Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm

A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA; taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated b...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 46; no. 3; pp. 1012 - 1019
Main Authors Xie, Fengying, Bovik, Alan C.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2012.08.012

Cover

Abstract A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA; taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated by training the rest of the samples using SGNN. Next the number of clusters is determined by optimizing the SD index of cluster validity, and clustering is completed by treating each neuron tree as a cluster. Since SGNN often delivers inconsistent cluster partitions owing to sensitivity relative to the input order of the training samples, GA is combined with SGNN to optimize and stabilize the clustering result. In the post-processing phase, the clusters are merged into lesion and background skin, yielding the segmented dermoscopy image. A series of experiments on the proposed model and the other automatic segmentation methods (including Otsu's thresholding method, k-means, fuzzy c-means (FCM) and statistical region merging (SRM)) reveals that the optimized model delivers better accuracy and segmentation results. ► Self-generating neural network is improved through generalizing SGNT to SGNF. ► GA is combined with SGNN to optimize and stabilize the clustering result. ► The SD validity index is used to automatically determine the number of clusters. ► The post-processing is carried on the clustering regions to segment image accurately.
AbstractList A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA; taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated by training the rest of the samples using SGNN. Next the number of clusters is determined by optimizing the SD index of cluster validity, and clustering is completed by treating each neuron tree as a cluster. Since SGNN often delivers inconsistent cluster partitions owing to sensitivity relative to the input order of the training samples, GA is combined with SGNN to optimize and stabilize the clustering result. In the post-processing phase, the clusters are merged into lesion and background skin, yielding the segmented dermoscopy image. A series of experiments on the proposed model and the other automatic segmentation methods (including Otsu's thresholding method, k-means, fuzzy c-means (FCM) and statistical region merging (SRM)) reveals that the optimized model delivers better accuracy and segmentation results.
A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA; taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated by training the rest of the samples using SGNN. Next the number of clusters is determined by optimizing the SD index of cluster validity, and clustering is completed by treating each neuron tree as a cluster. Since SGNN often delivers inconsistent cluster partitions owing to sensitivity relative to the input order of the training samples, GA is combined with SGNN to optimize and stabilize the clustering result. In the post-processing phase, the clusters are merged into lesion and background skin, yielding the segmented dermoscopy image. A series of experiments on the proposed model and the other automatic segmentation methods (including Otsu's thresholding method, k-means, fuzzy c-means (FCM) and statistical region merging (SRM)) reveals that the optimized model delivers better accuracy and segmentation results. ► Self-generating neural network is improved through generalizing SGNT to SGNF. ► GA is combined with SGNN to optimize and stabilize the clustering result. ► The SD validity index is used to automatically determine the number of clusters. ► The post-processing is carried on the clustering regions to segment image accurately.
Author Xie, Fengying
Bovik, Alan C.
Author_xml – sequence: 1
  givenname: Fengying
  surname: Xie
  fullname: Xie, Fengying
  email: cherryfyxie@gmail.com
  organization: School of Aeronautics and Astronautics, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Alan C.
  surname: Bovik
  fullname: Bovik, Alan C.
  organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, TX 78712, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26901787$$DView record in Pascal Francis
BookMark eNqFkUFv1DAQhS1UJLYL_4BDLkhcko7tOPFyQKqqQpEqcYGz5diT4CWxF9sB7b_Hq5QLBzg9W_O9J82ba3Llg0dCXlNoKNDu5ticdDZhahhQ1oBsijwjOyp7XgvasiuyA-C05gz4C3Kd0hGA9mWwI8vtmsOiszNVwmlBn8s7-CqMlcW4hGTC6Vy5RU-YqjU5PxVuHusJPcaClr_HNeq5SP4V4vdU5mjRVsO5ukCXZD1PIbr8bXlJno96TvjqSffk64f7L3cP9ePnj5_ubh9rw7tDrqUEgWIcOLXc9L2hYugYpShlK1rJhQbbwwDQdqgPHcjW9Br0YHsqBGet5Xvydss9xfBjxZTV4pLBedYew5oUZZJ3opeSFfTNE6qT0fMYtTcuqVMsO8ezYt2hVFWK3JN3G2diSCniqIzbuspRu1lRUJdbqKPabqEut1AgVZFibv8y_8n_j-39ZsPS1U-HUSXj0Bu0LqLJygb374Dfl-Govw
CODEN PTNRA8
CitedBy_id crossref_primary_10_1049_iet_cvi_2018_5289
crossref_primary_10_3390_sym10040119
crossref_primary_10_1002_ima_22414
crossref_primary_10_1016_j_artmed_2020_101933
crossref_primary_10_1109_TEVC_2022_3220747
crossref_primary_10_1016_j_cogsys_2018_12_008
crossref_primary_10_1007_s10472_014_9424_8
crossref_primary_10_1016_j_compbiomed_2017_03_025
crossref_primary_10_1016_j_eswa_2023_121950
crossref_primary_10_31590_ejosat_araconf6
crossref_primary_10_3390_diagnostics9030072
crossref_primary_10_1515_biol_2022_0665
crossref_primary_10_1007_s11831_024_10138_y
crossref_primary_10_4236_ica_2020_111003
crossref_primary_10_46810_tdfd_1502471
crossref_primary_10_1016_j_bspc_2019_04_002
crossref_primary_10_1007_s10278_020_00343_z
crossref_primary_10_1007_s11704_015_4543_x
crossref_primary_10_1007_s42979_020_00126_x
crossref_primary_10_1016_j_patcog_2014_03_018
crossref_primary_10_1109_TBME_2015_2493580
crossref_primary_10_17537_2020_15_180
crossref_primary_10_1371_journal_pone_0255948
crossref_primary_10_1016_j_cmpb_2019_07_005
crossref_primary_10_1016_j_infrared_2014_12_013
crossref_primary_10_1515_jisys_2024_0381
crossref_primary_10_1016_j_imu_2021_100640
crossref_primary_10_1109_JBHI_2017_2653179
crossref_primary_10_1166_jmihi_2021_3873
crossref_primary_10_1007_s10462_020_09865_y
crossref_primary_10_3390_sym11060790
crossref_primary_10_1016_j_bspc_2021_102839
crossref_primary_10_1007_s11042_018_6005_6
crossref_primary_10_1007_s11042_021_10952_7
crossref_primary_10_1109_TMI_2016_2633551
crossref_primary_10_1016_j_cmpb_2018_05_027
crossref_primary_10_1016_j_patcog_2014_09_018
crossref_primary_10_1016_j_patcog_2018_08_001
crossref_primary_10_1117_1_JEI_31_6_063053
crossref_primary_10_1016_j_bspc_2021_102787
crossref_primary_10_1007_s00607_021_00907_z
crossref_primary_10_1007_s11704_015_4391_8
crossref_primary_10_3390_app11073025
crossref_primary_10_1016_j_neucom_2018_01_091
crossref_primary_10_1186_s13638_019_1541_y
crossref_primary_10_3390_s18020556
crossref_primary_10_1007_s11831_018_9257_4
crossref_primary_10_1109_TMI_2017_2695227
crossref_primary_10_3390_s24165372
crossref_primary_10_1016_j_asoc_2021_107656
crossref_primary_10_1016_j_cmpb_2018_11_001
crossref_primary_10_1007_s11042_020_10064_8
crossref_primary_10_1109_JBHI_2023_3237875
crossref_primary_10_1155_2018_1524286
crossref_primary_10_1016_j_compbiolchem_2020_107247
crossref_primary_10_1109_ACCESS_2019_2921815
crossref_primary_10_1016_j_bspc_2020_102358
crossref_primary_10_1016_j_compmedimag_2016_05_002
crossref_primary_10_1016_j_eswa_2022_117069
crossref_primary_10_3389_fbioe_2022_1028690
crossref_primary_10_1080_03091902_2022_2080882
crossref_primary_10_1109_ACCESS_2019_2943628
crossref_primary_10_1142_S0218001416550181
crossref_primary_10_1007_s12559_016_9409_5
Cites_doi 10.1111/j.1600-0846.2008.00301.x
10.1109/TPAMI.2004.110
10.1109/ICIP.2000.899420
10.1109/CIISP.2007.369315
10.1109/TMI.2008.915561
10.5694/j.1326-5377.1997.tb138847.x
10.1016/S0895-7177(03)90124-5
10.1109/TSMC.1979.4310076
10.3322/caac.20121
10.1109/VECIMS.2008.4592778
10.1093/bioinformatics/bti251
10.1016/j.compmedimag.2010.08.002
10.1016/S0031-3203(99)00137-5
10.1109/34.232073
10.1111/j.1600-0846.2009.00387.x
10.1097/00008390-200102000-00005
10.1109/JSTSP.2008.2010631
10.1109/TMI.2003.815901
10.1111/j.1600-0846.2007.00251.x
10.1117/12.652061
10.1109/JSTSP.2008.2011119
10.1016/j.compmedimag.2008.06.005
10.1109/TPAMI.1979.4766909
10.1007/3-540-45372-5_26
10.1016/j.compmedimag.2009.01.003
10.1016/j.compmedimag.2008.11.002
10.1109/IJCNN.2010.5596471
10.1080/01969727408546059
10.1001/archderm.1995.01690150050011
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2012.08.012
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 1019
ExternalDocumentID 26901787
10_1016_j_patcog_2012_08_012
S0031320312003585
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-8805e5fb31d3c77c15b6211e88454835a0d70b0046ea96084c7a0abd7155324d3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Sat Sep 27 19:28:00 EDT 2025
Mon Jul 21 09:13:28 EDT 2025
Wed Oct 01 03:17:04 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Fri Feb 23 02:33:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Self-generating neural network
Image clustering
Automatic segmentation
Generic algorithms
Dermoscopy images
Automatic classification
Image processing
Background
Threshold detection
K means algorithm
Neural network
Signal classification
Optimization
Learning
Image segmentation
Accuracy
Genetic algorithm
Imaging
Information processing
Data fusion
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-8805e5fb31d3c77c15b6211e88454835a0d70b0046ea96084c7a0abd7155324d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1283657882
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1283657882
pascalfrancis_primary_26901787
crossref_citationtrail_10_1016_j_patcog_2012_08_012
crossref_primary_10_1016_j_patcog_2012_08_012
elsevier_sciencedirect_doi_10_1016_j_patcog_2012_08_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References J. Gao, J. Zhang, M.G. Fleming, A Novel Multiresolution Color Image Segmentation Technique and its Application to Dermatoscopic Image Segmentation, in: Proceedings of the IEEE International Conference on Image Processing, Vancouver, BC, Canada, September 2000.
W.X. Wen, A. Jennings, H. Liu, Learning a Neural Tree, in: Proceedings of the International Journal Conference on Neural Networks, 1992, pp. 751–756.
Mayer (bib5) 1997; 167
Grana, Pellacani, Cucchiara, Seidenari (bib9) 2003; 22
Nock, Nielsen (bib32) 2004; 26
Zhou, Schaefer, Sadka, Celebi (bib13) 2009; 3
Inoue, Narihisa (bib20) 2003; 1
Binder, Chwarz, Winkler, Steiner, Kaider, Wolff, Pehamberger (bib4) 1995; 131
Maulik, Bandyopadhyay (bib24) 2000; 33
G. Di Leo, C. Liguori, A. Paolillo, P. Sommella, An Improved Procedure for the Automatic Detection of Dermoscopy Structures in Digital ELM Images of Skin Lesions, in: Proceedings of the IEEE International Conference on Virtual Environment, Human-Computer Interfaces, and Measurement Systems, Istanbul, Turkey, 2008.
Zacharia, Maroulis (bib23) 2008; 27
Iyatomi, Oka, Celebi, Hashimoto, Hagiwara, Tanaka, Ogawa (bib28) 2008; 32
Silveira, Nascimento, Marques, Marcal, Mendonca, Yamauchi, Maeda, Rozeira (bib16) 2009; 3
Rubegni, Ferrari, Cevenini, Piccolo, Burron (bib10) 2001; 11
Xie, Qin, Jiang, Meng (bib29) 2009; 33
M. Halkidi, M. Vazirgiannis, Y. Batistakis, Quality Scheme Assessment in the Clustering Process, in: Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases, Lyon, France, 2000, pp. 265–276.
Cucchiara, Grana, Seidenari, Pellacani (bib17) 2002; 11
Zhou, Schaefer, Celebi, Lin, Liu (bib11) 2011; 35
H. Iyatomi, H.Oka, M.E. Celebi, M. Tanaka, K. Ogawa, Parameterization of Dermoscopic Findings for the Internet-Based Melanoma Screening System, in: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing, Hawaii, 2007, pp. 189–193.
Celebi, Iyatomi, Schaefer, Stoecker (bib8) 2009; 33
S. Feng, A. Tan, Self-Organizing Neural Networks for Behavior Modeling in Games, in: Proceedings of the International Journal Conference on Neural Network, Barcelona, 2010, pp. 1–8.
R. Melli, C. Grana, R. Cucchiara, Comparison of Color Clustering Algorithms for Segmentation of Dermatological Images, in: Proceedings of the SPIE Conference on Medical Imaging, San Diego, vol. 3S1–9, 2006.
Dunn (bib26) 1974; 4
Celebi, Kingravi, Iyatomi, Aslandogan, Stoecker, Moss (bib7) 2008; 14
Liu (bib2) 2005
Bezdek (bib30) 1981
Davies, Bouldin (bib25) 1979; 1
Celebi, Schaefer, Iyatomi, Stoecker, Malters, Grichnik (bib33) 2009; 15
Otsu (bib22) 1979; 9
Celebi, Aslandogan, Stoecker (bib12) 2007; 13
Huttenlocher, Klanderman, Rucklidge. (bib34) 1993; 15
Siegel, Ward, Brawley, Jemal (bib1) 2011; 61
Inoue, Narihisa (bib19) 2003; 38
Kim, Lee, Lee (bib31) 2005; 21
10.1016/j.patcog.2012.08.012_bib3
10.1016/j.patcog.2012.08.012_bib21
Otsu (10.1016/j.patcog.2012.08.012_bib22) 1979; 9
10.1016/j.patcog.2012.08.012_bib6
Celebi (10.1016/j.patcog.2012.08.012_bib12) 2007; 13
Celebi (10.1016/j.patcog.2012.08.012_bib7) 2008; 14
Silveira (10.1016/j.patcog.2012.08.012_bib16) 2009; 3
Huttenlocher (10.1016/j.patcog.2012.08.012_bib34) 1993; 15
Dunn (10.1016/j.patcog.2012.08.012_bib26) 1974; 4
Kim (10.1016/j.patcog.2012.08.012_bib31) 2005; 21
Siegel (10.1016/j.patcog.2012.08.012_bib1) 2011; 61
Celebi (10.1016/j.patcog.2012.08.012_bib8) 2009; 33
Mayer (10.1016/j.patcog.2012.08.012_bib5) 1997; 167
10.1016/j.patcog.2012.08.012_bib15
10.1016/j.patcog.2012.08.012_bib18
Zhou (10.1016/j.patcog.2012.08.012_bib13) 2009; 3
Nock (10.1016/j.patcog.2012.08.012_bib32) 2004; 26
Iyatomi (10.1016/j.patcog.2012.08.012_bib28) 2008; 32
10.1016/j.patcog.2012.08.012_bib14
Davies (10.1016/j.patcog.2012.08.012_bib25) 1979; 1
Liu (10.1016/j.patcog.2012.08.012_bib2) 2005
Bezdek (10.1016/j.patcog.2012.08.012_bib30) 1981
Binder (10.1016/j.patcog.2012.08.012_bib4) 1995; 131
Rubegni (10.1016/j.patcog.2012.08.012_bib10) 2001; 11
Inoue (10.1016/j.patcog.2012.08.012_bib19) 2003; 38
Inoue (10.1016/j.patcog.2012.08.012_bib20) 2003; 1
Maulik (10.1016/j.patcog.2012.08.012_bib24) 2000; 33
10.1016/j.patcog.2012.08.012_bib27
Cucchiara (10.1016/j.patcog.2012.08.012_bib17) 2002; 11
Grana (10.1016/j.patcog.2012.08.012_bib9) 2003; 22
Xie (10.1016/j.patcog.2012.08.012_bib29) 2009; 33
Zacharia (10.1016/j.patcog.2012.08.012_bib23) 2008; 27
Celebi (10.1016/j.patcog.2012.08.012_bib33) 2009; 15
Zhou (10.1016/j.patcog.2012.08.012_bib11) 2011; 35
References_xml – volume: 11
  start-page: 37
  year: 2001
  end-page: 44
  ident: bib10
  article-title: Differentiation between pigmented spitz naevus and melanoma by digital dermoscopy and stepwise logistic discriminant analysis
  publication-title: Melanoma Research
– reference: M. Halkidi, M. Vazirgiannis, Y. Batistakis, Quality Scheme Assessment in the Clustering Process, in: Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases, Lyon, France, 2000, pp. 265–276.
– volume: 35
  start-page: 121
  year: 2011
  end-page: 127
  ident: bib11
  article-title: Gradient vector flow with mean shift for skin lesion segmentation
  publication-title: Computerized Medical Imaging and Graphics
– volume: 33
  start-page: 1455
  year: 2000
  end-page: 1465
  ident: bib24
  article-title: Genetic algorithm based clustering technique
  publication-title: Pattern Recognition
– volume: 26
  start-page: 1452
  year: 2004
  end-page: 1458
  ident: bib32
  article-title: Statistical region merging
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: R. Melli, C. Grana, R. Cucchiara, Comparison of Color Clustering Algorithms for Segmentation of Dermatological Images, in: Proceedings of the SPIE Conference on Medical Imaging, San Diego, vol. 3S1–9, 2006.
– volume: 61
  start-page: 212
  year: 2011
  end-page: 236
  ident: bib1
  article-title: Cancer statistics, 2011
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 1
  start-page: 72
  year: 2003
  end-page: 77
  ident: bib20
  article-title: Efficient pruning method for ensemble self-generating neural networks
  publication-title: Journal of Systemics, Cybernetics and Informatics
– volume: 13
  start-page: 454
  year: 2007
  end-page: 462
  ident: bib12
  article-title: Unsupervised border detection in dermoscopy images
  publication-title: Skin Research and Technology
– reference: H. Iyatomi, H.Oka, M.E. Celebi, M. Tanaka, K. Ogawa, Parameterization of Dermoscopic Findings for the Internet-Based Melanoma Screening System, in: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing, Hawaii, 2007, pp. 189–193.
– reference: G. Di Leo, C. Liguori, A. Paolillo, P. Sommella, An Improved Procedure for the Automatic Detection of Dermoscopy Structures in Digital ELM Images of Skin Lesions, in: Proceedings of the IEEE International Conference on Virtual Environment, Human-Computer Interfaces, and Measurement Systems, Istanbul, Turkey, 2008.
– volume: 1
  start-page: 224
  year: 1979
  end-page: 227
  ident: bib25
  article-title: A cluster separation measure
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 1981
  ident: bib30
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithm
– volume: 27
  start-page: 805
  year: 2008
  end-page: 813
  ident: bib23
  article-title: An original genetic approach to the fully automatic gridding of microarray images
  publication-title: IEEE Transactions on Medical Imaging
– volume: 21
  start-page: 1927
  year: 2005
  end-page: 1934
  ident: bib31
  article-title: Detecting clusters of different geometrical shapes in microarray gene expression data
  publication-title: Bioinformatics
– volume: 131
  start-page: 286
  year: 1995
  end-page: 291
  ident: bib4
  article-title: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesion for formally trained dermatologists
  publication-title: Archives of Dermatology
– volume: 33
  start-page: 275
  year: 2009
  end-page: 282
  ident: bib29
  article-title: PDE-based unsupervised repair of hair-occluded information in dermoscopy images of melanoma
  publication-title: Computerized Medical Imaging and Graphics
– volume: 4
  start-page: 95
  year: 1974
  end-page: 104
  ident: bib26
  article-title: Well separated clusters and optimal fuzzy partitions
  publication-title: Journal of Cybernetics and Systems
– volume: 15
  start-page: 850
  year: 1993
  end-page: 863
  ident: bib34
  article-title: Comparing images using the Hausdorff distance
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence
– volume: 3
  start-page: 26
  year: 2009
  end-page: 34
  ident: bib13
  article-title: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– volume: 22
  start-page: 959
  year: 2003
  end-page: 964
  ident: bib9
  article-title: A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions
  publication-title: IEEE Transactions on Medical Imaging
– reference: S. Feng, A. Tan, Self-Organizing Neural Networks for Behavior Modeling in Games, in: Proceedings of the International Journal Conference on Neural Network, Barcelona, 2010, pp. 1–8.
– volume: 33
  start-page: 148
  year: 2009
  end-page: 153
  ident: bib8
  article-title: Lesion border detection in dermoscopy images
  publication-title: Computerized Medical Imaging and Graphics
– volume: 3
  start-page: 35
  year: 2009
  end-page: 45
  ident: bib16
  article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– reference: J. Gao, J. Zhang, M.G. Fleming, A Novel Multiresolution Color Image Segmentation Technique and its Application to Dermatoscopic Image Segmentation, in: Proceedings of the IEEE International Conference on Image Processing, Vancouver, BC, Canada, September 2000.
– year: 2005
  ident: bib2
  article-title: Practical Skin Science
– reference: W.X. Wen, A. Jennings, H. Liu, Learning a Neural Tree, in: Proceedings of the International Journal Conference on Neural Networks, 1992, pp. 751–756.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib22
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– volume: 15
  start-page: 444
  year: 2009
  end-page: 450
  ident: bib33
  article-title: An improved objective evaluation measure for border detection in dermoscopy images
  publication-title: Skin Research and Technology
– volume: 14
  start-page: 347
  year: 2008
  end-page: 353
  ident: bib7
  article-title: Border detection in dermoscopy images using statistical region merging
  publication-title: Skin Research and Technology
– volume: 167
  start-page: 206
  year: 1997
  end-page: 210
  ident: bib5
  article-title: Systematic review of the diagnostic accuracy of dermoscopy in detecting malignant melanoma
  publication-title: Medical Journal of Australia
– volume: 11
  start-page: 169
  year: 2002
  end-page: 182
  ident: bib17
  article-title: Exploiting color and topological features for region segmentation with recursive fuzzy C-means
  publication-title: Machine Graphics and Vision
– volume: 38
  start-page: 1225
  year: 2003
  end-page: 1232
  ident: bib19
  article-title: Efficiency of self-generating neural networks applied to pattern recognition
  publication-title: Mathematical and Computer Modelling
– volume: 32
  start-page: 566
  year: 2008
  end-page: 579
  ident: bib28
  article-title: An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm
  publication-title: Computerized Medical Imaging and Graphics
– volume: 14
  start-page: 347
  issue: 3
  year: 2008
  ident: 10.1016/j.patcog.2012.08.012_bib7
  article-title: Border detection in dermoscopy images using statistical region merging
  publication-title: Skin Research and Technology
  doi: 10.1111/j.1600-0846.2008.00301.x
– volume: 26
  start-page: 1452
  issue: 11
  year: 2004
  ident: 10.1016/j.patcog.2012.08.012_bib32
  article-title: Statistical region merging
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.110
– ident: 10.1016/j.patcog.2012.08.012_bib14
  doi: 10.1109/ICIP.2000.899420
– ident: 10.1016/j.patcog.2012.08.012_bib6
  doi: 10.1109/CIISP.2007.369315
– volume: 1
  start-page: 72
  issue: 6
  year: 2003
  ident: 10.1016/j.patcog.2012.08.012_bib20
  article-title: Efficient pruning method for ensemble self-generating neural networks
  publication-title: Journal of Systemics, Cybernetics and Informatics
– year: 2005
  ident: 10.1016/j.patcog.2012.08.012_bib2
– volume: 27
  start-page: 805
  issue: 6
  year: 2008
  ident: 10.1016/j.patcog.2012.08.012_bib23
  article-title: An original genetic approach to the fully automatic gridding of microarray images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2008.915561
– volume: 167
  start-page: 206
  year: 1997
  ident: 10.1016/j.patcog.2012.08.012_bib5
  article-title: Systematic review of the diagnostic accuracy of dermoscopy in detecting malignant melanoma
  publication-title: Medical Journal of Australia
  doi: 10.5694/j.1326-5377.1997.tb138847.x
– year: 1981
  ident: 10.1016/j.patcog.2012.08.012_bib30
– volume: 38
  start-page: 1225
  year: 2003
  ident: 10.1016/j.patcog.2012.08.012_bib19
  article-title: Efficiency of self-generating neural networks applied to pattern recognition
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/S0895-7177(03)90124-5
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.patcog.2012.08.012_bib22
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 61
  start-page: 212
  issue: 4
  year: 2011
  ident: 10.1016/j.patcog.2012.08.012_bib1
  article-title: Cancer statistics, 2011
  publication-title: CA: A Cancer Journal for Clinicians
  doi: 10.3322/caac.20121
– ident: 10.1016/j.patcog.2012.08.012_bib3
  doi: 10.1109/VECIMS.2008.4592778
– volume: 21
  start-page: 1927
  issue: 9
  year: 2005
  ident: 10.1016/j.patcog.2012.08.012_bib31
  article-title: Detecting clusters of different geometrical shapes in microarray gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti251
– volume: 35
  start-page: 121
  issue: 2
  year: 2011
  ident: 10.1016/j.patcog.2012.08.012_bib11
  article-title: Gradient vector flow with mean shift for skin lesion segmentation
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2010.08.002
– volume: 33
  start-page: 1455
  year: 2000
  ident: 10.1016/j.patcog.2012.08.012_bib24
  article-title: Genetic algorithm based clustering technique
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(99)00137-5
– volume: 15
  start-page: 850
  issue: 9
  year: 1993
  ident: 10.1016/j.patcog.2012.08.012_bib34
  article-title: Comparing images using the Hausdorff distance
  publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.232073
– volume: 11
  start-page: 169
  issue: 2/3
  year: 2002
  ident: 10.1016/j.patcog.2012.08.012_bib17
  article-title: Exploiting color and topological features for region segmentation with recursive fuzzy C-means
  publication-title: Machine Graphics and Vision
– volume: 15
  start-page: 444
  issue: 4
  year: 2009
  ident: 10.1016/j.patcog.2012.08.012_bib33
  article-title: An improved objective evaluation measure for border detection in dermoscopy images
  publication-title: Skin Research and Technology
  doi: 10.1111/j.1600-0846.2009.00387.x
– volume: 11
  start-page: 37
  issue: 1
  year: 2001
  ident: 10.1016/j.patcog.2012.08.012_bib10
  article-title: Differentiation between pigmented spitz naevus and melanoma by digital dermoscopy and stepwise logistic discriminant analysis
  publication-title: Melanoma Research
  doi: 10.1097/00008390-200102000-00005
– volume: 3
  start-page: 26
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2012.08.012_bib13
  article-title: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2008.2010631
– volume: 22
  start-page: 959
  issue: 8
  year: 2003
  ident: 10.1016/j.patcog.2012.08.012_bib9
  article-title: A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2003.815901
– volume: 13
  start-page: 454
  issue: 4
  year: 2007
  ident: 10.1016/j.patcog.2012.08.012_bib12
  article-title: Unsupervised border detection in dermoscopy images
  publication-title: Skin Research and Technology
  doi: 10.1111/j.1600-0846.2007.00251.x
– ident: 10.1016/j.patcog.2012.08.012_bib15
  doi: 10.1117/12.652061
– volume: 3
  start-page: 35
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2012.08.012_bib16
  article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2008.2011119
– volume: 32
  start-page: 566
  issue: 7
  year: 2008
  ident: 10.1016/j.patcog.2012.08.012_bib28
  article-title: An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2008.06.005
– volume: 1
  start-page: 224
  year: 1979
  ident: 10.1016/j.patcog.2012.08.012_bib25
  article-title: A cluster separation measure
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1979.4766909
– ident: 10.1016/j.patcog.2012.08.012_bib18
– ident: 10.1016/j.patcog.2012.08.012_bib27
  doi: 10.1007/3-540-45372-5_26
– volume: 33
  start-page: 275
  issue: 4
  year: 2009
  ident: 10.1016/j.patcog.2012.08.012_bib29
  article-title: PDE-based unsupervised repair of hair-occluded information in dermoscopy images of melanoma
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2009.01.003
– volume: 33
  start-page: 148
  issue: 2
  year: 2009
  ident: 10.1016/j.patcog.2012.08.012_bib8
  article-title: Lesion border detection in dermoscopy images
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2008.11.002
– ident: 10.1016/j.patcog.2012.08.012_bib21
  doi: 10.1109/IJCNN.2010.5596471
– volume: 4
  start-page: 95
  year: 1974
  ident: 10.1016/j.patcog.2012.08.012_bib26
  article-title: Well separated clusters and optimal fuzzy partitions
  publication-title: Journal of Cybernetics and Systems
  doi: 10.1080/01969727408546059
– volume: 131
  start-page: 286
  year: 1995
  ident: 10.1016/j.patcog.2012.08.012_bib4
  article-title: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesion for formally trained dermatologists
  publication-title: Archives of Dermatology
  doi: 10.1001/archderm.1995.01690150050011
SSID ssj0017142
Score 2.4309387
Snippet A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA)....
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1012
SubjectTerms Applied sciences
Artificial intelligence
Automatic segmentation
Clusters
Computer science; control theory; systems
Connectionism. Neural networks
Dermoscopy images
Exact sciences and technology
Generic algorithms
Genetic algorithms
Image clustering
Image processing
Information theory
Information, signal and communications theory
Neural networks
Samples
Segmentation
Self-generating neural network
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Statistical analysis
Statistical methods
Telecommunications and information theory
Title Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm
URI https://dx.doi.org/10.1016/j.patcog.2012.08.012
https://www.proquest.com/docview/1283657882
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhuRRKm_RBt20WFXJVY0l-aI9LaNgkNKcEchOyHu6WXXuJvYdc8tszI9sLoZRALj7IsmU00jcee-b7CDkpE24FN7C_SzVjKcQYTAUvWe7SWe5DUtgSv0P-vs4Xt-nlXXa3R87GWhhMqxywv8f0iNZDy-kwm6eb5RJrfJF2EA6R1FNhoXkKg8Ga_vm4S_NAfe-eMVxyhr3H8rmY47UBuGsqTPASkciTi_-5p7cb08KkhV7t4h_gjt7o_JC8G14j6bx_0iOy5-sP5P0o0UCHHfuRrOfbromsrLT11XooNKppE6gDTG6wKOWBLteAKi3FHPgK-q0CqyIbNaZEU2S8hKHqPl-8hfPeeUfLB4qd8M5mVTX3y-7P-hO5Pf91c7Zgg8ICszKfdQw2b-azUErupC0Ky7Myh4jQK5VCJCMzk7giib8_vYFQR6W2MIkpXYFqQyJ18jPZr5vafyE0gZaQW2UDOHxnPYRRvLAh5IEHMTNqQuQ4sdoO9OOogrHSY57ZX92bQ6M5NIpjcjEhbHfVpqffeKF_MdpMP1tGGjzEC1dOn5l4N5xAyS6AtQn5MdpcwxbE_yqm9s221eDiZQ7Ip8TXVw__jbwRUWgDs9u-k_3ufuuP4XWnK6dxPU_JwfzianH9BCiUAQw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOYCE-EYsH8VIXE1jO4m9x6qiWqDtqZV6sxx_hK12k1WTPfTCb2fGSVaqEKrEZQ9ZZ73yxG8yyZv3CPlSZdwJbmF_V3rOcqgxmI5BstLn8zLETLkKn0OenZeLy_zHVXG1R46nXhikVY7YP2B6QuvxyOG4moeb5RJ7fFF2ED6SqKcuHpCHeSEUVmBff-94HmjwPUiGS85w-NQ_l0heG8C7tkaGl0hKnlz8Kz892dgOVi0Odhd_IXdKRyfPydPxPpIeDX_1BdkLzUvybPJooOOWfUXWR9u-TbKstAv1euw0amgbqQdQbrEr5ZYu1wArHUUSfA3jVpHVSY4aOdEUJS9hqmYgjHfwffDB0-qW4iD8Zbuq25tl_2v9mlyefLs4XrDRYoE5Wc57Bru3CEWsJPfSKeV4UZVQEgatcyhlZGEzr7L0_jNYqHV07pTNbOUV2g2J3Ms3ZL9pm_CW0AyOxNJpFyHjexegjuLKxVhGHsXc6hmR08IaN-qPow3GykxEs2szhMNgOAy6Y3IxI2x31mbQ37hnvJpiZu5cRwZSxD1nHtwJ8W46gZ5dgGsz8nmKuYE9iC9WbBPabWcgx8sSoE-Ld_89_SfyaHFxdmpOv5__fE8ei-S6gVS3D2S_v9mGj3Dv01cH6dr-AwqyAqE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+segmentation+of+dermoscopy+images+using+self-generating+neural+networks+seeded+by+genetic+algorithm&rft.jtitle=Pattern+recognition&rft.au=Xie%2C+Fengying&rft.au=Bovik%2C+Alan+C&rft.date=2013-03-01&rft.issn=0031-3203&rft.volume=46&rft.issue=3&rft.spage=1012&rft.epage=1019&rft_id=info:doi/10.1016%2Fj.patcog.2012.08.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon