Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm
A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA; taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated b...
Saved in:
| Published in | Pattern recognition Vol. 46; no. 3; pp. 1012 - 1019 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.03.2013
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-3203 1873-5142 |
| DOI | 10.1016/j.patcog.2012.08.012 |
Cover
| Abstract | A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA; taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated by training the rest of the samples using SGNN. Next the number of clusters is determined by optimizing the SD index of cluster validity, and clustering is completed by treating each neuron tree as a cluster. Since SGNN often delivers inconsistent cluster partitions owing to sensitivity relative to the input order of the training samples, GA is combined with SGNN to optimize and stabilize the clustering result. In the post-processing phase, the clusters are merged into lesion and background skin, yielding the segmented dermoscopy image. A series of experiments on the proposed model and the other automatic segmentation methods (including Otsu's thresholding method, k-means, fuzzy c-means (FCM) and statistical region merging (SRM)) reveals that the optimized model delivers better accuracy and segmentation results.
► Self-generating neural network is improved through generalizing SGNT to SGNF. ► GA is combined with SGNN to optimize and stabilize the clustering result. ► The SD validity index is used to automatically determine the number of clusters. ► The post-processing is carried on the clustering regions to segment image accurately. |
|---|---|
| AbstractList | A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA; taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated by training the rest of the samples using SGNN. Next the number of clusters is determined by optimizing the SD index of cluster validity, and clustering is completed by treating each neuron tree as a cluster. Since SGNN often delivers inconsistent cluster partitions owing to sensitivity relative to the input order of the training samples, GA is combined with SGNN to optimize and stabilize the clustering result. In the post-processing phase, the clusters are merged into lesion and background skin, yielding the segmented dermoscopy image. A series of experiments on the proposed model and the other automatic segmentation methods (including Otsu's thresholding method, k-means, fuzzy c-means (FCM) and statistical region merging (SRM)) reveals that the optimized model delivers better accuracy and segmentation results. A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA; taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated by training the rest of the samples using SGNN. Next the number of clusters is determined by optimizing the SD index of cluster validity, and clustering is completed by treating each neuron tree as a cluster. Since SGNN often delivers inconsistent cluster partitions owing to sensitivity relative to the input order of the training samples, GA is combined with SGNN to optimize and stabilize the clustering result. In the post-processing phase, the clusters are merged into lesion and background skin, yielding the segmented dermoscopy image. A series of experiments on the proposed model and the other automatic segmentation methods (including Otsu's thresholding method, k-means, fuzzy c-means (FCM) and statistical region merging (SRM)) reveals that the optimized model delivers better accuracy and segmentation results. ► Self-generating neural network is improved through generalizing SGNT to SGNF. ► GA is combined with SGNN to optimize and stabilize the clustering result. ► The SD validity index is used to automatically determine the number of clusters. ► The post-processing is carried on the clustering regions to segment image accurately. |
| Author | Xie, Fengying Bovik, Alan C. |
| Author_xml | – sequence: 1 givenname: Fengying surname: Xie fullname: Xie, Fengying email: cherryfyxie@gmail.com organization: School of Aeronautics and Astronautics, Beihang University, Beijing 100191, China – sequence: 2 givenname: Alan C. surname: Bovik fullname: Bovik, Alan C. organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, TX 78712, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26901787$$DView record in Pascal Francis |
| BookMark | eNqFkUFv1DAQhS1UJLYL_4BDLkhcko7tOPFyQKqqQpEqcYGz5diT4CWxF9sB7b_Hq5QLBzg9W_O9J82ba3Llg0dCXlNoKNDu5ticdDZhahhQ1oBsijwjOyp7XgvasiuyA-C05gz4C3Kd0hGA9mWwI8vtmsOiszNVwmlBn8s7-CqMlcW4hGTC6Vy5RU-YqjU5PxVuHusJPcaClr_HNeq5SP4V4vdU5mjRVsO5ukCXZD1PIbr8bXlJno96TvjqSffk64f7L3cP9ePnj5_ubh9rw7tDrqUEgWIcOLXc9L2hYugYpShlK1rJhQbbwwDQdqgPHcjW9Br0YHsqBGet5Xvydss9xfBjxZTV4pLBedYew5oUZZJ3opeSFfTNE6qT0fMYtTcuqVMsO8ezYt2hVFWK3JN3G2diSCniqIzbuspRu1lRUJdbqKPabqEut1AgVZFibv8y_8n_j-39ZsPS1U-HUSXj0Bu0LqLJygb374Dfl-Govw |
| CODEN | PTNRA8 |
| CitedBy_id | crossref_primary_10_1049_iet_cvi_2018_5289 crossref_primary_10_3390_sym10040119 crossref_primary_10_1002_ima_22414 crossref_primary_10_1016_j_artmed_2020_101933 crossref_primary_10_1109_TEVC_2022_3220747 crossref_primary_10_1016_j_cogsys_2018_12_008 crossref_primary_10_1007_s10472_014_9424_8 crossref_primary_10_1016_j_compbiomed_2017_03_025 crossref_primary_10_1016_j_eswa_2023_121950 crossref_primary_10_31590_ejosat_araconf6 crossref_primary_10_3390_diagnostics9030072 crossref_primary_10_1515_biol_2022_0665 crossref_primary_10_1007_s11831_024_10138_y crossref_primary_10_4236_ica_2020_111003 crossref_primary_10_46810_tdfd_1502471 crossref_primary_10_1016_j_bspc_2019_04_002 crossref_primary_10_1007_s10278_020_00343_z crossref_primary_10_1007_s11704_015_4543_x crossref_primary_10_1007_s42979_020_00126_x crossref_primary_10_1016_j_patcog_2014_03_018 crossref_primary_10_1109_TBME_2015_2493580 crossref_primary_10_17537_2020_15_180 crossref_primary_10_1371_journal_pone_0255948 crossref_primary_10_1016_j_cmpb_2019_07_005 crossref_primary_10_1016_j_infrared_2014_12_013 crossref_primary_10_1515_jisys_2024_0381 crossref_primary_10_1016_j_imu_2021_100640 crossref_primary_10_1109_JBHI_2017_2653179 crossref_primary_10_1166_jmihi_2021_3873 crossref_primary_10_1007_s10462_020_09865_y crossref_primary_10_3390_sym11060790 crossref_primary_10_1016_j_bspc_2021_102839 crossref_primary_10_1007_s11042_018_6005_6 crossref_primary_10_1007_s11042_021_10952_7 crossref_primary_10_1109_TMI_2016_2633551 crossref_primary_10_1016_j_cmpb_2018_05_027 crossref_primary_10_1016_j_patcog_2014_09_018 crossref_primary_10_1016_j_patcog_2018_08_001 crossref_primary_10_1117_1_JEI_31_6_063053 crossref_primary_10_1016_j_bspc_2021_102787 crossref_primary_10_1007_s00607_021_00907_z crossref_primary_10_1007_s11704_015_4391_8 crossref_primary_10_3390_app11073025 crossref_primary_10_1016_j_neucom_2018_01_091 crossref_primary_10_1186_s13638_019_1541_y crossref_primary_10_3390_s18020556 crossref_primary_10_1007_s11831_018_9257_4 crossref_primary_10_1109_TMI_2017_2695227 crossref_primary_10_3390_s24165372 crossref_primary_10_1016_j_asoc_2021_107656 crossref_primary_10_1016_j_cmpb_2018_11_001 crossref_primary_10_1007_s11042_020_10064_8 crossref_primary_10_1109_JBHI_2023_3237875 crossref_primary_10_1155_2018_1524286 crossref_primary_10_1016_j_compbiolchem_2020_107247 crossref_primary_10_1109_ACCESS_2019_2921815 crossref_primary_10_1016_j_bspc_2020_102358 crossref_primary_10_1016_j_compmedimag_2016_05_002 crossref_primary_10_1016_j_eswa_2022_117069 crossref_primary_10_3389_fbioe_2022_1028690 crossref_primary_10_1080_03091902_2022_2080882 crossref_primary_10_1109_ACCESS_2019_2943628 crossref_primary_10_1142_S0218001416550181 crossref_primary_10_1007_s12559_016_9409_5 |
| Cites_doi | 10.1111/j.1600-0846.2008.00301.x 10.1109/TPAMI.2004.110 10.1109/ICIP.2000.899420 10.1109/CIISP.2007.369315 10.1109/TMI.2008.915561 10.5694/j.1326-5377.1997.tb138847.x 10.1016/S0895-7177(03)90124-5 10.1109/TSMC.1979.4310076 10.3322/caac.20121 10.1109/VECIMS.2008.4592778 10.1093/bioinformatics/bti251 10.1016/j.compmedimag.2010.08.002 10.1016/S0031-3203(99)00137-5 10.1109/34.232073 10.1111/j.1600-0846.2009.00387.x 10.1097/00008390-200102000-00005 10.1109/JSTSP.2008.2010631 10.1109/TMI.2003.815901 10.1111/j.1600-0846.2007.00251.x 10.1117/12.652061 10.1109/JSTSP.2008.2011119 10.1016/j.compmedimag.2008.06.005 10.1109/TPAMI.1979.4766909 10.1007/3-540-45372-5_26 10.1016/j.compmedimag.2009.01.003 10.1016/j.compmedimag.2008.11.002 10.1109/IJCNN.2010.5596471 10.1080/01969727408546059 10.1001/archderm.1995.01690150050011 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS |
| Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patcog.2012.08.012 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-5142 |
| EndPage | 1019 |
| ExternalDocumentID | 26901787 10_1016_j_patcog_2012_08_012 S0031320312003585 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c369t-8805e5fb31d3c77c15b6211e88454835a0d70b0046ea96084c7a0abd7155324d3 |
| IEDL.DBID | .~1 |
| ISSN | 0031-3203 |
| IngestDate | Sat Sep 27 19:28:00 EDT 2025 Mon Jul 21 09:13:28 EDT 2025 Wed Oct 01 03:17:04 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Fri Feb 23 02:33:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Self-generating neural network Image clustering Automatic segmentation Generic algorithms Dermoscopy images Automatic classification Image processing Background Threshold detection K means algorithm Neural network Signal classification Optimization Learning Image segmentation Accuracy Genetic algorithm Imaging Information processing Data fusion |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-8805e5fb31d3c77c15b6211e88454835a0d70b0046ea96084c7a0abd7155324d3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1283657882 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1283657882 pascalfrancis_primary_26901787 crossref_citationtrail_10_1016_j_patcog_2012_08_012 crossref_primary_10_1016_j_patcog_2012_08_012 elsevier_sciencedirect_doi_10_1016_j_patcog_2012_08_012 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | J. Gao, J. Zhang, M.G. Fleming, A Novel Multiresolution Color Image Segmentation Technique and its Application to Dermatoscopic Image Segmentation, in: Proceedings of the IEEE International Conference on Image Processing, Vancouver, BC, Canada, September 2000. W.X. Wen, A. Jennings, H. Liu, Learning a Neural Tree, in: Proceedings of the International Journal Conference on Neural Networks, 1992, pp. 751–756. Mayer (bib5) 1997; 167 Grana, Pellacani, Cucchiara, Seidenari (bib9) 2003; 22 Nock, Nielsen (bib32) 2004; 26 Zhou, Schaefer, Sadka, Celebi (bib13) 2009; 3 Inoue, Narihisa (bib20) 2003; 1 Binder, Chwarz, Winkler, Steiner, Kaider, Wolff, Pehamberger (bib4) 1995; 131 Maulik, Bandyopadhyay (bib24) 2000; 33 G. Di Leo, C. Liguori, A. Paolillo, P. Sommella, An Improved Procedure for the Automatic Detection of Dermoscopy Structures in Digital ELM Images of Skin Lesions, in: Proceedings of the IEEE International Conference on Virtual Environment, Human-Computer Interfaces, and Measurement Systems, Istanbul, Turkey, 2008. Zacharia, Maroulis (bib23) 2008; 27 Iyatomi, Oka, Celebi, Hashimoto, Hagiwara, Tanaka, Ogawa (bib28) 2008; 32 Silveira, Nascimento, Marques, Marcal, Mendonca, Yamauchi, Maeda, Rozeira (bib16) 2009; 3 Rubegni, Ferrari, Cevenini, Piccolo, Burron (bib10) 2001; 11 Xie, Qin, Jiang, Meng (bib29) 2009; 33 M. Halkidi, M. Vazirgiannis, Y. Batistakis, Quality Scheme Assessment in the Clustering Process, in: Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases, Lyon, France, 2000, pp. 265–276. Cucchiara, Grana, Seidenari, Pellacani (bib17) 2002; 11 Zhou, Schaefer, Celebi, Lin, Liu (bib11) 2011; 35 H. Iyatomi, H.Oka, M.E. Celebi, M. Tanaka, K. Ogawa, Parameterization of Dermoscopic Findings for the Internet-Based Melanoma Screening System, in: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing, Hawaii, 2007, pp. 189–193. Celebi, Iyatomi, Schaefer, Stoecker (bib8) 2009; 33 S. Feng, A. Tan, Self-Organizing Neural Networks for Behavior Modeling in Games, in: Proceedings of the International Journal Conference on Neural Network, Barcelona, 2010, pp. 1–8. R. Melli, C. Grana, R. Cucchiara, Comparison of Color Clustering Algorithms for Segmentation of Dermatological Images, in: Proceedings of the SPIE Conference on Medical Imaging, San Diego, vol. 3S1–9, 2006. Dunn (bib26) 1974; 4 Celebi, Kingravi, Iyatomi, Aslandogan, Stoecker, Moss (bib7) 2008; 14 Liu (bib2) 2005 Bezdek (bib30) 1981 Davies, Bouldin (bib25) 1979; 1 Celebi, Schaefer, Iyatomi, Stoecker, Malters, Grichnik (bib33) 2009; 15 Otsu (bib22) 1979; 9 Celebi, Aslandogan, Stoecker (bib12) 2007; 13 Huttenlocher, Klanderman, Rucklidge. (bib34) 1993; 15 Siegel, Ward, Brawley, Jemal (bib1) 2011; 61 Inoue, Narihisa (bib19) 2003; 38 Kim, Lee, Lee (bib31) 2005; 21 10.1016/j.patcog.2012.08.012_bib3 10.1016/j.patcog.2012.08.012_bib21 Otsu (10.1016/j.patcog.2012.08.012_bib22) 1979; 9 10.1016/j.patcog.2012.08.012_bib6 Celebi (10.1016/j.patcog.2012.08.012_bib12) 2007; 13 Celebi (10.1016/j.patcog.2012.08.012_bib7) 2008; 14 Silveira (10.1016/j.patcog.2012.08.012_bib16) 2009; 3 Huttenlocher (10.1016/j.patcog.2012.08.012_bib34) 1993; 15 Dunn (10.1016/j.patcog.2012.08.012_bib26) 1974; 4 Kim (10.1016/j.patcog.2012.08.012_bib31) 2005; 21 Siegel (10.1016/j.patcog.2012.08.012_bib1) 2011; 61 Celebi (10.1016/j.patcog.2012.08.012_bib8) 2009; 33 Mayer (10.1016/j.patcog.2012.08.012_bib5) 1997; 167 10.1016/j.patcog.2012.08.012_bib15 10.1016/j.patcog.2012.08.012_bib18 Zhou (10.1016/j.patcog.2012.08.012_bib13) 2009; 3 Nock (10.1016/j.patcog.2012.08.012_bib32) 2004; 26 Iyatomi (10.1016/j.patcog.2012.08.012_bib28) 2008; 32 10.1016/j.patcog.2012.08.012_bib14 Davies (10.1016/j.patcog.2012.08.012_bib25) 1979; 1 Liu (10.1016/j.patcog.2012.08.012_bib2) 2005 Bezdek (10.1016/j.patcog.2012.08.012_bib30) 1981 Binder (10.1016/j.patcog.2012.08.012_bib4) 1995; 131 Rubegni (10.1016/j.patcog.2012.08.012_bib10) 2001; 11 Inoue (10.1016/j.patcog.2012.08.012_bib19) 2003; 38 Inoue (10.1016/j.patcog.2012.08.012_bib20) 2003; 1 Maulik (10.1016/j.patcog.2012.08.012_bib24) 2000; 33 10.1016/j.patcog.2012.08.012_bib27 Cucchiara (10.1016/j.patcog.2012.08.012_bib17) 2002; 11 Grana (10.1016/j.patcog.2012.08.012_bib9) 2003; 22 Xie (10.1016/j.patcog.2012.08.012_bib29) 2009; 33 Zacharia (10.1016/j.patcog.2012.08.012_bib23) 2008; 27 Celebi (10.1016/j.patcog.2012.08.012_bib33) 2009; 15 Zhou (10.1016/j.patcog.2012.08.012_bib11) 2011; 35 |
| References_xml | – volume: 11 start-page: 37 year: 2001 end-page: 44 ident: bib10 article-title: Differentiation between pigmented spitz naevus and melanoma by digital dermoscopy and stepwise logistic discriminant analysis publication-title: Melanoma Research – reference: M. Halkidi, M. Vazirgiannis, Y. Batistakis, Quality Scheme Assessment in the Clustering Process, in: Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases, Lyon, France, 2000, pp. 265–276. – volume: 35 start-page: 121 year: 2011 end-page: 127 ident: bib11 article-title: Gradient vector flow with mean shift for skin lesion segmentation publication-title: Computerized Medical Imaging and Graphics – volume: 33 start-page: 1455 year: 2000 end-page: 1465 ident: bib24 article-title: Genetic algorithm based clustering technique publication-title: Pattern Recognition – volume: 26 start-page: 1452 year: 2004 end-page: 1458 ident: bib32 article-title: Statistical region merging publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: R. Melli, C. Grana, R. Cucchiara, Comparison of Color Clustering Algorithms for Segmentation of Dermatological Images, in: Proceedings of the SPIE Conference on Medical Imaging, San Diego, vol. 3S1–9, 2006. – volume: 61 start-page: 212 year: 2011 end-page: 236 ident: bib1 article-title: Cancer statistics, 2011 publication-title: CA: A Cancer Journal for Clinicians – volume: 1 start-page: 72 year: 2003 end-page: 77 ident: bib20 article-title: Efficient pruning method for ensemble self-generating neural networks publication-title: Journal of Systemics, Cybernetics and Informatics – volume: 13 start-page: 454 year: 2007 end-page: 462 ident: bib12 article-title: Unsupervised border detection in dermoscopy images publication-title: Skin Research and Technology – reference: H. Iyatomi, H.Oka, M.E. Celebi, M. Tanaka, K. Ogawa, Parameterization of Dermoscopic Findings for the Internet-Based Melanoma Screening System, in: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing, Hawaii, 2007, pp. 189–193. – reference: G. Di Leo, C. Liguori, A. Paolillo, P. Sommella, An Improved Procedure for the Automatic Detection of Dermoscopy Structures in Digital ELM Images of Skin Lesions, in: Proceedings of the IEEE International Conference on Virtual Environment, Human-Computer Interfaces, and Measurement Systems, Istanbul, Turkey, 2008. – volume: 1 start-page: 224 year: 1979 end-page: 227 ident: bib25 article-title: A cluster separation measure publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 1981 ident: bib30 article-title: Pattern Recognition with Fuzzy Objective Function Algorithm – volume: 27 start-page: 805 year: 2008 end-page: 813 ident: bib23 article-title: An original genetic approach to the fully automatic gridding of microarray images publication-title: IEEE Transactions on Medical Imaging – volume: 21 start-page: 1927 year: 2005 end-page: 1934 ident: bib31 article-title: Detecting clusters of different geometrical shapes in microarray gene expression data publication-title: Bioinformatics – volume: 131 start-page: 286 year: 1995 end-page: 291 ident: bib4 article-title: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesion for formally trained dermatologists publication-title: Archives of Dermatology – volume: 33 start-page: 275 year: 2009 end-page: 282 ident: bib29 article-title: PDE-based unsupervised repair of hair-occluded information in dermoscopy images of melanoma publication-title: Computerized Medical Imaging and Graphics – volume: 4 start-page: 95 year: 1974 end-page: 104 ident: bib26 article-title: Well separated clusters and optimal fuzzy partitions publication-title: Journal of Cybernetics and Systems – volume: 15 start-page: 850 year: 1993 end-page: 863 ident: bib34 article-title: Comparing images using the Hausdorff distance publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence – volume: 3 start-page: 26 year: 2009 end-page: 34 ident: bib13 article-title: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images publication-title: IEEE Journal of Selected Topics in Signal Processing – volume: 22 start-page: 959 year: 2003 end-page: 964 ident: bib9 article-title: A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions publication-title: IEEE Transactions on Medical Imaging – reference: S. Feng, A. Tan, Self-Organizing Neural Networks for Behavior Modeling in Games, in: Proceedings of the International Journal Conference on Neural Network, Barcelona, 2010, pp. 1–8. – volume: 33 start-page: 148 year: 2009 end-page: 153 ident: bib8 article-title: Lesion border detection in dermoscopy images publication-title: Computerized Medical Imaging and Graphics – volume: 3 start-page: 35 year: 2009 end-page: 45 ident: bib16 article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images publication-title: IEEE Journal of Selected Topics in Signal Processing – reference: J. Gao, J. Zhang, M.G. Fleming, A Novel Multiresolution Color Image Segmentation Technique and its Application to Dermatoscopic Image Segmentation, in: Proceedings of the IEEE International Conference on Image Processing, Vancouver, BC, Canada, September 2000. – year: 2005 ident: bib2 article-title: Practical Skin Science – reference: W.X. Wen, A. Jennings, H. Liu, Learning a Neural Tree, in: Proceedings of the International Journal Conference on Neural Networks, 1992, pp. 751–756. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bib22 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man and Cybernetics – volume: 15 start-page: 444 year: 2009 end-page: 450 ident: bib33 article-title: An improved objective evaluation measure for border detection in dermoscopy images publication-title: Skin Research and Technology – volume: 14 start-page: 347 year: 2008 end-page: 353 ident: bib7 article-title: Border detection in dermoscopy images using statistical region merging publication-title: Skin Research and Technology – volume: 167 start-page: 206 year: 1997 end-page: 210 ident: bib5 article-title: Systematic review of the diagnostic accuracy of dermoscopy in detecting malignant melanoma publication-title: Medical Journal of Australia – volume: 11 start-page: 169 year: 2002 end-page: 182 ident: bib17 article-title: Exploiting color and topological features for region segmentation with recursive fuzzy C-means publication-title: Machine Graphics and Vision – volume: 38 start-page: 1225 year: 2003 end-page: 1232 ident: bib19 article-title: Efficiency of self-generating neural networks applied to pattern recognition publication-title: Mathematical and Computer Modelling – volume: 32 start-page: 566 year: 2008 end-page: 579 ident: bib28 article-title: An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm publication-title: Computerized Medical Imaging and Graphics – volume: 14 start-page: 347 issue: 3 year: 2008 ident: 10.1016/j.patcog.2012.08.012_bib7 article-title: Border detection in dermoscopy images using statistical region merging publication-title: Skin Research and Technology doi: 10.1111/j.1600-0846.2008.00301.x – volume: 26 start-page: 1452 issue: 11 year: 2004 ident: 10.1016/j.patcog.2012.08.012_bib32 article-title: Statistical region merging publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.110 – ident: 10.1016/j.patcog.2012.08.012_bib14 doi: 10.1109/ICIP.2000.899420 – ident: 10.1016/j.patcog.2012.08.012_bib6 doi: 10.1109/CIISP.2007.369315 – volume: 1 start-page: 72 issue: 6 year: 2003 ident: 10.1016/j.patcog.2012.08.012_bib20 article-title: Efficient pruning method for ensemble self-generating neural networks publication-title: Journal of Systemics, Cybernetics and Informatics – year: 2005 ident: 10.1016/j.patcog.2012.08.012_bib2 – volume: 27 start-page: 805 issue: 6 year: 2008 ident: 10.1016/j.patcog.2012.08.012_bib23 article-title: An original genetic approach to the fully automatic gridding of microarray images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2008.915561 – volume: 167 start-page: 206 year: 1997 ident: 10.1016/j.patcog.2012.08.012_bib5 article-title: Systematic review of the diagnostic accuracy of dermoscopy in detecting malignant melanoma publication-title: Medical Journal of Australia doi: 10.5694/j.1326-5377.1997.tb138847.x – year: 1981 ident: 10.1016/j.patcog.2012.08.012_bib30 – volume: 38 start-page: 1225 year: 2003 ident: 10.1016/j.patcog.2012.08.012_bib19 article-title: Efficiency of self-generating neural networks applied to pattern recognition publication-title: Mathematical and Computer Modelling doi: 10.1016/S0895-7177(03)90124-5 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.patcog.2012.08.012_bib22 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 61 start-page: 212 issue: 4 year: 2011 ident: 10.1016/j.patcog.2012.08.012_bib1 article-title: Cancer statistics, 2011 publication-title: CA: A Cancer Journal for Clinicians doi: 10.3322/caac.20121 – ident: 10.1016/j.patcog.2012.08.012_bib3 doi: 10.1109/VECIMS.2008.4592778 – volume: 21 start-page: 1927 issue: 9 year: 2005 ident: 10.1016/j.patcog.2012.08.012_bib31 article-title: Detecting clusters of different geometrical shapes in microarray gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti251 – volume: 35 start-page: 121 issue: 2 year: 2011 ident: 10.1016/j.patcog.2012.08.012_bib11 article-title: Gradient vector flow with mean shift for skin lesion segmentation publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2010.08.002 – volume: 33 start-page: 1455 year: 2000 ident: 10.1016/j.patcog.2012.08.012_bib24 article-title: Genetic algorithm based clustering technique publication-title: Pattern Recognition doi: 10.1016/S0031-3203(99)00137-5 – volume: 15 start-page: 850 issue: 9 year: 1993 ident: 10.1016/j.patcog.2012.08.012_bib34 article-title: Comparing images using the Hausdorff distance publication-title: IEEE Transaction on Pattern Analysis and Machine Intelligence doi: 10.1109/34.232073 – volume: 11 start-page: 169 issue: 2/3 year: 2002 ident: 10.1016/j.patcog.2012.08.012_bib17 article-title: Exploiting color and topological features for region segmentation with recursive fuzzy C-means publication-title: Machine Graphics and Vision – volume: 15 start-page: 444 issue: 4 year: 2009 ident: 10.1016/j.patcog.2012.08.012_bib33 article-title: An improved objective evaluation measure for border detection in dermoscopy images publication-title: Skin Research and Technology doi: 10.1111/j.1600-0846.2009.00387.x – volume: 11 start-page: 37 issue: 1 year: 2001 ident: 10.1016/j.patcog.2012.08.012_bib10 article-title: Differentiation between pigmented spitz naevus and melanoma by digital dermoscopy and stepwise logistic discriminant analysis publication-title: Melanoma Research doi: 10.1097/00008390-200102000-00005 – volume: 3 start-page: 26 issue: 1 year: 2009 ident: 10.1016/j.patcog.2012.08.012_bib13 article-title: Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2008.2010631 – volume: 22 start-page: 959 issue: 8 year: 2003 ident: 10.1016/j.patcog.2012.08.012_bib9 article-title: A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2003.815901 – volume: 13 start-page: 454 issue: 4 year: 2007 ident: 10.1016/j.patcog.2012.08.012_bib12 article-title: Unsupervised border detection in dermoscopy images publication-title: Skin Research and Technology doi: 10.1111/j.1600-0846.2007.00251.x – ident: 10.1016/j.patcog.2012.08.012_bib15 doi: 10.1117/12.652061 – volume: 3 start-page: 35 issue: 1 year: 2009 ident: 10.1016/j.patcog.2012.08.012_bib16 article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2008.2011119 – volume: 32 start-page: 566 issue: 7 year: 2008 ident: 10.1016/j.patcog.2012.08.012_bib28 article-title: An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2008.06.005 – volume: 1 start-page: 224 year: 1979 ident: 10.1016/j.patcog.2012.08.012_bib25 article-title: A cluster separation measure publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1979.4766909 – ident: 10.1016/j.patcog.2012.08.012_bib18 – ident: 10.1016/j.patcog.2012.08.012_bib27 doi: 10.1007/3-540-45372-5_26 – volume: 33 start-page: 275 issue: 4 year: 2009 ident: 10.1016/j.patcog.2012.08.012_bib29 article-title: PDE-based unsupervised repair of hair-occluded information in dermoscopy images of melanoma publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2009.01.003 – volume: 33 start-page: 148 issue: 2 year: 2009 ident: 10.1016/j.patcog.2012.08.012_bib8 article-title: Lesion border detection in dermoscopy images publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2008.11.002 – ident: 10.1016/j.patcog.2012.08.012_bib21 doi: 10.1109/IJCNN.2010.5596471 – volume: 4 start-page: 95 year: 1974 ident: 10.1016/j.patcog.2012.08.012_bib26 article-title: Well separated clusters and optimal fuzzy partitions publication-title: Journal of Cybernetics and Systems doi: 10.1080/01969727408546059 – volume: 131 start-page: 286 year: 1995 ident: 10.1016/j.patcog.2012.08.012_bib4 article-title: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesion for formally trained dermatologists publication-title: Archives of Dermatology doi: 10.1001/archderm.1995.01690150050011 |
| SSID | ssj0017142 |
| Score | 2.4309387 |
| Snippet | A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA).... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1012 |
| SubjectTerms | Applied sciences Artificial intelligence Automatic segmentation Clusters Computer science; control theory; systems Connectionism. Neural networks Dermoscopy images Exact sciences and technology Generic algorithms Genetic algorithms Image clustering Image processing Information theory Information, signal and communications theory Neural networks Samples Segmentation Self-generating neural network Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Statistical analysis Statistical methods Telecommunications and information theory |
| Title | Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.patcog.2012.08.012 https://www.proquest.com/docview/1283657882 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhuRRKm_RBt20WFXJVY0l-aI9LaNgkNKcEchOyHu6WXXuJvYdc8tszI9sLoZRALj7IsmU00jcee-b7CDkpE24FN7C_SzVjKcQYTAUvWe7SWe5DUtgSv0P-vs4Xt-nlXXa3R87GWhhMqxywv8f0iNZDy-kwm6eb5RJrfJF2EA6R1FNhoXkKg8Ga_vm4S_NAfe-eMVxyhr3H8rmY47UBuGsqTPASkciTi_-5p7cb08KkhV7t4h_gjt7o_JC8G14j6bx_0iOy5-sP5P0o0UCHHfuRrOfbromsrLT11XooNKppE6gDTG6wKOWBLteAKi3FHPgK-q0CqyIbNaZEU2S8hKHqPl-8hfPeeUfLB4qd8M5mVTX3y-7P-hO5Pf91c7Zgg8ICszKfdQw2b-azUErupC0Ky7Myh4jQK5VCJCMzk7giib8_vYFQR6W2MIkpXYFqQyJ18jPZr5vafyE0gZaQW2UDOHxnPYRRvLAh5IEHMTNqQuQ4sdoO9OOogrHSY57ZX92bQ6M5NIpjcjEhbHfVpqffeKF_MdpMP1tGGjzEC1dOn5l4N5xAyS6AtQn5MdpcwxbE_yqm9s221eDiZQ7Ip8TXVw__jbwRUWgDs9u-k_3ufuuP4XWnK6dxPU_JwfzianH9BCiUAQw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOYCE-EYsH8VIXE1jO4m9x6qiWqDtqZV6sxx_hK12k1WTPfTCb2fGSVaqEKrEZQ9ZZ73yxG8yyZv3CPlSZdwJbmF_V3rOcqgxmI5BstLn8zLETLkKn0OenZeLy_zHVXG1R46nXhikVY7YP2B6QuvxyOG4moeb5RJ7fFF2ED6SqKcuHpCHeSEUVmBff-94HmjwPUiGS85w-NQ_l0heG8C7tkaGl0hKnlz8Kz892dgOVi0Odhd_IXdKRyfPydPxPpIeDX_1BdkLzUvybPJooOOWfUXWR9u-TbKstAv1euw0amgbqQdQbrEr5ZYu1wArHUUSfA3jVpHVSY4aOdEUJS9hqmYgjHfwffDB0-qW4iD8Zbuq25tl_2v9mlyefLs4XrDRYoE5Wc57Bru3CEWsJPfSKeV4UZVQEgatcyhlZGEzr7L0_jNYqHV07pTNbOUV2g2J3Ms3ZL9pm_CW0AyOxNJpFyHjexegjuLKxVhGHsXc6hmR08IaN-qPow3GykxEs2szhMNgOAy6Y3IxI2x31mbQ37hnvJpiZu5cRwZSxD1nHtwJ8W46gZ5dgGsz8nmKuYE9iC9WbBPabWcgx8sSoE-Ld_89_SfyaHFxdmpOv5__fE8ei-S6gVS3D2S_v9mGj3Dv01cH6dr-AwqyAqE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+segmentation+of+dermoscopy+images+using+self-generating+neural+networks+seeded+by+genetic+algorithm&rft.jtitle=Pattern+recognition&rft.au=Xie%2C+Fengying&rft.au=Bovik%2C+Alan+C&rft.date=2013-03-01&rft.issn=0031-3203&rft.volume=46&rft.issue=3&rft.spage=1012&rft.epage=1019&rft_id=info:doi/10.1016%2Fj.patcog.2012.08.012&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |