A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection

•A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction unde...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical power & energy systems Vol. 62; pp. 862 - 867
Main Authors Kouhi, Sajjad, Keynia, Farshid, Najafi Ravadanegh, Sajad
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0142-0615
1879-3517
DOI10.1016/j.ijepes.2014.05.036

Cover

Abstract •A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction under Taken’s embedding theorem is used in preparing candidate features. In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques.
AbstractList In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken's embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg-Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques.
•A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction under Taken’s embedding theorem is used in preparing candidate features. In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques.
Author Keynia, Farshid
Najafi Ravadanegh, Sajad
Kouhi, Sajjad
Author_xml – sequence: 1
  givenname: Sajjad
  surname: Kouhi
  fullname: Kouhi, Sajjad
  email: sajjadkouhi@gmail.com
  organization: Heris Branch, Islamic Azad University, Heris, Iran
– sequence: 2
  givenname: Farshid
  surname: Keynia
  fullname: Keynia, Farshid
  organization: Energy Department, Graduate University of Advanced Technology, Kerman, Iran
– sequence: 3
  givenname: Sajad
  surname: Najafi Ravadanegh
  fullname: Najafi Ravadanegh, Sajad
  organization: Smart Distribution Grid Research Lab, Electrical Engineering Department, Azarbaijan Shahid Madani University, Tabriz, Iran
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28612291$$DView record in Pascal Francis
BookMark eNqFkU2LFDEQQIOs4OzqP_CQi-Cl2yTdSU88CMviFyx40XOoTqqdDOlkTNIr_nszzOLBg55yqPcKUu-aXMUUkZCXnPWccfXm2PsjnrD0gvGxZ7Jng3pCdnw_6W6QfLoiuzYQHVNcPiPXpRwZY5MexY74WxrxJy2HlGtXMa80JHB0SRktlEpXrIfk6AwFHU2xwVtOHT6ksFWfIuRfFML3lH09rBSio_YAqXpLF4S6ZaQFA9oz-pw8XSAUfPH43pBvH95_vfvU3X_5-Pnu9r6zg9K1U07NCHpigGoQapxnFLNjM2iHe6m0kMidgHmeRtEMAHDSarVwrfjIuRhuyOvL3lNOPzYs1ay-WAwBIqatGC6lVnrUcmroq0cUioWwZIjWF3PKfm0fM2KvuBCaN268cDanUjIufxDOzLmAOZpLAXMuYJg0rUDT3v6lWV_hfIuawYf_ye8uMrZbPXjMpliP0aLzLU01Lvl_L_gNKyOoPA
CODEN IEPSDC
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3036675
crossref_primary_10_1016_j_istruc_2022_08_065
crossref_primary_10_1049_iet_gtd_2020_0842
crossref_primary_10_1016_j_enconman_2020_112824
crossref_primary_10_1016_j_energy_2016_11_034
crossref_primary_10_1016_j_scs_2020_102194
crossref_primary_10_1016_j_enbuild_2023_112826
crossref_primary_10_1007_s11269_016_1288_8
crossref_primary_10_1016_j_asoc_2016_07_011
crossref_primary_10_1016_j_resourpol_2023_104058
crossref_primary_10_1016_j_ijepes_2019_02_022
crossref_primary_10_3390_app8060864
crossref_primary_10_3390_en12030393
crossref_primary_10_1049_gtd2_12069
crossref_primary_10_1016_j_energy_2018_10_119
crossref_primary_10_1016_j_apenergy_2021_116452
crossref_primary_10_1016_j_ijepes_2019_105582
crossref_primary_10_3390_en16020867
crossref_primary_10_1016_j_asoc_2014_09_007
crossref_primary_10_1016_j_rser_2018_02_002
crossref_primary_10_1016_j_epsr_2024_110376
crossref_primary_10_1007_s00521_019_04310_w
crossref_primary_10_3390_en10070884
crossref_primary_10_1007_s00202_017_0531_5
crossref_primary_10_1007_s00500_017_2624_5
crossref_primary_10_1080_03772063_2021_1905085
crossref_primary_10_1155_2015_231765
crossref_primary_10_1155_2017_3485182
crossref_primary_10_1016_j_apm_2023_06_040
crossref_primary_10_1016_j_egypro_2018_12_044
crossref_primary_10_1016_j_epsr_2022_108065
crossref_primary_10_1016_j_apenergy_2020_115503
crossref_primary_10_1016_j_enbuild_2019_01_016
crossref_primary_10_1109_TPWRS_2016_2556620
crossref_primary_10_1016_j_enconman_2015_07_041
crossref_primary_10_1016_j_energy_2017_07_112
crossref_primary_10_1016_j_segan_2024_101336
crossref_primary_10_3389_fenrg_2022_844838
crossref_primary_10_3390_en9120994
crossref_primary_10_1016_j_rser_2016_10_056
crossref_primary_10_1016_j_epsr_2020_106995
crossref_primary_10_3390_en14123459
crossref_primary_10_1016_j_energy_2019_06_075
crossref_primary_10_1088_1755_1315_610_1_012005
crossref_primary_10_1016_j_asoc_2020_106389
crossref_primary_10_1016_j_rser_2017_02_085
crossref_primary_10_1177_0143624419843647
crossref_primary_10_1016_j_soildyn_2016_03_015
crossref_primary_10_1016_j_ymssp_2015_05_022
crossref_primary_10_1515_ijeeps_2021_0012
crossref_primary_10_1016_j_procs_2021_12_113
crossref_primary_10_1016_j_scs_2020_102320
crossref_primary_10_1016_j_apenergy_2019_01_055
crossref_primary_10_3390_en16217444
crossref_primary_10_1002_cplx_21766
crossref_primary_10_1016_j_neucom_2015_08_051
crossref_primary_10_3390_e18090330
crossref_primary_10_3390_en10111713
crossref_primary_10_1016_j_enbuild_2018_06_017
crossref_primary_10_1016_j_energy_2019_02_141
crossref_primary_10_1007_s00521_016_2396_3
crossref_primary_10_1016_j_egypro_2017_03_847
crossref_primary_10_1155_2016_3205396
Cites_doi 10.1109/TPWRS.2002.1007923
10.1109/TPAS.1971.293123
10.1109/ICRCCS.2009.12
10.1109/72.329697
10.1016/j.enconman.2013.03.014
10.1109/TPWRS.2006.889130
10.1016/S0196-8904(02)00148-6
10.1023/A:1008202821328
10.1016/j.energy.2008.09.020
10.1109/UPEC.2007.4469121
10.1016/S0004-3702(97)00043-X
10.1109/TPWRS.2004.840380
10.1109/59.932287
10.1109/59.99372
10.1016/j.enconman.2007.09.009
10.1016/j.eswa.2009.04.059
10.1016/j.ijepes.2006.09.002
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1109/TPWRS.2009.2030426
10.1109/TPWRS.2005.860926
10.1016/j.egypro.2012.01.229
10.1109/TPWRS.2005.860944
10.1016/j.epsr.2006.09.022
10.1109/TPAS.1982.317242
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.ijepes.2014.05.036
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3517
EndPage 867
ExternalDocumentID 28612291
10_1016_j_ijepes_2014_05_036
S014206151400307X
GeographicLocations England
United Kingdom
Great Britain
Europe
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
BNPGV
IQODW
SSH
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c369t-6d6bea970ae63264bbe2bd0ba9de856925e1d2abb742c36aaad5c96f196141123
IEDL.DBID .~1
ISSN 0142-0615
IngestDate Thu Oct 02 11:28:12 EDT 2025
Wed Apr 02 07:26:06 EDT 2025
Wed Oct 01 04:38:26 EDT 2025
Thu Apr 24 23:00:23 EDT 2025
Fri Feb 23 02:24:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential Evolutionary
Reconstructed phase space
Feature selection
Chaotic time series
Neural network
Short-term load forecast
Chaos
Short term
Deregulation
Evolutionary algorithm
Demand forecasting
Power system economics
Levenberg Marquardt algorithm
Power markets
Learning algorithm
Phase space
Time series
Multiple layer
Forecasting management
Electrical network
Correlation analysis
Feature extraction
Load management
Open market
Comparative study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-6d6bea970ae63264bbe2bd0ba9de856925e1d2abb742c36aaad5c96f196141123
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1559694957
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1559694957
pascalfrancis_primary_28612291
crossref_primary_10_1016_j_ijepes_2014_05_036
crossref_citationtrail_10_1016_j_ijepes_2014_05_036
elsevier_sciencedirect_doi_10_1016_j_ijepes_2014_05_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhang, Bao, Yan, Cao, Du (b0025) 2003; 10
Kouhi, Keynia (b0055) 2013; 71
Ho, Hsu, Chen, Lee, Liang, Lai (b0070) 1990; 5
Kandil, El-Debeiky, Hasanien (b0075) 2002; 17
Amjady (b0125) 2007; 22
Santos, Martins, Pires (b0110) 2007; 29
Wei L, Zhen-gang Z. Based on time sequence of ARIMA model in the application of short-term electricity load forecasting. In: Research challenges in computer science, 2009. ICRCCS’09. International conference on, IEEE; 2009, p. 11–4.
Lorenz (b0090) 1963; 20
Takens (b0100) 1980; 1981
Zhang, Yan (b0060) 2011; 13
Amral N, Ozveren CS, King D. Short term load forecasting using multiple linear regression. In: Universities power engineering conference, 2007. UPEC 2007. 42nd International, IEEE; 2007, p. 1192–8.
Catalão, Mariano, Mendes, Ferreira (b0145) 2007; 77
Amjady, Keynia (b0105) 2009; 34
Kohavi, John (b0080) 1997; 97
Guyon, Elisseeff (b0085) 2003; 3
Meslier F. New advances in short term load forecasting using Box and Jenkins approach. In: Proceedings, 1978, p. 51–5.
Hagan, Menhaj (b0130) 1994; 5
Amjady, Daraeepour (b0120) 2009; 36
Lauret, Fock, Randrianarivony, Manicom-Ramsamy (b0065) 2008; 49
Chen, Luh, Guan, Zhao, Michel, Coolbeth (b0150) 2010; 25
Irisarri GD, Widergren SE, Yehsakul PD. On-line load forecasting for energy control center application. Power Apparatus and Systems, IEEE Transactions On 1982: p. 71–8.
Amjady (b0005) 2001; 16
Reis, da Silva (b0115) 2005; 20
Fan, Chen (b0010) 2006; 21
Storn, Price (b0140) 1997; 11
Metaxiotis, Kagiannas, Askounis, Psarras (b0050) 2003; 44
Christiaanse WR. Short-term load forecasting using general exponential smoothing. Power Apparatus and Systems, IEEE Transactions On 1971: p. 900–11.
Kellert (b0095) 1993
Tsekouras, Hatziargyriou, Dialynas (b0135) 2006; 21
Nie, Liu, Liu, Wang (b0015) 2012; 16
Fan (10.1016/j.ijepes.2014.05.036_b0010) 2006; 21
Kandil (10.1016/j.ijepes.2014.05.036_b0075) 2002; 17
Lauret (10.1016/j.ijepes.2014.05.036_b0065) 2008; 49
Amjady (10.1016/j.ijepes.2014.05.036_b0120) 2009; 36
10.1016/j.ijepes.2014.05.036_b0030
Guyon (10.1016/j.ijepes.2014.05.036_b0085) 2003; 3
Amjady (10.1016/j.ijepes.2014.05.036_b0125) 2007; 22
Tsekouras (10.1016/j.ijepes.2014.05.036_b0135) 2006; 21
Kohavi (10.1016/j.ijepes.2014.05.036_b0080) 1997; 97
Zhang (10.1016/j.ijepes.2014.05.036_b0060) 2011; 13
Kellert (10.1016/j.ijepes.2014.05.036_b0095) 1993
Zhang (10.1016/j.ijepes.2014.05.036_b0025) 2003; 10
10.1016/j.ijepes.2014.05.036_b0035
Hagan (10.1016/j.ijepes.2014.05.036_b0130) 1994; 5
Chen (10.1016/j.ijepes.2014.05.036_b0150) 2010; 25
Metaxiotis (10.1016/j.ijepes.2014.05.036_b0050) 2003; 44
Lorenz (10.1016/j.ijepes.2014.05.036_b0090) 1963; 20
Takens (10.1016/j.ijepes.2014.05.036_b0100) 1980; 1981
Reis (10.1016/j.ijepes.2014.05.036_b0115) 2005; 20
10.1016/j.ijepes.2014.05.036_b0045
Amjady (10.1016/j.ijepes.2014.05.036_b0005) 2001; 16
10.1016/j.ijepes.2014.05.036_b0020
Ho (10.1016/j.ijepes.2014.05.036_b0070) 1990; 5
10.1016/j.ijepes.2014.05.036_b0040
Catalão (10.1016/j.ijepes.2014.05.036_b0145) 2007; 77
Kouhi (10.1016/j.ijepes.2014.05.036_b0055) 2013; 71
Storn (10.1016/j.ijepes.2014.05.036_b0140) 1997; 11
Nie (10.1016/j.ijepes.2014.05.036_b0015) 2012; 16
Santos (10.1016/j.ijepes.2014.05.036_b0110) 2007; 29
Amjady (10.1016/j.ijepes.2014.05.036_b0105) 2009; 34
References_xml – volume: 13
  start-page: 6006
  year: 2011
  end-page: 6016
  ident: b0060
  article-title: Short-term load forecasting of power systems by combination of wavelet transform and AMPSO based neural network
  publication-title: Energy Proc
– volume: 5
  start-page: 1214
  year: 1990
  end-page: 1221
  ident: b0070
  article-title: Short term load forecasting of Taiwan power system using a knowledge-based expert system
  publication-title: Power Syst IEEE Trans
– year: 1993
  ident: b0095
  article-title: In the wake of chaos: unpredictable order in dynamical systems
– volume: 21
  start-page: 385
  year: 2006
  end-page: 391
  ident: b0135
  article-title: An optimized adaptive neural network for annual midterm energy forecasting
  publication-title: Power Syst IEEE Trans
– volume: 71
  start-page: 76
  year: 2013
  end-page: 83
  ident: b0055
  article-title: A new cascade NN based method to short-term load forecast in deregulated electricity market
  publication-title: Energy Convers Manage
– volume: 29
  start-page: 338
  year: 2007
  end-page: 347
  ident: b0110
  article-title: Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems
  publication-title: Int J Electr Power Energy Syst
– volume: 36
  start-page: 12281
  year: 2009
  end-page: 12294
  ident: b0120
  article-title: Design of input vector for day-ahead price forecasting of electricity markets
  publication-title: Expert Syst Appl
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: b0130
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: Neural Networks IEEE Trans
– volume: 16
  start-page: 498
  year: 2001
  end-page: 505
  ident: b0005
  article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability
  publication-title: Power Syst IEEE Trans
– volume: 1981
  start-page: 366
  year: 1980
  end-page: 381
  ident: b0100
  article-title: Detecting strange attractors in turbulence
  publication-title: Dynamical Systems and Turbulence, Warwick
– reference: Amral N, Ozveren CS, King D. Short term load forecasting using multiple linear regression. In: Universities power engineering conference, 2007. UPEC 2007. 42nd International, IEEE; 2007, p. 1192–8.
– reference: Irisarri GD, Widergren SE, Yehsakul PD. On-line load forecasting for energy control center application. Power Apparatus and Systems, IEEE Transactions On 1982: p. 71–8.
– volume: 44
  start-page: 1525
  year: 2003
  end-page: 1534
  ident: b0050
  article-title: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher
  publication-title: Energy Convers Manage
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b0085
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 77
  start-page: 1297
  year: 2007
  end-page: 1304
  ident: b0145
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Electric Power Syst Res
– volume: 17
  start-page: 491
  year: 2002
  end-page: 496
  ident: b0075
  article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system
  publication-title: Power Syst IEEE Trans
– volume: 20
  start-page: 189
  year: 2005
  end-page: 198
  ident: b0115
  article-title: Feature extraction via multiresolution analysis for short-term load forecasting
  publication-title: Power Syst IEEE Trans
– volume: 25
  start-page: 322
  year: 2010
  end-page: 330
  ident: b0150
  article-title: Short-term load forecasting: similar day-based wavelet neural networks
  publication-title: Power Syst IEEE Trans
– volume: 10
  start-page: 9
  year: 2003
  ident: b0025
  article-title: Research on processing of short-term historical data of daily load based on Kalman filter
  publication-title: Power System Technol
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: b0080
  article-title: Wrappers for feature subset selection
  publication-title: Artif Intell
– reference: Meslier F. New advances in short term load forecasting using Box and Jenkins approach. In: Proceedings, 1978, p. 51–5.
– volume: 22
  start-page: 333
  year: 2007
  end-page: 341
  ident: b0125
  article-title: Short-term bus load forecasting of power systems by a new hybrid method
  publication-title: Power Syst IEEE Trans
– volume: 34
  start-page: 46
  year: 2009
  end-page: 57
  ident: b0105
  article-title: Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm
  publication-title: Energy
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0140
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Global Optim
– reference: Wei L, Zhen-gang Z. Based on time sequence of ARIMA model in the application of short-term electricity load forecasting. In: Research challenges in computer science, 2009. ICRCCS’09. International conference on, IEEE; 2009, p. 11–4.
– volume: 21
  start-page: 392
  year: 2006
  end-page: 401
  ident: b0010
  article-title: Short-term load forecasting based on an adaptive hybrid method
  publication-title: Power Syst IEEE Trans
– reference: Christiaanse WR. Short-term load forecasting using general exponential smoothing. Power Apparatus and Systems, IEEE Transactions On 1971: p. 900–11.
– volume: 49
  start-page: 1156
  year: 2008
  end-page: 1166
  ident: b0065
  article-title: Bayesian neural network approach to short time load forecasting
  publication-title: Energy Convers Manage
– volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  ident: b0090
  article-title: Deterministic nonperiodic flow
  publication-title: J Atmosph Sci
– volume: 16
  start-page: 1455
  year: 2012
  end-page: 1460
  ident: b0015
  article-title: Hybrid of ARIMA and SVMs for short-term load forecasting
  publication-title: Energy Proc
– volume: 17
  start-page: 491
  year: 2002
  ident: 10.1016/j.ijepes.2014.05.036_b0075
  article-title: Long-term load forecasting for fast developing utility using a knowledge-based expert system
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/TPWRS.2002.1007923
– ident: 10.1016/j.ijepes.2014.05.036_b0045
  doi: 10.1109/TPAS.1971.293123
– ident: 10.1016/j.ijepes.2014.05.036_b0030
  doi: 10.1109/ICRCCS.2009.12
– volume: 5
  start-page: 989
  year: 1994
  ident: 10.1016/j.ijepes.2014.05.036_b0130
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: Neural Networks IEEE Trans
  doi: 10.1109/72.329697
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.ijepes.2014.05.036_b0085
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 71
  start-page: 76
  year: 2013
  ident: 10.1016/j.ijepes.2014.05.036_b0055
  article-title: A new cascade NN based method to short-term load forecast in deregulated electricity market
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.03.014
– volume: 10
  start-page: 9
  year: 2003
  ident: 10.1016/j.ijepes.2014.05.036_b0025
  article-title: Research on processing of short-term historical data of daily load based on Kalman filter
  publication-title: Power System Technol
– year: 1993
  ident: 10.1016/j.ijepes.2014.05.036_b0095
– volume: 22
  start-page: 333
  year: 2007
  ident: 10.1016/j.ijepes.2014.05.036_b0125
  article-title: Short-term bus load forecasting of power systems by a new hybrid method
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/TPWRS.2006.889130
– volume: 44
  start-page: 1525
  year: 2003
  ident: 10.1016/j.ijepes.2014.05.036_b0050
  article-title: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(02)00148-6
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.ijepes.2014.05.036_b0140
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– volume: 34
  start-page: 46
  year: 2009
  ident: 10.1016/j.ijepes.2014.05.036_b0105
  article-title: Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2008.09.020
– ident: 10.1016/j.ijepes.2014.05.036_b0020
  doi: 10.1109/UPEC.2007.4469121
– volume: 97
  start-page: 273
  year: 1997
  ident: 10.1016/j.ijepes.2014.05.036_b0080
  article-title: Wrappers for feature subset selection
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 20
  start-page: 189
  year: 2005
  ident: 10.1016/j.ijepes.2014.05.036_b0115
  article-title: Feature extraction via multiresolution analysis for short-term load forecasting
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/TPWRS.2004.840380
– volume: 16
  start-page: 498
  year: 2001
  ident: 10.1016/j.ijepes.2014.05.036_b0005
  article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/59.932287
– ident: 10.1016/j.ijepes.2014.05.036_b0035
– volume: 5
  start-page: 1214
  year: 1990
  ident: 10.1016/j.ijepes.2014.05.036_b0070
  article-title: Short term load forecasting of Taiwan power system using a knowledge-based expert system
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/59.99372
– volume: 49
  start-page: 1156
  year: 2008
  ident: 10.1016/j.ijepes.2014.05.036_b0065
  article-title: Bayesian neural network approach to short time load forecasting
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2007.09.009
– volume: 36
  start-page: 12281
  year: 2009
  ident: 10.1016/j.ijepes.2014.05.036_b0120
  article-title: Design of input vector for day-ahead price forecasting of electricity markets
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.04.059
– volume: 13
  start-page: 6006
  year: 2011
  ident: 10.1016/j.ijepes.2014.05.036_b0060
  article-title: Short-term load forecasting of power systems by combination of wavelet transform and AMPSO based neural network
  publication-title: Energy Proc
– volume: 29
  start-page: 338
  year: 2007
  ident: 10.1016/j.ijepes.2014.05.036_b0110
  article-title: Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2006.09.002
– volume: 20
  start-page: 130
  year: 1963
  ident: 10.1016/j.ijepes.2014.05.036_b0090
  article-title: Deterministic nonperiodic flow
  publication-title: J Atmosph Sci
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 25
  start-page: 322
  year: 2010
  ident: 10.1016/j.ijepes.2014.05.036_b0150
  article-title: Short-term load forecasting: similar day-based wavelet neural networks
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/TPWRS.2009.2030426
– volume: 1981
  start-page: 366
  year: 1980
  ident: 10.1016/j.ijepes.2014.05.036_b0100
  article-title: Detecting strange attractors in turbulence
  publication-title: Dynamical Systems and Turbulence, Warwick
– volume: 21
  start-page: 385
  year: 2006
  ident: 10.1016/j.ijepes.2014.05.036_b0135
  article-title: An optimized adaptive neural network for annual midterm energy forecasting
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/TPWRS.2005.860926
– volume: 16
  start-page: 1455
  year: 2012
  ident: 10.1016/j.ijepes.2014.05.036_b0015
  article-title: Hybrid of ARIMA and SVMs for short-term load forecasting
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2012.01.229
– volume: 21
  start-page: 392
  year: 2006
  ident: 10.1016/j.ijepes.2014.05.036_b0010
  article-title: Short-term load forecasting based on an adaptive hybrid method
  publication-title: Power Syst IEEE Trans
  doi: 10.1109/TPWRS.2005.860944
– volume: 77
  start-page: 1297
  year: 2007
  ident: 10.1016/j.ijepes.2014.05.036_b0145
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2006.09.022
– ident: 10.1016/j.ijepes.2014.05.036_b0040
  doi: 10.1109/TPAS.1982.317242
SSID ssj0007942
Score 2.3728912
Snippet •A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using...
In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 862
SubjectTerms Algorithms
Applied sciences
Chaos theory
Chaotic time series
Differential Evolutionary
Electric power generation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electricity
Electricity consumption
Exact sciences and technology
Feature selection
Forecasting
Markets
Miscellaneous
Neural network
Neural networks
Operation. Load control. Reliability
Power networks and lines
Reconstructed phase space
Short-term load forecast
Title A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection
URI https://dx.doi.org/10.1016/j.ijepes.2014.05.036
https://www.proquest.com/docview/1559694957
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AKRWK
  dateStart: 19790101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSU0CfdJl1U6FVdP-SHjkto2LY0pwb2JkbSuOuwtZe1U8glvz0j2U4bWgj0aKNBRjOa-WTNfMPYB6ucqzBPRRynUkgKUIKCoBWRyVIFzpjS-v-Q387z1YX8ss7WB-x0qoXxaZWj7x98evDW45vFuJqLXV0vfFpSEgKyDJa69hXssvBdDD7e_E7zIHtLhjTGxHcxyKbyuZDjVV_iDj1pdywDf2cgav5neHq6g44WrRq6XfzluEM0OnvGjkYYyZfDlz5nB9i8YE_-IBd8yeolJ8jMuw0BbOEdMN-24DiBVLTQ9XzoHc19GHO8bXhgthT4a7RF2F9z2P5o93W_-cmhcdxuoKXpeIWBDJR3oYUODX3FLs4-fT9dibGxgrBprnqRu9wgqCIC0hIhImMwMS4yoByWWa6SDGOXgDF0biYJAHCZVXlFuzWWBNDS1-ywaRt8wzhKm5aAtizRyEzFJSiDWVVETmFFUHTG0mk9tR1Zx33zi62e0ssu9aAF7bWgo0yTFmZM3EntBtaNB8YXk6r0PevRFBgekJzf0-zddElJ2C9R8Yy9n1Staef56xRosL3qtL_QzRUdMIu3_z39MXvsn4bixhN22O-v8B2hnN7MgxnP2aPl56-r81u6z_85
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQBCiKdYHsVIXM0mjp3Ex6qiWqDtqZX2ZvkxYVNtk9UmReqlv52xkxQqkCpxTWw58ozn-xyPvyHkk1PeV5BnLE0zwQQCFEMQdCyxMlPGW1u68B_y-CRfnIlvS7ncIQfTXZiQVjnG_iGmx2g9PpmPsznf1PU8pCXxCMgieuryHrkvJC_CDuzz9e88D3Q4PuQx8lDGQE7352KSV30OGwiq3amIAp5Rqfmf-PR4YzqctWood_FX5I5wdPiUPBl5JN0fPvUZ2YHmOXn0h7rgC1LvU-TMtFshw2YhAtN1azxFlgrOdD0dikfTgGOetg2N0pYMfo7OaLZX1Kx_tNu6X11Q03jqVqbF4WgFUQ2UdrGGDjZ9Sc4Ov5weLNhYWYG5LFc9y31uwagiMWgmpETWArc-sUZ5KGWuuITUc2MtbpyxhzHGS6fyCpdrKpChZa_IbtM28JpQEC4rDbiyBCukSkujLMiqSLyCCrnojGTTfGo3yo6H6hdrPeWXnevBCjpYQSdSoxVmhN302gyyG3e0LyZT6VvuoxEZ7ui5d8uyN8PxEskfV-mMfJxMrXHphfMU00B72elwopsr3GEWb_57-A_kweL0-EgffT35_pY8DG-Gm47vyG6_vYT3SHl6uxdd-heUOQDd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+short-term+load+forecast+method+based+on+neuro-evolutionary+algorithm+and+chaotic+feature+selection&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=KOUHI%2C+Sajjad&rft.au=KEYNIA%2C+Farshid&rft.au=SAJAD+NAJAFI+RAVADANEGH&rft.date=2014-11-01&rft.pub=Elsevier&rft.issn=0142-0615&rft.volume=62&rft.spage=862&rft.epage=867&rft_id=info:doi/10.1016%2Fj.ijepes.2014.05.036&rft.externalDBID=n%2Fa&rft.externalDocID=28612291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon