Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network
The gear cracks of gear box are one of most common failure forms affecting gear shaft drive. It has become significant for practice and economy to diagnose the situation of gearbox rapidly and accurately. The extracted signal is filtered first to eliminate noise, which is pretreated for the diagnost...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 31; no. 9; pp. 4463 - 4478 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.09.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-018-3525-y | 
Cover
| Abstract | The gear cracks of gear box are one of most common failure forms affecting gear shaft drive. It has become significant for practice and economy to diagnose the situation of gearbox rapidly and accurately. The extracted signal is filtered first to eliminate noise, which is pretreated for the diagnostic classification based on the particle filter of radial basis function. As traditional error back-propagation of wavelet neural network with falling into local minimum easily, slow convergence speed and other shortcomings, the particle swarm optimization algorithm is proposed in this paper. This particle swarm algorithm that optimizes the weight values of wavelet neural network (scale factor) and threshold value (the translation factor) was developed to reduce the iteration times and improve the convergence precision and rapidity so that the various parameters of wavelet neural network can be chosen adaptively. Experimental results demonstrate that the proposed method can accurately and quickly identify the damage situation of the gear crack, which is more robust than traditional back-propagation algorithm. It provides guidances and references for the maintenance of the gear drive system schemes. | 
    
|---|---|
| AbstractList | The gear cracks of gear box are one of most common failure forms affecting gear shaft drive. It has become significant for practice and economy to diagnose the situation of gearbox rapidly and accurately. The extracted signal is filtered first to eliminate noise, which is pretreated for the diagnostic classification based on the particle filter of radial basis function. As traditional error back-propagation of wavelet neural network with falling into local minimum easily, slow convergence speed and other shortcomings, the particle swarm optimization algorithm is proposed in this paper. This particle swarm algorithm that optimizes the weight values of wavelet neural network (scale factor) and threshold value (the translation factor) was developed to reduce the iteration times and improve the convergence precision and rapidity so that the various parameters of wavelet neural network can be chosen adaptively. Experimental results demonstrate that the proposed method can accurately and quickly identify the damage situation of the gear crack, which is more robust than traditional back-propagation algorithm. It provides guidances and references for the maintenance of the gear drive system schemes. | 
    
| Author | Chen, Hanxin Yang, Liu  | 
    
| Author_xml | – sequence: 1 givenname: Liu surname: Yang fullname: Yang, Liu organization: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology – sequence: 2 givenname: Hanxin surname: Chen fullname: Chen, Hanxin email: 201615004@wit.edu.cn organization: School of Mechanical and Electrical Engineering, Wuhan Institute of Technology  | 
    
| BookMark | eNp9kF9LwzAUxYNMcJt-AN8CPldvmqR_HnVYFQaK6HNIm3Rkdk1NUuf89HZWEAR9Og_3_O6598zQpLWtRuiUwDkBSC88AI9JBCSLKI95tDtAU8IojSjwbIKmkLNhmjB6hGberwGAJRmfIlnIvglYGblqrTce2xqvtHSlfcel9Fph2-LHqyJ6KLBsFe6kC6ZqNPZb6TbYdsFszIcMZrBt5ZtudMCt7p1sBglb616O0WEtG69PvnWOnovrp8VttLy_uVtcLqOKJnmIGCu10jmreSZrqJKU81LlmrCyKmlWq5TnOU0VBUi4ShOouQQCaZ2zkiSxSugcnY17O2dfe-2DWNvetUOkiOM9S1OAwUVGV-Ws907XonNmI91OEBD7JsXYpBiaFPsmxW5g0l9MZcLXy8FJ0_xLxiPph5R2pd3PTX9Dn1xIiqs | 
    
| CitedBy_id | crossref_primary_10_1007_s13369_022_07408_x crossref_primary_10_1016_j_oceaneng_2023_115744 crossref_primary_10_1007_s00366_020_01277_4 crossref_primary_10_32604_cmc_2023_033534 crossref_primary_10_1177_1729881420916948 crossref_primary_10_1007_s10489_021_02413_3 crossref_primary_10_1016_j_comcom_2020_01_063 crossref_primary_10_1155_2021_5544133 crossref_primary_10_1016_j_oceaneng_2024_117285 crossref_primary_10_1111_ffe_13690 crossref_primary_10_1111_jfr3_12683 crossref_primary_10_1080_21642583_2021_1992684 crossref_primary_10_1093_gji_ggae229 crossref_primary_10_1007_s10518_024_02084_8 crossref_primary_10_1016_j_knosys_2020_106704 crossref_primary_10_1364_OE_470970 crossref_primary_10_3390_act12050197 crossref_primary_10_3390_en14041196 crossref_primary_10_3390_e24111517 crossref_primary_10_1155_2020_1274380 crossref_primary_10_1007_s42235_022_00297_8 crossref_primary_10_1080_15599612_2023_2185714 crossref_primary_10_1186_s13634_021_00730_w crossref_primary_10_1007_s10462_024_10793_4 crossref_primary_10_32604_cmes_2021_010771 crossref_primary_10_1088_1361_665X_ac5455 crossref_primary_10_3934_mbe_2021182 crossref_primary_10_1016_j_egyr_2020_12_013 crossref_primary_10_3390_s20010006 crossref_primary_10_1007_s00500_023_08319_1 crossref_primary_10_1088_1361_6501_acd9df crossref_primary_10_1016_j_eswa_2021_115499 crossref_primary_10_1016_j_measurement_2020_108392 crossref_primary_10_1016_j_petsci_2023_04_003 crossref_primary_10_1109_ACCESS_2021_3052835 crossref_primary_10_1007_s00521_019_04097_w crossref_primary_10_1016_j_measurement_2020_108026 crossref_primary_10_1016_j_sasc_2024_200137 crossref_primary_10_1177_16878140211043004 crossref_primary_10_1016_j_egyr_2025_02_026 crossref_primary_10_1016_j_enconman_2024_118062 crossref_primary_10_1007_s00366_020_01140_6 crossref_primary_10_1142_S0218001420580124 crossref_primary_10_1007_s00366_020_01252_z crossref_primary_10_1016_j_heliyon_2024_e37971 crossref_primary_10_1088_1742_6596_2383_1_012097 crossref_primary_10_32604_cmc_2023_036822 crossref_primary_10_1142_S0218001422500380 crossref_primary_10_1007_s00521_019_04033_y crossref_primary_10_1186_s10033_023_00856_y crossref_primary_10_1007_s42452_024_06033_7 crossref_primary_10_1016_j_neucom_2020_10_038 crossref_primary_10_3390_s22114294 crossref_primary_10_1007_s00170_023_12381_2 crossref_primary_10_1016_j_ymssp_2022_109683 crossref_primary_10_1016_j_measurement_2021_110358 crossref_primary_10_1109_ACCESS_2021_3052800 crossref_primary_10_1007_s00366_020_01119_3 crossref_primary_10_1007_s00521_019_04300_y crossref_primary_10_1109_TIM_2020_3026760 crossref_primary_10_1016_j_jvcir_2019_03_013 crossref_primary_10_1080_10916466_2021_2015378 crossref_primary_10_1088_1742_6596_2066_1_012109 crossref_primary_10_1038_s41598_024_75522_x crossref_primary_10_3233_JIFS_189301 crossref_primary_10_1080_10584587_2021_1911296 crossref_primary_10_1093_ijlct_ctae001 crossref_primary_10_1155_2022_1235229 crossref_primary_10_1109_TITS_2021_3088862 crossref_primary_10_1016_j_comcom_2020_04_026 crossref_primary_10_1016_j_eswa_2020_114369 crossref_primary_10_3390_machines11080837 crossref_primary_10_1016_j_ymssp_2021_107821 crossref_primary_10_1016_j_knosys_2020_106642 crossref_primary_10_1007_s00366_021_01282_1 crossref_primary_10_1016_j_knosys_2020_106684 crossref_primary_10_1016_j_aei_2020_101172 crossref_primary_10_1007_s00521_023_09302_5 crossref_primary_10_1016_j_enconman_2020_113751 crossref_primary_10_1155_2022_4884109 crossref_primary_10_1007_s00521_021_06654_8 crossref_primary_10_1109_ACCESS_2023_3284969 crossref_primary_10_1002_ett_3955 crossref_primary_10_1155_2020_8856818 crossref_primary_10_1007_s40430_022_03975_0 crossref_primary_10_1177_09544054221121921 crossref_primary_10_3390_sym13020244  | 
    
| Cites_doi | 10.1243/0954406011524027 10.1016/j.measurement.2007.03.004 10.1016/j.ymssp.2014.07.005 10.1186/s13705-016-0071-2 10.1016/j.ymssp.2013.06.023 10.1016/S0020-0190(02)00447-7 10.1016/j.epsr.2016.06.013 10.1007/s11831-016-9176-1 10.1016/j.compstruc.2003.10.028 10.1007/s11721-007-0004-y 10.1177/1077546308091214 10.1155/2013/598490 10.1016/j.neucom.2013.03.076 10.1016/j.measurement.2010.01.001 10.1016/j.jsv.2007.01.006 10.1515/jaiscr-2015-0031 10.4028/www.scientific.net/AMM.608-609.899 10.3182/20080706-5-KR-1001.00862 10.1109/ICNN.1995.488968  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Natural Computing Applications Forum 2018 Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| Copyright_xml | – notice: The Natural Computing Applications Forum 2018 – notice: Neural Computing and Applications is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS  | 
    
| DOI | 10.1007/s00521-018-3525-y | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest) ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 4478 | 
    
| ExternalDocumentID | 10_1007_s00521_018_3525_y | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61273176 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Program for New Century Excellent Talents in University of Minister of Education of China grantid: 201010621237 – fundername: Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry grantid: 20091001  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c369t-44bede94f58af0c6755bd9e14bcb38fd759937d30065d760f5a0107f94b162d63 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Fri Jul 25 04:15:11 EDT 2025 Wed Oct 01 02:25:51 EDT 2025 Thu Apr 24 23:12:15 EDT 2025 Fri Feb 21 02:35:44 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Keywords | Fault diagnosis Wavelet neural network Particle swarm optimization Particle filter  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c369t-44bede94f58af0c6755bd9e14bcb38fd759937d30065d760f5a0107f94b162d63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2299373700 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_2299373700 crossref_primary_10_1007_s00521_018_3525_y crossref_citationtrail_10_1007_s00521_018_3525_y springer_journals_10_1007_s00521_018_3525_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-09-01 | 
    
| PublicationDateYYYYMMDD | 2019-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | Chen, Shang, Sun (CR1) 2013; 40 Aghdam, Heidari (CR15) 2015; 5 Yu, Yang, Cheng (CR17) 2007; 40 Qian, Dongxiang, Liangyou (CR7) 2008; 5264 Trelea (CR16) 2003; 85 Sanz, Perera, Huerta (CR9) 2007; 302 CR6 Fucai, Guang, Lin, Peng (CR5) 2008; 14 Androvitsaneas, Alexandridis, Gonos, Dounias, Stathopulos (CR8) 2016; 140 CR19 Chen, Lu, Tu (CR4) 2013; 20 Goyal, Pabla, Dhami (CR10) 2017; 24 Shi, Eberhart (CR23) 1998 CR24 Garnier, Gautrais, Theraulaz (CR12) 2007; 1 CR11 CR21 Vitorino, Ribeiro, Bastos-Filho (CR13) 2015; 148 Wang, Sun, Peter (CR2) 2015; 52 Krambergel, Sraml, Glodez (CR20) 2004; 82 Kerdphol, Qudaih, Watanabe, Mitani (CR3) 2016; 6 Chen, Zuo, Wang, Hoseini (CR22) 2010; 43 Ardehali, Sirizi (CR14) 2013; 65 Andrade, Esat (CR18) 2001; 215 J Krambergel (3525_CR20) 2004; 82 3525_CR6 L Fucai (3525_CR5) 2008; 14 J Sanz (3525_CR9) 2007; 302 MM Ardehali (3525_CR14) 2013; 65 H Chen (3525_CR22) 2010; 43 3525_CR24 LN Vitorino (3525_CR13) 2015; 148 D Yu (3525_CR17) 2007; 40 D Goyal (3525_CR10) 2017; 24 3525_CR11 3525_CR21 D Wang (3525_CR2) 2015; 52 3525_CR19 Yuhui Shi (3525_CR23) 1998 H Qian (3525_CR7) 2008; 5264 H Chen (3525_CR4) 2013; 20 FA Andrade II (3525_CR18) 2001; 215 H Chen (3525_CR1) 2013; 40 S Garnier (3525_CR12) 2007; 1 IC Trelea (3525_CR16) 2003; 85 T Kerdphol (3525_CR3) 2016; 6 MH Aghdam (3525_CR15) 2015; 5 VP Androvitsaneas (3525_CR8) 2016; 140  | 
    
| References_xml | – ident: CR21 – volume: 215 start-page: 653 issue: 6 year: 2001 end-page: 661 ident: CR18 article-title: Gear condition monitoring by a new application of the Kolmogorov–Smirnov test publication-title: Proc Inst Mech Eng Part C-J Mech Eng Sci doi: 10.1243/0954406011524027 – volume: 40 start-page: 823 issue: 9–10 year: 2007 end-page: 830 ident: CR17 article-title: Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2007.03.004 – ident: CR19 – volume: 52 start-page: 293 year: 2015 end-page: 308 ident: CR2 article-title: A general sequential Monte Carlo method based optimal wavelet filter: a Bayesian approach for extracting bearing fault features publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2014.07.005 – volume: 6 start-page: 5 issue: 1 year: 2016 ident: CR3 article-title: RBF neural network-based online intelligent management of a battery energy storage system for stand-alone microgrids publication-title: Energy, Sustain Soc doi: 10.1186/s13705-016-0071-2 – volume: 40 start-page: 469 year: 2013 end-page: 482 ident: CR1 article-title: Multiple fault condition recognition of gearbox with sequential hypothesis test publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2013.06.023 – volume: 85 start-page: 317 issue: 6 year: 2003 end-page: 325 ident: CR16 article-title: Particle swarm optimization algorithm:convergence analysis and parameter selection[J] publication-title: Inf Process Lett doi: 10.1016/S0020-0190(02)00447-7 – start-page: 591 year: 1998 end-page: 600 ident: CR23 article-title: Parameter selection in particle swarm optimization publication-title: Lecture Notes in Computer Science – volume: 140 start-page: 288 year: 2016 end-page: 295 ident: CR8 article-title: Wavelet neural network methodology for ground resistance forecasting publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2016.06.013 – volume: 24 start-page: 543 issue: 3 year: 2017 end-page: 556 ident: CR10 article-title: Condition monitoring parameters for fault diagnosis of fixed axis gearbox: a review publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-016-9176-1 – volume: 82 start-page: 2261 issue: 23–26 year: 2004 end-page: 2269 ident: CR20 article-title: Computational model for the analysis of bending fatigue in gear-s publication-title: Comput Struct doi: 10.1016/j.compstruc.2003.10.028 – ident: CR11 – volume: 1 start-page: 3 year: 2007 end-page: 31 ident: CR12 article-title: The biological principles of swarm intelligence publication-title: Swarm Intell doi: 10.1007/s11721-007-0004-y – ident: CR6 – volume: 65 start-page: 41 issue: 1 year: 2013 end-page: 49 ident: CR14 article-title: Particle swarm optimization based fuzzy logic controller for autonomous;green power energy system with hydrogen storage[J] publication-title: Energy Convers Manag – volume: 14 start-page: 1691 issue: 11 year: 2008 end-page: 1709 ident: CR5 article-title: Wavelet transform-based higher-order statistics for fault diagnosis in rolling element bearings publication-title: J Vib Control doi: 10.1177/1077546308091214 – volume: 5264 start-page: 313 year: 2008 end-page: 320 ident: CR7 article-title: Application of wavelet neural networks on vibration fault diagnosis for wind turbine gearbox publication-title: Adv Neural Netw – ident: CR24 – volume: 20 start-page: 247 issue: 2 year: 2013 end-page: 262 ident: CR4 article-title: Fault identification of gearbox degradation with optimized wavelet neural network publication-title: Shock Vib doi: 10.1155/2013/598490 – volume: 148 start-page: 39 year: 2015 end-page: 45 ident: CR13 article-title: A mechanism based on artificial bee colony to generate diversity in particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.076 – volume: 43 start-page: 570 year: 2010 end-page: 585 ident: CR22 article-title: An adaptive Morlet wavelet filter for time-of-flight estimation in ultrasonic damage assessment publication-title: Measurement. doi: 10.1016/j.measurement.2010.01.001 – volume: 302 start-page: 981 issue: 4–5 year: 2007 end-page: 999 ident: CR9 article-title: Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms publication-title: J Sound Vib doi: 10.1016/j.jsv.2007.01.006 – volume: 5 start-page: 38 issue: 4 year: 2015 end-page: 43 ident: CR15 article-title: Feature selection using particle swarm optimization in text categorization publication-title: J Artif Intell Soft Comput Res doi: 10.1515/jaiscr-2015-0031 – ident: 3525_CR6 doi: 10.4028/www.scientific.net/AMM.608-609.899 – volume: 6 start-page: 5 issue: 1 year: 2016 ident: 3525_CR3 publication-title: Energy, Sustain Soc doi: 10.1186/s13705-016-0071-2 – volume: 5264 start-page: 313 year: 2008 ident: 3525_CR7 publication-title: Adv Neural Netw – volume: 302 start-page: 981 issue: 4–5 year: 2007 ident: 3525_CR9 publication-title: J Sound Vib doi: 10.1016/j.jsv.2007.01.006 – volume: 82 start-page: 2261 issue: 23–26 year: 2004 ident: 3525_CR20 publication-title: Comput Struct doi: 10.1016/j.compstruc.2003.10.028 – volume: 40 start-page: 469 year: 2013 ident: 3525_CR1 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2013.06.023 – volume: 52 start-page: 293 year: 2015 ident: 3525_CR2 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2014.07.005 – volume: 148 start-page: 39 year: 2015 ident: 3525_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.076 – volume: 40 start-page: 823 issue: 9–10 year: 2007 ident: 3525_CR17 publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2007.03.004 – volume: 65 start-page: 41 issue: 1 year: 2013 ident: 3525_CR14 publication-title: Energy Convers Manag – volume: 215 start-page: 653 issue: 6 year: 2001 ident: 3525_CR18 publication-title: Proc Inst Mech Eng Part C-J Mech Eng Sci doi: 10.1243/0954406011524027 – volume: 43 start-page: 570 year: 2010 ident: 3525_CR22 publication-title: Measurement. doi: 10.1016/j.measurement.2010.01.001 – ident: 3525_CR19 – ident: 3525_CR21 – volume: 24 start-page: 543 issue: 3 year: 2017 ident: 3525_CR10 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-016-9176-1 – volume: 1 start-page: 3 year: 2007 ident: 3525_CR12 publication-title: Swarm Intell doi: 10.1007/s11721-007-0004-y – start-page: 591 volume-title: Lecture Notes in Computer Science year: 1998 ident: 3525_CR23 – ident: 3525_CR24 doi: 10.3182/20080706-5-KR-1001.00862 – volume: 5 start-page: 38 issue: 4 year: 2015 ident: 3525_CR15 publication-title: J Artif Intell Soft Comput Res doi: 10.1515/jaiscr-2015-0031 – volume: 14 start-page: 1691 issue: 11 year: 2008 ident: 3525_CR5 publication-title: J Vib Control doi: 10.1177/1077546308091214 – volume: 140 start-page: 288 year: 2016 ident: 3525_CR8 publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2016.06.013 – ident: 3525_CR11 doi: 10.1109/ICNN.1995.488968 – volume: 20 start-page: 247 issue: 2 year: 2013 ident: 3525_CR4 publication-title: Shock Vib doi: 10.1155/2013/598490 – volume: 85 start-page: 317 issue: 6 year: 2003 ident: 3525_CR16 publication-title: Inf Process Lett doi: 10.1016/S0020-0190(02)00447-7  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.5499365 | 
    
| Snippet | The gear cracks of gear box are one of most common failure forms affecting gear shaft drive. It has become significant for practice and economy to diagnose the... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4463 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Back propagation Back propagation networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Convergence Damage detection Data Mining and Knowledge Discovery Diagnostic systems Fault diagnosis Fracture mechanics Gearboxes Image Processing and Computer Vision Neural networks Particle swarm optimization Probability and Statistics in Computer Science Radial basis function S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems Wave propagation Wavelet analysis  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X3zxW5xOyYNPSqBN0o88TrEMQRFxsLeSNIkIWzvWjrn_3qRNNxUVfG6alLtL7n7N3e8AuIyIryjGDBlnrRAVEiMRZAbzMBKSSHMslQWKD4_hYEjvR8HI1XGXbbZ7eyVZn9SrYjf7B9NC3xhZCk-03ARbgWXzMkY8xP1PxZB1H04DW2xKDyXtVeZPU3x1RusI89ulaO1rkj2w44JE2G-0ug82VH4AdtsGDNDtx0PAEz4fV1A26XJvJSw0fDWmK4p3aN2ThEUOn28S9JRAnks4dXYCywWfTWBhjouJq8OEC25bUFTQElyatfMmPfwIDJO7l9sBcj0TUEZCViFKhZKKUR3EXHuZgQOBkEz5VGSCxFpGgQ1IJLGhh4xCTwfcILJIMyr8EMuQHINOXuTqBMCYU62FpkZlBgUKLbI4wpwLpjmjCvtd4LXCSzNHKG77WozTFRVyLe_UyDu18k6XXXC1emXasGn8NbjXaiR1G6tMjVmZ7yeR53XBdaul9eNfJzv91-gzsG0CI5dL1gOdajZX5yb4qMRFbWwfEhjRhA priority: 102 providerName: Springer Nature  | 
    
| Title | Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network | 
    
| URI | https://link.springer.com/article/10.1007/s00521-018-3525-y https://www.proquest.com/docview/2299373700  | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: PROQUEST customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BcumlvFo1BSIfOLWy2Nje1wFVAWVBRUQIEYmeVvbaRkhhNyUbBf59xxsvoZXKdR9eaWbsmW89_j6Ao5gPjGAspZisDRVKM6rCAjFPyiMeW8m0cUDxahxdTMTPu_BuA8btWRjXVtmuic1CravC_SM_xvEwk_I4CH7MflOnGuV2V1sJDemlFfRJQzG2CV3mmLE60D0dja9v3pyUbEQ6EdO4fh_B233OoKEVxVSG0DqhjiKUvvydqdbl5z87pk0iyrbho68gyXDl8h3YMOUubLXqDMRP1j2QmVxMa6JXvXQPc1JZco9xrapn4nKXJlVJbk4zep0RWWoy80FE5kv59EgqXEse_SFNspROn6Imjv0Sv12uesc_wSQb3Z5dUC-oQAsepTUVQhltUmHDRNqgQKwQKp2agVCF4onVcehsrLmrS3QcBTaUCNdimwo1iJiO-GfolFVpvgBJpLBWWYH-RIiorCqSmEmpUitTYdigB0FrvLzwbONO9GKav_IkN_bO0d65s3f-0oNvr6_MVlQb7z180Hok97Nunq9jpAffWy-tb_93sK_vD7YPH7BM8p1lB9CpnxbmEEuRWvVhM8nO-9Adnv-6HPV9tOHVCRv-AY4e3m0 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLSXFmirbsvDh3JpZTVrOw8fUMUrWgqsEAKJW2rHdlUJki0btN0_19_WcdZhoVK5cU4ylsbjmfnimfkAPqa8bwVjkmKwtlRow6iOS8Q8kic8dYoZ64HiyTAZXIhvl_HlAvzpemF8WWXnE1tHberS_yP_gvIwkvI0ir6OflHPGuVvVzsKDRWoFcx2O2IsNHYc2ekEIdx4-3Af93uLsfzgfG9AA8sALXkiGyqEtsZK4eJMuajEBDrWRtq-0KXmmTNp7Bc23AdrkyaRixVimNRJofsJMwlHuc9gSXAhEfwt7R4MT8_udWa2pKCIoXx9keDdvWrUjjHF0IlQPqN-JCmdPoyM83T3nxvaNvDly_AyZKxkZ2ZiK7Bgq1V41bFBkOAcXoPK1e1VQ8ysdu_nmNSO_EAF6fo38bHSkLoiZ7s5Pc2JqgwZBaMl44m6uSY1-q7r0BRKJsrzYTTET9vEtatZrfobuHgS1b6Fxaqu7DsgmRLOaSfQfhCSaqfLLGVKaemUFJb1exB1yivKMN3ck2xcFXdzmVt9F6jvwuu7mPbg090no9loj8deXut2pAinfFzMbbIHn7tdmj_-r7D3jwvbhOeD85Pj4vhwePQBXmCKFqra1mCxubm165gGNXoj2BqB709t3n8BU6oXow | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNPSljXpF-P86PMrzHEwd5K0iQibO1YO-b-e5M23VRU8LlpWu4uvfv17n4HwLmHW4LYdoCUsxaIMG4j5sQK8wTYxZ6kNhcaKD513U6f3A-cgZlzmlXV7lVKsuxp0CxNSd4cc9lcNL7pv5kaBvtI03mi-SpYI5onQRl0325_aowsZnIqCKPLewiu0po_bfHVMS2jzW8J0sLvhNtg0wSMsF1qeAesiGQXbFXDGKA5m3uAhnQ6zCEvS-feMphK-KrMmKXvULsqDtMEPl-FqBdCmnA4NjYDsxmdjGCqPh0j05MJZ1SPo8ihJrtUz07KUvF90A9vX647yMxPQDF2gxwRwgQXAZGOT6UVK2jgMB6IFmExw77knqODE451GMI915IOVejMkwFhLdfmLj4AtSRNxCGAPiVSMkmU-hQiZJLFvmdTygJJAyLsVh1YlfCi2JCL6xkXw2hBi1zIO1LyjrS8o3kdXCxuGZfMGn8tblQaicwhyyJlYur9sWdZdXBZaWl5-dfNjv61-gys927C6PGu-3AMNlS8ZErMGqCWT6biRMUkOTst7O4DZfHYrA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+of+gearbox+based+on+RBF-PF+and+particle+swarm+optimization+wavelet+neural+network&rft.jtitle=Neural+computing+%26+applications&rft.au=Liu%2C+Yang&rft.au=Chen%2C+Hanxin&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=31&rft.issue=9&rft.spage=4463&rft.epage=4478&rft_id=info:doi/10.1007%2Fs00521-018-3525-y | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |