Motif models proposing independent and interdependent impacts of nucleotides are related to high and low affinity transcription factor binding sites in Arabidopsis

Position weight matrix (PWM) is the traditional motif model representing the transcription factor (TF) binding sites. It proposes that the positions contribute independently to TFs binding affinity, although this hypothesis does not fit the data perfectly. This explains why PWM hits are missing in a...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 13; p. 938545
Main Authors Tsukanov, Anton V., Mironova, Victoria V., Levitsky, Victor G.
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 28.07.2022
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2022.938545

Cover

Abstract Position weight matrix (PWM) is the traditional motif model representing the transcription factor (TF) binding sites. It proposes that the positions contribute independently to TFs binding affinity, although this hypothesis does not fit the data perfectly. This explains why PWM hits are missing in a substantial fraction of ChIP-seq peaks. To study various modes of the direct binding of plant TFs, we compiled the benchmark collection of 111 ChIP-seq datasets for Arabidopsis thaliana , and applied the traditional PWM, and two alternative motif models BaMM and SiteGA, proposing the dependencies of the positions. The variation in the stringency of the recognition thresholds for the models proposed that the hits of PWM, BaMM, and SiteGA models are associated with the sites of high/medium, any, and low affinity, respectively. At the medium recognition threshold, about 60% of ChIP-seq peaks contain PWM hits consisting of conserved core consensuses, while BaMM and SiteGA provide hits for an additional 15% of peaks in which a weaker core consensus is compensated through intra-motif dependencies. The presence/absence of these dependencies in the motifs of alternative/traditional models was confirmed by the dependency logo DepLogo visualizing the position-wise partitioning of the alignments of predicted sites. We exemplify the detailed analysis of ChIP-seq profiles for plant TFs CCA1, MYC2, and SEP3. Gene ontology (GO) enrichment analysis revealed that among the three motif models, the SiteGA had the highest portions of genes with the significantly enriched GO terms among all predicted genes. We showed that both alternative motif models provide for traditional PWM greater extensions in predicted sites for TFs MYC2/SEP3 with condition/tissue specific functions, compared to those for TF CCA1 with housekeeping functions. Overall, the combined application of standard and alternative motif models is beneficial to detect various modes of the direct TF-DNA interactions in the maximal portion of ChIP-seq loci.
AbstractList Position weight matrix (PWM) is the traditional motif model representing the transcription factor (TF) binding sites. It proposes that the positions contribute independently to TFs binding affinity, although this hypothesis does not fit the data perfectly. This explains why PWM hits are missing in a substantial fraction of ChIP-seq peaks. To study various modes of the direct binding of plant TFs, we compiled the benchmark collection of 111 ChIP-seq datasets for Arabidopsis thaliana , and applied the traditional PWM, and two alternative motif models BaMM and SiteGA, proposing the dependencies of the positions. The variation in the stringency of the recognition thresholds for the models proposed that the hits of PWM, BaMM, and SiteGA models are associated with the sites of high/medium, any, and low affinity, respectively. At the medium recognition threshold, about 60% of ChIP-seq peaks contain PWM hits consisting of conserved core consensuses, while BaMM and SiteGA provide hits for an additional 15% of peaks in which a weaker core consensus is compensated through intra-motif dependencies. The presence/absence of these dependencies in the motifs of alternative/traditional models was confirmed by the dependency logo DepLogo visualizing the position-wise partitioning of the alignments of predicted sites. We exemplify the detailed analysis of ChIP-seq profiles for plant TFs CCA1, MYC2, and SEP3. Gene ontology (GO) enrichment analysis revealed that among the three motif models, the SiteGA had the highest portions of genes with the significantly enriched GO terms among all predicted genes. We showed that both alternative motif models provide for traditional PWM greater extensions in predicted sites for TFs MYC2/SEP3 with condition/tissue specific functions, compared to those for TF CCA1 with housekeeping functions. Overall, the combined application of standard and alternative motif models is beneficial to detect various modes of the direct TF-DNA interactions in the maximal portion of ChIP-seq loci.
Position weight matrix (PWM) is the traditional motif model representing the transcription factor (TF) binding sites. It proposes that the positions contribute independently to TFs binding affinity, although this hypothesis does not fit the data perfectly. This explains why PWM hits are missing in a substantial fraction of ChIP-seq peaks. To study various modes of the direct binding of plant TFs, we compiled the benchmark collection of 111 ChIP-seq datasets for Arabidopsis thaliana, and applied the traditional PWM, and two alternative motif models BaMM and SiteGA, proposing the dependencies of the positions. The variation in the stringency of the recognition thresholds for the models proposed that the hits of PWM, BaMM, and SiteGA models are associated with the sites of high/medium, any, and low affinity, respectively. At the medium recognition threshold, about 60% of ChIP-seq peaks contain PWM hits consisting of conserved core consensuses, while BaMM and SiteGA provide hits for an additional 15% of peaks in which a weaker core consensus is compensated through intra-motif dependencies. The presence/absence of these dependencies in the motifs of alternative/traditional models was confirmed by the dependency logo DepLogo visualizing the position-wise partitioning of the alignments of predicted sites. We exemplify the detailed analysis of ChIP-seq profiles for plant TFs CCA1, MYC2, and SEP3. Gene ontology (GO) enrichment analysis revealed that among the three motif models, the SiteGA had the highest portions of genes with the significantly enriched GO terms among all predicted genes. We showed that both alternative motif models provide for traditional PWM greater extensions in predicted sites for TFs MYC2/SEP3 with condition/tissue specific functions, compared to those for TF CCA1 with housekeeping functions. Overall, the combined application of standard and alternative motif models is beneficial to detect various modes of the direct TF-DNA interactions in the maximal portion of ChIP-seq loci.
Position weight matrix (PWM) is the traditional motif model representing the transcription factor (TF) binding sites. It proposes that the positions contribute independently to TFs binding affinity, although this hypothesis does not fit the data perfectly. This explains why PWM hits are missing in a substantial fraction of ChIP-seq peaks. To study various modes of the direct binding of plant TFs, we compiled the benchmark collection of 111 ChIP-seq datasets for Arabidopsis thaliana, and applied the traditional PWM, and two alternative motif models BaMM and SiteGA, proposing the dependencies of the positions. The variation in the stringency of the recognition thresholds for the models proposed that the hits of PWM, BaMM, and SiteGA models are associated with the sites of high/medium, any, and low affinity, respectively. At the medium recognition threshold, about 60% of ChIP-seq peaks contain PWM hits consisting of conserved core consensuses, while BaMM and SiteGA provide hits for an additional 15% of peaks in which a weaker core consensus is compensated through intra-motif dependencies. The presence/absence of these dependencies in the motifs of alternative/traditional models was confirmed by the dependency logo DepLogo visualizing the position-wise partitioning of the alignments of predicted sites. We exemplify the detailed analysis of ChIP-seq profiles for plant TFs CCA1, MYC2, and SEP3. Gene ontology (GO) enrichment analysis revealed that among the three motif models, the SiteGA had the highest portions of genes with the significantly enriched GO terms among all predicted genes. We showed that both alternative motif models provide for traditional PWM greater extensions in predicted sites for TFs MYC2/SEP3 with condition/tissue specific functions, compared to those for TF CCA1 with housekeeping functions. Overall, the combined application of standard and alternative motif models is beneficial to detect various modes of the direct TF-DNA interactions in the maximal portion of ChIP-seq loci.Position weight matrix (PWM) is the traditional motif model representing the transcription factor (TF) binding sites. It proposes that the positions contribute independently to TFs binding affinity, although this hypothesis does not fit the data perfectly. This explains why PWM hits are missing in a substantial fraction of ChIP-seq peaks. To study various modes of the direct binding of plant TFs, we compiled the benchmark collection of 111 ChIP-seq datasets for Arabidopsis thaliana, and applied the traditional PWM, and two alternative motif models BaMM and SiteGA, proposing the dependencies of the positions. The variation in the stringency of the recognition thresholds for the models proposed that the hits of PWM, BaMM, and SiteGA models are associated with the sites of high/medium, any, and low affinity, respectively. At the medium recognition threshold, about 60% of ChIP-seq peaks contain PWM hits consisting of conserved core consensuses, while BaMM and SiteGA provide hits for an additional 15% of peaks in which a weaker core consensus is compensated through intra-motif dependencies. The presence/absence of these dependencies in the motifs of alternative/traditional models was confirmed by the dependency logo DepLogo visualizing the position-wise partitioning of the alignments of predicted sites. We exemplify the detailed analysis of ChIP-seq profiles for plant TFs CCA1, MYC2, and SEP3. Gene ontology (GO) enrichment analysis revealed that among the three motif models, the SiteGA had the highest portions of genes with the significantly enriched GO terms among all predicted genes. We showed that both alternative motif models provide for traditional PWM greater extensions in predicted sites for TFs MYC2/SEP3 with condition/tissue specific functions, compared to those for TF CCA1 with housekeeping functions. Overall, the combined application of standard and alternative motif models is beneficial to detect various modes of the direct TF-DNA interactions in the maximal portion of ChIP-seq loci.
Author Mironova, Victoria V.
Levitsky, Victor G.
Tsukanov, Anton V.
AuthorAffiliation 3 Department of Natural Science, Novosibirsk State University , Novosibirsk , Russia
1 Department of Systems Biology, Institute of Cytology and Genetics , Novosibirsk , Russia
2 Department of Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University , Nijmegen , Netherlands
AuthorAffiliation_xml – name: 2 Department of Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University , Nijmegen , Netherlands
– name: 3 Department of Natural Science, Novosibirsk State University , Novosibirsk , Russia
– name: 1 Department of Systems Biology, Institute of Cytology and Genetics , Novosibirsk , Russia
Author_xml – sequence: 1
  givenname: Anton V.
  surname: Tsukanov
  fullname: Tsukanov, Anton V.
– sequence: 2
  givenname: Victoria V.
  surname: Mironova
  fullname: Mironova, Victoria V.
– sequence: 3
  givenname: Victor G.
  surname: Levitsky
  fullname: Levitsky, Victor G.
BookMark eNp1kstu1DAUhiNUREvpnqWXbGZw7MSXDVJVcalUxAYkdtaJfTLjKrGD7QH1eXhRnE4FFAkvfDk-_3d8-Z83JyEGbJqXLd1yrvTrcZnyllHGtpqrvuufNGetEN2mE-zryV_z0-Yi51taW0-p1vJZc8p7LVTL-Fnz82MsfiRzdDhlsqS4xOzDjvjgcMHahUIguLoumP6E_LyALZnEkYSDnbBCHGYCCUnCCQo6UiLZ-93-Xj3FHwTG0Qdf7khJELJNfik-BjJWTkxkqAXXutmXyvGBXCYYvItL9vlF83SEKePFw3jefHn39vPVh83Np_fXV5c3G8uFLpuBWdYCKg6UO6GYdII622kEXl-n0wK7vneSdnSgPQ6so1YyJzkM2LcCen7eXB-5LsKtWZKfId2ZCN7cB2LaGUjF1-saoOhsrxhT2nVcW8U1tErgoAeKrHWV9ebIWg7DXHProyWYHkEf7wS_N7v43WguuaJtBbx6AKT47YC5mNlni9MEAeMhGyYp65SUktZUeky1KeaccPxdpqVmtYpZrWJWq5ijVapE_COxvsD6IfUwfvq_8Besxcnj
CitedBy_id crossref_primary_10_3390_ijms24098253
crossref_primary_10_18699_vjgb_24_90
crossref_primary_10_1016_j_jgeb_2024_100401
crossref_primary_10_3390_ijms26010386
crossref_primary_10_3389_fpls_2022_942710
crossref_primary_10_1093_nargab_lqae090
Cites_doi 10.1093/bioinformatics/btz507
10.1016/j.compbiolchem.2016.04.008
10.1016/j.cell.2018.01.029
10.20944/preprints202007.0639.v2
10.1038/s41586-020-2649-2
10.1093/nar/gkx1106
10.1186/1471-2105-8-481
10.1016/j.cell.2014.08.009
10.1093/mp/sss128
10.1073/pnas.2026754118
10.1109/MCSE.2007.55
10.1371/journal.pcbi.1003214
10.1016/j.jsbmb.2009.02.003
10.1016/j.molcel.2010.05.004
10.1093/bioinformatics/btq488
10.1093/nar/30.5.1255
10.1016/j.cell.2016.04.038
10.1016/j.compbiolchem.2011.10.008
10.1093/nar/gky1210
10.1007/s11103-020-01108-6
10.1093/nargab/lqab026
10.1016/j.xplc.2021.100232
10.1073/pnas.1513609112
10.1093/bioinformatics/btw689
10.1105/tpc.113.115139
10.1242/dev.074674
10.1089/omi.2011.0118
10.1142/S0219720013400040
10.1093/nar/gkw521
10.1093/nar/gkt437
10.1093/bioinformatics/btab203
10.1126/science.1141319
10.1038/nrg2641
10.1177/0272989X8900900307
10.7554/eLife.32963
10.1016/j.sbi.2017.03.006
10.1371/journal.pcbi.1006090
10.18699/VJ21.002
10.2174/0929867325666180530115711
10.1093/nar/gkf578
10.1093/nar/gkac194
10.1186/1471-2164-15-472
10.1093/nar/gkv577
10.1093/bioinformatics/16.1.16
10.1093/nar/gkz800
10.1371/journal.pgen.0040014
10.1002/cpcb.89
10.1093/nar/gkaa1057
10.1093/nar/gkt1087
10.1093/nar/gkz077
10.1186/gb-2007-8-2-r24
10.1186/1471-2164-15-80
10.1093/bioinformatics/9.5.499
10.1186/gb-2008-9-9-r137
10.1146/annurev-arplant-042817-040047
10.1016/j.bbagrm.2019.194443
10.1002/wsbm.1427
10.1038/nrg3306
10.1038/nrg2636
10.1016/j.cels.2018.12.001
10.1016/j.tibs.2014.07.002
10.1128/MCB.15.5.2582
10.1038/nbt0406-423
10.1016/j.molcel.2019.01.019
10.1093/nar/gky683
10.1186/gb-2009-10-2-r24
ContentType Journal Article
Copyright Copyright © 2022 Tsukanov, Mironova and Levitsky.
Copyright © 2022 Tsukanov, Mironova and Levitsky. 2022 Tsukanov, Mironova and Levitsky
Copyright_xml – notice: Copyright © 2022 Tsukanov, Mironova and Levitsky.
– notice: Copyright © 2022 Tsukanov, Mironova and Levitsky. 2022 Tsukanov, Mironova and Levitsky
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2022.938545
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_a0edc582289d439c839a186eb9b0e21d
PMC9373801
10_3389_fpls_2022_938545
GrantInformation_xml – fundername: ;
  grantid: 21-14-00240
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c369t-b2c21ae83a03d6827d60dc49ea3545496e455d7040b05eb240c72d73abe516a53
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:28:04 EDT 2025
Thu Aug 21 18:23:06 EDT 2025
Thu Sep 04 16:30:09 EDT 2025
Thu Apr 24 22:50:58 EDT 2025
Tue Jul 01 00:37:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-b2c21ae83a03d6827d60dc49ea3545496e455d7040b05eb240c72d73abe516a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Plant Bioinformatics, a section of the journal Frontiers in Plant Science
Edited by: Dirk Walther, Max Planck Institute of Molecular Plant Physiology, Germany
Reviewed by: Jan Grau, Martin Luther University of Halle-Wittenberg, Germany; Jens Keilwagen, Julius Kühn-Institut, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2022.938545
PMID 35968123
PQID 2702487770
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a0edc582289d439c839a186eb9b0e21d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9373801
proquest_miscellaneous_2702487770
crossref_primary_10_3389_fpls_2022_938545
crossref_citationtrail_10_3389_fpls_2022_938545
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-28
PublicationDateYYYYMMDD 2022-07-28
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-28
  day: 28
PublicationDecade 2020
PublicationTitle Frontiers in plant science
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Howe (B16) 2018; 69
Mathelier (B39) 2013; 9
Eggeling (B7) 2017; 33
Ma (B38) 2019; 26
Merkulov (B42) 2009; 115
Park (B50) 2009; 10
Levitsky (B31) 2020; 21
Slattery (B56) 2014; 39
Morgunova (B46) 2018; 7
Sherman (B54) 2022; 50
Johnson (B21) 2007; 316
Bailey (B1) 2021; 37
Iwafuchi-Doi (B20) 2019; 11
McKinney (B41) 2010
Kulakovskiy (B27) 2013; 11
Kazan (B23) 2013; 6
Michael (B43) 2008; 4
McClish (B40) 1989; 9
Srivastava (B58) 2020; 1863
Rogers (B51) 2019; 74
Zhang (B65) 1993; 9
Heinz (B15) 2010; 38
Omelina (B49) 2011; 35
Lambert (B30) 2018; 172
Keilwagen (B24) 2015; 43
Morgunova (B45) 2017; 47
Mitra (B44) 2018; 14
Bulyk (B3) 2002; 30
Yu (B64) 2012; 16
Kulakovskiy (B28) 2010; 26
Gupta (B13) 2007; 8
Samee (B52) 2019; 8
Tsukanov (B60) 2021; 25
Furey (B9) 2012; 13
Grau (B12) 2019; 35
Schweizer (B53) 2013; 25
Lloyd (B36) 2019; 84
Hunter (B18) 2007; 9
Kulakovskiy (B29) 2018; 46
Eggeling (B6) 2018; 46
Yang (B62) 2014; 42
Levitsky (B35) 2016; 64
Levitsky (B32) 2019; 47
Levitsky (B33) 2007; 8
López-Vidriero (B37) 2021; 2
Gheorghe (B11) 2019; 47
Stormo (B59) 2000; 16
Farnham (B8) 2009; 10
Kim (B25) 1995; 15
Weirauch (B61) 2014; 158
Hunt (B17) 2014; 15
Yu (B63) 2021; 118
Zhang (B66) 2008; 9
Ge (B10) 2021; 3
Käppel (B22) 2021; 105
Kolmykov (B26) 2021; 49
Smaczniak (B57) 2012; 139
Immink (B19) 2009; 10
Chen (B4) 2019; 47
D'Haeseleer (B5) 2006; 24
Benos (B2) 2002; 30
Levitsky (B34) 2014; 15
Nagel (B47) 2015; 112
Zhou (B67) 2013; 41
Harris (B14) 2020; 585
Siebert (B55) 2016; 44
O'Malley (B48) 2016; 165
References_xml – volume: 35
  start-page: 4812
  year: 2019
  ident: B12
  article-title: DEPLOGO: visualizing sequence dependencies in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz507
– volume: 64
  start-page: 19
  year: 2016
  ident: B35
  article-title: Hidden heterogeneity of transcription factor binding sites: a case study of sf-1
  publication-title: Comput. Biol. Chem
  doi: 10.1016/j.compbiolchem.2016.04.008
– volume: 172
  start-page: 650
  year: 2018
  ident: B30
  article-title: The human transcription factors
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.029
– volume: 21
  start-page: 1
  year: 2020
  ident: B31
  article-title: Asymmetric conservation within pairs of co-occurred motifs mediates weak direct binding of transcription factors in ChIP-seq data
  publication-title: Int. J. Mol. Sci
  doi: 10.20944/preprints202007.0639.v2
– volume: 585
  start-page: 357
  year: 2020
  ident: B14
  article-title: Array programming with numpy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 46
  start-page: D252
  year: 2018
  ident: B29
  article-title: HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-seq analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1106
– volume: 8
  start-page: 481
  year: 2007
  ident: B33
  article-title: Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-481
– volume: 158
  start-page: 1431
  year: 2014
  ident: B61
  article-title: Determination and inference of eukaryotic transcription factor sequence specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.009
– volume: 6
  start-page: 686
  year: 2013
  ident: B23
  article-title: MYC2: the master in action
  publication-title: Mol. Plant
  doi: 10.1093/mp/sss128
– volume: 118
  start-page: e2026754118
  year: 2021
  ident: B63
  article-title: Discovering unknown human and mouse transcription factor binding sites and their characteristics from ChIP-seq data
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.2026754118
– volume: 9
  start-page: 90
  year: 2007
  ident: B18
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng
  doi: 10.1109/MCSE.2007.55
– volume: 9
  start-page: e1003214
  year: 2013
  ident: B39
  article-title: The next generation of transcription factor binding site prediction
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1003214
– volume: 115
  start-page: 1
  year: 2009
  ident: B42
  article-title: Structural variants of glucocorticoid receptor binding sites and different versions of positive glucocorticoid responsive elements: analysis of GR-TRRD database
  publication-title: J. Steroid Biochem. Mol. Biol
  doi: 10.1016/j.jsbmb.2009.02.003
– volume: 38
  start-page: 576
  year: 2010
  ident: B15
  article-title: Simple combinations of lineage-determining transcription factors prime CIS-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 26
  start-page: 2622
  year: 2010
  ident: B28
  article-title: Deep and wide digging for binding motifs in ChIP-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq488
– volume: 30
  start-page: 1255
  year: 2002
  ident: B3
  article-title: Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.5.1255
– volume: 165
  start-page: 1280
  year: 2016
  ident: B48
  article-title: Cistrome and epicistrome features shape the regulatory DNA landscape
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.038
– volume: 35
  start-page: 363
  year: 2011
  ident: B49
  article-title: Analysis and recognition of the gaga transcription factor binding sites in drosophila genes
  publication-title: Comput. Biol. Chem
  doi: 10.1016/j.compbiolchem.2011.10.008
– volume: 47
  start-page: e21
  year: 2019
  ident: B11
  article-title: A map of direct tf-DNA interactions in the human genome
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1210
– volume: 105
  start-page: 543
  year: 2021
  ident: B22
  article-title: DNA-binding properties of the MADS-domain transcription factor SEPALLATA3 and mutant variants characterized by SELEX-seq
  publication-title: Plant Mol. Biol
  doi: 10.1007/s11103-020-01108-6
– volume: 3
  start-page: lqab026
  year: 2021
  ident: B10
  article-title: Bayesian Markov models improve the prediction of binding motifs beyond first order
  publication-title: NAR Genomics Bioinformatics
  doi: 10.1093/nargab/lqab026
– volume: 2
  start-page: 100232
  year: 2021
  ident: B37
  article-title: Dna features beyond the transcription factor binding site specify target recognition by plant MYC2-related BHLH proteins
  publication-title: Plant Commun
  doi: 10.1016/j.xplc.2021.100232
– volume: 112
  start-page: E4802
  year: 2015
  ident: B47
  article-title: Genome-wide identification of CCA1 targets uncovers an expanded clock network in arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1513609112
– volume: 33
  start-page: 580
  year: 2017
  ident: B7
  article-title: Inmode: tools for learning and visualizing intra-motif dependencies of DNA binding sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw689
– volume: 25
  start-page: 3117
  year: 2013
  ident: B53
  article-title: Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.115139
– volume: 139
  start-page: 3081
  year: 2012
  ident: B57
  article-title: Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies
  publication-title: Development
  doi: 10.1242/dev.074674
– start-page: 51
  volume-title: Proceedings of the 9th Python in Science Conference, Vol. 445
  year: 2010
  ident: B41
  article-title: Data structures for statistical computing in python,
– volume: 16
  start-page: 284
  year: 2012
  ident: B64
  article-title: clusterprofiler: an r package for comparing biological themes among gene clusters
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 11
  start-page: 1340004
  year: 2013
  ident: B27
  article-title: From binding motifs in ChIP-seq data to improved models of transcription factor binding sites
  publication-title: J. Bioinformatics Comput. Biol
  doi: 10.1142/S0219720013400040
– volume: 44
  start-page: 6055
  year: 2016
  ident: B55
  article-title: Bayesian Markov models consistently outperform PWMS at predicting motifs in nucleotide sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw521
– volume: 41
  start-page: W56
  year: 2013
  ident: B67
  article-title: DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt437
– volume: 37
  start-page: 2834
  year: 2021
  ident: B1
  article-title: STREME: accurate and versatile sequence motif discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab203
– volume: 316
  start-page: 1497
  year: 2007
  ident: B21
  article-title: Genome-wide mapping of in vivo protein-DNA interactions
  publication-title: Science
  doi: 10.1126/science.1141319
– volume: 10
  start-page: 669
  year: 2009
  ident: B50
  article-title: ChIP-Seq: advantages and challenges of a maturing technology
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg2641
– volume: 9
  start-page: 190
  year: 1989
  ident: B40
  article-title: Analyzing a portion of the roc curve
  publication-title: Med. Decis. Making
  doi: 10.1177/0272989X8900900307
– volume: 7
  start-page: 1
  year: 2018
  ident: B46
  article-title: Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima
  publication-title: eLife
  doi: 10.7554/eLife.32963
– volume: 47
  start-page: 1
  year: 2017
  ident: B45
  article-title: Structural perspective of cooperative transcription factor binding
  publication-title: Curr. Opin. Struct. Biol
  doi: 10.1016/j.sbi.2017.03.006
– volume: 14
  start-page: e1006090
  year: 2018
  ident: B44
  article-title: Diversity in binding, regulation, and evolution revealed from high-throughput chip
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1006090
– volume: 25
  start-page: 7
  year: 2021
  ident: B60
  article-title: Application of alternative de novo motif recognition models for analysis of structural heterogeneity of transcription factor binding sites: a case study of FOXA2 binding sites
  publication-title: Vavilov J. Genet. Breed
  doi: 10.18699/VJ21.002
– volume: 26
  start-page: 7641
  year: 2019
  ident: B38
  article-title: Genome wide approaches to identify protein-DNA interactions
  publication-title: Curr. Med. Chem
  doi: 10.2174/0929867325666180530115711
– volume: 30
  start-page: 4442
  year: 2002
  ident: B2
  article-title: Additivity in protein-DNA interactions: how good an approximation is it?
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf578
– volume: 50
  start-page: W216
  year: 2022
  ident: B54
  article-title: DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac194
– volume: 15
  start-page: 472
  year: 2014
  ident: B17
  article-title: Improving analysis of transcription factor binding sites within ChIP-seq data based on topological motif enrichment
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-472
– volume: 43
  start-page: e119
  year: 2015
  ident: B24
  article-title: Varying levels of complexity in transcription factor binding motifs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv577
– volume: 16
  start-page: 16
  year: 2000
  ident: B59
  article-title: DNA binding sites: representation and discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.1.16
– volume: 47
  start-page: e139
  year: 2019
  ident: B32
  article-title: A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz800
– volume: 4
  start-page: e40014
  year: 2008
  ident: B43
  article-title: Network discovery pipeline elucidates conserved time-of-day-specific CIS-regulatory modules
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0040014
– volume: 84
  start-page: e89
  year: 2019
  ident: B36
  article-title: Pinpointing the genomic localizations of chromatin-associated proteins: the yesterday, today, and tomorrow of ChIP-seq
  publication-title: Curr. Protoc. Cell Biol
  doi: 10.1002/cpcb.89
– volume: 49
  start-page: D104
  year: 2021
  ident: B26
  article-title: GTRD: an integrated view of transcription regulation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1057
– volume: 42
  start-page: D148
  year: 2014
  ident: B62
  article-title: TFBSshape: a motif database for DNA shape features of transcription factor binding sites
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1087
– volume: 47
  start-page: 3752
  year: 2019
  ident: B4
  article-title: Structural basis for DNA recognition by FOXC2
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz077
– volume: 8
  start-page: R24
  year: 2007
  ident: B13
  article-title: Quantifying similarity between motifs
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-2-r24
– volume: 15
  start-page: 80
  year: 2014
  ident: B34
  article-title: Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-seq data
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-80
– volume: 9
  start-page: 499
  year: 1993
  ident: B65
  article-title: A weight array method for splicing signal analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/9.5.499
– volume: 9
  start-page: R137
  year: 2008
  ident: B66
  article-title: Model-based analysis of ChIP-seq (MACS)
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-9-r137
– volume: 69
  start-page: 387
  year: 2018
  ident: B16
  article-title: Modularity in jasmonate signaling for multistress resilience
  publication-title: Annu. Rev. Plant Biol
  doi: 10.1146/annurev-arplant-042817-040047
– volume: 1863
  start-page: 194443
  year: 2020
  ident: B58
  article-title: Sequence and chromatin determinants of transcription factor binding and the establishment of cell type-specific binding patterns
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2019.194443
– volume: 11
  start-page: e1427
  year: 2019
  ident: B20
  article-title: The mechanistic basis for chromatin regulation by pioneer transcription factors
  publication-title: WIREs Syst. Biol. Med
  doi: 10.1002/wsbm.1427
– volume: 13
  start-page: 840
  year: 2012
  ident: B9
  article-title: ChIP-Seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg3306
– volume: 10
  start-page: 605
  year: 2009
  ident: B8
  article-title: Insights from genomic profiling of transcription factors
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg2636
– volume: 8
  start-page: 27
  year: 2019
  ident: B52
  article-title: A de novo shape motif discovery algorithm reveals preferences of transcription factors for DNA shape beyond sequence motifs
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2018.12.001
– volume: 39
  start-page: 381
  year: 2014
  ident: B56
  article-title: Absence of a simple code: How transcription factors read the genome
  publication-title: Trends Biochem. Sci
  doi: 10.1016/j.tibs.2014.07.002
– volume: 15
  start-page: 2582
  year: 1995
  ident: B25
  article-title: Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.15.5.2582
– volume: 24
  start-page: 423
  year: 2006
  ident: B5
  article-title: What are DNA sequence motifs?
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt0406-423
– volume: 74
  start-page: 245
  year: 2019
  ident: B51
  article-title: Bispecific forkhead transcription factor foxn3 recognizes two distinct motifs with different DNA shapes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.01.019
– volume: 46
  start-page: 1
  year: 2018
  ident: B6
  article-title: Disentangling transcription factor binding site complexity
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky683
– volume: 10
  start-page: r24
  year: 2009
  ident: B19
  article-title: Sepallata3: the 'glue' for MADS box transcription factor complex formation
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-2-r24
SSID ssj0000500997
Score 2.350325
Snippet Position weight matrix (PWM) is the traditional motif model representing the transcription factor (TF) binding sites. It proposes that the positions contribute...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 938545
SubjectTerms ChIP-seq data analysis
de novo motif search
heterogeneity of transcription factor binding sites
high and low affinity of transcription factor binding sites
Plant Science
standard and alternative motif recognition models
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7QigMXxFMMLwWJC4cyeTRJc2QRqxXScmKlvVV5VVQataNpV2h_D38UO5kZphe4cE2TJo3t2K7jz4S8dzpyEXhTddqqCk7JVLmgZCWyuWq6YBvMd776pi-v66836uak1BfeCSvwwGXj1o6lGBSoscZGUJ4BFLrjjU7eepYEj3j6MstOnKmC6o2mjylxSfDC7LrbbhCdW4iPVjYKs5dO9FCG61_YmMsbkicq5-IRebi3FemnssbH5F4anpD75yPYc3dPya-rce47mkvZTHSL1Q7Q76f9sbDtTN0QKQJC7P40lbTIiY4dHRDLGF4S00TdLtGc15IinUeKKMZ59Gb8SV3X9SD5d3RGxXY4Zmgp1UN9nxNjKIahJ5gN1ut8H8ft1E_PyPXFl--fL6t9yYUqSG3nyosguEuNdExG3QgTNYuhtslJ2LPa6lQrFQ1IvmcKnPKaBSOikc4nxbVT8jk5G8YhvSA0BMnqxAIQKtWeS4_ib33NHViV1scVWR8I0IY9HjmWxdi04JcgyVokWYskawvJVuTDccS2YHH8pe850vTYD1G0cwPwVrvnrfZfvLUi7w4c0YLUYSjFDWm8hZkMYsEZY9iKmAWrLGZcPhn6Hxm_2yKaFOMv_8cSX5EH-NX4t1k0r8nZvLtNb8BMmv3bLBG_AUBGFgY
  priority: 102
  providerName: Directory of Open Access Journals
Title Motif models proposing independent and interdependent impacts of nucleotides are related to high and low affinity transcription factor binding sites in Arabidopsis
URI https://www.proquest.com/docview/2702487770
https://pubmed.ncbi.nlm.nih.gov/PMC9373801
https://doaj.org/article/a0edc582289d439c839a186eb9b0e21d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagcOCCeIqlUBmJC4e0jp3Y8QEhiigVUjmx0t4ivwKRVsk2SQX7e_pHmXGyWyJViEsOjl_xxONvbM83hLw10qfcpUVSSZ0noCVDYlwuEh7hqqqcLtDf-eKbPF9mX1f56sY9ehrA_lbTDuNJLbv18e_L7QeY8O_R4oT19qTarJF4m_NjLQpABHfJvXhahBf5JrA_Mn0jHIrRVqTMkkzy1XhueWsls3Uq0vnPMOj8BuVfS9LZI_JwwpL04yj8x-ROaJ6Q-6ct4L3tU3J90Q51RWOom55uMBoC7gvQeh_4dqCm8RQJI7qbpNFtsqdtRRvkOoZKfOip6QKNfi_B06GlyHIcS6_bX9RUVQ2aYUsHXPh2aoiOoXyoraPjDMVj6h5ag_4aW_t209f9M7I8-_z903kyhWRInJB6SCx3PDWhEIYJLwuuvGTeZToYAWOWaRmyPPcKNINlORjtGXOKeyWMDXkqTS6ek4OmbcILQp0TLAvMWW1DZlNhUT1om6UGUKe2fkFOdgIo3cRXjmEz1iXYLSiyEkVWosjKUWQL8m5fYjNydfwj7ynKdJ8PWbZjQtv9KKdJWxoGEs4BQhXaA3BzACZNWsgAXWaBp9DFN7s_ooRZiUctpgntFbSkkCtOKcUWRM1-lVmL8zdN_TPye2tkm2Lpy_-o_ZA8wI_CzWZevCIHQ3cVXgNKGuxR3F2A55dVehQnwh90fhbT
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motif+models+proposing+independent+and+interdependent+impacts+of+nucleotides+are+related+to+high+and+low+affinity+transcription+factor+binding+sites+in+Arabidopsis&rft.jtitle=Frontiers+in+plant+science&rft.au=Tsukanov%2C+Anton+V&rft.au=Mironova%2C+Victoria+V&rft.au=Levitsky%2C+Victor+G&rft.date=2022-07-28&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=13&rft.spage=938545&rft_id=info:doi/10.3389%2Ffpls.2022.938545&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon