Reverse design of Mg-Zn-Mn-Sr-Ca alloys for biodegradable implants by interpretable machine learning and genetic algorithm

[Display omitted] •A reverse design approach was employed for biodegradable Mg-Zn-Mn-Sr-Ca alloy.•Interpretable machine learning and multi-objective genetic algorithm were employed.•Four of six optimized alloys met strength and degradation criteria experimentally.•The results support data-driven des...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 257; p. 114494
Main Authors Suh, Joung Sik, Jang, Jae Hoon, Suh, Byeong-Chan, Kim, Jae-Yeon
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2025
Elsevier
Subjects
Online AccessGet full text
ISSN0264-1275
1873-4197
DOI10.1016/j.matdes.2025.114494

Cover

Abstract [Display omitted] •A reverse design approach was employed for biodegradable Mg-Zn-Mn-Sr-Ca alloy.•Interpretable machine learning and multi-objective genetic algorithm were employed.•Four of six optimized alloys met strength and degradation criteria experimentally.•The results support data-driven design of biodegradable Mg alloys for implants. Biodegradable Mg alloys for implants must meet both mechanical strength and biologically compatible degradation rate to promote bone healing. The present study proposes a reverse engineering approach that utilizes interpretable machine learning and a multi-objective genetic algorithm to design biodegradable Mg-Zn-Mn-Sr-Ca (ZMJX) alloys for load-bearing orthopedic implants. The training of neural networks was facilitated by a dataset comprising 1044 data points, which contained chemical compositions, ultimate compressive strengths (UCS), and in vitro degradation rates (DR). The optimized neural network models predicted UCS and DR with a coefficient of determination exceeding 0.92 on testing data. Shapley additive explanations identified Zn as the most influential element affecting both UCS and DR. A total of six optimal alloys were identified from the Pareto front of two fitness functions (UCS ≥ 240 MPa, DR ≤ 1 mm/y). Four of these alloys satisfied the conflicting dual target criteria, although notable performance discrepancies were observed between reverse design and experimental results. The findings emphasize the necessity to incorporate microstructural and textural characteristics into existing databases, thereby enhancing model accuracy and enabling more reliable, data-driven design of biodegradable Mg alloys for load-bearing implant applications.
AbstractList [Display omitted] •A reverse design approach was employed for biodegradable Mg-Zn-Mn-Sr-Ca alloy.•Interpretable machine learning and multi-objective genetic algorithm were employed.•Four of six optimized alloys met strength and degradation criteria experimentally.•The results support data-driven design of biodegradable Mg alloys for implants. Biodegradable Mg alloys for implants must meet both mechanical strength and biologically compatible degradation rate to promote bone healing. The present study proposes a reverse engineering approach that utilizes interpretable machine learning and a multi-objective genetic algorithm to design biodegradable Mg-Zn-Mn-Sr-Ca (ZMJX) alloys for load-bearing orthopedic implants. The training of neural networks was facilitated by a dataset comprising 1044 data points, which contained chemical compositions, ultimate compressive strengths (UCS), and in vitro degradation rates (DR). The optimized neural network models predicted UCS and DR with a coefficient of determination exceeding 0.92 on testing data. Shapley additive explanations identified Zn as the most influential element affecting both UCS and DR. A total of six optimal alloys were identified from the Pareto front of two fitness functions (UCS ≥ 240 MPa, DR ≤ 1 mm/y). Four of these alloys satisfied the conflicting dual target criteria, although notable performance discrepancies were observed between reverse design and experimental results. The findings emphasize the necessity to incorporate microstructural and textural characteristics into existing databases, thereby enhancing model accuracy and enabling more reliable, data-driven design of biodegradable Mg alloys for load-bearing implant applications.
Biodegradable Mg alloys for implants must meet both mechanical strength and biologically compatible degradation rate to promote bone healing. The present study proposes a reverse engineering approach that utilizes interpretable machine learning and a multi-objective genetic algorithm to design biodegradable Mg-Zn-Mn-Sr-Ca (ZMJX) alloys for load-bearing orthopedic implants. The training of neural networks was facilitated by a dataset comprising 1044 data points, which contained chemical compositions, ultimate compressive strengths (UCS), and in vitro degradation rates (DR). The optimized neural network models predicted UCS and DR with a coefficient of determination exceeding 0.92 on testing data. Shapley additive explanations identified Zn as the most influential element affecting both UCS and DR. A total of six optimal alloys were identified from the Pareto front of two fitness functions (UCS ≥ 240 MPa, DR ≤ 1 mm/y). Four of these alloys satisfied the conflicting dual target criteria, although notable performance discrepancies were observed between reverse design and experimental results. The findings emphasize the necessity to incorporate microstructural and textural characteristics into existing databases, thereby enhancing model accuracy and enabling more reliable, data-driven design of biodegradable Mg alloys for load-bearing implant applications.
ArticleNumber 114494
Author Suh, Joung Sik
Kim, Jae-Yeon
Suh, Byeong-Chan
Jang, Jae Hoon
Author_xml – sequence: 1
  givenname: Joung Sik
  surname: Suh
  fullname: Suh, Joung Sik
  email: jssuh@kims.re.kr
  organization: Lightweight Materials Research Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
– sequence: 2
  givenname: Jae Hoon
  surname: Jang
  fullname: Jang, Jae Hoon
  organization: Materials Data & Analysis Research Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
– sequence: 3
  givenname: Byeong-Chan
  surname: Suh
  fullname: Suh, Byeong-Chan
  organization: Lightweight Materials Research Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
– sequence: 4
  givenname: Jae-Yeon
  surname: Kim
  fullname: Kim, Jae-Yeon
  organization: Lightweight Materials Research Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
BookMark eNqNkctu3CAUhlmkUpO0b5AFL-ApYGzsTaRq1EukRJF62XSDDnBwGNkwAjfV9OlL4irLqmyOBPo-Hf7_gpzFFJGQK852nPH-3WG3wOqw7AQT3Y5zKUd5Rs6Z6GXDhepek4tSDowJoVp5Tn5_wUfMBWlFwhRp8vRuan7E5i42X3OzBwrznE6F-pSpCcnhlMGBmZGG5ThDXAs1JxriivmYcX1-WcA-hIh0RsgxxIlCdHTCiGuw1TelHNaH5Q155WEu-PbvvCTfP374tv_c3N5_utm_v21s249ro5SzRnDB7OC4teicajs_9G3HRjZ0zDFjPTNOjCDYUE9vPHBALsBJUH17SW42r0tw0MccFsgnnSDo54uUJw25bjajVtK2owLOBm-lcQaktX2nWM-d90Ly6uo21894hNOvms2LkDP9VIA-6K0A_VSA3gqonNw4m1MpGf3_YtcbhjWfx4BZFxsw1hBCRrvWD4R_C_4AnLunmw
Cites_doi 10.1016/j.matdes.2019.108259
10.1016/j.jma.2023.09.010
10.1023/A:1010933404324
10.1214/aos/1013203451
10.1016/j.jallcom.2016.08.164
10.1021/acs.chemrev.5b00691
10.1016/j.jma.2021.12.007
10.1016/j.jmst.2024.09.038
10.1007/s11837-011-0089-z
10.1016/j.artint.2021.103502
10.1016/j.jma.2019.12.001
10.1016/j.jmst.2021.02.021
10.1016/j.actbio.2009.06.028
10.1016/j.jmrt.2022.11.137
10.1016/j.corsci.2018.04.024
10.1016/j.engstruct.2020.110927
10.1016/j.corsci.2012.07.015
10.1016/j.corsci.2007.01.001
10.1016/j.jmst.2021.07.045
10.1016/j.msec.2013.11.011
10.1016/j.jmst.2023.04.072
10.1023/B:STCO.0000035301.49549.88
10.1007/s12540-022-01327-0
10.1016/j.actbio.2018.11.045
10.1038/srep02367
10.4028/www.scientific.net/JBBTE.12.25
10.1002/mgea.54
10.1007/s11661-020-06132-1
10.5923/j.ajbe.20120206.02
10.1016/j.actbio.2014.11.048
10.1038/ncomms11241
10.1016/B978-012470862-4/50036-2
10.1016/j.cossms.2009.04.001
10.1016/S0010-938X(01)00101-9
10.1016/j.commatsci.2021.110881
10.1007/s12540-019-00495-w
10.1016/j.corsci.2019.06.022
10.1016/j.jallcom.2016.10.244
10.1038/s41524-019-0227-7
10.1016/j.jallcom.2023.172007
10.1016/j.matdes.2022.111442
10.1016/j.matlet.2021.130627
10.1038/s41524-019-0153-8
10.1016/j.corsci.2012.08.037
10.1002/sam.10018
10.1016/j.msec.2012.07.042
10.1016/j.commatsci.2021.110544
10.1016/j.msea.2008.06.019
10.1016/j.matdes.2013.06.055
10.1016/j.jma.2021.06.019
10.1016/j.jma.2023.07.005
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.matdes.2025.114494
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_74c397a108fc4bdba4cc657061dff241
10.1016/j.matdes.2025.114494
10_1016_j_matdes_2025_114494
S0264127525009141
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAFTH
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AGHFR
AGQPQ
AGUBO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AAYXX
CITATION
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c369t-77dcb2120c8d1ccedd735f8635090850d0bcf0bd29a2088886bfa1ae12ad4a763
IEDL.DBID AIKHN
ISSN 0264-1275
1873-4197
IngestDate Fri Oct 03 12:43:38 EDT 2025
Tue Aug 19 09:34:45 EDT 2025
Wed Oct 01 05:26:14 EDT 2025
Sat Oct 04 17:01:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Degradation
Reverse design, Machine learning
Biodegradable
Strength
Magnesium alloy
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-77dcb2120c8d1ccedd735f8635090850d0bcf0bd29a2088886bfa1ae12ad4a763
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264127525009141
ParticipantIDs doaj_primary_oai_doaj_org_article_74c397a108fc4bdba4cc657061dff241
unpaywall_primary_10_1016_j_matdes_2025_114494
crossref_primary_10_1016_j_matdes_2025_114494
elsevier_sciencedirect_doi_10_1016_j_matdes_2025_114494
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Haynes, Lide, Bruno (b0260) 2012
Lee, Sagong, Jung, Kim, Kim (b0160) 2023; 22
Suh, Kim, Yim, Suh, Bae, Lee (b0190) 2023; 968
Song (b0050) 2007; 49
W.M. Haynes, D.R. Lide, eds., CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 92nd ed., 2011–2012, CRC Press, Boca Raton, Fla., 2011.
Bonora, Andrei, Eliezer, Gutman (b0040) 2002; 44
Bornapour, Celikin, Cerruti, Pekguleryuz (b0055) 2014; 35
Xue, Balachandran, Hogden, Theiler, Xue, Lookman (b0265) 2016; 7
Song, Han, Shan, Yim, You (b0030) 2012; 65
Witte, Hort, Vogt, Cohen, Kainer, Willumeit, Feyerabend (b0230) 2008; 12
Eddy Jai Poinern, Brundavanam, Fawcett (b0090) 2013; 2
Bhadeshia (b0105) 2009; 1
Cheng, Chen, Yan, Su, Yu, Xia, Gong (b0245) 2017; 691
Suh, Suh, Bae, Kim (b0115) 2023; 225
Mangalathu, Hwang, Jeon (b0210) 2020; 219
Mi, Tian, Tang, Kang, Peng, She, Wang, Chen, Pan (b0095) 2022; 201
Aas, Jullum, Løland (b0155) 2021; 298
Wang, Xie, Tang, Wang, Ying, Zhu, Zeng (b0145) 2024; 12
Friedman (b0220) 2001; 29
Lookman, Balachandran, Xue, Yuan (b0275) 2019; 5
Breiman (b0195) 2001; 45
Bakhsheshi-Rad, Idris, Abdul-Kadir, Ourdjini, Medraj, Daroonparvar, Hamzah (b0240) 2014; 53
Cha, Han, Yang, Kim, Hong, Lee, Jung, Ahn, Kim, Cho, Byun, Lee, Yang, Seok (b0075) 2013; 3
Yang, He, Dianyu, Yang, Qi, Xie, Shen, Peng, Shuai (b0020) 2020; 185
Zhang, Yang (b0070) 2008; 497
Yuan, Ding, Wen (b0270) 2019; 4
Kang, Lee, Jang, Seong, Kim, Koh, Song, Jung (b0005) 2019; 84
Smola, Schölkopf (b0200) 2004; 14
Sanchez, Luthringer, Feyerabend, Willumeit (b0235) 2015; 13
Liu, Wang, Jin, Zeng, Dong, Wang, Wang, Dong (b0165) 2025; 221
Thekkepat, Han, Choi, Lee, Yoon, Li, Seok, Kim, Kim, Cha (b0060) 2022; 10
Ghorbani, Boley, Nakashima, Birbilis (b0120) 2023; 11
Guan, Chen, Xin, Xu, Feng, Huang, Liu (b0135) 2024; 12
Suh, Suh, Lee, Bae, Moon (b0185) 2022; 107
S.M. Lundberg, S.-I. Lee, A Unified Approach to Interpreting Model Predictions, (n.d.).
Liu, Wang, Zhang, Zhu, Wang, Zhang, Zeng (b0150) 2021; 52
Pan, Pang, Cui, Ge, Man, Wang, Cui (b0015) 2019; 157
Mesbah, Fattahi, Bushroa, Faraji, Wong, Basirun, Fallahpour, Nasiri-Tabrizi (b0110) 2021; 27
Cai, Lei, Li, Feng (b0025) 2012; 32
Persaud-Sharma, McGoron (b0080) 2012; 12
Feng, Wang, Jiang, Zhao, Zhang (b0100) 2023; 167
Wang, Yu, Chen, Huang (b0130) 2021; 196
Li, Mesbah, Fallahpour, Nasiri-Tabrizi, Liu (b0140) 2021; 305
Kirkland, Staiger, Nisbet, Davies, Birbilis (b0065) 2011; 63
Zhang, Zhang, Zhao, Li, Song, Xie, Tao, Zhang, He, Jiang, Bian (b0035) 2010; 6
Bakhsheshi-Rad, Abdul-Kadir, Idris, Farahany (b0010) 2012; 64
Wang, Fu, Jiang, Xue, Xie (b0170) 2019; 5
Gou, Shi, Zhu, Gu, Dai, Gao, Wang (b0175) 2024; 2
Le, Winkler (b0215) 2016; 116
Bahmani, Arthanari, Shin (b0250) 2020; 8
Cho, Lee, Park, Cho, Park (b0045) 2017; 695
He, Wang, Akebono, Sugeta (b0125) 2021; 90
R. Marcus, S. Majumder, The Nature of Osteoporosis, in: Osteoporosis, Elsevier, 2001: pp. 3–17. https://doi.org/10.1016/B978-012470862-4/50036-2.
Suh, Ha, Suh, Kang (b0180) 2023; 29
Yang, Liu, Ma, Zhang, Zhou, Thompson (b0085) 2018; 139
Breiman (10.1016/j.matdes.2025.114494_b0195) 2001; 45
He (10.1016/j.matdes.2025.114494_b0125) 2021; 90
Cha (10.1016/j.matdes.2025.114494_b0075) 2013; 3
Bhadeshia (10.1016/j.matdes.2025.114494_b0105) 2009; 1
Cho (10.1016/j.matdes.2025.114494_b0045) 2017; 695
Sanchez (10.1016/j.matdes.2025.114494_b0235) 2015; 13
Xue (10.1016/j.matdes.2025.114494_b0265) 2016; 7
Bonora (10.1016/j.matdes.2025.114494_b0040) 2002; 44
Yuan (10.1016/j.matdes.2025.114494_b0270) 2019; 4
Suh (10.1016/j.matdes.2025.114494_b0185) 2022; 107
Song (10.1016/j.matdes.2025.114494_b0030) 2012; 65
Bakhsheshi-Rad (10.1016/j.matdes.2025.114494_b0240) 2014; 53
Feng (10.1016/j.matdes.2025.114494_b0100) 2023; 167
Liu (10.1016/j.matdes.2025.114494_b0165) 2025; 221
Thekkepat (10.1016/j.matdes.2025.114494_b0060) 2022; 10
Kang (10.1016/j.matdes.2025.114494_b0005) 2019; 84
Gou (10.1016/j.matdes.2025.114494_b0175) 2024; 2
Kirkland (10.1016/j.matdes.2025.114494_b0065) 2011; 63
Mangalathu (10.1016/j.matdes.2025.114494_b0210) 2020; 219
Song (10.1016/j.matdes.2025.114494_b0050) 2007; 49
Wang (10.1016/j.matdes.2025.114494_b0130) 2021; 196
Smola (10.1016/j.matdes.2025.114494_b0200) 2004; 14
10.1016/j.matdes.2025.114494_b0225
Mi (10.1016/j.matdes.2025.114494_b0095) 2022; 201
Bahmani (10.1016/j.matdes.2025.114494_b0250) 2020; 8
Persaud-Sharma (10.1016/j.matdes.2025.114494_b0080) 2012; 12
Suh (10.1016/j.matdes.2025.114494_b0115) 2023; 225
Zhang (10.1016/j.matdes.2025.114494_b0035) 2010; 6
Eddy Jai Poinern (10.1016/j.matdes.2025.114494_b0090) 2013; 2
Li (10.1016/j.matdes.2025.114494_b0140) 2021; 305
Suh (10.1016/j.matdes.2025.114494_b0180) 2023; 29
Zhang (10.1016/j.matdes.2025.114494_b0070) 2008; 497
Yang (10.1016/j.matdes.2025.114494_b0085) 2018; 139
Guan (10.1016/j.matdes.2025.114494_b0135) 2024; 12
Bakhsheshi-Rad (10.1016/j.matdes.2025.114494_b0010) 2012; 64
Liu (10.1016/j.matdes.2025.114494_b0150) 2021; 52
Suh (10.1016/j.matdes.2025.114494_b0190) 2023; 968
Witte (10.1016/j.matdes.2025.114494_b0230) 2008; 12
Cheng (10.1016/j.matdes.2025.114494_b0245) 2017; 691
Wang (10.1016/j.matdes.2025.114494_b0170) 2019; 5
Haynes (10.1016/j.matdes.2025.114494_b0260) 2012
Aas (10.1016/j.matdes.2025.114494_b0155) 2021; 298
10.1016/j.matdes.2025.114494_b0255
Ghorbani (10.1016/j.matdes.2025.114494_b0120) 2023; 11
Mesbah (10.1016/j.matdes.2025.114494_b0110) 2021; 27
Cai (10.1016/j.matdes.2025.114494_b0025) 2012; 32
Friedman (10.1016/j.matdes.2025.114494_b0220) 2001; 29
10.1016/j.matdes.2025.114494_b0205
Pan (10.1016/j.matdes.2025.114494_b0015) 2019; 157
Wang (10.1016/j.matdes.2025.114494_b0145) 2024; 12
Lookman (10.1016/j.matdes.2025.114494_b0275) 2019; 5
Yang (10.1016/j.matdes.2025.114494_b0020) 2020; 185
Bornapour (10.1016/j.matdes.2025.114494_b0055) 2014; 35
Le (10.1016/j.matdes.2025.114494_b0215) 2016; 116
Lee (10.1016/j.matdes.2025.114494_b0160) 2023; 22
References_xml – volume: 12
  start-page: 1406
  year: 2024
  end-page: 1418
  ident: b0145
  article-title: High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys
  publication-title: J. Magn. Alloys
– volume: 1
  start-page: 296
  year: 2009
  end-page: 305
  ident: b0105
  article-title: Neural Networks and Information in Materials Science
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
– volume: 2
  start-page: 218
  year: 2013
  end-page: 240
  ident: b0090
  article-title: Biomedical Magnesium Alloys: a Review of Material Properties, Surface modifications and potential as a Biodegradable Orthopaedic Implant
  publication-title: Am. J. Biomed. Eng.
– volume: 201
  year: 2022
  ident: b0095
  article-title: A reverse design model for high-performance and low-cost magnesium alloys by machine learning
  publication-title: Comput. Mater. Sci
– volume: 22
  start-page: 413
  year: 2023
  end-page: 423
  ident: b0160
  article-title: Explainable machine learning for understanding and predicting geometry and defect types in Fe-Ni alloys fabricated by laser metal deposition additive manufacturing
  publication-title: J. Mater. Res. Technol.
– volume: 139
  start-page: 421
  year: 2018
  end-page: 429
  ident: b0085
  article-title: Effect of iron content on the corrosion of pure magnesium: critical factor for iron tolerance limit
  publication-title: Corros. Sci.
– volume: 107
  start-page: 52
  year: 2022
  end-page: 63
  ident: b0185
  article-title: Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning
  publication-title: J. Mater. Sci. Technol.
– volume: 29
  year: 2001
  ident: b0220
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 7
  start-page: 11241
  year: 2016
  ident: b0265
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
– volume: 90
  start-page: 9
  year: 2021
  end-page: 19
  ident: b0125
  article-title: Machine learning-based predictions of fatigue life and fatigue limit for steels
  publication-title: J. Mater. Sci. Technol.
– volume: 157
  start-page: 420
  year: 2019
  end-page: 437
  ident: b0015
  article-title: Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks’ solution
  publication-title: Corros. Sci.
– volume: 6
  start-page: 626
  year: 2010
  end-page: 640
  ident: b0035
  article-title: Research on an Mg–Zn alloy as a degradable biomaterial
  publication-title: Acta Biomater.
– volume: 497
  start-page: 111
  year: 2008
  end-page: 118
  ident: b0070
  article-title: Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application
  publication-title: Mater. Sci. Eng. A
– reference: R. Marcus, S. Majumder, The Nature of Osteoporosis, in: Osteoporosis, Elsevier, 2001: pp. 3–17. https://doi.org/10.1016/B978-012470862-4/50036-2.
– volume: 12
  start-page: 4436
  year: 2024
  end-page: 4442
  ident: b0135
  article-title: Predicting the Hall-Petch slope of magnesium alloys by machine learning
  publication-title: J. Magn. Alloys
– volume: 11
  start-page: 4197
  year: 2023
  end-page: 4205
  ident: b0120
  article-title: A machine learning approach for accelerated design of magnesium alloys. Part B: Regression and property prediction
  publication-title: J. Magn. Alloys
– volume: 84
  start-page: 453
  year: 2019
  end-page: 467
  ident: b0005
  article-title: Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration
  publication-title: Acta Biomater.
– volume: 32
  start-page: 2570
  year: 2012
  end-page: 2577
  ident: b0025
  article-title: Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys
  publication-title: Mater. Sci. Eng. C
– volume: 185
  year: 2020
  ident: b0020
  article-title: Mg bone implant: Features, developments and perspectives
  publication-title: Mater. Des.
– volume: 225
  year: 2023
  ident: b0115
  article-title: Machine learning-based design of biodegradable Mg alloys for load-bearing implants
  publication-title: Mater. Des.
– volume: 691
  start-page: 95
  year: 2017
  end-page: 102
  ident: b0245
  article-title: Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system
  publication-title: J. Alloy. Compd.
– volume: 53
  start-page: 283
  year: 2014
  end-page: 292
  ident: b0240
  article-title: Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys
  publication-title: Mater. Des.
– volume: 29
  start-page: 1841
  year: 2023
  end-page: 1852
  ident: b0180
  article-title: Determination of Optimum Zn Content for Mg–xZn–0.5Mn–0.5Sr Alloy in terms of Mechanical Properties and In Vitro Corrosion Resistance
  publication-title: Met. Mater. Int.
– volume: 64
  start-page: 184
  year: 2012
  end-page: 197
  ident: b0010
  article-title: Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys
  publication-title: Corros. Sci.
– volume: 13
  start-page: 16
  year: 2015
  end-page: 31
  ident: b0235
  article-title: Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? a review
  publication-title: Acta Biomater.
– volume: 305
  year: 2021
  ident: b0140
  article-title: Mechanical strength estimation of ultrafine-grained magnesium implant by neural-based predictive machine learning
  publication-title: Mater. Lett.
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b0200
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 27
  start-page: 277
  year: 2021
  end-page: 297
  ident: b0110
  article-title: Experimental and Modelling Study of Ultra-Fine Grained ZK60 Magnesium Alloy with simultaneously improved Strength and Ductility Processed by Parallel Tubular Channel Angular Pressing
  publication-title: Met. Mater. Int.
– volume: 2
  start-page: e54
  year: 2024
  ident: b0175
  article-title: Multi‐objective optimization of three mechanical properties of Mg alloys through machine learning
  publication-title: Mater. Genome Eng. Adv.
– volume: 298
  year: 2021
  ident: b0155
  article-title: Explaining individual predictions when features are dependent: more accurate approximations to Shapley values
  publication-title: Artif. Intell.
– volume: 5
  start-page: 87
  year: 2019
  ident: b0170
  article-title: A property-oriented design strategy for high performance copper alloys via machine learning
  publication-title: npj Comput. Mater.
– volume: 116
  start-page: 6107
  year: 2016
  end-page: 6132
  ident: b0215
  article-title: Discovery and Optimization of Materials using Evolutionary Approaches
  publication-title: Chem. Rev.
– volume: 12
  start-page: 25
  year: 2012
  end-page: 39
  ident: b0080
  article-title: Biodegradable Magnesium Alloys: a Review of Material Development and applications
  publication-title: J. Biomim. Biomater. Tissue Eng.
– volume: 52
  start-page: 943
  year: 2021
  end-page: 954
  ident: b0150
  article-title: Accelerated Development of High-Strength Magnesium Alloys by Machine Learning
  publication-title: Metall. Mater. Trans. A
– volume: 968
  year: 2023
  ident: b0190
  article-title: Interpretable machine learning-based analysis of mechanical properties of extruded Mg-Al-Zn-Mn-Ca-Y alloys
  publication-title: J. Alloy. Compd.
– volume: 3
  start-page: 2367
  year: 2013
  ident: b0075
  article-title: Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases
  publication-title: Sci. Rep.
– volume: 5
  start-page: 21
  year: 2019
  ident: b0275
  article-title: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design
  publication-title: npj Comput. Mater.
– volume: 4
  start-page: 56
  year: 2019
  end-page: 70
  ident: b0270
  article-title: Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review
  publication-title: Bioact. Mater.
– volume: 35
  start-page: 267
  year: 2014
  end-page: 282
  ident: b0055
  article-title: Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance
  publication-title: Mater. Sci. Eng. C
– volume: 63
  start-page: 28
  year: 2011
  end-page: 34
  ident: b0065
  article-title: Performance-driven design of Biocompatible Mg alloys
  publication-title: JOM
– volume: 49
  start-page: 1696
  year: 2007
  end-page: 1701
  ident: b0050
  article-title: Control of biodegradation of biocompatable magnesium alloys
  publication-title: Corros. Sci.
– volume: 167
  start-page: 1
  year: 2023
  end-page: 13
  ident: b0100
  article-title: Simultaneous enhancement in mechanical and corrosion properties of Al-Mg-Si alloys using machine learning
  publication-title: J. Mater. Sci. Technol.
– volume: 65
  start-page: 322
  year: 2012
  end-page: 330
  ident: b0030
  article-title: The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys
  publication-title: Corros. Sci.
– volume: 10
  start-page: 1972
  year: 2022
  end-page: 1980
  ident: b0060
  article-title: Computational design of Mg alloys with minimal galvanic corrosion
  publication-title: J. Magn. Alloys
– volume: 221
  start-page: 194
  year: 2025
  end-page: 203
  ident: b0165
  article-title: Towards high stiffness and ductility—The Mg-Al-Y alloy design through machine learning
  publication-title: J. Mater. Sci. Technol.
– volume: 44
  start-page: 729
  year: 2002
  end-page: 749
  ident: b0040
  article-title: Corrosion behaviour of stressed magnesium alloys
  publication-title: Corros. Sci.
– volume: 196
  year: 2021
  ident: b0130
  article-title: Machine learning assisted screening of non-rare-earth elements for Mg alloys with low stacking fault energy
  publication-title: Comput. Mater. Sci
– volume: 8
  start-page: 134
  year: 2020
  end-page: 149
  ident: b0250
  article-title: Formulation of corrosion rate of magnesium alloys using microstructural parameters
  publication-title: J. Magn. Alloys
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0195
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 695
  start-page: 1166
  year: 2017
  end-page: 1174
  ident: b0045
  article-title: Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys
  publication-title: J. Alloy. Compd.
– reference: S.M. Lundberg, S.-I. Lee, A Unified Approach to Interpreting Model Predictions, (n.d.).
– volume: 12
  start-page: 63
  year: 2008
  end-page: 72
  ident: b0230
  article-title: Degradable biomaterials based on magnesium corrosion
  publication-title: Curr. Opin. Solid State Mater. Sci.
– reference: W.M. Haynes, D.R. Lide, eds., CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 92nd ed., 2011–2012, CRC Press, Boca Raton, Fla., 2011.
– volume: 219
  year: 2020
  ident: b0210
  article-title: Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach
  publication-title: Eng. Struct.
– year: 2012
  ident: b0260
  article-title: CRC handbook of chemistry and physics: a ready reference book of chemical and physical data
– volume: 185
  year: 2020
  ident: 10.1016/j.matdes.2025.114494_b0020
  article-title: Mg bone implant: Features, developments and perspectives
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108259
– volume: 11
  start-page: 4197
  year: 2023
  ident: 10.1016/j.matdes.2025.114494_b0120
  article-title: A machine learning approach for accelerated design of magnesium alloys. Part B: Regression and property prediction
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2023.09.010
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.matdes.2025.114494_b0195
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 29
  year: 2001
  ident: 10.1016/j.matdes.2025.114494_b0220
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 691
  start-page: 95
  year: 2017
  ident: 10.1016/j.matdes.2025.114494_b0245
  article-title: Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.08.164
– volume: 116
  start-page: 6107
  year: 2016
  ident: 10.1016/j.matdes.2025.114494_b0215
  article-title: Discovery and Optimization of Materials using Evolutionary Approaches
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00691
– volume: 12
  start-page: 1406
  year: 2024
  ident: 10.1016/j.matdes.2025.114494_b0145
  article-title: High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2021.12.007
– volume: 221
  start-page: 194
  year: 2025
  ident: 10.1016/j.matdes.2025.114494_b0165
  article-title: Towards high stiffness and ductility—The Mg-Al-Y alloy design through machine learning
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2024.09.038
– volume: 63
  start-page: 28
  year: 2011
  ident: 10.1016/j.matdes.2025.114494_b0065
  article-title: Performance-driven design of Biocompatible Mg alloys
  publication-title: JOM
  doi: 10.1007/s11837-011-0089-z
– volume: 298
  year: 2021
  ident: 10.1016/j.matdes.2025.114494_b0155
  article-title: Explaining individual predictions when features are dependent: more accurate approximations to Shapley values
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2021.103502
– volume: 8
  start-page: 134
  year: 2020
  ident: 10.1016/j.matdes.2025.114494_b0250
  article-title: Formulation of corrosion rate of magnesium alloys using microstructural parameters
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2019.12.001
– volume: 90
  start-page: 9
  year: 2021
  ident: 10.1016/j.matdes.2025.114494_b0125
  article-title: Machine learning-based predictions of fatigue life and fatigue limit for steels
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.02.021
– volume: 6
  start-page: 626
  year: 2010
  ident: 10.1016/j.matdes.2025.114494_b0035
  article-title: Research on an Mg–Zn alloy as a degradable biomaterial
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.06.028
– volume: 22
  start-page: 413
  year: 2023
  ident: 10.1016/j.matdes.2025.114494_b0160
  article-title: Explainable machine learning for understanding and predicting geometry and defect types in Fe-Ni alloys fabricated by laser metal deposition additive manufacturing
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.11.137
– volume: 139
  start-page: 421
  year: 2018
  ident: 10.1016/j.matdes.2025.114494_b0085
  article-title: Effect of iron content on the corrosion of pure magnesium: critical factor for iron tolerance limit
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.04.024
– volume: 219
  year: 2020
  ident: 10.1016/j.matdes.2025.114494_b0210
  article-title: Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110927
– ident: 10.1016/j.matdes.2025.114494_b0255
– volume: 64
  start-page: 184
  year: 2012
  ident: 10.1016/j.matdes.2025.114494_b0010
  article-title: Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.07.015
– volume: 49
  start-page: 1696
  year: 2007
  ident: 10.1016/j.matdes.2025.114494_b0050
  article-title: Control of biodegradation of biocompatable magnesium alloys
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2007.01.001
– volume: 107
  start-page: 52
  year: 2022
  ident: 10.1016/j.matdes.2025.114494_b0185
  article-title: Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.07.045
– volume: 35
  start-page: 267
  year: 2014
  ident: 10.1016/j.matdes.2025.114494_b0055
  article-title: Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.11.011
– volume: 167
  start-page: 1
  year: 2023
  ident: 10.1016/j.matdes.2025.114494_b0100
  article-title: Simultaneous enhancement in mechanical and corrosion properties of Al-Mg-Si alloys using machine learning
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2023.04.072
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.matdes.2025.114494_b0200
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 4
  start-page: 56
  year: 2019
  ident: 10.1016/j.matdes.2025.114494_b0270
  article-title: Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review
  publication-title: Bioact. Mater.
– volume: 29
  start-page: 1841
  year: 2023
  ident: 10.1016/j.matdes.2025.114494_b0180
  article-title: Determination of Optimum Zn Content for Mg–xZn–0.5Mn–0.5Sr Alloy in terms of Mechanical Properties and In Vitro Corrosion Resistance
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-022-01327-0
– volume: 84
  start-page: 453
  year: 2019
  ident: 10.1016/j.matdes.2025.114494_b0005
  article-title: Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.11.045
– volume: 3
  start-page: 2367
  year: 2013
  ident: 10.1016/j.matdes.2025.114494_b0075
  article-title: Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases
  publication-title: Sci. Rep.
  doi: 10.1038/srep02367
– volume: 12
  start-page: 25
  year: 2012
  ident: 10.1016/j.matdes.2025.114494_b0080
  article-title: Biodegradable Magnesium Alloys: a Review of Material Development and applications
  publication-title: J. Biomim. Biomater. Tissue Eng.
  doi: 10.4028/www.scientific.net/JBBTE.12.25
– volume: 2
  start-page: e54
  year: 2024
  ident: 10.1016/j.matdes.2025.114494_b0175
  article-title: Multi‐objective optimization of three mechanical properties of Mg alloys through machine learning
  publication-title: Mater. Genome Eng. Adv.
  doi: 10.1002/mgea.54
– volume: 52
  start-page: 943
  year: 2021
  ident: 10.1016/j.matdes.2025.114494_b0150
  article-title: Accelerated Development of High-Strength Magnesium Alloys by Machine Learning
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-020-06132-1
– volume: 2
  start-page: 218
  year: 2013
  ident: 10.1016/j.matdes.2025.114494_b0090
  article-title: Biomedical Magnesium Alloys: a Review of Material Properties, Surface modifications and potential as a Biodegradable Orthopaedic Implant
  publication-title: Am. J. Biomed. Eng.
  doi: 10.5923/j.ajbe.20120206.02
– volume: 13
  start-page: 16
  year: 2015
  ident: 10.1016/j.matdes.2025.114494_b0235
  article-title: Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? a review
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.11.048
– volume: 7
  start-page: 11241
  year: 2016
  ident: 10.1016/j.matdes.2025.114494_b0265
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11241
– ident: 10.1016/j.matdes.2025.114494_b0225
  doi: 10.1016/B978-012470862-4/50036-2
– volume: 12
  start-page: 63
  year: 2008
  ident: 10.1016/j.matdes.2025.114494_b0230
  article-title: Degradable biomaterials based on magnesium corrosion
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2009.04.001
– volume: 44
  start-page: 729
  year: 2002
  ident: 10.1016/j.matdes.2025.114494_b0040
  article-title: Corrosion behaviour of stressed magnesium alloys
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(01)00101-9
– volume: 201
  year: 2022
  ident: 10.1016/j.matdes.2025.114494_b0095
  article-title: A reverse design model for high-performance and low-cost magnesium alloys by machine learning
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2021.110881
– volume: 27
  start-page: 277
  year: 2021
  ident: 10.1016/j.matdes.2025.114494_b0110
  article-title: Experimental and Modelling Study of Ultra-Fine Grained ZK60 Magnesium Alloy with simultaneously improved Strength and Ductility Processed by Parallel Tubular Channel Angular Pressing
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00495-w
– volume: 157
  start-page: 420
  year: 2019
  ident: 10.1016/j.matdes.2025.114494_b0015
  article-title: Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks’ solution
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.06.022
– volume: 695
  start-page: 1166
  year: 2017
  ident: 10.1016/j.matdes.2025.114494_b0045
  article-title: Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.10.244
– volume: 5
  start-page: 87
  year: 2019
  ident: 10.1016/j.matdes.2025.114494_b0170
  article-title: A property-oriented design strategy for high performance copper alloys via machine learning
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0227-7
– volume: 968
  year: 2023
  ident: 10.1016/j.matdes.2025.114494_b0190
  article-title: Interpretable machine learning-based analysis of mechanical properties of extruded Mg-Al-Zn-Mn-Ca-Y alloys
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2023.172007
– volume: 225
  year: 2023
  ident: 10.1016/j.matdes.2025.114494_b0115
  article-title: Machine learning-based design of biodegradable Mg alloys for load-bearing implants
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111442
– volume: 305
  year: 2021
  ident: 10.1016/j.matdes.2025.114494_b0140
  article-title: Mechanical strength estimation of ultrafine-grained magnesium implant by neural-based predictive machine learning
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.130627
– volume: 5
  start-page: 21
  year: 2019
  ident: 10.1016/j.matdes.2025.114494_b0275
  article-title: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0153-8
– volume: 65
  start-page: 322
  year: 2012
  ident: 10.1016/j.matdes.2025.114494_b0030
  article-title: The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.08.037
– volume: 1
  start-page: 296
  year: 2009
  ident: 10.1016/j.matdes.2025.114494_b0105
  article-title: Neural Networks and Information in Materials Science
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
  doi: 10.1002/sam.10018
– year: 2012
  ident: 10.1016/j.matdes.2025.114494_b0260
– volume: 32
  start-page: 2570
  year: 2012
  ident: 10.1016/j.matdes.2025.114494_b0025
  article-title: Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2012.07.042
– volume: 196
  year: 2021
  ident: 10.1016/j.matdes.2025.114494_b0130
  article-title: Machine learning assisted screening of non-rare-earth elements for Mg alloys with low stacking fault energy
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2021.110544
– volume: 497
  start-page: 111
  year: 2008
  ident: 10.1016/j.matdes.2025.114494_b0070
  article-title: Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.06.019
– volume: 53
  start-page: 283
  year: 2014
  ident: 10.1016/j.matdes.2025.114494_b0240
  article-title: Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.06.055
– volume: 10
  start-page: 1972
  year: 2022
  ident: 10.1016/j.matdes.2025.114494_b0060
  article-title: Computational design of Mg alloys with minimal galvanic corrosion
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2021.06.019
– volume: 12
  start-page: 4436
  year: 2024
  ident: 10.1016/j.matdes.2025.114494_b0135
  article-title: Predicting the Hall-Petch slope of magnesium alloys by machine learning
  publication-title: J. Magn. Alloys
  doi: 10.1016/j.jma.2023.07.005
– ident: 10.1016/j.matdes.2025.114494_b0205
SSID ssj0022734
Score 2.455866
Snippet [Display omitted] •A reverse design approach was employed for biodegradable Mg-Zn-Mn-Sr-Ca alloy.•Interpretable machine learning and multi-objective genetic...
Biodegradable Mg alloys for implants must meet both mechanical strength and biologically compatible degradation rate to promote bone healing. The present study...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 114494
SubjectTerms Biodegradable
Degradation
Magnesium alloy
Reverse design, Machine learning
Strength
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCzAgnqK85IHV4CTOawREVSGVgYeEWCI_S1CbVqUIlV_PXZxUZYKBDBmS6GLdnXKfne8-E3IGoEFpGaUstSJmQlrLVJbDxzCONUx-4jAzuN7Rv0t6T-L2OX5e2uoLOWFeHtg77iIVGkqmDHjmtFBGSaE10jWSwDgX1i3rIc_ydjLVTLVQtMWvrqAqXxq3TXM1swugoLEo1R3GKJUrcvGjKNXa_T9q09pHNZHzTzkcLtWe7hbZbEAjvfSD3SYrttohG0tSgrvk694iwcJSU1My6NjR_oC9VKxfsYcpu5YU_7DP3ymAVKrKsUGRCIN9U7QcTYbIhqFqTssFBxHvjGqmpaXN1hIDKitDIeOw8RHsDcbTcvY62iNP3ZvH6x5r9lVgOkryGQBqoxWULK4zE2htjUmj2GUAPXiOCnaGK-24MmEuwbVwJMrJQNoglEZI-CDtk9VqXNkDQiMZJI6byCquRBQlcALLWR7onHNnZYew1rHFxMtnFC2v7K3wgSgwEIUPRIdcofcXz6L4dX0BUqJoUqL4LSU6JG1jVzQ4wuMDMFX-8vrzRaj_NN7D_xjvEVlHk565dkxWZ9MPewJQZ6ZO66z-Bv8--6I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4t3QPiwBtRBMgHjrhyEidxjsuK1QqpKwRUWrhEfpYsbVqVVKj765nJo9oiIZZLDnlMHHvs-WJ_8xngDYIGY3WS89zLlEvtPTeqwMEwTS3-_KSxcjTfMb3Izmfyw2V6eQRvh1yYg_X7loeFwM15EtaOUxK2lYW8A8dZish7BMezi48nX7tpFJLfa3V1I5UntLiZD5lyfzFzEIlawf6DgHR3W6_17pdeLG4EnLMHMB2K2vFMfky2jZnY6z9UHG_7LQ_hfo882UnnKo_gyNeP4d4NPcIncP3JE0vDM9fyOtgqsOmcf6v5tOafN_xUM1qm3_1kiHSZqVaOlCYcJV-xarleEKWGmR2r9kRGurJs6Zqe9ftTzJmuHUO3pexJtDdfbarm-_IpzM7efzk95_3mDNwmWdEgKnfWYNwTVrnIWu9cnqRBIX4RBcngOWFsEMbFhY5xJFMqM0FH2kexdlLjqPYMRvWq9s-BJTrKgnCJN8LIJMnwgJZVEdlCiOD1GPjQUOW60-AoB3LaVdnVaUl1WnZ1OoZ31Jr7e0lBuz2BjVH2HbLMpUUopiOhgpXGGS2tJRpQFrkQENaMIR98oezBSAcy0FT1j9dP9q5zq_K--N8HXsKo2Wz9K4RDjXnd94LfpjsG6g
  priority: 102
  providerName: Unpaywall
Title Reverse design of Mg-Zn-Mn-Sr-Ca alloys for biodegradable implants by interpretable machine learning and genetic algorithm
URI https://dx.doi.org/10.1016/j.matdes.2025.114494
https://doi.org/10.1016/j.matdes.2025.114494
https://doaj.org/article/74c397a108fc4bdba4cc657061dff241
UnpaywallVersion publishedVersion
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1873-4197
  databaseCode: DOA
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0022734
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1873-4197
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0022734
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  issn: 1873-4197
  databaseCode: AIKHN
  dateStart: 20181205
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0022734
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1873-4197
  databaseCode: ACRLP
  dateStart: 20181205
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0022734
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1873-4197
  databaseCode: AKRWK
  dateStart: 20151005
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022734
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBclPaw9jO6jNFtbdNhVjWzLtnzMQku2kTDWBrpdjD4zj8QOWcrI_vq954_QnFp2MUg2ktAT7_0k_95PhHwA0KCNilKWOhEzoZxjWmbgDOPYwOYnDqXF847JNBnPxOf7-P6AjLpcGKRVtr6_8em1t25rBu1sDlZFMbiF3YNAeXII4hD0MHn9EOKPlD1yOPz0ZTzd7btQwaU5akGJvjTuMuhqmhfgQutQtzuMUTdXZGIvQtVC_nuB6sVDuVLbP2qxeBSIbk7IyxZB0mEzyFfkwJWvyfEjXcE35O83h2wLR23Nz6CVp5M5-1GySclu12ykKP5u3_6mgFipLiqLihEWk6hosVwtkBpD9ZYWO0IivlnWtEtH23sm5lSVlsLywyxIaG9erYvNz-VbMru5vhuNWXvJAjNRkm0AXVujIX5xI21gYNZtGsVeAg7hGcrZWa6N59qGmQrBI0mZaK8C5YJQWaHAO52SXlmV7ozQSAWJ5zZymmsRRQk8oGWZBSbj3DvVJ6yb2HzVaGnkHcnsV94YIkdD5I0h-uQjzv7uW1TCriuq9Txvl0KeCgOQSgVceiO01UoYg3SeJLDeAzzpk7SzXb63sKCp4onur3amftZ43_13V-_JEZYa7to56W3WD-4CwM5GX7aL-bI-LIDSbPp1-P0fop8ARQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCZEg7FOkLdZO0HLqypiRSjzE1EjhN7KFJgKALwaerwpYMx0Hh_vre6WHEU4suGkiBJHjU3Ufqu4-EfALQYKxOMpZ5IZnQ3jOTF-AMpbSw-ZFx7vC8YzJNx3fi67283yOjPhcGaZWd7299euOtu5JhN5vDZVkOb2D3IFCeHII4BD1MXj8QMsng6zw4u7waT7f7LlRwaY9aUKIvk30GXUPzAlzoPOp2xxJ1c0UhdiJUI-S_E6gOH6ul3vzS8_mTQHRxRF50CJKetYN8SfZ89Yo8f6Ir-Jr8_uaRbeGpa_gZtA50MmPfKzap2M2KjTTF3-2bBwqIlZqydqgY4TCJipaL5RypMdRsaLklJGLNoqFdetrdMzGjunIUlh9mQUJ7s3pVrn8s3pC7i_Pb0Zh1lywwm6TFGtC1swbiF7e5iyzMussSGXLAIbxAOTvHjQ3cuLjQMXikPE9N0JH2Uayd0OCd3pL9qq78O0ITHaWBu8QbbkSSpPCAlvMisgXnwesBYf3EqmWrpaF6ktlP1RpCoSFUa4gB-YKzv30XlbCbgno1U91SUJmwAKl0xPNghXFGC2uRzpNGLgSAJwOS9bZTOwsLmir_0v3nran_abzv_7urj-RwfDu5VteX06tj8gxrWh7bCdlfrx79KQCftfnQLew_nVkAgQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4t3QPiwBtRBMgHjrhyEidxjsuK1QqpKwRUWrhEfpYsbVqVVKj765nJo9oiIZZLDnlMHHvs-WJ_8xngDYIGY3WS89zLlEvtPTeqwMEwTS3-_KSxcjTfMb3Izmfyw2V6eQRvh1yYg_X7loeFwM15EtaOUxK2lYW8A8dZish7BMezi48nX7tpFJLfa3V1I5UntLiZD5lyfzFzEIlawf6DgHR3W6_17pdeLG4EnLMHMB2K2vFMfky2jZnY6z9UHG_7LQ_hfo882UnnKo_gyNeP4d4NPcIncP3JE0vDM9fyOtgqsOmcf6v5tOafN_xUM1qm3_1kiHSZqVaOlCYcJV-xarleEKWGmR2r9kRGurJs6Zqe9ftTzJmuHUO3pexJtDdfbarm-_IpzM7efzk95_3mDNwmWdEgKnfWYNwTVrnIWu9cnqRBIX4RBcngOWFsEMbFhY5xJFMqM0FH2kexdlLjqPYMRvWq9s-BJTrKgnCJN8LIJMnwgJZVEdlCiOD1GPjQUOW60-AoB3LaVdnVaUl1WnZ1OoZ31Jr7e0lBuz2BjVH2HbLMpUUopiOhgpXGGS2tJRpQFrkQENaMIR98oezBSAcy0FT1j9dP9q5zq_K--N8HXsKo2Wz9K4RDjXnd94LfpjsG6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reverse+design+of+Mg-Zn-Mn-Sr-Ca+alloys+for+biodegradable+implants+by+interpretable+machine+learning+and+genetic+algorithm&rft.jtitle=Materials+%26+design&rft.au=Suh%2C+Joung+Sik&rft.au=Jang%2C+Jae+Hoon&rft.au=Suh%2C+Byeong-Chan&rft.au=Kim%2C+Jae-Yeon&rft.date=2025-09-01&rft.issn=0264-1275&rft.volume=257&rft.spage=114494&rft_id=info:doi/10.1016%2Fj.matdes.2025.114494&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2025_114494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon