Towards an efficient global multidisciplinary design optimization algorithm

This article proposes a new surrogate-based multidisciplinary design optimization algorithm. The main idea is to replace each disciplinary solver involved in a non-linear multidisciplinary analysis by Gaussian process surrogate models. Although very natural, this approach creates difficulties as the...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 62; no. 4; pp. 1739 - 1765
Main Authors Dubreuil, S., Bartoli, N., Gogu, C., Lefebvre, T.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Verlag
Subjects
Online AccessGet full text
ISSN1615-147X
1615-1488
1615-1488
DOI10.1007/s00158-020-02514-6

Cover

Abstract This article proposes a new surrogate-based multidisciplinary design optimization algorithm. The main idea is to replace each disciplinary solver involved in a non-linear multidisciplinary analysis by Gaussian process surrogate models. Although very natural, this approach creates difficulties as the non-linearity of the multidisciplinary analysis leads to a non-Gaussian model of the objective function. However, in order to follow the path of classical Bayesian optimization such as the efficient global optimization algorithm, a dedicated model of the non-Gaussian random objective function is proposed. Then, an Expected Improvement criterion is proposed to enrich the disciplinary Gaussian processes in an iterative procedure that we call efficient global multidisciplinary design optimization (EGMDO). Such an adaptive approach allows to focus the computational budget on areas of the design space relevant only with respect to the optimization problem. The obtained reduction of the number of solvers evaluations is illustrated on a classical MDO test case and on an engineering test case.
AbstractList This article proposes a new surrogate-based multidisciplinary design optimization algorithm. The main idea is to replace each disciplinary solver involved in a non-linear multidisciplinary analysis by Gaussian process surrogate models. Although very natural, this approach creates difficulties as the non-linearity of the multidisciplinary analysis leads to a non-Gaussian model of the objective function. However, in order to follow the path of classical Bayesian optimization such as the efficient global optimization algorithm, a dedicated model of the non-Gaussian random objective function is proposed. Then, an Expected Improvement criterion is proposed to enrich the disciplinary Gaussian processes in an iterative procedure that we call efficient global multidisciplinary design optimization (EGMDO). Such an adaptive approach allows to focus the computational budget on areas of the design space relevant only with respect to the optimization problem. The obtained reduction of the number of solvers evaluations is illustrated on a classical MDO test case and on an engineering test case.
Author Bartoli, N.
Gogu, C.
Lefebvre, T.
Dubreuil, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Dubreuil
  fullname: Dubreuil, S.
  email: sylvain.dubreuil@onera.fr
  organization: ONERA/DTIS, Université de Toulouse
– sequence: 2
  givenname: N.
  orcidid: 0000-0002-6451-2203
  surname: Bartoli
  fullname: Bartoli, N.
  organization: ONERA/DTIS, Université de Toulouse
– sequence: 3
  givenname: C.
  orcidid: 0000-0002-7278-5631
  surname: Gogu
  fullname: Gogu, C.
  organization: Institut Clément Ader (ICA), CNRS, UPS, INSA, ISAE, Mines Albi, Université de Toulouse
– sequence: 4
  givenname: T.
  surname: Lefebvre
  fullname: Lefebvre, T.
  organization: ONERA/DTIS, Université de Toulouse
BackLink https://hal.science/hal-02904829$$DView record in HAL
BookMark eNqNkE1LAzEQhoNUsK3-AU979bA6yX4lx1LUigUvFbyFdDfZpmSTkmwt9de77RYFD8VDSBjeJzPzjNDAOisRusVwjwGKhwCAMxoDge5kOI3zCzTEOc5inFI6-HkXH1doFMIaACikbIheF24nfBUiYSOplC61tG1UG7cUJmq2ptWVDqXeGG2F30eVDLq2kdu0utFfotXORsLUzut21VyjSyVMkDene4zenx4X01k8f3t-mU7mcZnkrI1ZilVOBKiqTIBQmhc0k4zKZZJXSilWJbJMRVEwVaVSskRSjAuRE1mUsGQVScYo6f_d2o3Y74QxfON1083HMfCDD9774J0PfvTB846666mV-M07oflsMueHGhAGKSXsE3dZ0mdL70LwUv2vAf0Dlbo9Kmq90OY8etoodH1sLT1fu623ncRz1De8bpY3
CitedBy_id crossref_primary_10_1038_s41598_023_48757_3
crossref_primary_10_1007_s00158_021_03078_9
crossref_primary_10_1002_iis2_13020
crossref_primary_10_21105_joss_04737
crossref_primary_10_1155_2022_5846684
crossref_primary_10_1007_s00158_023_03736_0
crossref_primary_10_1016_j_renene_2023_02_026
crossref_primary_10_1177_09544070221104858
crossref_primary_10_1007_s00158_021_03051_6
crossref_primary_10_1016_j_engfailanal_2022_106101
crossref_primary_10_1115_1_4064632
Cites_doi 10.3166/remn.15.81-92
10.1023/A:1008306431147
10.1007/BF01197554
10.1007/s00158-015-1379-9
10.1023/B:OPTE.0000048536.47956.62
10.2514/1.45790
10.2514/1.J051895
10.1007/978-1-4612-3094-6
10.1115/1.4005619
10.1007/s10208-004-0119-0
10.1115/1.4038333
10.1007/s00158-018-2032-1
10.1137/0804044
10.1115/1.4034110
10.1017/S0962492900002841
10.1115/1.4031096
10.1016/j.cma.2019.04.013
10.1007/s00158-017-1733-1
10.1007/s00158-012-0763-y
10.1002/nme.4364
10.1016/j.cma.2018.01.009
10.1007/s00158-013-0919-4
10.1016/j.ast.2019.03.041
10.1007/s00158-016-1488-0
10.1007/s00158-007-0121-7
10.2514/6.1996-714
10.1109/DCABES.2017.48
10.2514/6.2018-3745
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s00158-020-02514-6
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1615-1488
EndPage 1765
ExternalDocumentID oai:HAL:hal-02904829v1
10_1007_s00158_020_02514_6
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-16-CE10-0002
  funderid: https://doi.org/10.13039/501100001665
– fundername: Office National d’études et de Recherches Aérospatiales
  grantid: MUFIN
  funderid: https://doi.org/10.13039/501100013388
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c369t-941f62a0fdc302886785e98eb36dfff9d3ec4a779fd4ee93e8117a62e7c0b9d23
IEDL.DBID UNPAY
ISSN 1615-147X
1615-1488
IngestDate Sun Oct 26 03:29:26 EDT 2025
Sat Oct 25 06:36:24 EDT 2025
Wed Oct 01 02:17:25 EDT 2025
Thu Apr 24 23:00:45 EDT 2025
Fri Feb 21 02:35:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Gaussian Process
Global optimization
Multidisciplinary design optimization
Multidisciplinary Design Optimization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-941f62a0fdc302886785e98eb36dfff9d3ec4a779fd4ee93e8117a62e7c0b9d23
ORCID 0000-0002-7278-5631
0000-0002-6451-2203
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-02904829
PageCount 27
ParticipantIDs unpaywall_primary_10_1007_s00158_020_02514_6
hal_primary_oai_HAL_hal_02904829v1
crossref_primary_10_1007_s00158_020_02514_6
crossref_citationtrail_10_1007_s00158_020_02514_6
springer_journals_10_1007_s00158_020_02514_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Verlag
References Powell (CR23) 1998; 7
Sobieszczanski-Sobieski, Haftka (CR30) 1997; 14
Du, Guo, Beeram (CR7) 2008; 35
Martins, Lambe (CR20) 2013; 51
Jones, Schonlau, Welch (CR14) 1998; 13
Shi, Liu, Long, Wu, Wang (CR29) 2018; 58
Ghanem, Spanos (CR11) 1991
CR16
CR15
Martins, Alonso, Reuther (CR19) 2005; 6
Picheny, Wagner, Ginsbourger (CR22) 2013; 48
Arnst, Ghanem, Phipps, Red-Horse (CR1) 2012; 92
CR10
Lambe, Martins (CR17) 2012; 46
CR32
Paiva, Carvalho, Crawford, Suleman (CR21) 2010; 48
Liu, Shi, Zhou, Xiu (CR18) 2016; 53
Sanson, Maitre, Congedo (CR26) 2019; 352
Bartoli, Lefebvre, Dubreuil, Olivanti, Priem, Bons, Martins, Morlier (CR3) 2019; 90
Cramer, Dennis Jr., Frank, Lewis, Shubin (CR6) 1994; 4
CR5
Wang, Li, Liu, Sun, Song, Zhang (CR31) 2017; 56
Hu, Mahadevan (CR12) 2017; 140
Jiang, Li, Apley, Chen (CR13) 2015; 137
CR28
Rasmussen, Williams (CR24) 2006
CR27
Azaïs, Wschebor (CR2) 2005; 5
Dubreuil, Bartoli, Gogu, Lefebvre (CR8) 2016; 11
Dubreuil, Bartoli, Gogu, Lefebvre, Colomer (CR9) 2018; 332
Berveiller, Sudret, Lemaire (CR4) 2006; 15
Sankararaman, Mahadevan (CR25) 2012; 134
Zhang, Gou, Li, Yang, Yue (CR33) 2017; 55
Z Jiang (2514_CR13) 2015; 137
M Berveiller (2514_CR4) 2006; 15
RG Ghanem (2514_CR11) 1991
S Sankararaman (2514_CR25) 2012; 134
2514_CR5
R Shi (2514_CR29) 2018; 58
X Du (2514_CR7) 2008; 35
Z Hu (2514_CR12) 2017; 140
V Picheny (2514_CR22) 2013; 48
2514_CR28
J Sobieszczanski-Sobieski (2514_CR30) 1997; 14
2514_CR27
E Cramer (2514_CR6) 1994; 4
DR Jones (2514_CR14) 1998; 13
AB Lambe (2514_CR17) 2012; 46
X Wang (2514_CR31) 2017; 56
S Dubreuil (2514_CR9) 2018; 332
M Zhang (2514_CR33) 2017; 55
M Arnst (2514_CR1) 2012; 92
MJD Powell (2514_CR23) 1998; 7
RM Paiva (2514_CR21) 2010; 48
2514_CR10
2514_CR32
JM Azaïs (2514_CR2) 2005; 5
2514_CR16
S Dubreuil (2514_CR8) 2016; 11
2514_CR15
JR Martins (2514_CR20) 2013; 51
CE Rasmussen (2514_CR24) 2006
F Sanson (2514_CR26) 2019; 352
N Bartoli (2514_CR3) 2019; 90
Y Liu (2514_CR18) 2016; 53
JR Martins (2514_CR19) 2005; 6
References_xml – volume: 15
  start-page: 81
  issue: 1-3
  year: 2006
  end-page: 92
  ident: CR4
  article-title: Stochastic finite elements: a non-intrusive approach by regression
  publication-title: Eur J Comput Mech
  doi: 10.3166/remn.15.81-92
– year: 2006
  ident: CR24
  publication-title: Gaussian processes for machine learning. Adaptive computation and machine learning
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  end-page: 492
  ident: CR14
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J Global Optim
  doi: 10.1023/A:1008306431147
– volume: 14
  start-page: 1
  issue: 1
  year: 1997
  end-page: 23
  ident: CR30
  article-title: Multidisciplinary aerospace design optimization: survey of recent developments
  publication-title: Struct Optim
  doi: 10.1007/BF01197554
– volume: 53
  start-page: 1295
  issue: 6
  year: 2016
  end-page: 1313
  ident: CR18
  article-title: A sequential sampling strategy to improve the global fidelity of metamodels in multi-level system design
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1379-9
– volume: 6
  start-page: 33
  issue: 1
  year: 2005
  end-page: 62
  ident: CR19
  article-title: A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design
  publication-title: Optim Eng
  doi: 10.1023/B:OPTE.0000048536.47956.62
– volume: 48
  start-page: 995
  issue: 5
  year: 2010
  end-page: 1006
  ident: CR21
  article-title: Comparison of surrogate models in a multidisciplinary optimization framework for wing design
  publication-title: AIAA Journal
  doi: 10.2514/1.45790
– ident: CR16
– volume: 51
  start-page: 2049
  issue: 9
  year: 2013
  end-page: 2075
  ident: CR20
  article-title: Multidisciplinary design optimization: a survey of architectures
  publication-title: AIAA J
  doi: 10.2514/1.J051895
– year: 1991
  ident: CR11
  publication-title: Stochastic finite elements: a spectral approach
  doi: 10.1007/978-1-4612-3094-6
– volume: 134
  start-page: 031,008
  issue: 3
  year: 2012
  ident: CR25
  article-title: Likelihood-based approach to multidisciplinary analysis under uncertainty
  publication-title: J Mech Des
  doi: 10.1115/1.4005619
– volume: 5
  start-page: 125
  issue: 2
  year: 2005
  end-page: 144
  ident: CR2
  article-title: On the roots of a random system of equations. The theorem of Shub and Smale and some extensions
  publication-title: Found Comput Math
  doi: 10.1007/s10208-004-0119-0
– ident: CR10
– volume: 140
  start-page: 021401
  issue: 2
  year: 2017
  ident: CR12
  article-title: Adaptive surrogate modeling for time-dependent multidisciplinary reliability analysis
  publication-title: J Mech Des
  doi: 10.1115/1.4038333
– volume: 58
  start-page: 2173
  issue: 5
  year: 2018
  end-page: 2188
  ident: CR29
  article-title: Multidisciplinary modeling and surrogate assisted optimization for satellite constellation systems
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-2032-1
– volume: 4
  start-page: 754
  issue: 4
  year: 1994
  end-page: 776
  ident: CR6
  article-title: Problem formulation for multidisciplinary optimization
  publication-title: SIAM J Optim
  doi: 10.1137/0804044
– volume: 11
  start-page: 111,411
  year: 2016
  ident: CR8
  article-title: Propagation of modeling uncertainty by polynomial chaos expansion in muldisciplinary analysis
  publication-title: J Mech Des
  doi: 10.1115/1.4034110
– ident: CR27
– volume: 7
  start-page: 287
  year: 1998
  end-page: 336
  ident: CR23
  article-title: Direct search algorithms for optimization calculations
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002841
– volume: 137
  start-page: 101,402
  issue: 10
  year: 2015
  ident: CR13
  article-title: A spatial-random-process based multidisciplinary system uncertainty propagation approach with model uncertainty
  publication-title: J Mech Des
  doi: 10.1115/1.4031096
– volume: 352
  start-page: 32
  year: 2019
  end-page: 55
  ident: CR26
  article-title: Systems of gaussian process models for directed chains of solvers
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2019.04.013
– volume: 56
  start-page: 1555
  issue: 6
  year: 2017
  end-page: 1570
  ident: CR31
  article-title: Surrogate based multidisciplinary design optimization of lithium-ion battery thermal management system in electric vehicles
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-017-1733-1
– ident: CR15
– volume: 46
  start-page: 273
  year: 2012
  end-page: 284
  ident: CR17
  article-title: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-012-0763-y
– volume: 92
  start-page: 940
  issue: 11
  year: 2012
  end-page: 968
  ident: CR1
  article-title: Dimension reduction in stochastic modeling of coupled problems
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4364
– volume: 332
  start-page: 540
  year: 2018
  end-page: 571
  ident: CR9
  article-title: Extreme value oriented random field discretization based on an hybrid polynomial chaos expansion - kriging approach
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2018.01.009
– ident: CR32
– volume: 48
  start-page: 607
  issue: 3
  year: 2013
  end-page: 626
  ident: CR22
  article-title: A benchmark of kriging-based infill criteria for noisy optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0919-4
– volume: 90
  start-page: 85
  year: 2019
  end-page: 102
  ident: CR3
  article-title: Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.03.041
– ident: CR5
– volume: 55
  start-page: 361
  issue: 1
  year: 2017
  end-page: 373
  ident: CR33
  article-title: Multidisciplinary design and multi-objective optimization on guide fins of twin-web disk using kriging surrogate model
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1488-0
– ident: CR28
– volume: 35
  start-page: 117
  issue: 2
  year: 2008
  end-page: 130
  ident: CR7
  article-title: Sequential optimization and reliability assessment for multidisciplinary systems design
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-007-0121-7
– volume: 134
  start-page: 031,008
  issue: 3
  year: 2012
  ident: 2514_CR25
  publication-title: J Mech Des
  doi: 10.1115/1.4005619
– volume: 53
  start-page: 1295
  issue: 6
  year: 2016
  ident: 2514_CR18
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1379-9
– volume: 51
  start-page: 2049
  issue: 9
  year: 2013
  ident: 2514_CR20
  publication-title: AIAA J
  doi: 10.2514/1.J051895
– volume: 90
  start-page: 85
  year: 2019
  ident: 2514_CR3
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.03.041
– volume: 137
  start-page: 101,402
  issue: 10
  year: 2015
  ident: 2514_CR13
  publication-title: J Mech Des
  doi: 10.1115/1.4031096
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 2514_CR14
  publication-title: J Global Optim
  doi: 10.1023/A:1008306431147
– ident: 2514_CR16
– volume: 92
  start-page: 940
  issue: 11
  year: 2012
  ident: 2514_CR1
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4364
– volume: 4
  start-page: 754
  issue: 4
  year: 1994
  ident: 2514_CR6
  publication-title: SIAM J Optim
  doi: 10.1137/0804044
– volume: 14
  start-page: 1
  issue: 1
  year: 1997
  ident: 2514_CR30
  publication-title: Struct Optim
  doi: 10.1007/BF01197554
– volume: 48
  start-page: 995
  issue: 5
  year: 2010
  ident: 2514_CR21
  publication-title: AIAA Journal
  doi: 10.2514/1.45790
– volume-title: Gaussian processes for machine learning. Adaptive computation and machine learning
  year: 2006
  ident: 2514_CR24
– volume: 55
  start-page: 361
  issue: 1
  year: 2017
  ident: 2514_CR33
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1488-0
– ident: 2514_CR28
  doi: 10.2514/6.1996-714
– volume: 46
  start-page: 273
  year: 2012
  ident: 2514_CR17
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-012-0763-y
– volume: 35
  start-page: 117
  issue: 2
  year: 2008
  ident: 2514_CR7
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-007-0121-7
– volume: 7
  start-page: 287
  year: 1998
  ident: 2514_CR23
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002841
– volume: 56
  start-page: 1555
  issue: 6
  year: 2017
  ident: 2514_CR31
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-017-1733-1
– volume: 15
  start-page: 81
  issue: 1-3
  year: 2006
  ident: 2514_CR4
  publication-title: Eur J Comput Mech
  doi: 10.3166/remn.15.81-92
– ident: 2514_CR32
– volume: 140
  start-page: 021401
  issue: 2
  year: 2017
  ident: 2514_CR12
  publication-title: J Mech Des
  doi: 10.1115/1.4038333
– ident: 2514_CR15
– volume: 6
  start-page: 33
  issue: 1
  year: 2005
  ident: 2514_CR19
  publication-title: Optim Eng
  doi: 10.1023/B:OPTE.0000048536.47956.62
– ident: 2514_CR5
  doi: 10.1109/DCABES.2017.48
– volume: 48
  start-page: 607
  issue: 3
  year: 2013
  ident: 2514_CR22
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0919-4
– volume: 352
  start-page: 32
  year: 2019
  ident: 2514_CR26
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2019.04.013
– volume-title: Stochastic finite elements: a spectral approach
  year: 1991
  ident: 2514_CR11
  doi: 10.1007/978-1-4612-3094-6
– ident: 2514_CR10
  doi: 10.2514/6.2018-3745
– volume: 5
  start-page: 125
  issue: 2
  year: 2005
  ident: 2514_CR2
  publication-title: Found Comput Math
  doi: 10.1007/s10208-004-0119-0
– volume: 58
  start-page: 2173
  issue: 5
  year: 2018
  ident: 2514_CR29
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-2032-1
– ident: 2514_CR27
– volume: 11
  start-page: 111,411
  year: 2016
  ident: 2514_CR8
  publication-title: J Mech Des
  doi: 10.1115/1.4034110
– volume: 332
  start-page: 540
  year: 2018
  ident: 2514_CR9
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2018.01.009
SSID ssj0008049
Score 2.3840027
Snippet This article proposes a new surrogate-based multidisciplinary design optimization algorithm. The main idea is to replace each disciplinary solver involved in a...
This article proposes a new surrogate based Multidisciplinary Design Optimization algorithm. The main idea is to replace each disciplinary solver involved in a...
SourceID unpaywall
hal
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1739
SubjectTerms Computational Mathematics and Numerical Analysis
Engineering
Engineering Design
Mathematics
Optimization and Control
Research Paper
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9uPugexE-cXwTxzQXaNG2SxyGO4dfTBnsraZo4oXZj6xT_e5P0gwky9LWkR_nd5e7S3P0OgBumhKeJxsjE3hCR1GMoIZQiEQjppltEif018PwSDcfkYRJOqqawZV3tXl9JOk_dNLvZ8M6QPe7YvJigqAW2Q0vnZax4jPuN_2Vl0mtTGeQTOqlaZX6X8SMctaa2GLK5Ee2AnVU-F1-fIsvWgs5gH-xV2SLsl-o9AFsqPwSdNQ7BI_A4coWvSyhyqBwfhAkjsOT5gK5ccL3xFqauYgPOjKd4r1owocheZ4u3Yvp-DMaD-9HdEFUTEpAMIl4gTnwdYYN2KgOTKDATeULFmTkgR6nWmqeBkkRQynVKlOKBsm2lIsKKSi_hKQ5OQDuf5eoUQMU0CbEkPlWapEoklErOPM01I4EKvS7wa6BiWdGH2ykWWdwQHztwYwNu7MCNoy64bd6Zl-QZG1dfG_ybhZb3eth_iu0zD3PjaTD_8LugV6snrnbbcqPMXqPCP3zC2f-kn4NdbG3J1fZdgHaxWKlLk6MUyZUzyW-6ydpw
  priority: 102
  providerName: Springer Nature
Title Towards an efficient global multidisciplinary design optimization algorithm
URI https://link.springer.com/article/10.1007/s00158-020-02514-6
https://hal.science/hal-02904829
UnpaywallVersion submittedVersion
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: AFBBN
  dateStart: 19890301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1615-1488
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH9a2wPswPgU5aOyEDfmKXEcfxwztFIxqDisUneKHMdeEV06remm7a_HdtOscKjgFCtyIuu9F7-fnd_7GeCjMCqy1BLscm-KaRkJXFDOsUqUDqdbsMJvDXwfs9GEfp2m0z1Am1qYmUOczdzv2zgi0sUYkR3osdSh7S70JuMf2blfR7lkjGPKpw9tIZq6mFAd5_GAwH595IE0xeyP3NOZeeZj-_tzHx6tqit1d6vm860MMzxYMx2XQZjQE0t-Ha3q4kjf_yXbuGvwT-FJAy9Rto6HZ7BnquewvyU6-AJOzwJTdolUhUwQkHB5B62FQVDgF25X6qIyUDzQwk0tl03NJlLzi8X1z3p2-RImw5OzzyPcHKmAdcJkjSWNLSPOPaVOHLIQLlWlRgq3omaltVaWidFUcS5tSY2RifF1qIoRw3VUyJIkr6BbLSrzGpARlqZE05gbS0ujCs61FJGVVtDEpFEf4o2xc93ojftjL-Z5q5QcHJQ7B-XBQTnrw6f2mau12sbO3h-clduOXih7lH3L_b2N5W_iPhxuXJw3n-dy5zsP2zD4hyG8-b_ub-Ex8fEYyIDvoFtfr8x7B2rqYgC9bHh8PPbXL-enJwPoTEg2aKL9N2uo8Sc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6N8gA8jDGY1g2GNe0NjBLHie3HCgHdWnhqpe4pchybTispoikI_vrZzg-VaULjNXIs5-58d46_-w7gG9cyMNQQbGNvjGkecJxRxrCMpPLdLZLM_Rq4vEr6Y_pjEk_qorBFg3ZvriS9p26L3Vx459gdd1xeTHGyBuvUHlBIB9Z7Fz8HZ60H5lXa65IZHFI2qYtl_j3Ls4C0NnVwyPZOdAs2lsWtfHyQs9lK2DnfhnGz4Apt8vtkWWYn6ukvLsfXftE7eFvnoahXGc4OvNHFe9haYSfchcHIQ2oXSBZIe6YJG6BQxSCCPBBxtaQX5R4LgubWB93UxZ1Izq7nd7_K6c0ejM_PRqd9XPdewCpKRIkFDU1CrB5zFdkUhNuYFmvB7dE7yY0xIo-0opIxYXKqtYi0K1iVCdFMBZnISfQBOsW80B8BaW5oTBQNmTY01zJjTAkeGGE4jXQcdCFsFJCqmpjc9ceYpS2lshdUagWVekGlSReO2nduK1qOF0d_tXptBzpG7X5vmLpnARHWhxFxH3bhuNFSWu_jxYtzHrem8R9L-PS62Q9hoz-6HKbD71eDz7BJnI14BOE-dMq7pT6wmVCZfakN_w9aHfpG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gI-D-MT1GcSbBts0bZLjoi7rEw8u7K2kTaLC2l20Kv57k7RbVhDRa0mHdmY6M2nm-wbgkGsZGGoItrk3xlQFHGeUMSwjmfvpFknmfg3c3CbdHr3sx_0JFL_vdh8fSVaYBsfSVJQnI2VOGuCbS_Ucu62Pq5EpTqZhljqiBOvRPdJuYjGvCmBX1uCQsn4Nm_lZxrfUNP3oGiOb09FFmH8rRvLzQw4GEwmoswxLdeWI2pWpV2BKF6uwOMEnuAZX974J9hXJAmnPDWFfCVWcH8i3Dk6CcJHy3RtoaKPGcw3HRHLwMHx5Kh-f16HXOb8_7eJ6WgLOo0SUWNDQJMRqXuWRLRq4zUKxFtxulhNljBEq0jmVjAmjqNYi0g5iKhOiWR5kQpFoA2aKYaE3AWluaExyGjJtqNIyYywXPDDCcBrpOGhBOFZUmtdU4m6ixSBtSJC9clOr3NQrN01acNTcM6qINH5dfWD13yx0HNjd9nXqrgVE2KhDxHvYguOxedL6y3v9VeZxY8I_PMLW_6Tvw9zdWSe9vri92oYF4tzKt_ztwEz58qZ3belSZnveO78AJZ_hmA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-i5bBxGLAN0Y0hC3EbrvLh-ONYIapqfIhDK5VT5Dg2nZamFU03bX_9bDfNyg4V3KzIiSy_F7_fS37v9wDOuZaBISbCNvYmmOQBxxlhDMtYKt_dgmbu08DtHR2MyLdxMt4BtK6FmVjEWZ_9boyDSFgfi0QLdmli0XYbdkd3970Hl0fZYIxDwsb_xpzXdTG-Os7hAY5dfuSANMH0WexpTRzzsfn9uQdvluVc_v4li2IjwvT3V0zHhRcmdMSSH91llXXVn_9kG7ct_gDe1fAS9Vb-cAg7unwPexuigx_geuiZsgskS6S9gISNO2glDII8v3CzUhflnuKBZvZomdY1m0gWj7On79Vk-hFG_avh5QDXLRWwiqmosCChoZE1T65iiyy4DVWJFtxm1DQ3xog81opIxoTJidYi1q4OVdJIMxVkIo_iI2iXs1IfA9LckCRSJGTakFzLjDEleGCE4STWSdCBcL3Zqar1xl3biyJtlJK9gVJroNQbKKUd-NrcM1-pbWydfWZ3uZnohLIHvZvUXVvv_M-wAxdrE6f167nY-syLxg1esIRPr5v-Gd5Gzh89GfAE2tXTUn-xoKbKTmu__gvi1e0u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+an+Efficient+Global+Multidisciplinary+Design+Optimization+algorithm&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Dubreuil%2C+Sylvain&rft.au=Bartoli%2C+Nathalie&rft.au=Gogu%2C+Christian&rft.au=Lefebvre%2C+Thierry&rft.date=2020-10-01&rft.pub=Springer+Verlag&rft.issn=1615-147X&rft_id=info:doi/10.1007%2Fs00158-020-02514-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02904829v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon