A procedure for rapid and highly accurate computation of Marcus–Hush–Chidsey rate constants
► A new procedure for computing Marcus–Hush–Chidsey rate constants. ► The procedure is highly accurate (14–15 digits) and computationally inexpensive. ► Relies on minimax polynomial approximations. ► Can be used for digital simulations of electro-analytical experiments. Theoretical modelling and dig...
Saved in:
Published in | Journal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 683; pp. 112 - 118 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1572-6657 1873-2569 |
DOI | 10.1016/j.jelechem.2012.08.015 |
Cover
Abstract | ► A new procedure for computing Marcus–Hush–Chidsey rate constants. ► The procedure is highly accurate (14–15 digits) and computationally inexpensive. ► Relies on minimax polynomial approximations. ► Can be used for digital simulations of electro-analytical experiments.
Theoretical modelling and digital simulation of electro-analytical experiments for electrochemical reactions subject to the Marcus–Hush–Chidsey kinetics have recently attracted considerable attention. Such simulations are difficult, due to the lack of fast and accurate algorithms for computing rate constants which are expressed by complicated integrals. By modifying series expansions for the integrals, reported by Oldham and Myland [K.B. Oldham, J.C. Myland, J. Electroanal. Chem. 655 (2011) 65], an approximate procedure of calculating the rate constants is obtained, which is not only inexpensive computationally, but also highly accurate. Further reduction of the computational cost is achieved by replacing one of the integrals by a piecewise polynomial approximation. Theoretical arguments and computational tests suggest that the relative error of the procedure is about 10−14−10−15. This is close to the error (of about 10−16) of computing exponential factors in the Butler–Volmer model, when standard double precision variables are used for simulation. Simultaneously, the computational time is only about 111 times longer compared to the time of computing the exponential factors. The procedure should therefore be of interest to those who simulate electro-analytical experiments. |
---|---|
AbstractList | Theoretical modelling and digital simulation of electro-analytical experiments for electrochemical reactions subject to the Marcus–Hush–Chidsey kinetics have recently attracted considerable attention. Such simulations are difficult, due to the lack of fast and accurate algorithms for computing rate constants which are expressed by complicated integrals. By modifying series expansions for the integrals, reported by Oldham and Myland [K.B. Oldham, J.C. Myland, J. Electroanal. Chem. 655 (2011) 65], an approximate procedure of calculating the rate constants is obtained, which is not only inexpensive computationally, but also highly accurate. Further reduction of the computational cost is achieved by replacing one of the integrals by a piecewise polynomial approximation. Theoretical arguments and computational tests suggest that the relative error of the procedure is about 10⁻¹⁴−10⁻¹⁵. This is close to the error (of about 10⁻¹⁶) of computing exponential factors in the Butler–Volmer model, when standard double precision variables are used for simulation. Simultaneously, the computational time is only about 111 times longer compared to the time of computing the exponential factors. The procedure should therefore be of interest to those who simulate electro-analytical experiments. ► A new procedure for computing Marcus–Hush–Chidsey rate constants. ► The procedure is highly accurate (14–15 digits) and computationally inexpensive. ► Relies on minimax polynomial approximations. ► Can be used for digital simulations of electro-analytical experiments. Theoretical modelling and digital simulation of electro-analytical experiments for electrochemical reactions subject to the Marcus–Hush–Chidsey kinetics have recently attracted considerable attention. Such simulations are difficult, due to the lack of fast and accurate algorithms for computing rate constants which are expressed by complicated integrals. By modifying series expansions for the integrals, reported by Oldham and Myland [K.B. Oldham, J.C. Myland, J. Electroanal. Chem. 655 (2011) 65], an approximate procedure of calculating the rate constants is obtained, which is not only inexpensive computationally, but also highly accurate. Further reduction of the computational cost is achieved by replacing one of the integrals by a piecewise polynomial approximation. Theoretical arguments and computational tests suggest that the relative error of the procedure is about 10−14−10−15. This is close to the error (of about 10−16) of computing exponential factors in the Butler–Volmer model, when standard double precision variables are used for simulation. Simultaneously, the computational time is only about 111 times longer compared to the time of computing the exponential factors. The procedure should therefore be of interest to those who simulate electro-analytical experiments. |
Author | Bieniasz, Lesław K. |
Author_xml | – sequence: 1 givenname: Lesław K. surname: Bieniasz fullname: Bieniasz, Lesław K. email: nbbienia@cyf-kr.edu.pl organization: Faculty of Physics, Mathematics, and Computer Science, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland |
BookMark | eNqFkcFu1DAQhi1UJNrCK4CPvSTYTuI4Ug-tVoVFKuIAPVvOeNJ4lY23tlNpb30H3pAnwVXKhUtPM4fv9-j_fEZOZj8jIR85Kznj8vOu3OGEMOK-FIyLkqmS8eYNOeWqrQrRyO4k700rCimb9h05i3HHmFCKi1Oir-kheEC7BKSDDzSYg7PUzJaO7n6cjtQALMEkpOD3hyWZ5PxM_UC_mwBL_PP0e7vEMY_N6GzEI31h55jMnOJ78nYwU8QPL_Oc3H25-bXZFrc_vn7bXN8WUMkuFaJmxnaM9wNjVvasEpUCO1T9ILhB2VvbdYBK1thCrbhpqprXqsvlAID1sjonF-u7uc3DgjHpvYuA02Rm9EvUXLaqETWXIqOXKwrBxxhw0ODWWikYN2nO9LNXvdP_vOpnr5opnb3muPwvfghub8Lx9eCnNTgYr819cFHf_cxAwxjnnRIqE1crgdnUo8OgIzic8--4gJC09e61I38BC-2lAw |
CitedBy_id | crossref_primary_10_1016_j_jelechem_2020_114762 crossref_primary_10_1016_j_jelechem_2015_04_018 crossref_primary_10_1021_acs_jpcc_2c06537 crossref_primary_10_1149_2_0171711jes crossref_primary_10_1016_j_jelechem_2015_11_040 crossref_primary_10_1021_cr4006654 |
Cites_doi | 10.1145/321281.321282 10.1126/science.251.4996.919 10.1016/0013-4686(68)80032-5 10.1145/103162.103163 10.1016/j.jelechem.2012.02.026 10.1090/S0025-5718-1969-0247736-4 10.1016/j.jelechem.2011.01.044 10.1146/annurev.pc.15.100164.001103 10.1145/362588.362600 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | FBQ AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jelechem.2012.08.015 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-2569 |
EndPage | 118 |
ExternalDocumentID | 10_1016_j_jelechem_2012_08_015 US201500119828 S1572665712003189 |
GroupedDBID | --K --M -~X .~1 1B1 1RT 1~. 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM M23 M2Z M41 MO0 N9A NQ- O-L OAUVE OZT P-8 P-9 P2P PC. Q38 RNS RPZ SCB SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT YQT ~02 186 29K AAQXK ABFNM ABPIF ABPTK AFFNX AJQLL ASPBG AVWKF AZFZN D-I FBQ FEDTE FGOYB HMU HVGLF R2- RIG ROL SCH SEW WUQ AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 ACLOT EFKBS L.6 ~HD |
ID | FETCH-LOGICAL-c369t-240ad901bf00d6b03238cdf3bf21ae6bdd99ce864e7c481a5341489256ccc0b63 |
IEDL.DBID | .~1 |
ISSN | 1572-6657 |
IngestDate | Thu Sep 25 08:45:51 EDT 2025 Tue Jul 01 00:21:46 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Dec 27 19:14:51 EST 2023 Fri Feb 23 02:32:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rate constants Minimax approximation Marcus theory Computational electrochemistry Digital simulation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-240ad901bf00d6b03238cdf3bf21ae6bdd99ce864e7c481a5341489256ccc0b63 |
Notes | http://dx.doi.org/10.1016/j.jelechem.2012.08.015 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1678524162 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1678524162 crossref_citationtrail_10_1016_j_jelechem_2012_08_015 crossref_primary_10_1016_j_jelechem_2012_08_015 fao_agris_US201500119828 elsevier_sciencedirect_doi_10_1016_j_jelechem_2012_08_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of electroanalytical chemistry (Lausanne, Switzerland) |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Oldham, Myland (b0035) 2011; 655 Hush (b0025) 1968; 13 Bard, Faulkner (b0005) 1980 Marcus (b0020) 1964; 15 Britz (b0015) 2005 Cody (b0075) 1969; 23 Chidsey (b0030) 1991; 251 Schmitt (b0080) 1971; 14 Web site checked on February 28th, 2012. Mocak (b0010) 2005 Goldberg (b0045) 1991; 23 MATHEMATICA, Wolfram Res. Inc., Champaigne Il. Migliore, Nitzan (b0050) 2012; 671 Abramowitz, Stegun (b0055) 1972 The web site checked on May 23rd, 2012. < Fraser (b0065) 1965; 12 Hart, Cheney, Lawson, Maehly, Mesztenyi, Rice, Thacher, Witzgall (b0060) 1968 Chidsey (10.1016/j.jelechem.2012.08.015_b0030) 1991; 251 Marcus (10.1016/j.jelechem.2012.08.015_b0020) 1964; 15 10.1016/j.jelechem.2012.08.015_b0070 Goldberg (10.1016/j.jelechem.2012.08.015_b0045) 1991; 23 Fraser (10.1016/j.jelechem.2012.08.015_b0065) 1965; 12 10.1016/j.jelechem.2012.08.015_b0040 Bard (10.1016/j.jelechem.2012.08.015_b0005) 1980 Cody (10.1016/j.jelechem.2012.08.015_b0075) 1969; 23 Oldham (10.1016/j.jelechem.2012.08.015_b0035) 2011; 655 Mocak (10.1016/j.jelechem.2012.08.015_b0010) 2005 Abramowitz (10.1016/j.jelechem.2012.08.015_b0055) 1972 Migliore (10.1016/j.jelechem.2012.08.015_b0050) 2012; 671 Schmitt (10.1016/j.jelechem.2012.08.015_b0080) 1971; 14 Britz (10.1016/j.jelechem.2012.08.015_b0015) 2005 Hush (10.1016/j.jelechem.2012.08.015_b0025) 1968; 13 Hart (10.1016/j.jelechem.2012.08.015_b0060) 1968 |
References_xml | – year: 2005 ident: b0015 article-title: Digital Simulation in Electrochemistry – volume: 655 start-page: 65 year: 2011 ident: b0035 publication-title: J. Electroanal. Chem. – volume: 13 start-page: 1005 year: 1968 ident: b0025 publication-title: Electrochim. Acta – volume: 251 start-page: 919 year: 1991 ident: b0030 publication-title: Science – reference: MATHEMATICA, Wolfram Res. Inc., Champaigne Il., < – volume: 23 start-page: 5 year: 1991 ident: b0045 publication-title: ACM Comput. Surv. – year: 1972 ident: b0055 article-title: Handbook of Mathematical Functions – reference: >. The web site checked on May 23rd, 2012. – volume: 23 start-page: 631 year: 1969 ident: b0075 publication-title: Math. Comput. – volume: 14 start-page: 355 year: 1971 ident: b0080 publication-title: Commun. ACM – volume: 12 start-page: 295 year: 1965 ident: b0065 publication-title: J. ACM – year: 1980 ident: b0005 article-title: Electrochemical Methods: Fundamentals and Applications – volume: 15 start-page: 155 year: 1964 ident: b0020 publication-title: Annu. Rev. Phys. Chem. – start-page: 208 year: 2005 ident: b0010 publication-title: Encyclopedia of Analytical Science – reference: < – volume: 671 start-page: 99 year: 2012 ident: b0050 publication-title: J. Electroanal. Chem. – reference: >. Web site checked on February 28th, 2012. – year: 1968 ident: b0060 article-title: Computer Approximations – year: 1980 ident: 10.1016/j.jelechem.2012.08.015_b0005 – volume: 12 start-page: 295 year: 1965 ident: 10.1016/j.jelechem.2012.08.015_b0065 publication-title: J. ACM doi: 10.1145/321281.321282 – ident: 10.1016/j.jelechem.2012.08.015_b0040 – ident: 10.1016/j.jelechem.2012.08.015_b0070 – year: 1972 ident: 10.1016/j.jelechem.2012.08.015_b0055 – year: 1968 ident: 10.1016/j.jelechem.2012.08.015_b0060 – volume: 251 start-page: 919 year: 1991 ident: 10.1016/j.jelechem.2012.08.015_b0030 publication-title: Science doi: 10.1126/science.251.4996.919 – volume: 13 start-page: 1005 year: 1968 ident: 10.1016/j.jelechem.2012.08.015_b0025 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(68)80032-5 – volume: 23 start-page: 5 year: 1991 ident: 10.1016/j.jelechem.2012.08.015_b0045 publication-title: ACM Comput. Surv. doi: 10.1145/103162.103163 – volume: 671 start-page: 99 year: 2012 ident: 10.1016/j.jelechem.2012.08.015_b0050 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2012.02.026 – year: 2005 ident: 10.1016/j.jelechem.2012.08.015_b0015 – volume: 23 start-page: 631 year: 1969 ident: 10.1016/j.jelechem.2012.08.015_b0075 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1969-0247736-4 – volume: 655 start-page: 65 year: 2011 ident: 10.1016/j.jelechem.2012.08.015_b0035 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2011.01.044 – start-page: 208 year: 2005 ident: 10.1016/j.jelechem.2012.08.015_b0010 – volume: 15 start-page: 155 year: 1964 ident: 10.1016/j.jelechem.2012.08.015_b0020 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.15.100164.001103 – volume: 14 start-page: 355 year: 1971 ident: 10.1016/j.jelechem.2012.08.015_b0080 publication-title: Commun. ACM doi: 10.1145/362588.362600 |
SSID | ssj0028812 |
Score | 2.0805821 |
Snippet | ► A new procedure for computing Marcus–Hush–Chidsey rate constants. ► The procedure is highly accurate (14–15 digits) and computationally inexpensive. ► Relies... Theoretical modelling and digital simulation of electro-analytical experiments for electrochemical reactions subject to the Marcus–Hush–Chidsey kinetics have... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112 |
SubjectTerms | algorithms Computational electrochemistry computer simulation Digital simulation electrochemistry Marcus theory Minimax approximation Rate constants |
Title | A procedure for rapid and highly accurate computation of Marcus–Hush–Chidsey rate constants |
URI | https://dx.doi.org/10.1016/j.jelechem.2012.08.015 https://www.proquest.com/docview/1678524162 |
Volume | 683 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: ACRLP dateStart: 19950103 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: AIKHN dateStart: 19950103 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2569 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028812 issn: 1572-6657 databaseCode: AKRWK dateStart: 19930115 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF7S9NBeQtK05M0GepWtlVbr1dGYGDcmOTQ1yW3Zl2qbIBvLOuQS8h_yD_NLMqOHaWkhh5yExA4SM6P5ZndehHzvAcy5hPMg9rBF4dbbwHDpA6N7kQFIz4TDc8irazGa8Mu75G6LDNpaGEyrbGx_bdMra9086Tbc7C5ns-4NS3oRxg1YVGkmFvFh9y_Q6c7jJs0jkrKOeMLiAFf_USU878xx1szUY0U6ngnKTojjcf8PUB8yvfjHYFcoNNwlO437SPv1F-6RLZ9_IZ8G7dS2faL6tMIkV648BYeUrvRy5qjOHcXOxPcPVFtbYn8IaquBDpVk6CKjV6DyZfHy9DwqiylcBtOZK_wDbdZWbuS6-Eomw4tfg1HQDFEIbCzSNUZPtAPQN1kYOmHCGDDauiw2WcS0F8a5NLVeCu57lkumE4A1LlPwhKy1oRHxN7KdL3J_QKix8HdrkKeXjDPmpBDggPhMZIkMbZgckqTlnLJNh3EcdHGv2lSyuWo5rpDjCidgMqDrbuiWdY-NNynSVjDqL21RAARv0h6AJJX-DUZUTW4iPPLBxnew9Twk5614FYgNQyc694uyUAwwPQFnR0RH73j1MfmMd3WK2gnZXq9Kfwo-zdqcVUp7Rj72f4xH13gd_7wdvwIjLfjt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECUS55Beiq5IuqQs0KtiUSJp6mgYDZTFviQGciO4qbYRyIZlHXLrP_QP-yWd0RK0SIEcchIgcSBhZjTvkUPOEPJtBDDnBedRGmCKwl1wkeUqRNaMEguQXkiP65DTmczn_OJW3O6RSX8WBrdVdrG_jelNtO7uDDttDjfL5fCaiVGCeQOWNJ6Z7ZMDLiAmD8jB-Pwynz3Mu5Rqk54wPkKBvw4Kr05X2G5mEfBQOi4LqtMYO-T-H6P2C7N-FLMbIDp7RV52DJKO2498TfZC-YYcTvrGbW-JHtMGlny9DRQ4Kd2azdJTU3qKxYnv7qlxrsYSEdQ1PR0a49B1Qafg9XX1--evvK4WcJkslr4K97Qb2zDJXfWOzM--30zyqOujELlUZjtMoBgPuG-LOPbSxinAtPNFaouEmSCt91nmgpI8jBxXzAhANq4yIEPOudjK9D0ZlOsyHBFqHfzgBkwaFOOMeSUlcJBQyEKo2MXimIhec9p1Rcax18Wd7neTrXSvcY0a19gEk4Hc8EFu05bZeFIi6w2j_3EYDVjwpOwRWFKbHxBH9fw6wVUfrH0Hs89j8rU3rwazYfbElGFdV5oBrAvgOzL58IxXfyGH-c30Sl-dzy4_khf4pN2x9okMdts6fAaKs7MnnQv_Acfg-fU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+procedure+for+rapid+and+highly+accurate+computation+of+Marcus%E2%80%93Hush%E2%80%93Chidsey+rate+constants&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=Bieniasz%2C+Les%C5%82aw+K.&rft.date=2012-09-01&rft.issn=1572-6657&rft.volume=683&rft.spage=112&rft.epage=118&rft_id=info:doi/10.1016%2Fj.jelechem.2012.08.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jelechem_2012_08_015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon |