Optimal design of Hermitian transform and vectors of both mask and window coefficients for denoising applications with both unknown noise characteristics and distortions
This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise characteristics and distortions. The signals are represented in the vector form. Then, they are transformed to a new domain via multiplying th...
Saved in:
| Published in | Signal processing Vol. 98; pp. 1 - 22 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.05.2014
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-1684 1872-7557 |
| DOI | 10.1016/j.sigpro.2013.11.018 |
Cover
| Abstract | This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise characteristics and distortions. The signals are represented in the vector form. Then, they are transformed to a new domain via multiplying these vectors to a Hermitian matrix. A vector of mask coefficients is point by point multiplied to the transformed vectors. The processed vectors are transformed back to the time domain. A vector of window coefficients is point by point multiplied to the processed vectors. An optimal design of the Hermitian matrix and the vectors of both mask and window coefficients is formulated as a quadratically constrained programming problem subject to a Hermitian constraint. By initializing the window coefficients, the Hermitian matrix and the vector of mask coefficients are derived via an orthogonal Procrustes approach. Based on the obtained Hermitian matrix and the vector of mask coefficients, the vector of window coefficients is derived. By iterating these two procedures, the final Hermitian matrix and the vectors of both mask and window coefficients are obtained. The convergence of the algorithm is guaranteed. The proposed method is applied to denoise both clinical electrocardiograms and electromyograms as well as speech signals with both unknown noise characteristics and distortions. Experimental results show that the proposed method outperforms existing denoising methods.
•This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients.•This is a generalization of existing mask operations via discrete fractional Fourier transform.•The results are applied to denoising applications with both unknown noise characteristics and distortions.•The design is formulated as a quadratically constrained programming problem subject to a Hermitian constraint.•An orthogonal Procrustes approach is employed for solving the problem. |
|---|---|
| AbstractList | This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise characteristics and distortions. The signals are represented in the vector form. Then, they are transformed to a new domain via multiplying these vectors to a Hermitian matrix. A vector of mask coefficients is point by point multiplied to the transformed vectors. The processed vectors are transformed back to the time domain. A vector of window coefficients is point by point multiplied to the processed vectors. An optimal design of the Hermitian matrix and the vectors of both mask and window coefficients is formulated as a quadratically constrained programming problem subject to a Hermitian constraint. By initializing the window coefficients, the Hermitian matrix and the vector of mask coefficients are derived via an orthogonal Procrustes approach. Based on the obtained Hermitian matrix and the vector of mask coefficients, the vector of window coefficients is derived. By iterating these two procedures, the final Hermitian matrix and the vectors of both mask and window coefficients are obtained. The convergence of the algorithm is guaranteed. The proposed method is applied to denoise both clinical electrocardiograms and electromyograms as well as speech signals with both unknown noise characteristics and distortions. Experimental results show that the proposed method outperforms existing denoising methods.
•This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients.•This is a generalization of existing mask operations via discrete fractional Fourier transform.•The results are applied to denoising applications with both unknown noise characteristics and distortions.•The design is formulated as a quadratically constrained programming problem subject to a Hermitian constraint.•An orthogonal Procrustes approach is employed for solving the problem. This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise characteristics and distortions. The signals are represented in the vector form. Then, they are transformed to a new domain via multiplying these vectors to a Hermitian matrix. A vector of mask coefficients is point by point multiplied to the transformed vectors. The processed vectors are transformed back to the time domain. A vector of window coefficients is point by point multiplied to the processed vectors. An optimal design of the Hermitian matrix and the vectors of both mask and window coefficients is formulated as a quadratically constrained programming problem subject to a Hermitian constraint. By initializing the window coefficients, the Hermitian matrix and the vector of mask coefficients are derived via an orthogonal Procrustes approach. Based on the obtained Hermitian matrix and the vector of mask coefficients, the vector of window coefficients is derived. By iterating these two procedures, the final Hermitian matrix and the vectors of both mask and window coefficients are obtained. The convergence of the algorithm is guaranteed. The proposed method is applied to denoise both clinical electrocardiograms and electromyograms as well as speech signals with both unknown noise characteristics and distortions. Experimental results show that the proposed method outperforms existing denoising methods. |
| Author | Ling, Bingo Wing-Kuen Subramaniam, Suba R. Ho, Charlotte Yuk-Fan Dai, Qingyun Georgakis, Apostolos Cao, Jiangzhong |
| Author_xml | – sequence: 1 givenname: Bingo Wing-Kuen surname: Ling fullname: Ling, Bingo Wing-Kuen email: yongquanling@gdut.edu.cn organization: Faculty of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 2 givenname: Charlotte Yuk-Fan surname: Ho fullname: Ho, Charlotte Yuk-Fan email: c.ho@eie.polyu.edu.hk organization: Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China – sequence: 3 givenname: Suba R. surname: Subramaniam fullname: Subramaniam, Suba R. email: suba.r.subramaniam@kcl.ac.uk organization: Department of Electronic Engineering, Division of Engineering, King's College London, Strand, London WC2R 2LS, United Kingdom – sequence: 4 givenname: Apostolos surname: Georgakis fullname: Georgakis, Apostolos email: apostolos.georgakis@kcl.ac.uk organization: Department of Electronic Engineering, Division of Engineering, King's College London, Strand, London WC2R 2LS, United Kingdom – sequence: 5 givenname: Jiangzhong surname: Cao fullname: Cao, Jiangzhong email: cjz510@gdut.edu.cn organization: Faculty of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 6 givenname: Qingyun surname: Dai fullname: Dai, Qingyun email: daiqy@gdut.edu.cn organization: Faculty of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28323384$$DView record in Pascal Francis |
| BookMark | eNqFkcFu1DAURS1UJKaFP2DhDRKbSe0kdjIskFAFtFKlbmBtPTvPraeJHWxPR3wSf4mTKRsWsLIln3Ml33tOznzwSMhbzirOuLzcV8ndzzFUNeNNxXnFeP-CbHjf1dtOiO6MbAomtlz27StyntKesUJKtiG_7ubsJhjpgCXD02DpNcbJZQee5gg-2RAnCn6gT2hyiGlBdMgPdIL0uD4cnR_CkZqA1jrj0OdEi1UifXDJ-XsK8zw6A9kFnwpe5DXh4B99OHq6YEjNA0QwGaNL2Zm0Rg_lHuLqvSYvLYwJ3zyfF-T7l8_frq63t3dfb64-3W5NI3d5KwBEB2Ct1lpyFEJLA3XLBtiV7yO0Qmpth17wxkq5azUazQHFDpuhqbVpLsj7U24p9McBU1aTSwbHETyGQ1JcyI5J0XFZ0HfPKCQDoy11GZfUHEuj8aeq-6Zumr4t3IcTZ2JIKaJVxuW1jdKwGxVnatlR7dVpR7XsqDhXZccit3_Jf_L_o308aVi6enIYVVqmMTi4WIZUQ3D_DvgNiYXCXA |
| CODEN | SPRODR |
| CitedBy_id | crossref_primary_10_1007_s00034_016_0450_0 crossref_primary_10_1016_j_asoc_2016_02_027 crossref_primary_10_1007_s00034_021_01819_1 |
| Cites_doi | 10.1016/j.sigpro.2006.01.005 10.1109/TCSVT.2010.2045819 10.1016/0167-6911(89)90122-9 10.1063/1.3238506 10.1016/0165-1684(96)00095-3 10.1109/TBME.1968.4502582 10.1016/j.sigpro.2009.10.002 10.1016/j.sigpro.2010.12.017 10.1109/LSP.2005.851267 10.1109/TIT.1986.1057144 10.1109/TMM.2011.2166538 10.1109/T-SU.1980.31154 10.1016/S0165-1684(99)00142-5 10.1016/j.ipl.2008.03.004 10.1109/TSP.2011.2171956 10.1109/97.735422 10.1109/78.839980 10.1109/97.803428 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.sigpro.2013.11.018 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1872-7557 |
| EndPage | 22 |
| ExternalDocumentID | 28323384 10_1016_j_sigpro_2013_11_018 S0165168413004544 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c369t-5aa57aaffbbb61e55b6ca240da9168ea456bbfd8513f6694becb1ae59e3d32bc3 |
| IEDL.DBID | .~1 |
| ISSN | 0165-1684 |
| IngestDate | Mon Sep 29 02:50:01 EDT 2025 Wed Apr 02 07:25:11 EDT 2025 Thu Oct 02 04:32:04 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Fri Feb 23 02:28:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Windowing Hermitian transform Quadratically constrained programming Mask operation Orthogonal Procrustes Quadratic complex valued matrix equality constraint Performance evaluation Acoustic signal Noise reduction Hermite interpolation Hermitian matrix Algorithm Optimal design Complex variable method Time domain method Vocal signal Electrocardiography Signal processing |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-5aa57aaffbbb61e55b6ca240da9168ea456bbfd8513f6694becb1ae59e3d32bc3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1567065716 |
| PQPubID | 23500 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1567065716 pascalfrancis_primary_28323384 crossref_citationtrail_10_1016_j_sigpro_2013_11_018 crossref_primary_10_1016_j_sigpro_2013_11_018 elsevier_sciencedirect_doi_10_1016_j_sigpro_2013_11_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-01 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Signal processing |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Subramaniam, Ling, Georgakis (bib4) 2012; 60 Candan, Kutay, Ozaktas (bib18) 2000; 48 Akay, Boudreaux-Bartels (bib10) 1998; 5 Ranta, Louis-Dorr, Heinrich, Wolf (bib7) 2005; 12 Andrén, Hellström, Markström (bib19) 2008; 107 Luisier, Blu, Unser (bib8) 2010; 20 Ozaktas (bib6) 1996; 54 Durak, Aldirmaz (bib5) 2010; 90 Suthers, Campbell, Reilly (bib11) 1980; SU-27 Mıhçak, Kozintsev, Ramchandran, Moulin (bib13) 1999; 6 Zoran Brajević, Antonio petošić, Signal denoising using STFT with Bayes prediction and Ephraim-Malah estimation, in: The 54th International Symposium, ELMAR, 2012, pp. 183–186. Thiel, Kreiseler, Seifert (bib17) 2009; 80 Karpovsky, Trachtenberg (bib15) 1986; IT-32 Chen, Xu, Fränti (bib14) 2011; 13 Tao, Zhang, Li (bib2) 2011; 91 Ghosh, Sreenivas (bib3) 2006; 86 Chun, Chun (bib9) 2000; 80 Schubert (bib16) 1968; BME-15 Bucy, Jonckheere (bib12) 1989; 13 Candan (10.1016/j.sigpro.2013.11.018_bib18) 2000; 48 Ozaktas (10.1016/j.sigpro.2013.11.018_bib6) 1996; 54 Bucy (10.1016/j.sigpro.2013.11.018_bib12) 1989; 13 Subramaniam (10.1016/j.sigpro.2013.11.018_bib4) 2012; 60 Ghosh (10.1016/j.sigpro.2013.11.018_bib3) 2006; 86 Schubert (10.1016/j.sigpro.2013.11.018_bib16) 1968; BME-15 Luisier (10.1016/j.sigpro.2013.11.018_bib8) 2010; 20 10.1016/j.sigpro.2013.11.018_bib1 Akay (10.1016/j.sigpro.2013.11.018_bib10) 1998; 5 Durak (10.1016/j.sigpro.2013.11.018_bib5) 2010; 90 Chun (10.1016/j.sigpro.2013.11.018_bib9) 2000; 80 Suthers (10.1016/j.sigpro.2013.11.018_bib11) 1980; SU-27 Mıhçak (10.1016/j.sigpro.2013.11.018_bib13) 1999; 6 Thiel (10.1016/j.sigpro.2013.11.018_bib17) 2009; 80 Ranta (10.1016/j.sigpro.2013.11.018_bib7) 2005; 12 Andrén (10.1016/j.sigpro.2013.11.018_bib19) 2008; 107 Tao (10.1016/j.sigpro.2013.11.018_bib2) 2011; 91 Chen (10.1016/j.sigpro.2013.11.018_bib14) 2011; 13 Karpovsky (10.1016/j.sigpro.2013.11.018_bib15) 1986; IT-32 |
| References_xml | – volume: 20 start-page: 913 year: 2010 end-page: 919 ident: bib8 article-title: SURE-LET for orthonormal wavelet-domain video denoising publication-title: IEEE Trans. Circ. Syst. Video Technol. – volume: 13 start-page: 1195 year: 2011 end-page: 1207 ident: bib14 article-title: Adaptive context-tree-based statistical filtering for raster map image denoising publication-title: IEEE Trans. Multimed. – volume: 80 start-page: 114302.1 year: 2009 end-page: 114302.12 ident: bib17 article-title: Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography publication-title: Rev. Sci. Instrum. – volume: SU-27 start-page: 90 year: 1980 end-page: 93 ident: bib11 article-title: SAW bandpass filter design using Hermitian function techniques publication-title: IEEE Trans. Sonics Ultrason. – reference: Zoran Brajević, Antonio petošić, Signal denoising using STFT with Bayes prediction and Ephraim-Malah estimation, in: The 54th International Symposium, ELMAR, 2012, pp. 183–186. – volume: 48 start-page: 1329 year: 2000 end-page: 1337 ident: bib18 article-title: The discrete fractional Fourier transform publication-title: IEEE Trans. Signal Process. – volume: 5 start-page: 312 year: 1998 end-page: 314 ident: bib10 article-title: Unitary and Hermitian fractional operators and their relation to the fractional Fourier transform publication-title: IEEE Signal Process. Lett. – volume: 13 start-page: 339 year: 1989 end-page: 344 ident: bib12 article-title: Singular filtering problems publication-title: Syst. Control Lett. – volume: 6 start-page: 300 year: 1999 end-page: 303 ident: bib13 article-title: Low-complexity image denoising based on statistical modeling of wavelet coefficients publication-title: IEEE Signal Process. Lett. – volume: BME-15 start-page: 303 year: 1968 end-page: 312 ident: bib16 article-title: An experimental study of the multipole series that represents the human electrocardiogram publication-title: IEEE Trans. Bio-med. Eng. – volume: 60 start-page: 489 year: 2012 end-page: 493 ident: bib4 article-title: Filtering in rotated time-frequency domains with unknown noise statistics publication-title: IEEE Trans. Signal Process. – volume: 90 start-page: 1188 year: 2010 end-page: 1196 ident: bib5 article-title: Adaptive fractional Fourier domain filtering publication-title: Signal Process. – volume: 91 start-page: 1401 year: 2011 end-page: 1408 ident: bib2 article-title: Time-frequency filtering-based autofocus publication-title: Signal Process. – volume: 107 start-page: 230 year: 2008 end-page: 234 ident: bib19 article-title: Fast multiplication of matrices over a finitely generated semiring publication-title: Inf. Process. Lett. – volume: IT-32 start-page: 303 year: 1986 end-page: 307 ident: bib15 article-title: Statistical and computational performance of a class of generalized Wiener filters publication-title: IEEE Trans. Inf. Theory – volume: 86 start-page: 3258 year: 2006 end-page: 3263 ident: bib3 article-title: Time-varying filter interpolation of Fourier transform and its variants publication-title: Signal Process. – volume: 80 start-page: 441 year: 2000 end-page: 450 ident: bib9 article-title: Nonlinear filtering using the wavelet transform publication-title: Signal Process. – volume: 54 start-page: 81 year: 1996 end-page: 84 ident: bib6 article-title: Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering publication-title: Signal Process. – volume: 12 start-page: 557 year: 2005 end-page: 560 ident: bib7 article-title: Iterative wavelet-based denoising methods and robust outlier detection publication-title: IEEE Signal Process. Lett. – ident: 10.1016/j.sigpro.2013.11.018_bib1 – volume: 86 start-page: 3258 year: 2006 ident: 10.1016/j.sigpro.2013.11.018_bib3 article-title: Time-varying filter interpolation of Fourier transform and its variants publication-title: Signal Process. doi: 10.1016/j.sigpro.2006.01.005 – volume: 20 start-page: 913 issue: 6 year: 2010 ident: 10.1016/j.sigpro.2013.11.018_bib8 article-title: SURE-LET for orthonormal wavelet-domain video denoising publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2010.2045819 – volume: 13 start-page: 339 year: 1989 ident: 10.1016/j.sigpro.2013.11.018_bib12 article-title: Singular filtering problems publication-title: Syst. Control Lett. doi: 10.1016/0167-6911(89)90122-9 – volume: 80 start-page: 114302.1 issue: 11 year: 2009 ident: 10.1016/j.sigpro.2013.11.018_bib17 article-title: Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3238506 – volume: 54 start-page: 81 year: 1996 ident: 10.1016/j.sigpro.2013.11.018_bib6 article-title: Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering publication-title: Signal Process. doi: 10.1016/0165-1684(96)00095-3 – volume: BME-15 start-page: 303 issue: 4 year: 1968 ident: 10.1016/j.sigpro.2013.11.018_bib16 article-title: An experimental study of the multipole series that represents the human electrocardiogram publication-title: IEEE Trans. Bio-med. Eng. doi: 10.1109/TBME.1968.4502582 – volume: 90 start-page: 1188 year: 2010 ident: 10.1016/j.sigpro.2013.11.018_bib5 article-title: Adaptive fractional Fourier domain filtering publication-title: Signal Process. doi: 10.1016/j.sigpro.2009.10.002 – volume: 91 start-page: 1401 year: 2011 ident: 10.1016/j.sigpro.2013.11.018_bib2 article-title: Time-frequency filtering-based autofocus publication-title: Signal Process. doi: 10.1016/j.sigpro.2010.12.017 – volume: 12 start-page: 557 issue: 8 year: 2005 ident: 10.1016/j.sigpro.2013.11.018_bib7 article-title: Iterative wavelet-based denoising methods and robust outlier detection publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2005.851267 – volume: IT-32 start-page: 303 issue: 2 year: 1986 ident: 10.1016/j.sigpro.2013.11.018_bib15 article-title: Statistical and computational performance of a class of generalized Wiener filters publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1986.1057144 – volume: 13 start-page: 1195 issue: 6 year: 2011 ident: 10.1016/j.sigpro.2013.11.018_bib14 article-title: Adaptive context-tree-based statistical filtering for raster map image denoising publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2011.2166538 – volume: SU-27 start-page: 90 issue: 2 year: 1980 ident: 10.1016/j.sigpro.2013.11.018_bib11 article-title: SAW bandpass filter design using Hermitian function techniques publication-title: IEEE Trans. Sonics Ultrason. doi: 10.1109/T-SU.1980.31154 – volume: 80 start-page: 441 year: 2000 ident: 10.1016/j.sigpro.2013.11.018_bib9 article-title: Nonlinear filtering using the wavelet transform publication-title: Signal Process. doi: 10.1016/S0165-1684(99)00142-5 – volume: 107 start-page: 230 year: 2008 ident: 10.1016/j.sigpro.2013.11.018_bib19 article-title: Fast multiplication of matrices over a finitely generated semiring publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2008.03.004 – volume: 60 start-page: 489 issue: 1 year: 2012 ident: 10.1016/j.sigpro.2013.11.018_bib4 article-title: Filtering in rotated time-frequency domains with unknown noise statistics publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2171956 – volume: 5 start-page: 312 issue: 12 year: 1998 ident: 10.1016/j.sigpro.2013.11.018_bib10 article-title: Unitary and Hermitian fractional operators and their relation to the fractional Fourier transform publication-title: IEEE Signal Process. Lett. doi: 10.1109/97.735422 – volume: 48 start-page: 1329 issue: 5 year: 2000 ident: 10.1016/j.sigpro.2013.11.018_bib18 article-title: The discrete fractional Fourier transform publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.839980 – volume: 6 start-page: 300 issue: 12 year: 1999 ident: 10.1016/j.sigpro.2013.11.018_bib13 article-title: Low-complexity image denoising based on statistical modeling of wavelet coefficients publication-title: IEEE Signal Process. Lett. doi: 10.1109/97.803428 |
| SSID | ssj0001360 |
| Score | 2.0923347 |
| Snippet | This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Applied sciences Biological and medical sciences Computerized, statistical medical data processing and models in biomedicine Detection, estimation, filtering, equalization, prediction Distortion Exact sciences and technology Hermitian transform Information, signal and communications theory Mask operation Masks Mathematical analysis Medical management aid. Diagnosis aid Medical sciences Noise Noise reduction Optimization Orthogonal Procrustes Quadratic complex valued matrix equality constraint Quadratically constrained programming Signal and communications theory Signal processing Signal, noise Speech processing Telecommunications and information theory Transforms Vectors (mathematics) Windowing |
| Title | Optimal design of Hermitian transform and vectors of both mask and window coefficients for denoising applications with both unknown noise characteristics and distortions |
| URI | https://dx.doi.org/10.1016/j.sigpro.2013.11.018 https://www.proquest.com/docview/1567065716 |
| Volume | 98 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iF0XEJ9ZHieB1bbebZNtjEaUq1oMK3kKSTaRqd4vb2pv_x3_pTHa3WhQEb_uYJMvOZPJNMg9CjrliLQDercA0dRwwq1mgRQxXzoZCxCZ0IQY4X_dF755dPvCHBXJaxcKgW2Wp-wud7rV1-aRR_s3GaDBo3GIgTijaqIUxjxzmBGUsxioGJ-9fbh5h5COFkThA6ip8zvt45YNH0FPo4BWdYC5PLP3x-_K0OlI5_DRXVLv4obj9anS-TtZKGEm7xZdukAWbbpKVb8kFt8jHDWiDIRAl3kmDZo720PMFpzQdV3iVqjShb37rPkcSDZyjQ5U_-xdTsNizKTWZ9Zkm0OmCQivoMs0GuMtAvx-AU9zULXqYpLhZl1Iks9TMZ4X2XSc-P4lvt03uz8_uTntBWZghMJHojAOuFI-Vck5rLULLuRZGATRIFIDNtlUAyrR2CYC5yAnRYSAnOlSWd2yURC1toh2ymGap3SWUxTwJO9xwDpZqk5m2NrFLAPaBDDWZMzUSVfyQpsxajsUzXmTlnvYkCy5K5CIYNBK4WCPBrNWoyNrxB31csVrOSZ-EheWPlvU5yZgNhyWgwPxnNXJUiYqEmYvHMSq12SSXYDnjGTMYrHv_Hn6fLMMdKzwwD8ji-HViDwEljXXdT4M6WepeXPX6n4c8GGY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9B9wAIobENUcaHJ-01tGlsp31E1VC38fEASLxZtmOjbpBUpIU3_h_-S-6cBKiGhLS3KDnbke98vrN_dwfwXWjeQ8O7F9muSSPuDI-MTPHJu1jK1MY-pgDn4xM5uuC_LsXlAgybWBiCVda6v9LpQVvXbzr1bHYm43HnjAJxYtknLUx55PgifOCil5IHtv_wgvOIkxAqTNQRkTfxcwHkVY6vUFERwivZp2SeVPvj7f1pdaJLnDVflbv4R3OH7ejwI6zVdiQ7qH51HRZc_glWXmUX_AyPp6gObpAoCygNVng2IugLrWk2bQxWpvOM3YWz-5JIDLKO3ejyb_hwjy57cc9s4UKqCUJdMGyFXebFmI4Z2OsbcEanulUPs5xO63JGZI7Z-bTQoessJCgJ7b7AxeGP8-EoqiszRDaRg2kktBap1t4bY2TshDDSarQNMo3WZt9ptMqM8Rlac4mXcsBRUEysnRi4JEt6xiYb0MqL3G0C46nI4oGwQqCr2uW2b2zqM7T7UIi63Ns2JA0_lK3TllP1jGvV4NP-qIqLiriIHo1CLrYhem41qdJ2vEOfNqxWc-KncGd5p-XunGQ8D0c1oND_52341oiKwqVL9zE6d8WsVOg60yUzeqxb_z38HiyNzo-P1NHPk99fYRm_8AqOuQ2t6e3M7aDJNDW7YUk8AdLyGfs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+Hermitian+transform+and+vectors+of+both+mask+and+window+coefficients+for+denoising+applications+with+both+unknown+noise+characteristics+and+distortions&rft.jtitle=Signal+processing&rft.au=Ling%2C+Bingo+Wing-Kuen&rft.au=Ho%2C+Charlotte+Yuk-Fan&rft.au=Subramaniam%2C+Suba+R.&rft.au=Georgakis%2C+Apostolos&rft.date=2014-05-01&rft.issn=0165-1684&rft.volume=98&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1016%2Fj.sigpro.2013.11.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2013_11_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |