Towards subject independent continuous sign language recognition: A segment and merge approach
This paper presents a segment-based probabilistic approach to robustly recognize continuous sign language sentences. The recognition strategy is based on a two-layer conditional random field (CRF) model, where the lower layer processes the component channels and provides outputs to the upper layer f...
Saved in:
Published in | Pattern recognition Vol. 47; no. 3; pp. 1294 - 1308 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.03.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2013.09.014 |
Cover
Abstract | This paper presents a segment-based probabilistic approach to robustly recognize continuous sign language sentences. The recognition strategy is based on a two-layer conditional random field (CRF) model, where the lower layer processes the component channels and provides outputs to the upper layer for sign recognition. The continuously signed sentences are first segmented, and the sub-segments are labeled SIGN or ME (movement epenthesis) by a Bayesian network (BN) which fuses the outputs of independent CRF and support vector machine (SVM) classifiers. The sub-segments labeled as ME are discarded and the remaining SIGN sub-segments are merged and recognized by the two-layer CRF classifier; for this we have proposed a new algorithm based on the semi-Markov CRF decoding scheme. With eight signers, we obtained a recall rate of 95.7% and a precision of 96.6% for unseen samples from seen signers, and a recall rate of 86.6% and a precision of 89.9% for unseen signers.
•Variations in sign language are examined to develop a signer independent system.•A 4-channel phoneme-based approach is used.•Continuous sentence is segmented into sign or movement epenthesis sub-segments.•Sign sub-segments are merged and recognized with a two-layer CRF.•Novel decoding scheme is proposed for the semi-Markov CRF used in the 2-layer CRF. |
---|---|
AbstractList | This paper presents a segment-based probabilistic approach to robustly recognize continuous sign language sentences. The recognition strategy is based on a two-layer conditional random field (CRF) model, where the lower layer processes the component channels and provides outputs to the upper layer for sign recognition. The continuously signed sentences are first segmented, and the sub-segments are labeled SIGN or ME (movement epenthesis) by a Bayesian network (BN) which fuses the outputs of independent CRF and support vector machine (SVM) classifiers. The sub-segments labeled as ME are discarded and the remaining SIGN sub-segments are merged and recognized by the two-layer CRF classifier; for this we have proposed a new algorithm based on the semi-Markov CRF decoding scheme. With eight signers, we obtained a recall rate of 95.7% and a precision of 96.6% for unseen samples from seen signers, and a recall rate of 86.6% and a precision of 89.9% for unseen signers. This paper presents a segment-based probabilistic approach to robustly recognize continuous sign language sentences. The recognition strategy is based on a two-layer conditional random field (CRF) model, where the lower layer processes the component channels and provides outputs to the upper layer for sign recognition. The continuously signed sentences are first segmented, and the sub-segments are labeled SIGN or ME (movement epenthesis) by a Bayesian network (BN) which fuses the outputs of independent CRF and support vector machine (SVM) classifiers. The sub-segments labeled as ME are discarded and the remaining SIGN sub-segments are merged and recognized by the two-layer CRF classifier; for this we have proposed a new algorithm based on the semi-Markov CRF decoding scheme. With eight signers, we obtained a recall rate of 95.7% and a precision of 96.6% for unseen samples from seen signers, and a recall rate of 86.6% and a precision of 89.9% for unseen signers. •Variations in sign language are examined to develop a signer independent system.•A 4-channel phoneme-based approach is used.•Continuous sentence is segmented into sign or movement epenthesis sub-segments.•Sign sub-segments are merged and recognized with a two-layer CRF.•Novel decoding scheme is proposed for the semi-Markov CRF used in the 2-layer CRF. |
Author | Kong, W.W. Ranganath, Surendra |
Author_xml | – sequence: 1 givenname: W.W. surname: Kong fullname: Kong, W.W. email: wwn.kong@gmail.com organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore – sequence: 2 givenname: Surendra surname: Ranganath fullname: Ranganath, Surendra email: surendra@iitgn.ac.in organization: Department of Information Science and Engineering, Sri Jayachamarajendra College of Engineering, Mysore 570002, India |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28292710$$DView record in Pascal Francis |
BookMark | eNqFkDtvFDEURi0UJDaBf0AxDRLNTK7teTkFUhTxkiLRhBbrrn1n8GrWHmwPEf8erzaioIDGLu757uNcsgsfPDH2mkPDgffXh2bFbMLcCOCyAdUAb5-xHR8HWXe8FRdsByB5LQXIF-wypQMAH0phx749hEeMNlVp2x_I5Mp5SyuVx-fKBJ-d38JWym721YJ-3nCmKlKZ5l12wd9Ut1Wi-Xji0dvqSLEAuK4xoPn-kj2fcEn06um_Yl8_vH-4-1Tff_n4-e72vjayV7kerWhH7OQgygUgcN8iQQe4l5ZITaWMMHLe22lCNfa8b-VoBmtJGdnipOQVe3vuW8b-2ChlfXTJ0FI2prK-5p0ENfK24wV984RiMrhMEb1xSa_RHTH-0mIUSgwcCteeORNDSpGmPwgHfdKuD_qsXZ-0a1C6aC-xm79ixmU8mcoR3fK_8LtzmIqrn46iTsaRN2RdUZ61De7fDX4DjIujrA |
CODEN | PTNRA8 |
CitedBy_id | crossref_primary_10_1016_j_patrec_2016_03_030 crossref_primary_10_1109_RBME_2020_3019769 crossref_primary_10_1007_s00521_021_06683_3 crossref_primary_10_1016_j_ipm_2024_103774 crossref_primary_10_1109_TSMC_2019_2957347 crossref_primary_10_1007_s10845_023_02150_z crossref_primary_10_1016_j_ipm_2024_103850 crossref_primary_10_1016_j_engappai_2022_105198 crossref_primary_10_1109_THMS_2015_2406692 crossref_primary_10_1016_j_eswa_2021_115448 crossref_primary_10_1007_s00521_021_05802_4 crossref_primary_10_1007_s12652_020_02396_y crossref_primary_10_1109_ACCESS_2024_3398806 crossref_primary_10_1145_3447241 crossref_primary_10_1145_2897735 crossref_primary_10_1007_s42979_021_00485_z crossref_primary_10_1109_TIM_2021_3109732 crossref_primary_10_1016_j_cviu_2015_08_004 crossref_primary_10_1016_j_patcog_2014_12_008 crossref_primary_10_1007_s10916_017_0819_z crossref_primary_10_1016_j_csl_2017_05_009 crossref_primary_10_1109_ACCESS_2022_3204110 crossref_primary_10_2139_ssrn_4182158 crossref_primary_10_1007_s41870_020_00518_5 crossref_primary_10_1145_3530259 crossref_primary_10_1002_cpe_7653 crossref_primary_10_1016_j_jvcir_2024_104363 crossref_primary_10_3390_s150923303 crossref_primary_10_1016_j_compeleceng_2020_106898 crossref_primary_10_1109_JSEN_2019_2909837 crossref_primary_10_1007_s11042_020_08961_z crossref_primary_10_1016_j_iswa_2021_200056 crossref_primary_10_1007_s00500_021_05855_6 crossref_primary_10_1016_j_compeleceng_2019_02_012 crossref_primary_10_1145_2850421 crossref_primary_10_3390_s18072208 crossref_primary_10_1016_j_patcog_2022_109233 crossref_primary_10_3390_jimaging8040098 crossref_primary_10_1007_s11220_019_0225_3 crossref_primary_10_1016_j_patcog_2014_10_029 crossref_primary_10_1016_j_patcog_2014_10_026 crossref_primary_10_1142_S2972335324500017 crossref_primary_10_1016_j_jksuci_2019_05_002 crossref_primary_10_1007_s12626_025_00180_y crossref_primary_10_1016_j_asoc_2023_110526 crossref_primary_10_1016_j_asej_2016_10_013 crossref_primary_10_1016_j_jpdc_2017_07_001 |
Cites_doi | 10.1109/IMVIP.2009.33 10.1109/AFGR.2002.1004172 10.1007/s11265-008-0292-5 10.1109/HUMO.2000.897368 10.1109/TASSP.1981.1163527 10.1109/89.876308 10.1109/CVPRW.2006.165 10.1109/CVPR.2007.383347 10.1109/34.799904 10.1007/3-540-47873-6_7 10.1109/CVPR.2007.383346 10.1109/TPAMI.2009.26 10.1016/j.patcog.2010.03.007 10.1126/science.1136800 10.1007/3-540-47873-6_8 10.1016/j.patcog.2009.12.002 10.1109/AFGR.2000.840672 10.1109/AFGR.2008.4813462 10.1109/TPAMI.2008.172 10.1007/3-540-45453-5_20 10.1109/ICPR.2008.4761363 10.1109/AFGR.2002.1004188 10.1109/AFGR.2004.1301592 10.1109/ICCVW.2009.5457585 10.1007/978-3-540-24598-8_23 10.1109/ICPR.2010.539 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.patcog.2013.09.014 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1873-5142 |
EndPage | 1308 |
ExternalDocumentID | 28292710 10_1016_j_patcog_2013_09_014 S0031320313003865 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SC 8FD ACLOT EFKBS JQ2 L7M L~C L~D ~HD |
ID | FETCH-LOGICAL-c369t-8d248a537220102ab4ae050ab3dee9f8d2a08116dffa98616438c7dde9c34af93 |
IEDL.DBID | AIKHN |
ISSN | 0031-3203 |
IngestDate | Sat Sep 27 22:35:01 EDT 2025 Wed Apr 02 07:16:10 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Tue Jul 01 02:36:17 EDT 2025 Fri Feb 23 02:25:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Sign language recognition Support vector machine (SVM) Hidden Markov model (HMM) Conditional random field (CRF) Semi-Markov CRF Gesture recognition Signer independence Bayesian network Automatic classification Semimarkovian process Probabilistic approach Decoding Support vector machine Conditional probability Algorithm Signal classification Random field Sign language Hidden Markov models Bayes network Piezoelectric resonator Sentence Language recognition Coupled resonator |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-8d248a537220102ab4ae050ab3dee9f8d2a08116dffa98616438c7dde9c34af93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1530981451 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1530981451 pascalfrancis_primary_28292710 crossref_primary_10_1016_j_patcog_2013_09_014 crossref_citationtrail_10_1016_j_patcog_2013_09_014 elsevier_sciencedirect_doi_10_1016_j_patcog_2013_09_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Pattern recognition |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Battison, Markowicz, Woodward (bib1) 1975 H.-I. Suk, S.-S. Cho, H.-D. Yang, M.-C. Roh, S.-W. Lee, Real-time human–robot interaction based on continuous gesture spotting and recognition, in: Proceedings of International Symposium on Robotics, Seoul, Korea, 2008, pp. 120–123. A. Farhadi, D. Forsyth, R. White, Transfer learning in sign language, in: Proceedings of Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 2007, pp. 1–8. Kuhn (bib29) 2000; 8 S.C.W. Ong, S. Ranganath, Deciphering gestures with layered meanings and signer adaptation, in: Proceedings of International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, 2004, pp. 559–564. C. Vogler, H. Sun, D. Metaxas, A framework for motion recognition with applications to American sign language and gait recognition, in: Proceedings of Workshop on Human Motion, Austin, TX, 2000, pp. 33–38. R. Klinger, K. Tomanek, Classical Probabilistic Models and Conditional Random Fields, Algorithm Engineering Report TR07-2-013, Department of Computer Science, Dortmund University of Technology, 2007. Lucas, Bayley, Valli (bib2) 2003 Yang, Sarkar, Loeding (bib6) 2010; 32 B. Bauer, K.-F. Kraiss, Towards an automatic sign language recognition system using subunits, in: Proceedings of Gesture Workshop, London, UK, 2001, pp. 64–75. C. Wang, W. Gao, Z. Xuan, A real-time large vocabulary continuous recognition system for Chinese sign language, in: Pacific Rim Conference on Multimedia, Beijing, China, 2001, pp. 150–157. USER'S MANUAL, rev. c Edition, November 2002. C. Wang, S. Shan, W. Gao, An approach based on phonemes to large vocabulary Chinese sign language recognition, in: Proceedings of International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, 2002, pp. 411–416. G. Fang, et al., Signer-independent continuous sign language recognition based on SRN/HMM, in: Proceedings of Gesture Workshop, London, UK, 2001, pp. 76–85. Frey, Dueck (bib37) 2007; 315 Duda, Hart (bib32) 1973 S.C.W. Ong, Beyond Lexical Meaning: Probabilistic Models for Sign Language Recognition, Ph.D. Thesis, National University of Singapore, 2007. Reference Manual, August 1998. D. Kelly, J. McDonald, C. Markham, Continuous recognition of motion based gestures in sign language, in: Proceedings of International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan, 2009, pp. 1073–1080. Polhemus, Inc. D. Kelly, J. McDonald, C. Markham, Recognizing spatiotemporal gestures and movement epenthesis in sign language, in: Proceedings of International Conference on Machine Vision and Image Processing, Dublin, Ireland, 2009, pp. 145–150. Platt (bib34) 2000 Virtual Technologies, Inc. R. Yang, S. Sarkar, B. Loeding, Enhanced level building algorithm for the movement epenthesis problem in sign language recognition, in: Proceedings of Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 2007, pp. 1–8. H.-D. Yang, S. Sclaroff, S.-W. Lee, Garbage model formulation with conditional random fields for sign language spotting, in: Proceedings of International Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, 2008. B. Bauer, H. Hienz, Relevant features for video-based continuous sign language recognition, in: Proceedings of International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, 2000, pp. 440–445. C. Vogler, D. Metaxas, Handshapes and movements: multiple-channel ASL recognition, in: Proceedings of Gesture Workshop, Genova, Italy, 2003, pp. 247–258. Perlmutter (bib3) 1990 J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, in: Proceedings of International Conference on Machine Learning, 2001, pp. 282–289. Aran, Akarun (bib4) 2010; 43 U. von Agris, C. Blömer, K.-F. Kraiss, Rapid signer adaptation for continuous sign language recognition using a combined approach of eigenvoices, MLLR, and MAP, in: Proceedings of International Conference on Pattern Recognition, Tampa, FL, 2008, pp. 1–4. Lee, Kim (bib15) 1999; 21 Yang, Sclaroff, Lee (bib10) 2009; 31 G. Fang, W. Gao, A SRN/HMM system for signer-independent continuous sign language recognition, in: Proceedings of International Conference on Automatic Face and Gesture Recognition, Washington, DC, 2002, pp. 312–317. S. Sarawagi, W.W. Cohen, Semi-Markov conditional random fields for information extraction, in: Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2004, pp. 1185–1192. U. von Agris, D. Schneider, J. Zieren, K.-F. Kraiss, Rapid signer adaptation for isolated sign language recognition, in: Proceedings of Conference on Computer Vision and Pattern Recognition Workshop, New York, 2006, pp. 159–164. W.W. Kong, S. Ranganath, Automatic hand trajectory segmentation and phoneme transcription for sign language, in: Proceedings of the International Conference on Automatic Face and Gesture Recognition, Amsterdam, The Netherlands, 2008, pp. 1–6. Yang, Lee (bib12) 2010; 43 H.-D. Yang, S.-W. Lee, Robust sign language recognition with hierarchical conditional random fields, in: Proceedings of International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 2202–2205. Kong, Ranganath (bib33) 2010; 59 Myers, Rabiner (bib7) 1981; 29 U. von Agris, K.-F. Kraiss, Towards a video corpus for signer-independent continuous sign language recognition, in: Proceedings of Gesture Workshop, Lisbon, Portugal, 2007. Kuhn (10.1016/j.patcog.2013.09.014_bib29) 2000; 8 Yang (10.1016/j.patcog.2013.09.014_bib12) 2010; 43 10.1016/j.patcog.2013.09.014_bib17 10.1016/j.patcog.2013.09.014_bib39 Lee (10.1016/j.patcog.2013.09.014_bib15) 1999; 21 10.1016/j.patcog.2013.09.014_bib18 10.1016/j.patcog.2013.09.014_bib19 10.1016/j.patcog.2013.09.014_bib13 10.1016/j.patcog.2013.09.014_bib35 10.1016/j.patcog.2013.09.014_bib14 Kong (10.1016/j.patcog.2013.09.014_bib33) 2010; 59 10.1016/j.patcog.2013.09.014_bib36 10.1016/j.patcog.2013.09.014_bib16 10.1016/j.patcog.2013.09.014_bib38 10.1016/j.patcog.2013.09.014_bib31 Yang (10.1016/j.patcog.2013.09.014_bib10) 2009; 31 10.1016/j.patcog.2013.09.014_bib11 10.1016/j.patcog.2013.09.014_bib40 Myers (10.1016/j.patcog.2013.09.014_bib7) 1981; 29 Battison (10.1016/j.patcog.2013.09.014_bib1) 1975 Frey (10.1016/j.patcog.2013.09.014_bib37) 2007; 315 10.1016/j.patcog.2013.09.014_bib28 10.1016/j.patcog.2013.09.014_bib24 10.1016/j.patcog.2013.09.014_bib25 10.1016/j.patcog.2013.09.014_bib26 10.1016/j.patcog.2013.09.014_bib27 10.1016/j.patcog.2013.09.014_bib20 10.1016/j.patcog.2013.09.014_bib21 10.1016/j.patcog.2013.09.014_bib22 Perlmutter (10.1016/j.patcog.2013.09.014_bib3) 1990 10.1016/j.patcog.2013.09.014_bib23 Duda (10.1016/j.patcog.2013.09.014_bib32) 1973 10.1016/j.patcog.2013.09.014_bib30 Aran (10.1016/j.patcog.2013.09.014_bib4) 2010; 43 10.1016/j.patcog.2013.09.014_bib5 Lucas (10.1016/j.patcog.2013.09.014_bib2) 2003 Yang (10.1016/j.patcog.2013.09.014_bib6) 2010; 32 10.1016/j.patcog.2013.09.014_bib9 10.1016/j.patcog.2013.09.014_bib8 Platt (10.1016/j.patcog.2013.09.014_bib34) 2000 |
References_xml | – volume: 21 start-page: 961 year: 1999 end-page: 973 ident: bib15 article-title: An HMM-based threshold model approach for gesture recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Reference Manual, August 1998. – reference: D. Kelly, J. McDonald, C. Markham, Recognizing spatiotemporal gestures and movement epenthesis in sign language, in: Proceedings of International Conference on Machine Vision and Image Processing, Dublin, Ireland, 2009, pp. 145–150. – reference: C. Vogler, D. Metaxas, Handshapes and movements: multiple-channel ASL recognition, in: Proceedings of Gesture Workshop, Genova, Italy, 2003, pp. 247–258. – reference: H.-I. Suk, S.-S. Cho, H.-D. Yang, M.-C. Roh, S.-W. Lee, Real-time human–robot interaction based on continuous gesture spotting and recognition, in: Proceedings of International Symposium on Robotics, Seoul, Korea, 2008, pp. 120–123. – reference: A. Farhadi, D. Forsyth, R. White, Transfer learning in sign language, in: Proceedings of Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 2007, pp. 1–8. – reference: R. Klinger, K. Tomanek, Classical Probabilistic Models and Conditional Random Fields, Algorithm Engineering Report TR07-2-013, Department of Computer Science, Dortmund University of Technology, 2007. – reference: R. Yang, S. Sarkar, B. Loeding, Enhanced level building algorithm for the movement epenthesis problem in sign language recognition, in: Proceedings of Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 2007, pp. 1–8. – start-page: 291 year: 1975 end-page: 302 ident: bib1 article-title: A good rule of thumb publication-title: Analyzing Variation in Language – reference: B. Bauer, K.-F. Kraiss, Towards an automatic sign language recognition system using subunits, in: Proceedings of Gesture Workshop, London, UK, 2001, pp. 64–75. – volume: 315 start-page: 972 year: 2007 end-page: 976 ident: bib37 article-title: Clustering by passing messages between data points publication-title: Science – reference: U. von Agris, K.-F. Kraiss, Towards a video corpus for signer-independent continuous sign language recognition, in: Proceedings of Gesture Workshop, Lisbon, Portugal, 2007. – volume: 8 start-page: 695 year: 2000 end-page: 707 ident: bib29 article-title: A rapid speaker adaptation in eigenvoice space publication-title: IEEE Transactions on Speech and Audio Processing – reference: H.-D. Yang, S. Sclaroff, S.-W. Lee, Garbage model formulation with conditional random fields for sign language spotting, in: Proceedings of International Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, 2008. – reference: Virtual Technologies, Inc., – volume: 43 start-page: 2858 year: 2010 end-page: 2870 ident: bib12 article-title: Simultaneous spotting of signs and fingerspellings based on hierarchical conditional random fields and boostmap embeddings publication-title: Pattern Recognition – start-page: 67 year: 1990 end-page: 80 ident: bib3 article-title: On the segmental representation of transitional and bidirectional movements in ASL phonology publication-title: Theoretical Issues in Sign Language Research, vol. 1 – reference: G. Fang, W. Gao, A SRN/HMM system for signer-independent continuous sign language recognition, in: Proceedings of International Conference on Automatic Face and Gesture Recognition, Washington, DC, 2002, pp. 312–317. – volume: 31 start-page: 1264 year: 2009 end-page: 1277 ident: bib10 article-title: Sign language spotting with a threshold model based on conditional random fields publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: C. Vogler, H. Sun, D. Metaxas, A framework for motion recognition with applications to American sign language and gait recognition, in: Proceedings of Workshop on Human Motion, Austin, TX, 2000, pp. 33–38. – volume: 59 start-page: 211 year: 2010 end-page: 222 ident: bib33 article-title: Sign language phoneme transcription with rule-based hand trajectory segmentation publication-title: Signal Processing Systems – reference: B. Bauer, H. Hienz, Relevant features for video-based continuous sign language recognition, in: Proceedings of International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, 2000, pp. 440–445. – reference: S. Sarawagi, W.W. Cohen, Semi-Markov conditional random fields for information extraction, in: Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2004, pp. 1185–1192. – reference: C. Wang, W. Gao, Z. Xuan, A real-time large vocabulary continuous recognition system for Chinese sign language, in: Pacific Rim Conference on Multimedia, Beijing, China, 2001, pp. 150–157. – volume: 32 start-page: 462 year: 2010 end-page: 477 ident: bib6 article-title: Handling movement epenthesis and hand segmentation ambiguities in continuous sign language recognition using nested dynamic programming publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 43 start-page: 1776 year: 2010 end-page: 1788 ident: bib4 article-title: A multi-class classification strategy for fisher scores publication-title: Pattern Recognition – reference: S.C.W. Ong, S. Ranganath, Deciphering gestures with layered meanings and signer adaptation, in: Proceedings of International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, 2004, pp. 559–564. – year: 2003 ident: bib2 article-title: What's your Sign for Pizza? – reference: D. Kelly, J. McDonald, C. Markham, Continuous recognition of motion based gestures in sign language, in: Proceedings of International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan, 2009, pp. 1073–1080. – reference: H.-D. Yang, S.-W. Lee, Robust sign language recognition with hierarchical conditional random fields, in: Proceedings of International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 2202–2205. – reference: G. Fang, et al., Signer-independent continuous sign language recognition based on SRN/HMM, in: Proceedings of Gesture Workshop, London, UK, 2001, pp. 76–85. – reference: J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, in: Proceedings of International Conference on Machine Learning, 2001, pp. 282–289. – reference: Polhemus, Inc., – reference: S.C.W. Ong, Beyond Lexical Meaning: Probabilistic Models for Sign Language Recognition, Ph.D. Thesis, National University of Singapore, 2007. – volume: 29 start-page: 284 year: 1981 end-page: 297 ident: bib7 article-title: A level building dynamic time warping algorithm for connected word recognition publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing – reference: W.W. Kong, S. Ranganath, Automatic hand trajectory segmentation and phoneme transcription for sign language, in: Proceedings of the International Conference on Automatic Face and Gesture Recognition, Amsterdam, The Netherlands, 2008, pp. 1–6. – reference: C. Wang, S. Shan, W. Gao, An approach based on phonemes to large vocabulary Chinese sign language recognition, in: Proceedings of International Conference on Automatic Face and Gesture Recognition, Washington, DC, USA, 2002, pp. 411–416. – reference: U. von Agris, D. Schneider, J. Zieren, K.-F. Kraiss, Rapid signer adaptation for isolated sign language recognition, in: Proceedings of Conference on Computer Vision and Pattern Recognition Workshop, New York, 2006, pp. 159–164. – reference: U. von Agris, C. Blömer, K.-F. Kraiss, Rapid signer adaptation for continuous sign language recognition using a combined approach of eigenvoices, MLLR, and MAP, in: Proceedings of International Conference on Pattern Recognition, Tampa, FL, 2008, pp. 1–4. – start-page: 61 year: 2000 end-page: 74 ident: bib34 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods publication-title: Advances in Large Margin Classifiers – reference: USER'S MANUAL, rev. c Edition, November 2002. – year: 1973 ident: bib32 article-title: Pattern Classification and Scene Analysis – ident: 10.1016/j.patcog.2013.09.014_bib14 doi: 10.1109/IMVIP.2009.33 – ident: 10.1016/j.patcog.2013.09.014_bib36 – year: 2003 ident: 10.1016/j.patcog.2013.09.014_bib2 – ident: 10.1016/j.patcog.2013.09.014_bib23 doi: 10.1109/AFGR.2002.1004172 – volume: 59 start-page: 211 issue: 2 year: 2010 ident: 10.1016/j.patcog.2013.09.014_bib33 article-title: Sign language phoneme transcription with rule-based hand trajectory segmentation publication-title: Signal Processing Systems doi: 10.1007/s11265-008-0292-5 – ident: 10.1016/j.patcog.2013.09.014_bib20 doi: 10.1109/HUMO.2000.897368 – ident: 10.1016/j.patcog.2013.09.014_bib8 – volume: 29 start-page: 284 issue: 2 year: 1981 ident: 10.1016/j.patcog.2013.09.014_bib7 article-title: A level building dynamic time warping algorithm for connected word recognition publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing doi: 10.1109/TASSP.1981.1163527 – volume: 8 start-page: 695 issue: 6 year: 2000 ident: 10.1016/j.patcog.2013.09.014_bib29 article-title: A rapid speaker adaptation in eigenvoice space publication-title: IEEE Transactions on Speech and Audio Processing doi: 10.1109/89.876308 – ident: 10.1016/j.patcog.2013.09.014_bib26 doi: 10.1109/CVPRW.2006.165 – ident: 10.1016/j.patcog.2013.09.014_bib5 doi: 10.1109/CVPR.2007.383347 – ident: 10.1016/j.patcog.2013.09.014_bib38 – volume: 21 start-page: 961 issue: 10 year: 1999 ident: 10.1016/j.patcog.2013.09.014_bib15 article-title: An HMM-based threshold model approach for gesture recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.799904 – ident: 10.1016/j.patcog.2013.09.014_bib19 doi: 10.1007/3-540-47873-6_7 – ident: 10.1016/j.patcog.2013.09.014_bib24 doi: 10.1109/CVPR.2007.383346 – volume: 32 start-page: 462 issue: 3 year: 2010 ident: 10.1016/j.patcog.2013.09.014_bib6 article-title: Handling movement epenthesis and hand segmentation ambiguities in continuous sign language recognition using nested dynamic programming publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2009.26 – volume: 43 start-page: 2858 issue: 1 year: 2010 ident: 10.1016/j.patcog.2013.09.014_bib12 article-title: Simultaneous spotting of signs and fingerspellings based on hierarchical conditional random fields and boostmap embeddings publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.03.007 – volume: 315 start-page: 972 year: 2007 ident: 10.1016/j.patcog.2013.09.014_bib37 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – start-page: 291 year: 1975 ident: 10.1016/j.patcog.2013.09.014_bib1 article-title: A good rule of thumb – ident: 10.1016/j.patcog.2013.09.014_bib27 – ident: 10.1016/j.patcog.2013.09.014_bib40 – year: 1973 ident: 10.1016/j.patcog.2013.09.014_bib32 – ident: 10.1016/j.patcog.2013.09.014_bib22 doi: 10.1007/3-540-47873-6_8 – volume: 43 start-page: 1776 year: 2010 ident: 10.1016/j.patcog.2013.09.014_bib4 article-title: A multi-class classification strategy for fisher scores publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.12.002 – ident: 10.1016/j.patcog.2013.09.014_bib18 doi: 10.1109/AFGR.2000.840672 – ident: 10.1016/j.patcog.2013.09.014_bib35 – ident: 10.1016/j.patcog.2013.09.014_bib31 – ident: 10.1016/j.patcog.2013.09.014_bib9 – ident: 10.1016/j.patcog.2013.09.014_bib30 doi: 10.1109/AFGR.2008.4813462 – volume: 31 start-page: 1264 issue: 7 year: 2009 ident: 10.1016/j.patcog.2013.09.014_bib10 article-title: Sign language spotting with a threshold model based on conditional random fields publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.172 – ident: 10.1016/j.patcog.2013.09.014_bib16 doi: 10.1007/3-540-45453-5_20 – ident: 10.1016/j.patcog.2013.09.014_bib39 – start-page: 61 year: 2000 ident: 10.1016/j.patcog.2013.09.014_bib34 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods – ident: 10.1016/j.patcog.2013.09.014_bib28 doi: 10.1109/ICPR.2008.4761363 – start-page: 67 year: 1990 ident: 10.1016/j.patcog.2013.09.014_bib3 article-title: On the segmental representation of transitional and bidirectional movements in ASL phonology – ident: 10.1016/j.patcog.2013.09.014_bib17 doi: 10.1109/AFGR.2002.1004188 – ident: 10.1016/j.patcog.2013.09.014_bib25 doi: 10.1109/AFGR.2004.1301592 – ident: 10.1016/j.patcog.2013.09.014_bib13 doi: 10.1109/ICCVW.2009.5457585 – ident: 10.1016/j.patcog.2013.09.014_bib21 doi: 10.1007/978-3-540-24598-8_23 – ident: 10.1016/j.patcog.2013.09.014_bib11 doi: 10.1109/ICPR.2010.539 |
SSID | ssj0017142 |
Score | 2.354694 |
Snippet | This paper presents a segment-based probabilistic approach to robustly recognize continuous sign language sentences. The recognition strategy is based on a... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1294 |
SubjectTerms | Algorithms Applied sciences Bayesian network Boron nitride Channels Classifiers Coding, codes Conditional random field (CRF) Exact sciences and technology Gesture recognition Hidden Markov model (HMM) Information, signal and communications theory Pattern recognition Recall Recognition Semi-Markov CRF Sentences Sign language recognition Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Signer independence Speech processing Support vector machine (SVM) Support vector machines Telecommunications and information theory |
Title | Towards subject independent continuous sign language recognition: A segment and merge approach |
URI | https://dx.doi.org/10.1016/j.patcog.2013.09.014 https://www.proquest.com/docview/1530981451 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8QwDA96vgjit3h-HBV8nW5r162-HaKcij4p-GTptlZOZHd4d6_-7SbbOhARwZfBPsq2JE3S5pcE4DQrpHM4yQIKcQUidi5QVkqU5ShOo9yJtM6vuH-Qoydx-5w8L8Glz4UhWGWr-xudXmvr9sp5S83z6XhMOb5UdpAOFN6SyTKsxGjtsx6sDG_uRg9dMCGNRFM0nEcBDfAZdDXMa4oab_JKGC9eFzyNxG8Wam1qZkg31zS8-KG7a4N0vQnrrSfJhs3HbsGSrbZhw3dpYO2k3YGXxxoZO2OzRU6bLmzcdb6dM0Kqj6sFLv8ZITmY375kHbBoUl2wIZvZV9pGZKYqWZ2wyXwx8l14ur56vBwFbVeFoOBSzYOsjEVmEp7GFAiPTS6MDZPQ5Ly0Vjm8bdBNiGTpnFGZxOUUz4oUtaAquDBO8T3oVZPK7gNDdyZD4kellYVAX0ElBh2W3EphcNFtwz5wT0ldtCXHqfPFu_bYsjfd0F8T_XWoNNK_D0E3atqU3Pjj-dQzSX8THY1W4Y-Rg2887V5H4WUUVfyBE89kjdOOYimmssgTjYYiVBm1OT749-sPYRXPRINoO4Le_GNhj9HFmecDWD77jAatIH8Bq8_7MA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS_QwEB_81oOC-BbfRvBabJs0bbwtoqyvPa3gyZC2iaxId3F3_39n2qYgIsJ36aFtSDszmZlkfjMDcJEV0jlcZAGFuAIROxcoKyXKchSnUe5EWudXPA3l4FncvyQvS3Dtc2EIVtnq_kan19q6vXPZUvNyOh5Tji-VHaQLhbdk8g-WBTW17sFy_-5hMOyCCWkkmqLhPApogM-gq2FeU9R4kzfCePG64GkkfrNQa1MzQ7q5puHFD91dG6TbTVhvPUnWbz52C5ZstQ0bvksDaxftDryOamTsjM0WOR26sHHX-XbOCKk-rha4_WeE5GD--JJ1wKJJdcX6bGbf6BiRmapkdcIm88XId-H59mZ0PQjargpBwaWaB1kZi8wkPI0pEB6bXBgbJqHJeWmtcvjYoJsQydI5ozKJ2ymeFSlqQVVwYZzie9CrJpXdB4buTIbEj0orC4G-gkoMOiy5lcLgptuGB8A9JXXRlhynzhcf2mPL3nVDf03016HSSP8DCLpR06bkxh_vp55J-pvoaLQKf4w8_cbTbjoKL6Oo4g-ceyZrXHYUSzGVRZ5oNBShyqjN8eF_T38GK4PR06N-vBs-HMEqPhENuu0YevPPhT1Bd2een7bi_AWXS_0W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+subject+independent+continuous+sign+language+recognition%3A+A+segment+and+merge+approach&rft.jtitle=Pattern+recognition&rft.au=Kong%2C+W.W.&rft.au=Ranganath%2C+Surendra&rft.date=2014-03-01&rft.issn=0031-3203&rft.volume=47&rft.issue=3&rft.spage=1294&rft.epage=1308&rft_id=info:doi/10.1016%2Fj.patcog.2013.09.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2013_09_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |