A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection
•A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction unde...
Saved in:
| Published in | International journal of electrical power & energy systems Vol. 62; pp. 862 - 867 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.11.2014
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0142-0615 1879-3517 |
| DOI | 10.1016/j.ijepes.2014.05.036 |
Cover
| Abstract | •A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction under Taken’s embedding theorem is used in preparing candidate features.
In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques. |
|---|---|
| AbstractList | In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken's embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg-Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques. •A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction under Taken’s embedding theorem is used in preparing candidate features. In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques. |
| Author | Keynia, Farshid Najafi Ravadanegh, Sajad Kouhi, Sajjad |
| Author_xml | – sequence: 1 givenname: Sajjad surname: Kouhi fullname: Kouhi, Sajjad email: sajjadkouhi@gmail.com organization: Heris Branch, Islamic Azad University, Heris, Iran – sequence: 2 givenname: Farshid surname: Keynia fullname: Keynia, Farshid organization: Energy Department, Graduate University of Advanced Technology, Kerman, Iran – sequence: 3 givenname: Sajad surname: Najafi Ravadanegh fullname: Najafi Ravadanegh, Sajad organization: Smart Distribution Grid Research Lab, Electrical Engineering Department, Azarbaijan Shahid Madani University, Tabriz, Iran |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28612291$$DView record in Pascal Francis |
| BookMark | eNqFkU2LFDEQQIOs4OzqP_CQi-Cl2yTdSU88CMviFyx40XOoTqqdDOlkTNIr_nszzOLBg55yqPcKUu-aXMUUkZCXnPWccfXm2PsjnrD0gvGxZ7Jng3pCdnw_6W6QfLoiuzYQHVNcPiPXpRwZY5MexY74WxrxJy2HlGtXMa80JHB0SRktlEpXrIfk6AwFHU2xwVtOHT6ksFWfIuRfFML3lH09rBSio_YAqXpLF4S6ZaQFA9oz-pw8XSAUfPH43pBvH95_vfvU3X_5-Pnu9r6zg9K1U07NCHpigGoQapxnFLNjM2iHe6m0kMidgHmeRtEMAHDSarVwrfjIuRhuyOvL3lNOPzYs1ay-WAwBIqatGC6lVnrUcmroq0cUioWwZIjWF3PKfm0fM2KvuBCaN268cDanUjIufxDOzLmAOZpLAXMuYJg0rUDT3v6lWV_hfIuawYf_ye8uMrZbPXjMpliP0aLzLU01Lvl_L_gNKyOoPA |
| CODEN | IEPSDC |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3036675 crossref_primary_10_1016_j_istruc_2022_08_065 crossref_primary_10_1049_iet_gtd_2020_0842 crossref_primary_10_1016_j_enconman_2020_112824 crossref_primary_10_1016_j_energy_2016_11_034 crossref_primary_10_1016_j_scs_2020_102194 crossref_primary_10_1016_j_enbuild_2023_112826 crossref_primary_10_1007_s11269_016_1288_8 crossref_primary_10_1016_j_asoc_2016_07_011 crossref_primary_10_1016_j_resourpol_2023_104058 crossref_primary_10_1016_j_ijepes_2019_02_022 crossref_primary_10_3390_app8060864 crossref_primary_10_3390_en12030393 crossref_primary_10_1049_gtd2_12069 crossref_primary_10_1016_j_energy_2018_10_119 crossref_primary_10_1016_j_apenergy_2021_116452 crossref_primary_10_1016_j_ijepes_2019_105582 crossref_primary_10_3390_en16020867 crossref_primary_10_1016_j_asoc_2014_09_007 crossref_primary_10_1016_j_rser_2018_02_002 crossref_primary_10_1016_j_epsr_2024_110376 crossref_primary_10_1007_s00521_019_04310_w crossref_primary_10_3390_en10070884 crossref_primary_10_1007_s00202_017_0531_5 crossref_primary_10_1007_s00500_017_2624_5 crossref_primary_10_1080_03772063_2021_1905085 crossref_primary_10_1155_2015_231765 crossref_primary_10_1155_2017_3485182 crossref_primary_10_1016_j_apm_2023_06_040 crossref_primary_10_1016_j_egypro_2018_12_044 crossref_primary_10_1016_j_epsr_2022_108065 crossref_primary_10_1016_j_apenergy_2020_115503 crossref_primary_10_1016_j_enbuild_2019_01_016 crossref_primary_10_1109_TPWRS_2016_2556620 crossref_primary_10_1016_j_enconman_2015_07_041 crossref_primary_10_1016_j_energy_2017_07_112 crossref_primary_10_1016_j_segan_2024_101336 crossref_primary_10_3389_fenrg_2022_844838 crossref_primary_10_3390_en9120994 crossref_primary_10_1016_j_rser_2016_10_056 crossref_primary_10_1016_j_epsr_2020_106995 crossref_primary_10_3390_en14123459 crossref_primary_10_1016_j_energy_2019_06_075 crossref_primary_10_1088_1755_1315_610_1_012005 crossref_primary_10_1016_j_asoc_2020_106389 crossref_primary_10_1016_j_rser_2017_02_085 crossref_primary_10_1177_0143624419843647 crossref_primary_10_1016_j_soildyn_2016_03_015 crossref_primary_10_1016_j_ymssp_2015_05_022 crossref_primary_10_1515_ijeeps_2021_0012 crossref_primary_10_1016_j_procs_2021_12_113 crossref_primary_10_1016_j_scs_2020_102320 crossref_primary_10_1016_j_apenergy_2019_01_055 crossref_primary_10_3390_en16217444 crossref_primary_10_1002_cplx_21766 crossref_primary_10_1016_j_neucom_2015_08_051 crossref_primary_10_3390_e18090330 crossref_primary_10_3390_en10111713 crossref_primary_10_1016_j_enbuild_2018_06_017 crossref_primary_10_1016_j_energy_2019_02_141 crossref_primary_10_1007_s00521_016_2396_3 crossref_primary_10_1016_j_egypro_2017_03_847 crossref_primary_10_1155_2016_3205396 |
| Cites_doi | 10.1109/TPWRS.2002.1007923 10.1109/TPAS.1971.293123 10.1109/ICRCCS.2009.12 10.1109/72.329697 10.1016/j.enconman.2013.03.014 10.1109/TPWRS.2006.889130 10.1016/S0196-8904(02)00148-6 10.1023/A:1008202821328 10.1016/j.energy.2008.09.020 10.1109/UPEC.2007.4469121 10.1016/S0004-3702(97)00043-X 10.1109/TPWRS.2004.840380 10.1109/59.932287 10.1109/59.99372 10.1016/j.enconman.2007.09.009 10.1016/j.eswa.2009.04.059 10.1016/j.ijepes.2006.09.002 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1109/TPWRS.2009.2030426 10.1109/TPWRS.2005.860926 10.1016/j.egypro.2012.01.229 10.1109/TPWRS.2005.860944 10.1016/j.epsr.2006.09.022 10.1109/TPAS.1982.317242 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1016/j.ijepes.2014.05.036 |
| DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1879-3517 |
| EndPage | 867 |
| ExternalDocumentID | 28612291 10_1016_j_ijepes_2014_05_036 S014206151400307X |
| GeographicLocations | England United Kingdom Great Britain Europe |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS GROUPED_DOAJ ~HD BNPGV IQODW SSH 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c369t-6d6bea970ae63264bbe2bd0ba9de856925e1d2abb742c36aaad5c96f196141123 |
| IEDL.DBID | .~1 |
| ISSN | 0142-0615 |
| IngestDate | Thu Oct 02 11:28:12 EDT 2025 Wed Apr 02 07:26:06 EDT 2025 Wed Oct 01 04:38:26 EDT 2025 Thu Apr 24 23:00:23 EDT 2025 Fri Feb 23 02:24:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Differential Evolutionary Reconstructed phase space Feature selection Chaotic time series Neural network Short-term load forecast Chaos Short term Deregulation Evolutionary algorithm Demand forecasting Power system economics Levenberg Marquardt algorithm Power markets Learning algorithm Phase space Time series Multiple layer Forecasting management Electrical network Correlation analysis Feature extraction Load management Open market Comparative study |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-6d6bea970ae63264bbe2bd0ba9de856925e1d2abb742c36aaad5c96f196141123 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1559694957 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1559694957 pascalfrancis_primary_28612291 crossref_primary_10_1016_j_ijepes_2014_05_036 crossref_citationtrail_10_1016_j_ijepes_2014_05_036 elsevier_sciencedirect_doi_10_1016_j_ijepes_2014_05_036 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-01 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Zhang, Bao, Yan, Cao, Du (b0025) 2003; 10 Kouhi, Keynia (b0055) 2013; 71 Ho, Hsu, Chen, Lee, Liang, Lai (b0070) 1990; 5 Kandil, El-Debeiky, Hasanien (b0075) 2002; 17 Amjady (b0125) 2007; 22 Santos, Martins, Pires (b0110) 2007; 29 Wei L, Zhen-gang Z. Based on time sequence of ARIMA model in the application of short-term electricity load forecasting. In: Research challenges in computer science, 2009. ICRCCS’09. International conference on, IEEE; 2009, p. 11–4. Lorenz (b0090) 1963; 20 Takens (b0100) 1980; 1981 Zhang, Yan (b0060) 2011; 13 Amral N, Ozveren CS, King D. Short term load forecasting using multiple linear regression. In: Universities power engineering conference, 2007. UPEC 2007. 42nd International, IEEE; 2007, p. 1192–8. Catalão, Mariano, Mendes, Ferreira (b0145) 2007; 77 Amjady, Keynia (b0105) 2009; 34 Kohavi, John (b0080) 1997; 97 Guyon, Elisseeff (b0085) 2003; 3 Meslier F. New advances in short term load forecasting using Box and Jenkins approach. In: Proceedings, 1978, p. 51–5. Hagan, Menhaj (b0130) 1994; 5 Amjady, Daraeepour (b0120) 2009; 36 Lauret, Fock, Randrianarivony, Manicom-Ramsamy (b0065) 2008; 49 Chen, Luh, Guan, Zhao, Michel, Coolbeth (b0150) 2010; 25 Irisarri GD, Widergren SE, Yehsakul PD. On-line load forecasting for energy control center application. Power Apparatus and Systems, IEEE Transactions On 1982: p. 71–8. Amjady (b0005) 2001; 16 Reis, da Silva (b0115) 2005; 20 Fan, Chen (b0010) 2006; 21 Storn, Price (b0140) 1997; 11 Metaxiotis, Kagiannas, Askounis, Psarras (b0050) 2003; 44 Christiaanse WR. Short-term load forecasting using general exponential smoothing. Power Apparatus and Systems, IEEE Transactions On 1971: p. 900–11. Kellert (b0095) 1993 Tsekouras, Hatziargyriou, Dialynas (b0135) 2006; 21 Nie, Liu, Liu, Wang (b0015) 2012; 16 Fan (10.1016/j.ijepes.2014.05.036_b0010) 2006; 21 Kandil (10.1016/j.ijepes.2014.05.036_b0075) 2002; 17 Lauret (10.1016/j.ijepes.2014.05.036_b0065) 2008; 49 Amjady (10.1016/j.ijepes.2014.05.036_b0120) 2009; 36 10.1016/j.ijepes.2014.05.036_b0030 Guyon (10.1016/j.ijepes.2014.05.036_b0085) 2003; 3 Amjady (10.1016/j.ijepes.2014.05.036_b0125) 2007; 22 Tsekouras (10.1016/j.ijepes.2014.05.036_b0135) 2006; 21 Kohavi (10.1016/j.ijepes.2014.05.036_b0080) 1997; 97 Zhang (10.1016/j.ijepes.2014.05.036_b0060) 2011; 13 Kellert (10.1016/j.ijepes.2014.05.036_b0095) 1993 Zhang (10.1016/j.ijepes.2014.05.036_b0025) 2003; 10 10.1016/j.ijepes.2014.05.036_b0035 Hagan (10.1016/j.ijepes.2014.05.036_b0130) 1994; 5 Chen (10.1016/j.ijepes.2014.05.036_b0150) 2010; 25 Metaxiotis (10.1016/j.ijepes.2014.05.036_b0050) 2003; 44 Lorenz (10.1016/j.ijepes.2014.05.036_b0090) 1963; 20 Takens (10.1016/j.ijepes.2014.05.036_b0100) 1980; 1981 Reis (10.1016/j.ijepes.2014.05.036_b0115) 2005; 20 10.1016/j.ijepes.2014.05.036_b0045 Amjady (10.1016/j.ijepes.2014.05.036_b0005) 2001; 16 10.1016/j.ijepes.2014.05.036_b0020 Ho (10.1016/j.ijepes.2014.05.036_b0070) 1990; 5 10.1016/j.ijepes.2014.05.036_b0040 Catalão (10.1016/j.ijepes.2014.05.036_b0145) 2007; 77 Kouhi (10.1016/j.ijepes.2014.05.036_b0055) 2013; 71 Storn (10.1016/j.ijepes.2014.05.036_b0140) 1997; 11 Nie (10.1016/j.ijepes.2014.05.036_b0015) 2012; 16 Santos (10.1016/j.ijepes.2014.05.036_b0110) 2007; 29 Amjady (10.1016/j.ijepes.2014.05.036_b0105) 2009; 34 |
| References_xml | – volume: 13 start-page: 6006 year: 2011 end-page: 6016 ident: b0060 article-title: Short-term load forecasting of power systems by combination of wavelet transform and AMPSO based neural network publication-title: Energy Proc – volume: 5 start-page: 1214 year: 1990 end-page: 1221 ident: b0070 article-title: Short term load forecasting of Taiwan power system using a knowledge-based expert system publication-title: Power Syst IEEE Trans – year: 1993 ident: b0095 article-title: In the wake of chaos: unpredictable order in dynamical systems – volume: 21 start-page: 385 year: 2006 end-page: 391 ident: b0135 article-title: An optimized adaptive neural network for annual midterm energy forecasting publication-title: Power Syst IEEE Trans – volume: 71 start-page: 76 year: 2013 end-page: 83 ident: b0055 article-title: A new cascade NN based method to short-term load forecast in deregulated electricity market publication-title: Energy Convers Manage – volume: 29 start-page: 338 year: 2007 end-page: 347 ident: b0110 article-title: Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems publication-title: Int J Electr Power Energy Syst – volume: 36 start-page: 12281 year: 2009 end-page: 12294 ident: b0120 article-title: Design of input vector for day-ahead price forecasting of electricity markets publication-title: Expert Syst Appl – volume: 5 start-page: 989 year: 1994 end-page: 993 ident: b0130 article-title: Training feedforward networks with the Marquardt algorithm publication-title: Neural Networks IEEE Trans – volume: 16 start-page: 498 year: 2001 end-page: 505 ident: b0005 article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability publication-title: Power Syst IEEE Trans – volume: 1981 start-page: 366 year: 1980 end-page: 381 ident: b0100 article-title: Detecting strange attractors in turbulence publication-title: Dynamical Systems and Turbulence, Warwick – reference: Amral N, Ozveren CS, King D. Short term load forecasting using multiple linear regression. In: Universities power engineering conference, 2007. UPEC 2007. 42nd International, IEEE; 2007, p. 1192–8. – reference: Irisarri GD, Widergren SE, Yehsakul PD. On-line load forecasting for energy control center application. Power Apparatus and Systems, IEEE Transactions On 1982: p. 71–8. – volume: 44 start-page: 1525 year: 2003 end-page: 1534 ident: b0050 article-title: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher publication-title: Energy Convers Manage – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: b0085 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 77 start-page: 1297 year: 2007 end-page: 1304 ident: b0145 article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach publication-title: Electric Power Syst Res – volume: 17 start-page: 491 year: 2002 end-page: 496 ident: b0075 article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system publication-title: Power Syst IEEE Trans – volume: 20 start-page: 189 year: 2005 end-page: 198 ident: b0115 article-title: Feature extraction via multiresolution analysis for short-term load forecasting publication-title: Power Syst IEEE Trans – volume: 25 start-page: 322 year: 2010 end-page: 330 ident: b0150 article-title: Short-term load forecasting: similar day-based wavelet neural networks publication-title: Power Syst IEEE Trans – volume: 10 start-page: 9 year: 2003 ident: b0025 article-title: Research on processing of short-term historical data of daily load based on Kalman filter publication-title: Power System Technol – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: b0080 article-title: Wrappers for feature subset selection publication-title: Artif Intell – reference: Meslier F. New advances in short term load forecasting using Box and Jenkins approach. In: Proceedings, 1978, p. 51–5. – volume: 22 start-page: 333 year: 2007 end-page: 341 ident: b0125 article-title: Short-term bus load forecasting of power systems by a new hybrid method publication-title: Power Syst IEEE Trans – volume: 34 start-page: 46 year: 2009 end-page: 57 ident: b0105 article-title: Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm publication-title: Energy – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0140 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Global Optim – reference: Wei L, Zhen-gang Z. Based on time sequence of ARIMA model in the application of short-term electricity load forecasting. In: Research challenges in computer science, 2009. ICRCCS’09. International conference on, IEEE; 2009, p. 11–4. – volume: 21 start-page: 392 year: 2006 end-page: 401 ident: b0010 article-title: Short-term load forecasting based on an adaptive hybrid method publication-title: Power Syst IEEE Trans – reference: Christiaanse WR. Short-term load forecasting using general exponential smoothing. Power Apparatus and Systems, IEEE Transactions On 1971: p. 900–11. – volume: 49 start-page: 1156 year: 2008 end-page: 1166 ident: b0065 article-title: Bayesian neural network approach to short time load forecasting publication-title: Energy Convers Manage – volume: 20 start-page: 130 year: 1963 end-page: 141 ident: b0090 article-title: Deterministic nonperiodic flow publication-title: J Atmosph Sci – volume: 16 start-page: 1455 year: 2012 end-page: 1460 ident: b0015 article-title: Hybrid of ARIMA and SVMs for short-term load forecasting publication-title: Energy Proc – volume: 17 start-page: 491 year: 2002 ident: 10.1016/j.ijepes.2014.05.036_b0075 article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system publication-title: Power Syst IEEE Trans doi: 10.1109/TPWRS.2002.1007923 – ident: 10.1016/j.ijepes.2014.05.036_b0045 doi: 10.1109/TPAS.1971.293123 – ident: 10.1016/j.ijepes.2014.05.036_b0030 doi: 10.1109/ICRCCS.2009.12 – volume: 5 start-page: 989 year: 1994 ident: 10.1016/j.ijepes.2014.05.036_b0130 article-title: Training feedforward networks with the Marquardt algorithm publication-title: Neural Networks IEEE Trans doi: 10.1109/72.329697 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.ijepes.2014.05.036_b0085 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 71 start-page: 76 year: 2013 ident: 10.1016/j.ijepes.2014.05.036_b0055 article-title: A new cascade NN based method to short-term load forecast in deregulated electricity market publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.03.014 – volume: 10 start-page: 9 year: 2003 ident: 10.1016/j.ijepes.2014.05.036_b0025 article-title: Research on processing of short-term historical data of daily load based on Kalman filter publication-title: Power System Technol – year: 1993 ident: 10.1016/j.ijepes.2014.05.036_b0095 – volume: 22 start-page: 333 year: 2007 ident: 10.1016/j.ijepes.2014.05.036_b0125 article-title: Short-term bus load forecasting of power systems by a new hybrid method publication-title: Power Syst IEEE Trans doi: 10.1109/TPWRS.2006.889130 – volume: 44 start-page: 1525 year: 2003 ident: 10.1016/j.ijepes.2014.05.036_b0050 article-title: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(02)00148-6 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.ijepes.2014.05.036_b0140 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 34 start-page: 46 year: 2009 ident: 10.1016/j.ijepes.2014.05.036_b0105 article-title: Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm publication-title: Energy doi: 10.1016/j.energy.2008.09.020 – ident: 10.1016/j.ijepes.2014.05.036_b0020 doi: 10.1109/UPEC.2007.4469121 – volume: 97 start-page: 273 year: 1997 ident: 10.1016/j.ijepes.2014.05.036_b0080 article-title: Wrappers for feature subset selection publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00043-X – volume: 20 start-page: 189 year: 2005 ident: 10.1016/j.ijepes.2014.05.036_b0115 article-title: Feature extraction via multiresolution analysis for short-term load forecasting publication-title: Power Syst IEEE Trans doi: 10.1109/TPWRS.2004.840380 – volume: 16 start-page: 498 year: 2001 ident: 10.1016/j.ijepes.2014.05.036_b0005 article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability publication-title: Power Syst IEEE Trans doi: 10.1109/59.932287 – ident: 10.1016/j.ijepes.2014.05.036_b0035 – volume: 5 start-page: 1214 year: 1990 ident: 10.1016/j.ijepes.2014.05.036_b0070 article-title: Short term load forecasting of Taiwan power system using a knowledge-based expert system publication-title: Power Syst IEEE Trans doi: 10.1109/59.99372 – volume: 49 start-page: 1156 year: 2008 ident: 10.1016/j.ijepes.2014.05.036_b0065 article-title: Bayesian neural network approach to short time load forecasting publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2007.09.009 – volume: 36 start-page: 12281 year: 2009 ident: 10.1016/j.ijepes.2014.05.036_b0120 article-title: Design of input vector for day-ahead price forecasting of electricity markets publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.04.059 – volume: 13 start-page: 6006 year: 2011 ident: 10.1016/j.ijepes.2014.05.036_b0060 article-title: Short-term load forecasting of power systems by combination of wavelet transform and AMPSO based neural network publication-title: Energy Proc – volume: 29 start-page: 338 year: 2007 ident: 10.1016/j.ijepes.2014.05.036_b0110 article-title: Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2006.09.002 – volume: 20 start-page: 130 year: 1963 ident: 10.1016/j.ijepes.2014.05.036_b0090 article-title: Deterministic nonperiodic flow publication-title: J Atmosph Sci doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 25 start-page: 322 year: 2010 ident: 10.1016/j.ijepes.2014.05.036_b0150 article-title: Short-term load forecasting: similar day-based wavelet neural networks publication-title: Power Syst IEEE Trans doi: 10.1109/TPWRS.2009.2030426 – volume: 1981 start-page: 366 year: 1980 ident: 10.1016/j.ijepes.2014.05.036_b0100 article-title: Detecting strange attractors in turbulence publication-title: Dynamical Systems and Turbulence, Warwick – volume: 21 start-page: 385 year: 2006 ident: 10.1016/j.ijepes.2014.05.036_b0135 article-title: An optimized adaptive neural network for annual midterm energy forecasting publication-title: Power Syst IEEE Trans doi: 10.1109/TPWRS.2005.860926 – volume: 16 start-page: 1455 year: 2012 ident: 10.1016/j.ijepes.2014.05.036_b0015 article-title: Hybrid of ARIMA and SVMs for short-term load forecasting publication-title: Energy Proc doi: 10.1016/j.egypro.2012.01.229 – volume: 21 start-page: 392 year: 2006 ident: 10.1016/j.ijepes.2014.05.036_b0010 article-title: Short-term load forecasting based on an adaptive hybrid method publication-title: Power Syst IEEE Trans doi: 10.1109/TPWRS.2005.860944 – volume: 77 start-page: 1297 year: 2007 ident: 10.1016/j.ijepes.2014.05.036_b0145 article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2006.09.022 – ident: 10.1016/j.ijepes.2014.05.036_b0040 doi: 10.1109/TPAS.1982.317242 |
| SSID | ssj0007942 |
| Score | 2.3728912 |
| Snippet | •A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using... In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 862 |
| SubjectTerms | Algorithms Applied sciences Chaos theory Chaotic time series Differential Evolutionary Electric power generation Electrical engineering. Electrical power engineering Electrical power engineering Electricity Electricity consumption Exact sciences and technology Feature selection Forecasting Markets Miscellaneous Neural network Neural networks Operation. Load control. Reliability Power networks and lines Reconstructed phase space Short-term load forecast |
| Title | A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection |
| URI | https://dx.doi.org/10.1016/j.ijepes.2014.05.036 https://www.proquest.com/docview/1559694957 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-3517 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-3517 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AKRWK dateStart: 19790101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSU0CfdJl1U6FVdP-SHjkto2LY0pwb2JkbSuOuwtZe1U8glvz0j2U4bWgj0aKNBRjOa-WTNfMPYB6ucqzBPRRynUkgKUIKCoBWRyVIFzpjS-v-Q387z1YX8ss7WB-x0qoXxaZWj7x98evDW45vFuJqLXV0vfFpSEgKyDJa69hXssvBdDD7e_E7zIHtLhjTGxHcxyKbyuZDjVV_iDj1pdywDf2cgav5neHq6g44WrRq6XfzluEM0OnvGjkYYyZfDlz5nB9i8YE_-IBd8yeolJ8jMuw0BbOEdMN-24DiBVLTQ9XzoHc19GHO8bXhgthT4a7RF2F9z2P5o93W_-cmhcdxuoKXpeIWBDJR3oYUODX3FLs4-fT9dibGxgrBprnqRu9wgqCIC0hIhImMwMS4yoByWWa6SDGOXgDF0biYJAHCZVXlFuzWWBNDS1-ywaRt8wzhKm5aAtizRyEzFJSiDWVVETmFFUHTG0mk9tR1Zx33zi62e0ssu9aAF7bWgo0yTFmZM3EntBtaNB8YXk6r0PevRFBgekJzf0-zddElJ2C9R8Yy9n1Staef56xRosL3qtL_QzRUdMIu3_z39MXvsn4bixhN22O-v8B2hnN7MgxnP2aPl56-r81u6z_85 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQBCiKdYHsVIXM0mjp3Ex6qiWqDtqZX2ZvkxYVNtk9UmReqlv52xkxQqkCpxTWw58ozn-xyPvyHkk1PeV5BnLE0zwQQCFEMQdCyxMlPGW1u68B_y-CRfnIlvS7ncIQfTXZiQVjnG_iGmx2g9PpmPsznf1PU8pCXxCMgieuryHrkvJC_CDuzz9e88D3Q4PuQx8lDGQE7352KSV30OGwiq3amIAp5Rqfmf-PR4YzqctWood_FX5I5wdPiUPBl5JN0fPvUZ2YHmOXn0h7rgC1LvU-TMtFshw2YhAtN1azxFlgrOdD0dikfTgGOetg2N0pYMfo7OaLZX1Kx_tNu6X11Q03jqVqbF4WgFUQ2UdrGGDjZ9Sc4Ov5weLNhYWYG5LFc9y31uwagiMWgmpETWArc-sUZ5KGWuuITUc2MtbpyxhzHGS6fyCpdrKpChZa_IbtM28JpQEC4rDbiyBCukSkujLMiqSLyCCrnojGTTfGo3yo6H6hdrPeWXnevBCjpYQSdSoxVmhN302gyyG3e0LyZT6VvuoxEZ7ui5d8uyN8PxEskfV-mMfJxMrXHphfMU00B72elwopsr3GEWb_57-A_kweL0-EgffT35_pY8DG-Gm47vyG6_vYT3SHl6uxdd-heUOQDd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+short-term+load+forecast+method+based+on+neuro-evolutionary+algorithm+and+chaotic+feature+selection&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=KOUHI%2C+Sajjad&rft.au=KEYNIA%2C+Farshid&rft.au=SAJAD+NAJAFI+RAVADANEGH&rft.date=2014-11-01&rft.pub=Elsevier&rft.issn=0142-0615&rft.volume=62&rft.spage=862&rft.epage=867&rft_id=info:doi/10.1016%2Fj.ijepes.2014.05.036&rft.externalDBID=n%2Fa&rft.externalDocID=28612291 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |