Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network

The gear cracks of gear box are one of most common failure forms affecting gear shaft drive. It has become significant for practice and economy to diagnose the situation of gearbox rapidly and accurately. The extracted signal is filtered first to eliminate noise, which is pretreated for the diagnost...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 31; no. 9; pp. 4463 - 4478
Main Authors Yang, Liu, Chen, Hanxin
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-018-3525-y

Cover

Abstract The gear cracks of gear box are one of most common failure forms affecting gear shaft drive. It has become significant for practice and economy to diagnose the situation of gearbox rapidly and accurately. The extracted signal is filtered first to eliminate noise, which is pretreated for the diagnostic classification based on the particle filter of radial basis function. As traditional error back-propagation of wavelet neural network with falling into local minimum easily, slow convergence speed and other shortcomings, the particle swarm optimization algorithm is proposed in this paper. This particle swarm algorithm that optimizes the weight values of wavelet neural network (scale factor) and threshold value (the translation factor) was developed to reduce the iteration times and improve the convergence precision and rapidity so that the various parameters of wavelet neural network can be chosen adaptively. Experimental results demonstrate that the proposed method can accurately and quickly identify the damage situation of the gear crack, which is more robust than traditional back-propagation algorithm. It provides guidances and references for the maintenance of the gear drive system schemes.
AbstractList The gear cracks of gear box are one of most common failure forms affecting gear shaft drive. It has become significant for practice and economy to diagnose the situation of gearbox rapidly and accurately. The extracted signal is filtered first to eliminate noise, which is pretreated for the diagnostic classification based on the particle filter of radial basis function. As traditional error back-propagation of wavelet neural network with falling into local minimum easily, slow convergence speed and other shortcomings, the particle swarm optimization algorithm is proposed in this paper. This particle swarm algorithm that optimizes the weight values of wavelet neural network (scale factor) and threshold value (the translation factor) was developed to reduce the iteration times and improve the convergence precision and rapidity so that the various parameters of wavelet neural network can be chosen adaptively. Experimental results demonstrate that the proposed method can accurately and quickly identify the damage situation of the gear crack, which is more robust than traditional back-propagation algorithm. It provides guidances and references for the maintenance of the gear drive system schemes.
Author Chen, Hanxin
Yang, Liu
Author_xml – sequence: 1
  givenname: Liu
  surname: Yang
  fullname: Yang, Liu
  organization: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology
– sequence: 2
  givenname: Hanxin
  surname: Chen
  fullname: Chen, Hanxin
  email: 201615004@wit.edu.cn
  organization: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology
BookMark eNp9kF9LwzAUxYNMcJt-AN8CPldvmqR_HnVYFQaK6HNIm3Rkdk1NUuf89HZWEAR9Og_3_O6598zQpLWtRuiUwDkBSC88AI9JBCSLKI95tDtAU8IojSjwbIKmkLNhmjB6hGberwGAJRmfIlnIvglYGblqrTce2xqvtHSlfcel9Fph2-LHqyJ6KLBsFe6kC6ZqNPZb6TbYdsFszIcMZrBt5ZtudMCt7p1sBglb616O0WEtG69PvnWOnovrp8VttLy_uVtcLqOKJnmIGCu10jmreSZrqJKU81LlmrCyKmlWq5TnOU0VBUi4ShOouQQCaZ2zkiSxSugcnY17O2dfe-2DWNvetUOkiOM9S1OAwUVGV-Ws907XonNmI91OEBD7JsXYpBiaFPsmxW5g0l9MZcLXy8FJ0_xLxiPph5R2pd3PTX9Dn1xIiqs
CitedBy_id crossref_primary_10_1007_s13369_022_07408_x
crossref_primary_10_1016_j_oceaneng_2023_115744
crossref_primary_10_1007_s00366_020_01277_4
crossref_primary_10_32604_cmc_2023_033534
crossref_primary_10_1177_1729881420916948
crossref_primary_10_1007_s10489_021_02413_3
crossref_primary_10_1016_j_comcom_2020_01_063
crossref_primary_10_1155_2021_5544133
crossref_primary_10_1016_j_oceaneng_2024_117285
crossref_primary_10_1111_ffe_13690
crossref_primary_10_1111_jfr3_12683
crossref_primary_10_1080_21642583_2021_1992684
crossref_primary_10_1093_gji_ggae229
crossref_primary_10_1007_s10518_024_02084_8
crossref_primary_10_1016_j_knosys_2020_106704
crossref_primary_10_1364_OE_470970
crossref_primary_10_3390_act12050197
crossref_primary_10_3390_en14041196
crossref_primary_10_3390_e24111517
crossref_primary_10_1155_2020_1274380
crossref_primary_10_1007_s42235_022_00297_8
crossref_primary_10_1080_15599612_2023_2185714
crossref_primary_10_1186_s13634_021_00730_w
crossref_primary_10_1007_s10462_024_10793_4
crossref_primary_10_32604_cmes_2021_010771
crossref_primary_10_1088_1361_665X_ac5455
crossref_primary_10_3934_mbe_2021182
crossref_primary_10_1016_j_egyr_2020_12_013
crossref_primary_10_3390_s20010006
crossref_primary_10_1007_s00500_023_08319_1
crossref_primary_10_1088_1361_6501_acd9df
crossref_primary_10_1016_j_eswa_2021_115499
crossref_primary_10_1016_j_measurement_2020_108392
crossref_primary_10_1016_j_petsci_2023_04_003
crossref_primary_10_1109_ACCESS_2021_3052835
crossref_primary_10_1007_s00521_019_04097_w
crossref_primary_10_1016_j_measurement_2020_108026
crossref_primary_10_1016_j_sasc_2024_200137
crossref_primary_10_1177_16878140211043004
crossref_primary_10_1016_j_egyr_2025_02_026
crossref_primary_10_1016_j_enconman_2024_118062
crossref_primary_10_1007_s00366_020_01140_6
crossref_primary_10_1142_S0218001420580124
crossref_primary_10_1007_s00366_020_01252_z
crossref_primary_10_1016_j_heliyon_2024_e37971
crossref_primary_10_1088_1742_6596_2383_1_012097
crossref_primary_10_32604_cmc_2023_036822
crossref_primary_10_1142_S0218001422500380
crossref_primary_10_1007_s00521_019_04033_y
crossref_primary_10_1186_s10033_023_00856_y
crossref_primary_10_1007_s42452_024_06033_7
crossref_primary_10_1016_j_neucom_2020_10_038
crossref_primary_10_3390_s22114294
crossref_primary_10_1007_s00170_023_12381_2
crossref_primary_10_1016_j_ymssp_2022_109683
crossref_primary_10_1016_j_measurement_2021_110358
crossref_primary_10_1109_ACCESS_2021_3052800
crossref_primary_10_1007_s00366_020_01119_3
crossref_primary_10_1007_s00521_019_04300_y
crossref_primary_10_1109_TIM_2020_3026760
crossref_primary_10_1016_j_jvcir_2019_03_013
crossref_primary_10_1080_10916466_2021_2015378
crossref_primary_10_1088_1742_6596_2066_1_012109
crossref_primary_10_1038_s41598_024_75522_x
crossref_primary_10_3233_JIFS_189301
crossref_primary_10_1080_10584587_2021_1911296
crossref_primary_10_1093_ijlct_ctae001
crossref_primary_10_1155_2022_1235229
crossref_primary_10_1109_TITS_2021_3088862
crossref_primary_10_1016_j_comcom_2020_04_026
crossref_primary_10_1016_j_eswa_2020_114369
crossref_primary_10_3390_machines11080837
crossref_primary_10_1016_j_ymssp_2021_107821
crossref_primary_10_1016_j_knosys_2020_106642
crossref_primary_10_1007_s00366_021_01282_1
crossref_primary_10_1016_j_knosys_2020_106684
crossref_primary_10_1016_j_aei_2020_101172
crossref_primary_10_1007_s00521_023_09302_5
crossref_primary_10_1016_j_enconman_2020_113751
crossref_primary_10_1155_2022_4884109
crossref_primary_10_1007_s00521_021_06654_8
crossref_primary_10_1109_ACCESS_2023_3284969
crossref_primary_10_1002_ett_3955
crossref_primary_10_1155_2020_8856818
crossref_primary_10_1007_s40430_022_03975_0
crossref_primary_10_1177_09544054221121921
crossref_primary_10_3390_sym13020244
Cites_doi 10.1243/0954406011524027
10.1016/j.measurement.2007.03.004
10.1016/j.ymssp.2014.07.005
10.1186/s13705-016-0071-2
10.1016/j.ymssp.2013.06.023
10.1016/S0020-0190(02)00447-7
10.1016/j.epsr.2016.06.013
10.1007/s11831-016-9176-1
10.1016/j.compstruc.2003.10.028
10.1007/s11721-007-0004-y
10.1177/1077546308091214
10.1155/2013/598490
10.1016/j.neucom.2013.03.076
10.1016/j.measurement.2010.01.001
10.1016/j.jsv.2007.01.006
10.1515/jaiscr-2015-0031
10.4028/www.scientific.net/AMM.608-609.899
10.3182/20080706-5-KR-1001.00862
10.1109/ICNN.1995.488968
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2018
Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Natural Computing Applications Forum 2018
– notice: Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-018-3525-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 4478
ExternalDocumentID 10_1007_s00521_018_3525_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61273176
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Program for New Century Excellent Talents in University of Minister of Education of China
  grantid: 201010621237
– fundername: Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
  grantid: 20091001
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c369t-44bede94f58af0c6755bd9e14bcb38fd759937d30065d760f5a0107f94b162d63
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 04:15:11 EDT 2025
Wed Oct 01 02:25:51 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Fri Feb 21 02:35:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Fault diagnosis
Wavelet neural network
Particle swarm optimization
Particle filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-44bede94f58af0c6755bd9e14bcb38fd759937d30065d760f5a0107f94b162d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2299373700
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_2299373700
crossref_primary_10_1007_s00521_018_3525_y
crossref_citationtrail_10_1007_s00521_018_3525_y
springer_journals_10_1007_s00521_018_3525_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2019
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Chen, Shang, Sun (CR1) 2013; 40
Aghdam, Heidari (CR15) 2015; 5
Yu, Yang, Cheng (CR17) 2007; 40
Qian, Dongxiang, Liangyou (CR7) 2008; 5264
Trelea (CR16) 2003; 85
Sanz, Perera, Huerta (CR9) 2007; 302
CR6
Fucai, Guang, Lin, Peng (CR5) 2008; 14
Androvitsaneas, Alexandridis, Gonos, Dounias, Stathopulos (CR8) 2016; 140
CR19
Chen, Lu, Tu (CR4) 2013; 20
Goyal, Pabla, Dhami (CR10) 2017; 24
Shi, Eberhart (CR23) 1998
CR24
Garnier, Gautrais, Theraulaz (CR12) 2007; 1
CR11
CR21
Vitorino, Ribeiro, Bastos-Filho (CR13) 2015; 148
Wang, Sun, Peter (CR2) 2015; 52
Krambergel, Sraml, Glodez (CR20) 2004; 82
Kerdphol, Qudaih, Watanabe, Mitani (CR3) 2016; 6
Chen, Zuo, Wang, Hoseini (CR22) 2010; 43
Ardehali, Sirizi (CR14) 2013; 65
Andrade, Esat (CR18) 2001; 215
J Krambergel (3525_CR20) 2004; 82
3525_CR6
L Fucai (3525_CR5) 2008; 14
J Sanz (3525_CR9) 2007; 302
MM Ardehali (3525_CR14) 2013; 65
H Chen (3525_CR22) 2010; 43
3525_CR24
LN Vitorino (3525_CR13) 2015; 148
D Yu (3525_CR17) 2007; 40
D Goyal (3525_CR10) 2017; 24
3525_CR11
3525_CR21
D Wang (3525_CR2) 2015; 52
3525_CR19
Yuhui Shi (3525_CR23) 1998
H Qian (3525_CR7) 2008; 5264
H Chen (3525_CR4) 2013; 20
FA Andrade II (3525_CR18) 2001; 215
H Chen (3525_CR1) 2013; 40
S Garnier (3525_CR12) 2007; 1
IC Trelea (3525_CR16) 2003; 85
T Kerdphol (3525_CR3) 2016; 6
MH Aghdam (3525_CR15) 2015; 5
VP Androvitsaneas (3525_CR8) 2016; 140
References_xml – ident: CR21
– volume: 215
  start-page: 653
  issue: 6
  year: 2001
  end-page: 661
  ident: CR18
  article-title: Gear condition monitoring by a new application of the Kolmogorov–Smirnov test
  publication-title: Proc Inst Mech Eng Part C-J Mech Eng Sci
  doi: 10.1243/0954406011524027
– volume: 40
  start-page: 823
  issue: 9–10
  year: 2007
  end-page: 830
  ident: CR17
  article-title: Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2007.03.004
– ident: CR19
– volume: 52
  start-page: 293
  year: 2015
  end-page: 308
  ident: CR2
  article-title: A general sequential Monte Carlo method based optimal wavelet filter: a Bayesian approach for extracting bearing fault features
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.07.005
– volume: 6
  start-page: 5
  issue: 1
  year: 2016
  ident: CR3
  article-title: RBF neural network-based online intelligent management of a battery energy storage system for stand-alone microgrids
  publication-title: Energy, Sustain Soc
  doi: 10.1186/s13705-016-0071-2
– volume: 40
  start-page: 469
  year: 2013
  end-page: 482
  ident: CR1
  article-title: Multiple fault condition recognition of gearbox with sequential hypothesis test
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.06.023
– volume: 85
  start-page: 317
  issue: 6
  year: 2003
  end-page: 325
  ident: CR16
  article-title: Particle swarm optimization algorithm:convergence analysis and parameter selection[J]
  publication-title: Inf Process Lett
  doi: 10.1016/S0020-0190(02)00447-7
– start-page: 591
  year: 1998
  end-page: 600
  ident: CR23
  article-title: Parameter selection in particle swarm optimization
  publication-title: Lecture Notes in Computer Science
– volume: 140
  start-page: 288
  year: 2016
  end-page: 295
  ident: CR8
  article-title: Wavelet neural network methodology for ground resistance forecasting
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2016.06.013
– volume: 24
  start-page: 543
  issue: 3
  year: 2017
  end-page: 556
  ident: CR10
  article-title: Condition monitoring parameters for fault diagnosis of fixed axis gearbox: a review
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-016-9176-1
– volume: 82
  start-page: 2261
  issue: 23–26
  year: 2004
  end-page: 2269
  ident: CR20
  article-title: Computational model for the analysis of bending fatigue in gear-s
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2003.10.028
– ident: CR11
– volume: 1
  start-page: 3
  year: 2007
  end-page: 31
  ident: CR12
  article-title: The biological principles of swarm intelligence
  publication-title: Swarm Intell
  doi: 10.1007/s11721-007-0004-y
– ident: CR6
– volume: 65
  start-page: 41
  issue: 1
  year: 2013
  end-page: 49
  ident: CR14
  article-title: Particle swarm optimization based fuzzy logic controller for autonomous;green power energy system with hydrogen storage[J]
  publication-title: Energy Convers Manag
– volume: 14
  start-page: 1691
  issue: 11
  year: 2008
  end-page: 1709
  ident: CR5
  article-title: Wavelet transform-based higher-order statistics for fault diagnosis in rolling element bearings
  publication-title: J Vib Control
  doi: 10.1177/1077546308091214
– volume: 5264
  start-page: 313
  year: 2008
  end-page: 320
  ident: CR7
  article-title: Application of wavelet neural networks on vibration fault diagnosis for wind turbine gearbox
  publication-title: Adv Neural Netw
– ident: CR24
– volume: 20
  start-page: 247
  issue: 2
  year: 2013
  end-page: 262
  ident: CR4
  article-title: Fault identification of gearbox degradation with optimized wavelet neural network
  publication-title: Shock Vib
  doi: 10.1155/2013/598490
– volume: 148
  start-page: 39
  year: 2015
  end-page: 45
  ident: CR13
  article-title: A mechanism based on artificial bee colony to generate diversity in particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.076
– volume: 43
  start-page: 570
  year: 2010
  end-page: 585
  ident: CR22
  article-title: An adaptive Morlet wavelet filter for time-of-flight estimation in ultrasonic damage assessment
  publication-title: Measurement.
  doi: 10.1016/j.measurement.2010.01.001
– volume: 302
  start-page: 981
  issue: 4–5
  year: 2007
  end-page: 999
  ident: CR9
  article-title: Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2007.01.006
– volume: 5
  start-page: 38
  issue: 4
  year: 2015
  end-page: 43
  ident: CR15
  article-title: Feature selection using particle swarm optimization in text categorization
  publication-title: J Artif Intell Soft Comput Res
  doi: 10.1515/jaiscr-2015-0031
– ident: 3525_CR6
  doi: 10.4028/www.scientific.net/AMM.608-609.899
– volume: 6
  start-page: 5
  issue: 1
  year: 2016
  ident: 3525_CR3
  publication-title: Energy, Sustain Soc
  doi: 10.1186/s13705-016-0071-2
– volume: 5264
  start-page: 313
  year: 2008
  ident: 3525_CR7
  publication-title: Adv Neural Netw
– volume: 302
  start-page: 981
  issue: 4–5
  year: 2007
  ident: 3525_CR9
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2007.01.006
– volume: 82
  start-page: 2261
  issue: 23–26
  year: 2004
  ident: 3525_CR20
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2003.10.028
– volume: 40
  start-page: 469
  year: 2013
  ident: 3525_CR1
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.06.023
– volume: 52
  start-page: 293
  year: 2015
  ident: 3525_CR2
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.07.005
– volume: 148
  start-page: 39
  year: 2015
  ident: 3525_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.076
– volume: 40
  start-page: 823
  issue: 9–10
  year: 2007
  ident: 3525_CR17
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2007.03.004
– volume: 65
  start-page: 41
  issue: 1
  year: 2013
  ident: 3525_CR14
  publication-title: Energy Convers Manag
– volume: 215
  start-page: 653
  issue: 6
  year: 2001
  ident: 3525_CR18
  publication-title: Proc Inst Mech Eng Part C-J Mech Eng Sci
  doi: 10.1243/0954406011524027
– volume: 43
  start-page: 570
  year: 2010
  ident: 3525_CR22
  publication-title: Measurement.
  doi: 10.1016/j.measurement.2010.01.001
– ident: 3525_CR19
– ident: 3525_CR21
– volume: 24
  start-page: 543
  issue: 3
  year: 2017
  ident: 3525_CR10
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-016-9176-1
– volume: 1
  start-page: 3
  year: 2007
  ident: 3525_CR12
  publication-title: Swarm Intell
  doi: 10.1007/s11721-007-0004-y
– start-page: 591
  volume-title: Lecture Notes in Computer Science
  year: 1998
  ident: 3525_CR23
– ident: 3525_CR24
  doi: 10.3182/20080706-5-KR-1001.00862
– volume: 5
  start-page: 38
  issue: 4
  year: 2015
  ident: 3525_CR15
  publication-title: J Artif Intell Soft Comput Res
  doi: 10.1515/jaiscr-2015-0031
– volume: 14
  start-page: 1691
  issue: 11
  year: 2008
  ident: 3525_CR5
  publication-title: J Vib Control
  doi: 10.1177/1077546308091214
– volume: 140
  start-page: 288
  year: 2016
  ident: 3525_CR8
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2016.06.013
– ident: 3525_CR11
  doi: 10.1109/ICNN.1995.488968
– volume: 20
  start-page: 247
  issue: 2
  year: 2013
  ident: 3525_CR4
  publication-title: Shock Vib
  doi: 10.1155/2013/598490
– volume: 85
  start-page: 317
  issue: 6
  year: 2003
  ident: 3525_CR16
  publication-title: Inf Process Lett
  doi: 10.1016/S0020-0190(02)00447-7
SSID ssj0004685
Score 2.5499365
Snippet The gear cracks of gear box are one of most common failure forms affecting gear shaft drive. It has become significant for practice and economy to diagnose the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4463
SubjectTerms Algorithms
Artificial Intelligence
Back propagation
Back propagation networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Convergence
Damage detection
Data Mining and Knowledge Discovery
Diagnostic systems
Fault diagnosis
Fracture mechanics
Gearboxes
Image Processing and Computer Vision
Neural networks
Particle swarm optimization
Probability and Statistics in Computer Science
Radial basis function
S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems
Wave propagation
Wavelet analysis
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X3zxW5xOyYNPSqBN0o88TrEMQRFxsLeSNIkIWzvWjrn_3qRNNxUVfG6alLtL7n7N3e8AuIyIryjGDBlnrRAVEiMRZAbzMBKSSHMslQWKD4_hYEjvR8HI1XGXbbZ7eyVZn9SrYjf7B9NC3xhZCk-03ARbgWXzMkY8xP1PxZB1H04DW2xKDyXtVeZPU3x1RusI89ulaO1rkj2w44JE2G-0ug82VH4AdtsGDNDtx0PAEz4fV1A26XJvJSw0fDWmK4p3aN2ThEUOn28S9JRAnks4dXYCywWfTWBhjouJq8OEC25bUFTQElyatfMmPfwIDJO7l9sBcj0TUEZCViFKhZKKUR3EXHuZgQOBkEz5VGSCxFpGgQ1IJLGhh4xCTwfcILJIMyr8EMuQHINOXuTqBMCYU62FpkZlBgUKLbI4wpwLpjmjCvtd4LXCSzNHKG77WozTFRVyLe_UyDu18k6XXXC1emXasGn8NbjXaiR1G6tMjVmZ7yeR53XBdaul9eNfJzv91-gzsG0CI5dL1gOdajZX5yb4qMRFbWwfEhjRhA
  priority: 102
  providerName: Springer Nature
Title Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network
URI https://link.springer.com/article/10.1007/s00521-018-3525-y
https://www.proquest.com/docview/2299373700
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: PROQUEST
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BcumlvFo1BSIfOLWy2Nje1wFVAWVBRUQIEYmeVvbaRkhhNyUbBf59xxsvoZXKdR9eaWbsmW89_j6Ao5gPjGAspZisDRVKM6rCAjFPyiMeW8m0cUDxahxdTMTPu_BuA8btWRjXVtmuic1CravC_SM_xvEwk_I4CH7MflOnGuV2V1sJDemlFfRJQzG2CV3mmLE60D0dja9v3pyUbEQ6EdO4fh_B233OoKEVxVSG0DqhjiKUvvydqdbl5z87pk0iyrbho68gyXDl8h3YMOUubLXqDMRP1j2QmVxMa6JXvXQPc1JZco9xrapn4nKXJlVJbk4zep0RWWoy80FE5kv59EgqXEse_SFNspROn6Imjv0Sv12uesc_wSQb3Z5dUC-oQAsepTUVQhltUmHDRNqgQKwQKp2agVCF4onVcehsrLmrS3QcBTaUCNdimwo1iJiO-GfolFVpvgBJpLBWWYH-RIiorCqSmEmpUitTYdigB0FrvLzwbONO9GKav_IkN_bO0d65s3f-0oNvr6_MVlQb7z180Hok97Nunq9jpAffWy-tb_93sK_vD7YPH7BM8p1lB9CpnxbmEEuRWvVhM8nO-9Adnv-6HPV9tOHVCRv-AY4e3m0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLSXFmirbsvDh3JpZTVrOw8fUMUrWgqsEAKJW2rHdlUJki0btN0_19_WcdZhoVK5cU4ylsbjmfnimfkAPqa8bwVjkmKwtlRow6iOS8Q8kic8dYoZ64HiyTAZXIhvl_HlAvzpemF8WWXnE1tHberS_yP_gvIwkvI0ir6OflHPGuVvVzsKDRWoFcx2O2IsNHYc2ekEIdx4-3Af93uLsfzgfG9AA8sALXkiGyqEtsZK4eJMuajEBDrWRtq-0KXmmTNp7Bc23AdrkyaRixVimNRJofsJMwlHuc9gSXAhEfwt7R4MT8_udWa2pKCIoXx9keDdvWrUjjHF0IlQPqN-JCmdPoyM83T3nxvaNvDly_AyZKxkZ2ZiK7Bgq1V41bFBkOAcXoPK1e1VQ8ysdu_nmNSO_EAF6fo38bHSkLoiZ7s5Pc2JqgwZBaMl44m6uSY1-q7r0BRKJsrzYTTET9vEtatZrfobuHgS1b6Fxaqu7DsgmRLOaSfQfhCSaqfLLGVKaemUFJb1exB1yivKMN3ck2xcFXdzmVt9F6jvwuu7mPbg090no9loj8deXut2pAinfFzMbbIHn7tdmj_-r7D3jwvbhOeD85Pj4vhwePQBXmCKFqra1mCxubm165gGNXoj2BqB709t3n8BU6oXow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNPSljXpF-P86PMrzHEwd5K0iQibO1YO-b-e5M23VRU8LlpWu4uvfv17n4HwLmHW4LYdoCUsxaIMG4j5sQK8wTYxZ6kNhcaKD513U6f3A-cgZlzmlXV7lVKsuxp0CxNSd4cc9lcNL7pv5kaBvtI03mi-SpYI5onQRl0325_aowsZnIqCKPLewiu0po_bfHVMS2jzW8J0sLvhNtg0wSMsF1qeAesiGQXbFXDGKA5m3uAhnQ6zCEvS-feMphK-KrMmKXvULsqDtMEPl-FqBdCmnA4NjYDsxmdjGCqPh0j05MJZ1SPo8ihJrtUz07KUvF90A9vX647yMxPQDF2gxwRwgQXAZGOT6UVK2jgMB6IFmExw77knqODE451GMI915IOVejMkwFhLdfmLj4AtSRNxCGAPiVSMkmU-hQiZJLFvmdTygJJAyLsVh1YlfCi2JCL6xkXw2hBi1zIO1LyjrS8o3kdXCxuGZfMGn8tblQaicwhyyJlYur9sWdZdXBZaWl5-dfNjv61-gys927C6PGu-3AMNlS8ZErMGqCWT6biRMUkOTst7O4DZfHYrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+of+gearbox+based+on+RBF-PF+and+particle+swarm+optimization+wavelet+neural+network&rft.jtitle=Neural+computing+%26+applications&rft.au=Liu%2C+Yang&rft.au=Chen%2C+Hanxin&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=9&rft.spage=4463&rft.epage=4478&rft_id=info:doi/10.1007%2Fs00521-018-3525-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon