Optimal design of Hermitian transform and vectors of both mask and window coefficients for denoising applications with both unknown noise characteristics and distortions

This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise characteristics and distortions. The signals are represented in the vector form. Then, they are transformed to a new domain via multiplying th...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 98; pp. 1 - 22
Main Authors Ling, Bingo Wing-Kuen, Ho, Charlotte Yuk-Fan, Subramaniam, Suba R., Georgakis, Apostolos, Cao, Jiangzhong, Dai, Qingyun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0165-1684
1872-7557
DOI10.1016/j.sigpro.2013.11.018

Cover

Abstract This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise characteristics and distortions. The signals are represented in the vector form. Then, they are transformed to a new domain via multiplying these vectors to a Hermitian matrix. A vector of mask coefficients is point by point multiplied to the transformed vectors. The processed vectors are transformed back to the time domain. A vector of window coefficients is point by point multiplied to the processed vectors. An optimal design of the Hermitian matrix and the vectors of both mask and window coefficients is formulated as a quadratically constrained programming problem subject to a Hermitian constraint. By initializing the window coefficients, the Hermitian matrix and the vector of mask coefficients are derived via an orthogonal Procrustes approach. Based on the obtained Hermitian matrix and the vector of mask coefficients, the vector of window coefficients is derived. By iterating these two procedures, the final Hermitian matrix and the vectors of both mask and window coefficients are obtained. The convergence of the algorithm is guaranteed. The proposed method is applied to denoise both clinical electrocardiograms and electromyograms as well as speech signals with both unknown noise characteristics and distortions. Experimental results show that the proposed method outperforms existing denoising methods. •This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients.•This is a generalization of existing mask operations via discrete fractional Fourier transform.•The results are applied to denoising applications with both unknown noise characteristics and distortions.•The design is formulated as a quadratically constrained programming problem subject to a Hermitian constraint.•An orthogonal Procrustes approach is employed for solving the problem.
AbstractList This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise characteristics and distortions. The signals are represented in the vector form. Then, they are transformed to a new domain via multiplying these vectors to a Hermitian matrix. A vector of mask coefficients is point by point multiplied to the transformed vectors. The processed vectors are transformed back to the time domain. A vector of window coefficients is point by point multiplied to the processed vectors. An optimal design of the Hermitian matrix and the vectors of both mask and window coefficients is formulated as a quadratically constrained programming problem subject to a Hermitian constraint. By initializing the window coefficients, the Hermitian matrix and the vector of mask coefficients are derived via an orthogonal Procrustes approach. Based on the obtained Hermitian matrix and the vector of mask coefficients, the vector of window coefficients is derived. By iterating these two procedures, the final Hermitian matrix and the vectors of both mask and window coefficients are obtained. The convergence of the algorithm is guaranteed. The proposed method is applied to denoise both clinical electrocardiograms and electromyograms as well as speech signals with both unknown noise characteristics and distortions. Experimental results show that the proposed method outperforms existing denoising methods. •This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients.•This is a generalization of existing mask operations via discrete fractional Fourier transform.•The results are applied to denoising applications with both unknown noise characteristics and distortions.•The design is formulated as a quadratically constrained programming problem subject to a Hermitian constraint.•An orthogonal Procrustes approach is employed for solving the problem.
This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise characteristics and distortions. The signals are represented in the vector form. Then, they are transformed to a new domain via multiplying these vectors to a Hermitian matrix. A vector of mask coefficients is point by point multiplied to the transformed vectors. The processed vectors are transformed back to the time domain. A vector of window coefficients is point by point multiplied to the processed vectors. An optimal design of the Hermitian matrix and the vectors of both mask and window coefficients is formulated as a quadratically constrained programming problem subject to a Hermitian constraint. By initializing the window coefficients, the Hermitian matrix and the vector of mask coefficients are derived via an orthogonal Procrustes approach. Based on the obtained Hermitian matrix and the vector of mask coefficients, the vector of window coefficients is derived. By iterating these two procedures, the final Hermitian matrix and the vectors of both mask and window coefficients are obtained. The convergence of the algorithm is guaranteed. The proposed method is applied to denoise both clinical electrocardiograms and electromyograms as well as speech signals with both unknown noise characteristics and distortions. Experimental results show that the proposed method outperforms existing denoising methods.
Author Ling, Bingo Wing-Kuen
Subramaniam, Suba R.
Ho, Charlotte Yuk-Fan
Dai, Qingyun
Georgakis, Apostolos
Cao, Jiangzhong
Author_xml – sequence: 1
  givenname: Bingo Wing-Kuen
  surname: Ling
  fullname: Ling, Bingo Wing-Kuen
  email: yongquanling@gdut.edu.cn
  organization: Faculty of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 2
  givenname: Charlotte Yuk-Fan
  surname: Ho
  fullname: Ho, Charlotte Yuk-Fan
  email: c.ho@eie.polyu.edu.hk
  organization: Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 3
  givenname: Suba R.
  surname: Subramaniam
  fullname: Subramaniam, Suba R.
  email: suba.r.subramaniam@kcl.ac.uk
  organization: Department of Electronic Engineering, Division of Engineering, King's College London, Strand, London WC2R 2LS, United Kingdom
– sequence: 4
  givenname: Apostolos
  surname: Georgakis
  fullname: Georgakis, Apostolos
  email: apostolos.georgakis@kcl.ac.uk
  organization: Department of Electronic Engineering, Division of Engineering, King's College London, Strand, London WC2R 2LS, United Kingdom
– sequence: 5
  givenname: Jiangzhong
  surname: Cao
  fullname: Cao, Jiangzhong
  email: cjz510@gdut.edu.cn
  organization: Faculty of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 6
  givenname: Qingyun
  surname: Dai
  fullname: Dai, Qingyun
  email: daiqy@gdut.edu.cn
  organization: Faculty of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28323384$$DView record in Pascal Francis
BookMark eNqFkcFu1DAURS1UJKaFP2DhDRKbSe0kdjIskFAFtFKlbmBtPTvPraeJHWxPR3wSf4mTKRsWsLIln3Ml33tOznzwSMhbzirOuLzcV8ndzzFUNeNNxXnFeP-CbHjf1dtOiO6MbAomtlz27StyntKesUJKtiG_7ubsJhjpgCXD02DpNcbJZQee5gg-2RAnCn6gT2hyiGlBdMgPdIL0uD4cnR_CkZqA1jrj0OdEi1UifXDJ-XsK8zw6A9kFnwpe5DXh4B99OHq6YEjNA0QwGaNL2Zm0Rg_lHuLqvSYvLYwJ3zyfF-T7l8_frq63t3dfb64-3W5NI3d5KwBEB2Ct1lpyFEJLA3XLBtiV7yO0Qmpth17wxkq5azUazQHFDpuhqbVpLsj7U24p9McBU1aTSwbHETyGQ1JcyI5J0XFZ0HfPKCQDoy11GZfUHEuj8aeq-6Zumr4t3IcTZ2JIKaJVxuW1jdKwGxVnatlR7dVpR7XsqDhXZccit3_Jf_L_o308aVi6enIYVVqmMTi4WIZUQ3D_DvgNiYXCXA
CODEN SPRODR
CitedBy_id crossref_primary_10_1007_s00034_016_0450_0
crossref_primary_10_1016_j_asoc_2016_02_027
crossref_primary_10_1007_s00034_021_01819_1
Cites_doi 10.1016/j.sigpro.2006.01.005
10.1109/TCSVT.2010.2045819
10.1016/0167-6911(89)90122-9
10.1063/1.3238506
10.1016/0165-1684(96)00095-3
10.1109/TBME.1968.4502582
10.1016/j.sigpro.2009.10.002
10.1016/j.sigpro.2010.12.017
10.1109/LSP.2005.851267
10.1109/TIT.1986.1057144
10.1109/TMM.2011.2166538
10.1109/T-SU.1980.31154
10.1016/S0165-1684(99)00142-5
10.1016/j.ipl.2008.03.004
10.1109/TSP.2011.2171956
10.1109/97.735422
10.1109/78.839980
10.1109/97.803428
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.sigpro.2013.11.018
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1872-7557
EndPage 22
ExternalDocumentID 28323384
10_1016_j_sigpro_2013_11_018
S0165168413004544
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-5aa57aaffbbb61e55b6ca240da9168ea456bbfd8513f6694becb1ae59e3d32bc3
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Mon Sep 29 02:50:01 EDT 2025
Wed Apr 02 07:25:11 EDT 2025
Thu Oct 02 04:32:04 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Fri Feb 23 02:28:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Windowing
Hermitian transform
Quadratically constrained programming
Mask operation
Orthogonal Procrustes
Quadratic complex valued matrix equality constraint
Performance evaluation
Acoustic signal
Noise reduction
Hermite interpolation
Hermitian matrix
Algorithm
Optimal design
Complex variable method
Time domain method
Vocal signal
Electrocardiography
Signal processing
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-5aa57aaffbbb61e55b6ca240da9168ea456bbfd8513f6694becb1ae59e3d32bc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1567065716
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_1567065716
pascalfrancis_primary_28323384
crossref_citationtrail_10_1016_j_sigpro_2013_11_018
crossref_primary_10_1016_j_sigpro_2013_11_018
elsevier_sciencedirect_doi_10_1016_j_sigpro_2013_11_018
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Signal processing
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Subramaniam, Ling, Georgakis (bib4) 2012; 60
Candan, Kutay, Ozaktas (bib18) 2000; 48
Akay, Boudreaux-Bartels (bib10) 1998; 5
Ranta, Louis-Dorr, Heinrich, Wolf (bib7) 2005; 12
Andrén, Hellström, Markström (bib19) 2008; 107
Luisier, Blu, Unser (bib8) 2010; 20
Ozaktas (bib6) 1996; 54
Durak, Aldirmaz (bib5) 2010; 90
Suthers, Campbell, Reilly (bib11) 1980; SU-27
Mıhçak, Kozintsev, Ramchandran, Moulin (bib13) 1999; 6
Zoran Brajević, Antonio petošić, Signal denoising using STFT with Bayes prediction and Ephraim-Malah estimation, in: The 54th International Symposium, ELMAR, 2012, pp. 183–186.
Thiel, Kreiseler, Seifert (bib17) 2009; 80
Karpovsky, Trachtenberg (bib15) 1986; IT-32
Chen, Xu, Fränti (bib14) 2011; 13
Tao, Zhang, Li (bib2) 2011; 91
Ghosh, Sreenivas (bib3) 2006; 86
Chun, Chun (bib9) 2000; 80
Schubert (bib16) 1968; BME-15
Bucy, Jonckheere (bib12) 1989; 13
Candan (10.1016/j.sigpro.2013.11.018_bib18) 2000; 48
Ozaktas (10.1016/j.sigpro.2013.11.018_bib6) 1996; 54
Bucy (10.1016/j.sigpro.2013.11.018_bib12) 1989; 13
Subramaniam (10.1016/j.sigpro.2013.11.018_bib4) 2012; 60
Ghosh (10.1016/j.sigpro.2013.11.018_bib3) 2006; 86
Schubert (10.1016/j.sigpro.2013.11.018_bib16) 1968; BME-15
Luisier (10.1016/j.sigpro.2013.11.018_bib8) 2010; 20
10.1016/j.sigpro.2013.11.018_bib1
Akay (10.1016/j.sigpro.2013.11.018_bib10) 1998; 5
Durak (10.1016/j.sigpro.2013.11.018_bib5) 2010; 90
Chun (10.1016/j.sigpro.2013.11.018_bib9) 2000; 80
Suthers (10.1016/j.sigpro.2013.11.018_bib11) 1980; SU-27
Mıhçak (10.1016/j.sigpro.2013.11.018_bib13) 1999; 6
Thiel (10.1016/j.sigpro.2013.11.018_bib17) 2009; 80
Ranta (10.1016/j.sigpro.2013.11.018_bib7) 2005; 12
Andrén (10.1016/j.sigpro.2013.11.018_bib19) 2008; 107
Tao (10.1016/j.sigpro.2013.11.018_bib2) 2011; 91
Chen (10.1016/j.sigpro.2013.11.018_bib14) 2011; 13
Karpovsky (10.1016/j.sigpro.2013.11.018_bib15) 1986; IT-32
References_xml – volume: 20
  start-page: 913
  year: 2010
  end-page: 919
  ident: bib8
  article-title: SURE-LET for orthonormal wavelet-domain video denoising
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 13
  start-page: 1195
  year: 2011
  end-page: 1207
  ident: bib14
  article-title: Adaptive context-tree-based statistical filtering for raster map image denoising
  publication-title: IEEE Trans. Multimed.
– volume: 80
  start-page: 114302.1
  year: 2009
  end-page: 114302.12
  ident: bib17
  article-title: Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography
  publication-title: Rev. Sci. Instrum.
– volume: SU-27
  start-page: 90
  year: 1980
  end-page: 93
  ident: bib11
  article-title: SAW bandpass filter design using Hermitian function techniques
  publication-title: IEEE Trans. Sonics Ultrason.
– reference: Zoran Brajević, Antonio petošić, Signal denoising using STFT with Bayes prediction and Ephraim-Malah estimation, in: The 54th International Symposium, ELMAR, 2012, pp. 183–186.
– volume: 48
  start-page: 1329
  year: 2000
  end-page: 1337
  ident: bib18
  article-title: The discrete fractional Fourier transform
  publication-title: IEEE Trans. Signal Process.
– volume: 5
  start-page: 312
  year: 1998
  end-page: 314
  ident: bib10
  article-title: Unitary and Hermitian fractional operators and their relation to the fractional Fourier transform
  publication-title: IEEE Signal Process. Lett.
– volume: 13
  start-page: 339
  year: 1989
  end-page: 344
  ident: bib12
  article-title: Singular filtering problems
  publication-title: Syst. Control Lett.
– volume: 6
  start-page: 300
  year: 1999
  end-page: 303
  ident: bib13
  article-title: Low-complexity image denoising based on statistical modeling of wavelet coefficients
  publication-title: IEEE Signal Process. Lett.
– volume: BME-15
  start-page: 303
  year: 1968
  end-page: 312
  ident: bib16
  article-title: An experimental study of the multipole series that represents the human electrocardiogram
  publication-title: IEEE Trans. Bio-med. Eng.
– volume: 60
  start-page: 489
  year: 2012
  end-page: 493
  ident: bib4
  article-title: Filtering in rotated time-frequency domains with unknown noise statistics
  publication-title: IEEE Trans. Signal Process.
– volume: 90
  start-page: 1188
  year: 2010
  end-page: 1196
  ident: bib5
  article-title: Adaptive fractional Fourier domain filtering
  publication-title: Signal Process.
– volume: 91
  start-page: 1401
  year: 2011
  end-page: 1408
  ident: bib2
  article-title: Time-frequency filtering-based autofocus
  publication-title: Signal Process.
– volume: 107
  start-page: 230
  year: 2008
  end-page: 234
  ident: bib19
  article-title: Fast multiplication of matrices over a finitely generated semiring
  publication-title: Inf. Process. Lett.
– volume: IT-32
  start-page: 303
  year: 1986
  end-page: 307
  ident: bib15
  article-title: Statistical and computational performance of a class of generalized Wiener filters
  publication-title: IEEE Trans. Inf. Theory
– volume: 86
  start-page: 3258
  year: 2006
  end-page: 3263
  ident: bib3
  article-title: Time-varying filter interpolation of Fourier transform and its variants
  publication-title: Signal Process.
– volume: 80
  start-page: 441
  year: 2000
  end-page: 450
  ident: bib9
  article-title: Nonlinear filtering using the wavelet transform
  publication-title: Signal Process.
– volume: 54
  start-page: 81
  year: 1996
  end-page: 84
  ident: bib6
  article-title: Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering
  publication-title: Signal Process.
– volume: 12
  start-page: 557
  year: 2005
  end-page: 560
  ident: bib7
  article-title: Iterative wavelet-based denoising methods and robust outlier detection
  publication-title: IEEE Signal Process. Lett.
– ident: 10.1016/j.sigpro.2013.11.018_bib1
– volume: 86
  start-page: 3258
  year: 2006
  ident: 10.1016/j.sigpro.2013.11.018_bib3
  article-title: Time-varying filter interpolation of Fourier transform and its variants
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2006.01.005
– volume: 20
  start-page: 913
  issue: 6
  year: 2010
  ident: 10.1016/j.sigpro.2013.11.018_bib8
  article-title: SURE-LET for orthonormal wavelet-domain video denoising
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2010.2045819
– volume: 13
  start-page: 339
  year: 1989
  ident: 10.1016/j.sigpro.2013.11.018_bib12
  article-title: Singular filtering problems
  publication-title: Syst. Control Lett.
  doi: 10.1016/0167-6911(89)90122-9
– volume: 80
  start-page: 114302.1
  issue: 11
  year: 2009
  ident: 10.1016/j.sigpro.2013.11.018_bib17
  article-title: Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3238506
– volume: 54
  start-page: 81
  year: 1996
  ident: 10.1016/j.sigpro.2013.11.018_bib6
  article-title: Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(96)00095-3
– volume: BME-15
  start-page: 303
  issue: 4
  year: 1968
  ident: 10.1016/j.sigpro.2013.11.018_bib16
  article-title: An experimental study of the multipole series that represents the human electrocardiogram
  publication-title: IEEE Trans. Bio-med. Eng.
  doi: 10.1109/TBME.1968.4502582
– volume: 90
  start-page: 1188
  year: 2010
  ident: 10.1016/j.sigpro.2013.11.018_bib5
  article-title: Adaptive fractional Fourier domain filtering
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2009.10.002
– volume: 91
  start-page: 1401
  year: 2011
  ident: 10.1016/j.sigpro.2013.11.018_bib2
  article-title: Time-frequency filtering-based autofocus
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2010.12.017
– volume: 12
  start-page: 557
  issue: 8
  year: 2005
  ident: 10.1016/j.sigpro.2013.11.018_bib7
  article-title: Iterative wavelet-based denoising methods and robust outlier detection
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2005.851267
– volume: IT-32
  start-page: 303
  issue: 2
  year: 1986
  ident: 10.1016/j.sigpro.2013.11.018_bib15
  article-title: Statistical and computational performance of a class of generalized Wiener filters
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1986.1057144
– volume: 13
  start-page: 1195
  issue: 6
  year: 2011
  ident: 10.1016/j.sigpro.2013.11.018_bib14
  article-title: Adaptive context-tree-based statistical filtering for raster map image denoising
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2011.2166538
– volume: SU-27
  start-page: 90
  issue: 2
  year: 1980
  ident: 10.1016/j.sigpro.2013.11.018_bib11
  article-title: SAW bandpass filter design using Hermitian function techniques
  publication-title: IEEE Trans. Sonics Ultrason.
  doi: 10.1109/T-SU.1980.31154
– volume: 80
  start-page: 441
  year: 2000
  ident: 10.1016/j.sigpro.2013.11.018_bib9
  article-title: Nonlinear filtering using the wavelet transform
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(99)00142-5
– volume: 107
  start-page: 230
  year: 2008
  ident: 10.1016/j.sigpro.2013.11.018_bib19
  article-title: Fast multiplication of matrices over a finitely generated semiring
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2008.03.004
– volume: 60
  start-page: 489
  issue: 1
  year: 2012
  ident: 10.1016/j.sigpro.2013.11.018_bib4
  article-title: Filtering in rotated time-frequency domains with unknown noise statistics
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2171956
– volume: 5
  start-page: 312
  issue: 12
  year: 1998
  ident: 10.1016/j.sigpro.2013.11.018_bib10
  article-title: Unitary and Hermitian fractional operators and their relation to the fractional Fourier transform
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.735422
– volume: 48
  start-page: 1329
  issue: 5
  year: 2000
  ident: 10.1016/j.sigpro.2013.11.018_bib18
  article-title: The discrete fractional Fourier transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.839980
– volume: 6
  start-page: 300
  issue: 12
  year: 1999
  ident: 10.1016/j.sigpro.2013.11.018_bib13
  article-title: Low-complexity image denoising based on statistical modeling of wavelet coefficients
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.803428
SSID ssj0001360
Score 2.0923347
Snippet This paper proposes an optimal design of a Hermitian transform and vectors of both mask and window coefficients for denoising signals with both unknown noise...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Applied sciences
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Detection, estimation, filtering, equalization, prediction
Distortion
Exact sciences and technology
Hermitian transform
Information, signal and communications theory
Mask operation
Masks
Mathematical analysis
Medical management aid. Diagnosis aid
Medical sciences
Noise
Noise reduction
Optimization
Orthogonal Procrustes
Quadratic complex valued matrix equality constraint
Quadratically constrained programming
Signal and communications theory
Signal processing
Signal, noise
Speech processing
Telecommunications and information theory
Transforms
Vectors (mathematics)
Windowing
Title Optimal design of Hermitian transform and vectors of both mask and window coefficients for denoising applications with both unknown noise characteristics and distortions
URI https://dx.doi.org/10.1016/j.sigpro.2013.11.018
https://www.proquest.com/docview/1567065716
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iF0XEJ9ZHieB1bbebZNtjEaUq1oMK3kKSTaRqd4vb2pv_x3_pTHa3WhQEb_uYJMvOZPJNMg9CjrliLQDercA0dRwwq1mgRQxXzoZCxCZ0IQY4X_dF755dPvCHBXJaxcKgW2Wp-wud7rV1-aRR_s3GaDBo3GIgTijaqIUxjxzmBGUsxioGJ-9fbh5h5COFkThA6ip8zvt45YNH0FPo4BWdYC5PLP3x-_K0OlI5_DRXVLv4obj9anS-TtZKGEm7xZdukAWbbpKVb8kFt8jHDWiDIRAl3kmDZo720PMFpzQdV3iVqjShb37rPkcSDZyjQ5U_-xdTsNizKTWZ9Zkm0OmCQivoMs0GuMtAvx-AU9zULXqYpLhZl1Iks9TMZ4X2XSc-P4lvt03uz8_uTntBWZghMJHojAOuFI-Vck5rLULLuRZGATRIFIDNtlUAyrR2CYC5yAnRYSAnOlSWd2yURC1toh2ymGap3SWUxTwJO9xwDpZqk5m2NrFLAPaBDDWZMzUSVfyQpsxajsUzXmTlnvYkCy5K5CIYNBK4WCPBrNWoyNrxB31csVrOSZ-EheWPlvU5yZgNhyWgwPxnNXJUiYqEmYvHMSq12SSXYDnjGTMYrHv_Hn6fLMMdKzwwD8ji-HViDwEljXXdT4M6WepeXPX6n4c8GGY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9B9wAIobENUcaHJ-01tGlsp31E1VC38fEASLxZtmOjbpBUpIU3_h_-S-6cBKiGhLS3KDnbke98vrN_dwfwXWjeQ8O7F9muSSPuDI-MTPHJu1jK1MY-pgDn4xM5uuC_LsXlAgybWBiCVda6v9LpQVvXbzr1bHYm43HnjAJxYtknLUx55PgifOCil5IHtv_wgvOIkxAqTNQRkTfxcwHkVY6vUFERwivZp2SeVPvj7f1pdaJLnDVflbv4R3OH7ejwI6zVdiQ7qH51HRZc_glWXmUX_AyPp6gObpAoCygNVng2IugLrWk2bQxWpvOM3YWz-5JIDLKO3ejyb_hwjy57cc9s4UKqCUJdMGyFXebFmI4Z2OsbcEanulUPs5xO63JGZI7Z-bTQoessJCgJ7b7AxeGP8-EoqiszRDaRg2kktBap1t4bY2TshDDSarQNMo3WZt9ptMqM8Rlac4mXcsBRUEysnRi4JEt6xiYb0MqL3G0C46nI4oGwQqCr2uW2b2zqM7T7UIi63Ns2JA0_lK3TllP1jGvV4NP-qIqLiriIHo1CLrYhem41qdJ2vEOfNqxWc-KncGd5p-XunGQ8D0c1oND_52341oiKwqVL9zE6d8WsVOg60yUzeqxb_z38HiyNzo-P1NHPk99fYRm_8AqOuQ2t6e3M7aDJNDW7YUk8AdLyGfs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+Hermitian+transform+and+vectors+of+both+mask+and+window+coefficients+for+denoising+applications+with+both+unknown+noise+characteristics+and+distortions&rft.jtitle=Signal+processing&rft.au=Ling%2C+Bingo+Wing-Kuen&rft.au=Ho%2C+Charlotte+Yuk-Fan&rft.au=Subramaniam%2C+Suba+R.&rft.au=Georgakis%2C+Apostolos&rft.date=2014-05-01&rft.issn=0165-1684&rft.volume=98&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1016%2Fj.sigpro.2013.11.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2013_11_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon