 crossref_primary_10_3233_JIFS_18146 crossref_primary_10_1016_j_ins_2021_07_039 crossref_primary_10_1002_wics_1456 crossref_primary_10_1155_2020_5143797 crossref_primary_10_1016_j_ins_2019_07_100 crossref_primary_10_3390_a12090177 crossref_primary_10_1007_s13042_022_01602_x crossref_primary_10_1016_j_chemolab_2020_104070 crossref_primary_10_1109_ACCESS_2021_3118411 crossref_primary_10_3390_jtaer17040076 crossref_primary_10_1088_1755_1315_252_5_052100 crossref_primary_10_56294_saludcyt2022194 crossref_primary_10_1155_2023_7114343 crossref_primary_10_1186_s40537_024_01052_y crossref_primary_10_32604_cmc_2021_017548 crossref_primary_10_1016_j_eswa_2021_115882 crossref_primary_10_1007_s13042_023_01968_6 crossref_primary_10_1016_j_eswa_2021_116100 crossref_primary_10_1142_S1469026820500303 crossref_primary_10_1007_s12046_018_0823_0 crossref_primary_10_3390_e17031535 crossref_primary_10_1007_s11277_019_06709_z crossref_primary_10_1016_j_jbi_2018_02_008 crossref_primary_10_1145_3609333 crossref_primary_10_1007_s10844_014_0348_x crossref_primary_10_12677_SA_2022_111009 crossref_primary_10_1007_s11634_018_0316_3 crossref_primary_10_1016_j_patcog_2023_109353 crossref_primary_10_1016_j_neucom_2015_08_018 crossref_primary_10_1007_s10115_024_02319_9 crossref_primary_10_1016_j_is_2025_102549 crossref_primary_10_1109_ACCESS_2019_2903568 crossref_primary_10_1007_s10844_017_0472_5 crossref_primary_10_1088_1742_6596_1367_1_012018 crossref_primary_10_1016_j_celrep_2021_108975 crossref_primary_10_1016_j_ins_2021_02_045 crossref_primary_10_1109_TNNLS_2017_2704779 crossref_primary_10_1002_ldr_3741 crossref_primary_10_1109_ACCESS_2020_2973216 crossref_primary_10_1016_j_engappai_2016_08_009 crossref_primary_10_1088_1757_899X_725_1_012105 crossref_primary_10_1109_TIM_2022_3216366 |
| Cites_doi | 10.1109/91.784206 10.1023/A:1009769707641 10.1016/j.eswa.2005.11.017 10.1109/TKDE.2002.1019208 10.1109/TPAMI.2005.95 10.1016/j.neucom.2012.02.013 10.1145/331499.331504 10.1145/584887.584888 10.1109/CEC.2010.5586136 10.1109/TIT.1982.1056489 10.1016/j.patrec.2004.04.004 10.1016/j.eswa.2007.08.049 10.1016/j.knosys.2009.11.001 10.1016/j.neucom.2011.07.014 10.1016/j.eswa.2011.01.074 10.2307/2528080 10.1016/j.neucom.2011.09.002 10.1016/j.neucom.2011.11.001 10.1016/j.patcog.2011.07.006 10.1016/j.knosys.2012.01.006 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.neucom.2013.04.011 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1872-8286 |
| EndPage | 596 |
| ExternalDocumentID | 27678780 10_1016_j_neucom_2013_04_011 S0925231213004773 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD AGCQF AGRNS BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c369t-b3c6d4a4d64be59f138cef0fc4709d65c9710fab2980da725e7822291e3e4863 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 |
| IngestDate | Sat Sep 27 17:20:23 EDT 2025 Mon Jul 21 09:16:52 EDT 2025 Wed Oct 01 03:45:18 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Fri Feb 23 02:27:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dissimilarity measure Clustering Data mining Mixed data Attribute significance Cluster analysis Data type Data analysis Prototype Similarity Cluster Categorical data Center of mass Selection criterion |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-b3c6d4a4d64be59f138cef0fc4709d65c9710fab2980da725e7822291e3e4863 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1506385543 |
| PQPubID | 23500 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1506385543 pascalfrancis_primary_27678780 crossref_primary_10_1016_j_neucom_2013_04_011 crossref_citationtrail_10_1016_j_neucom_2013_04_011 elsevier_sciencedirect_doi_10_1016_j_neucom_2013_04_011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-11-23 |
| PublicationDateYYYYMMDD | 2013-11-23 |
| PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-23 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Jain, Murty, Flynn (bib8) 1999; 31 Ji, Pang, Zhou, Han, Wang (bib28) 2012; 30 Hsu, Chen (bib3) 2007; 32 Hsu, Huang (bib10) 2008; 35 D. Barbara, J. Couto, Y. Li, COOLCAT: an entropy-based algorithm for categorical clustering, in: Proceedings of the Eleventh International Conference on Information and Knowledge Management, 2002, pp. 582–589. Li, Chen, Bu (bib5) 2012; 87 Huang (bib13) 1998; 2 Huang (bib6) 1998; 2 A. Frank, A. Asuncion, UCI Machine Learning Repository, University of California, School of Information and Computer Science, CA, (http://archive.ics.uci.edu/ml), 2010 Goodall (bib20) 1966; 22 Bezdek, Keller, Krisnapuram (bib24) 1999 Huang, Ng (bib14) 1999; 7 Deng, He, Xu (bib17) 2010; 23 Kim, Lee, Lee (bib26) 2004; 25 He, Tan (bib15) 2012; 81 Chen, Feng (bib4) 2012; 77 Li, Biswas (bib19) 2002; 14 Fayyad, Piatetsky-Shapiro, Smyth (bib2) 1996 Lloyd (bib12) 1982; 28 Cheessman, Stutz (bib18) 1995 Z.X. Huang, Clustering large data sets with mixed numeric and categorical values, in: Proceedings of the First Pacific-Asia Knowledge Discovery and Data Mining Conference, 1997, pp. 21–34. Chatzis (bib21) 2011; 38 Z. Zheng, M.G. Gong, J.J. Ma, L.C. Jiao, Unsupervised evolutionary clustering algorithm for mixed type data, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–8. Huang, Ng, Rong, Li (bib27) 2005; 27 Dunham (bib1) 2002 Han, Kamber (bib9) 2001 David, Averbuch (bib22) 2012; 45 Hsu, Lin, Tai (bib11) 2011; 74 Jain, Dubes (bib7) 1988 Goodall (10.1016/j.neucom.2013.04.011_bib20) 1966; 22 10.1016/j.neucom.2013.04.011_bib16 Jain (10.1016/j.neucom.2013.04.011_bib8) 1999; 31 Huang (10.1016/j.neucom.2013.04.011_bib14) 1999; 7 Huang (10.1016/j.neucom.2013.04.011_bib27) 2005; 27 Deng (10.1016/j.neucom.2013.04.011_bib17) 2010; 23 Hsu (10.1016/j.neucom.2013.04.011_bib11) 2011; 74 David (10.1016/j.neucom.2013.04.011_bib22) 2012; 45 Huang (10.1016/j.neucom.2013.04.011_bib13) 1998; 2 Chen (10.1016/j.neucom.2013.04.011_bib4) 2012; 77 Ji (10.1016/j.neucom.2013.04.011_bib28) 2012; 30 Fayyad (10.1016/j.neucom.2013.04.011_bib2) 1996 Lloyd (10.1016/j.neucom.2013.04.011_bib12) 1982; 28 Kim (10.1016/j.neucom.2013.04.011_bib26) 2004; 25 Bezdek (10.1016/j.neucom.2013.04.011_bib24) 1999 Hsu (10.1016/j.neucom.2013.04.011_bib10) 2008; 35 Dunham (10.1016/j.neucom.2013.04.011_bib1) 2002 10.1016/j.neucom.2013.04.011_bib25 10.1016/j.neucom.2013.04.011_bib29 Huang (10.1016/j.neucom.2013.04.011_bib6) 1998; 2 Han (10.1016/j.neucom.2013.04.011_bib9) 2001 Li (10.1016/j.neucom.2013.04.011_bib5) 2012; 87 Cheessman (10.1016/j.neucom.2013.04.011_bib18) 1995 10.1016/j.neucom.2013.04.011_bib23 Hsu (10.1016/j.neucom.2013.04.011_bib3) 2007; 32 Chatzis (10.1016/j.neucom.2013.04.011_bib21) 2011; 38 He (10.1016/j.neucom.2013.04.011_bib15) 2012; 81 Li (10.1016/j.neucom.2013.04.011_bib19) 2002; 14 Jain (10.1016/j.neucom.2013.04.011_bib7) 1988 |
| References_xml | – volume: 35 start-page: 1177 year: 2008 end-page: 1185 ident: bib10 article-title: Incremental clustering of mixed data based on distance hierarchy publication-title: Expert Syst. Appl. – volume: 38 start-page: 8684 year: 2011 end-page: 8689 ident: bib21 article-title: A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional publication-title: Expert Syst. Appl. – reference: Z.X. Huang, Clustering large data sets with mixed numeric and categorical values, in: Proceedings of the First Pacific-Asia Knowledge Discovery and Data Mining Conference, 1997, pp. 21–34. – volume: 32 start-page: 12 year: 2007 end-page: 27 ident: bib3 article-title: Mining of mixed data with application to catalog marketing publication-title: Expert Syst. Appl. – year: 2001 ident: bib9 article-title: Data Mining Concepts and Techniques – volume: 2 start-page: 283 year: 1998 end-page: 304 ident: bib13 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Min. Knowl. Discovery – volume: 23 start-page: 144 year: 2010 end-page: 149 ident: bib17 article-title: G-ANMI: a mutual information based genetic clustering algorithm for categorical data publication-title: Knowledge-based Syst. – volume: 25 start-page: 1263 year: 2004 end-page: 1271 ident: bib26 article-title: Fuzzy clustering of categorical data using fuzzy centroids publication-title: Pattern Recognition Lett. – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: bib12 article-title: Least squares quantization in PCM publication-title: IEEE Trans. Inf. Theory – reference: Z. Zheng, M.G. Gong, J.J. Ma, L.C. Jiao, Unsupervised evolutionary clustering algorithm for mixed type data, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–8. – year: 1988 ident: bib7 article-title: Algorithms for Clustering Data – year: 1999 ident: bib24 article-title: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing – volume: 7 start-page: 446 year: 1999 end-page: 452 ident: bib14 article-title: A fuzzy k-modes algorithm for clustering categorical data publication-title: IEEE Trans. Fuzzy Syst. – year: 1996 ident: bib2 article-title: Advances in Knowledge Discovery and Data Mining – volume: 45 start-page: 416 year: 2012 end-page: 433 ident: bib22 article-title: SpectralCAT: categorical spectral clustering of numerical and nominal data publication-title: Pattern Recognition – volume: 2 start-page: 283 year: 1998 end-page: 304 ident: bib6 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Min. Knowl. Discovery – reference: D. Barbara, J. Couto, Y. Li, COOLCAT: an entropy-based algorithm for categorical clustering, in: Proceedings of the Eleventh International Conference on Information and Knowledge Management, 2002, pp. 582–589. – volume: 87 start-page: 120 year: 2012 end-page: 131 ident: bib5 article-title: Clustering analysis using manifold kernel concept factorization publication-title: Neurocomputing – year: 2002 ident: bib1 article-title: Data Mining: Introductory and Advanced Topics – volume: 77 start-page: 229 year: 2012 end-page: 242 ident: bib4 article-title: Spectral clustering: a semi-supervised approach publication-title: Neurocomputing – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: bib8 article-title: Data clustering: a survey publication-title: ACM Comput. Surv. – volume: 30 start-page: 129 year: 2012 end-page: 135 ident: bib28 article-title: A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data publication-title: Knowledge-based Syst. – volume: 14 start-page: 673 year: 2002 end-page: 690 ident: bib19 article-title: Unsupervised learning with mixed numeric and nominal data publication-title: IEEE Trans. Knowl. Data Eng. – reference: A. Frank, A. Asuncion, UCI Machine Learning Repository, University of California, School of Information and Computer Science, CA, (http://archive.ics.uci.edu/ml), 2010 – volume: 74 start-page: 3832 year: 2011 end-page: 3842 ident: bib11 article-title: Apply extended self-organizing map to cluster and classify mixed-type data publication-title: Neurocomputing – volume: 22 start-page: 882 year: 1966 end-page: 907 ident: bib20 article-title: A new similarity index based on probability publication-title: Biometrics – volume: 81 start-page: 49 year: 2012 end-page: 59 ident: bib15 article-title: A two-stage genetic algorithm for automatic clustering publication-title: Neurocomputing – volume: 27 start-page: 657 year: 2005 end-page: 668 ident: bib27 article-title: Automated variable weighting in k-means type clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 1995 ident: bib18 article-title: Bayesian classification (AUTOCLASS): theory and results publication-title: Adv. Knowl. Discovery Data Min. – ident: 10.1016/j.neucom.2013.04.011_bib29 – volume: 7 start-page: 446 issue: 4 year: 1999 ident: 10.1016/j.neucom.2013.04.011_bib14 article-title: A fuzzy k-modes algorithm for clustering categorical data publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.784206 – year: 1996 ident: 10.1016/j.neucom.2013.04.011_bib2 – year: 1988 ident: 10.1016/j.neucom.2013.04.011_bib7 – volume: 2 start-page: 283 issue: 3 year: 1998 ident: 10.1016/j.neucom.2013.04.011_bib6 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Min. Knowl. Discovery doi: 10.1023/A:1009769707641 – volume: 2 start-page: 283 issue: 3 year: 1998 ident: 10.1016/j.neucom.2013.04.011_bib13 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Min. Knowl. Discovery doi: 10.1023/A:1009769707641 – volume: 32 start-page: 12 issue: 1 year: 2007 ident: 10.1016/j.neucom.2013.04.011_bib3 article-title: Mining of mixed data with application to catalog marketing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.11.017 – volume: 14 start-page: 673 issue: 4 year: 2002 ident: 10.1016/j.neucom.2013.04.011_bib19 article-title: Unsupervised learning with mixed numeric and nominal data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2002.1019208 – volume: 27 start-page: 657 issue: 5 year: 2005 ident: 10.1016/j.neucom.2013.04.011_bib27 article-title: Automated variable weighting in k-means type clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.95 – volume: 87 start-page: 120 issue: 15 year: 2012 ident: 10.1016/j.neucom.2013.04.011_bib5 article-title: Clustering analysis using manifold kernel concept factorization publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.013 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.neucom.2013.04.011_bib8 article-title: Data clustering: a survey publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – year: 2001 ident: 10.1016/j.neucom.2013.04.011_bib9 – ident: 10.1016/j.neucom.2013.04.011_bib16 doi: 10.1145/584887.584888 – ident: 10.1016/j.neucom.2013.04.011_bib25 doi: 10.1109/CEC.2010.5586136 – year: 2002 ident: 10.1016/j.neucom.2013.04.011_bib1 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10.1016/j.neucom.2013.04.011_bib12 article-title: Least squares quantization in PCM publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 – volume: 25 start-page: 1263 issue: 11 year: 2004 ident: 10.1016/j.neucom.2013.04.011_bib26 article-title: Fuzzy clustering of categorical data using fuzzy centroids publication-title: Pattern Recognition Lett. doi: 10.1016/j.patrec.2004.04.004 – volume: 35 start-page: 1177 issue: 3 year: 2008 ident: 10.1016/j.neucom.2013.04.011_bib10 article-title: Incremental clustering of mixed data based on distance hierarchy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.049 – volume: 23 start-page: 144 issue: 2 year: 2010 ident: 10.1016/j.neucom.2013.04.011_bib17 article-title: G-ANMI: a mutual information based genetic clustering algorithm for categorical data publication-title: Knowledge-based Syst. doi: 10.1016/j.knosys.2009.11.001 – volume: 74 start-page: 3832 issue: 18 year: 2011 ident: 10.1016/j.neucom.2013.04.011_bib11 article-title: Apply extended self-organizing map to cluster and classify mixed-type data publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.07.014 – year: 1999 ident: 10.1016/j.neucom.2013.04.011_bib24 – volume: 38 start-page: 8684 issue: 7 year: 2011 ident: 10.1016/j.neucom.2013.04.011_bib21 article-title: A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.074 – volume: 22 start-page: 882 issue: 4 year: 1966 ident: 10.1016/j.neucom.2013.04.011_bib20 article-title: A new similarity index based on probability publication-title: Biometrics doi: 10.2307/2528080 – volume: 77 start-page: 229 issue: 1 year: 2012 ident: 10.1016/j.neucom.2013.04.011_bib4 article-title: Spectral clustering: a semi-supervised approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.09.002 – volume: 81 start-page: 49 issue: 1 year: 2012 ident: 10.1016/j.neucom.2013.04.011_bib15 article-title: A two-stage genetic algorithm for automatic clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.11.001 – volume: 45 start-page: 416 issue: 1 year: 2012 ident: 10.1016/j.neucom.2013.04.011_bib22 article-title: SpectralCAT: categorical spectral clustering of numerical and nominal data publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.07.006 – year: 1995 ident: 10.1016/j.neucom.2013.04.011_bib18 article-title: Bayesian classification (AUTOCLASS): theory and results publication-title: Adv. Knowl. Discovery Data Min. – ident: 10.1016/j.neucom.2013.04.011_bib23 – volume: 30 start-page: 129 issue: 1 year: 2012 ident: 10.1016/j.neucom.2013.04.011_bib28 article-title: A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data publication-title: Knowledge-based Syst. doi: 10.1016/j.knosys.2012.01.006 |
| SSID | ssj0017129 |
| Score | 2.3896797 |
| Snippet | Data objects with mixed numeric and categorical attributes are commonly encountered in real world. The k-prototypes algorithm is one of the principal... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 590 |
| SubjectTerms | Algorithms Applied sciences Attribute significance Clustering Computer science; control theory; systems Data mining Data processing. List processing. Character string processing Dissimilarity measure Exact sciences and technology Memory organisation. Data processing Mixed data Software |
| Title | An improved k-prototypes clustering algorithm for mixed numeric and categorical data |
| URI | https://dx.doi.org/10.1016/j.neucom.2013.04.011 https://www.proquest.com/docview/1506385543 |
| Volume | 120 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PaxQxFA6lXgrSalW6VZcIXuNOfsxkclyKZVXoxRV6C_lZR7ezS3cHPPm3m5eZWShSCj1OSMjwkrzvJfnyPYQ-ViptCmIZiHWcE5EAgNgEO0SlySJDlNHFzLa4qhY_xNfr8voAXYxvYYBWOfj-3qdnbz2UzAZrzjZNM_teKJZ2USBJBpKHEhQ_hZCQxeDT3z3Ng0rKer09VhKoPT6fyxyvNnTAGUkgyLPgKaUPwdPzjdkmo8U-28V_jjuj0eULdDyEkXje_-lLdBDaU3QypmjAw4p9hZbzFjf53CB4_JuAKsMaTl232K060EhIyIXN6mZ91-x-3uIUweLb5k-q23b5Kgeb1mMgTd30WiIYGKWv0fLy8_JiQYZECsTxSu2I5a7ywghfCRtKFSmvXYhFdEIWylelUynOiMYyVRfeSFaGHDcoGngQdcXfoMN23YYzhBn1lvlK-VpQEYKwQjlqEuTbwAtl1ATx0XzaDSLjkOtipUc22S_dG12D0XUhdDL6BJF9q00vsvFIfTmOjL43WXTCgUdaTu8N5L47JhNqy7qYoA_jyOq00OD2xLRh3W01SDFyIPXx8yd3_xYdwRe8ZWT8HTrc3XXhfQpqdnaaZ-0UPZt_-ba4-gdzGfeN |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA61PihIveNaWyP4GndymcnksRTLqrUvrtC3kGsd3c4u3R3oU3-7OZmZhSJS6OskIcNJcr6T5Mt3EPpYqbQpiGUg1nFORAIAYhPsEJUmiwxRRhcz2-Ksmv0UX8_L8x10PL6FAVrl4Pt7n5699fBlOlhzumqa6Y9CsbSLAkkykDyU_AF6KEomYQf26WbL86CSsl5wj5UEqo_v5zLJqw0dkEYSCvKseErp__Dpycqsk9Vin-7iH8-d4ejkGdob4kh81P_qc7QT2hfo6ZijAQ9L9iWaH7W4yQcHweM_BGQZlnDsusZu0YFIQoIubBYXy6tm8-sSpxAWXzbXqW7b5bscbFqPgTV10YuJYKCUvkLzk8_z4xkZMikQxyu1IZa7ygsjfCVsKFWkvHYhFtEJWShflU6lQCMay1RdeCNZGXLgoGjgQdQVf41222Ub3iDMqLfMV8rXgooQhBXKUZMw3wZeKKMmiI_m025QGYdkFws90sl-697oGoyuC6GT0SeIbFutepWNO-rLcWT0rdmiExDc0fLw1kBuu2Mywbasiwn6MI6sTisNrk9MG5bdWoMWIwdWH3977-7fo0ez-fdTffrl7Ns-egwl8LCR8Xdod3PVhYMU4WzsYZ7BfwEpgPki |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+k-prototypes+clustering+algorithm+for+mixed+numeric+and+categorical+data&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=JINCHAO+JI&rft.au=TIAN+BAI&rft.au=CHUNGUANG+ZHOU&rft.au=CHAO+MA&rft.date=2013-11-23&rft.pub=Elsevier&rft.issn=0925-2312&rft.volume=120&rft.spage=590&rft.epage=596&rft_id=info:doi/10.1016%2Fj.neucom.2013.04.011&rft.externalDBID=n%2Fa&rft.externalDocID=27678780 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |