A procedure for rapid and highly accurate computation of Marcus–Hush–Chidsey rate constants

► A new procedure for computing Marcus–Hush–Chidsey rate constants. ► The procedure is highly accurate (14–15 digits) and computationally inexpensive. ► Relies on minimax polynomial approximations. ► Can be used for digital simulations of electro-analytical experiments. Theoretical modelling and dig...

Full description

Saved in:
Bibliographic Details
Published inJournal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 683; pp. 112 - 118
Main Author Bieniasz, Lesław K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2012
Subjects
Online AccessGet full text
ISSN1572-6657
1873-2569
DOI10.1016/j.jelechem.2012.08.015

Cover

Abstract ► A new procedure for computing Marcus–Hush–Chidsey rate constants. ► The procedure is highly accurate (14–15 digits) and computationally inexpensive. ► Relies on minimax polynomial approximations. ► Can be used for digital simulations of electro-analytical experiments. Theoretical modelling and digital simulation of electro-analytical experiments for electrochemical reactions subject to the Marcus–Hush–Chidsey kinetics have recently attracted considerable attention. Such simulations are difficult, due to the lack of fast and accurate algorithms for computing rate constants which are expressed by complicated integrals. By modifying series expansions for the integrals, reported by Oldham and Myland [K.B. Oldham, J.C. Myland, J. Electroanal. Chem. 655 (2011) 65], an approximate procedure of calculating the rate constants is obtained, which is not only inexpensive computationally, but also highly accurate. Further reduction of the computational cost is achieved by replacing one of the integrals by a piecewise polynomial approximation. Theoretical arguments and computational tests suggest that the relative error of the procedure is about 10−14−10−15. This is close to the error (of about 10−16) of computing exponential factors in the Butler–Volmer model, when standard double precision variables are used for simulation. Simultaneously, the computational time is only about 111 times longer compared to the time of computing the exponential factors. The procedure should therefore be of interest to those who simulate electro-analytical experiments.
AbstractList Theoretical modelling and digital simulation of electro-analytical experiments for electrochemical reactions subject to the Marcus–Hush–Chidsey kinetics have recently attracted considerable attention. Such simulations are difficult, due to the lack of fast and accurate algorithms for computing rate constants which are expressed by complicated integrals. By modifying series expansions for the integrals, reported by Oldham and Myland [K.B. Oldham, J.C. Myland, J. Electroanal. Chem. 655 (2011) 65], an approximate procedure of calculating the rate constants is obtained, which is not only inexpensive computationally, but also highly accurate. Further reduction of the computational cost is achieved by replacing one of the integrals by a piecewise polynomial approximation. Theoretical arguments and computational tests suggest that the relative error of the procedure is about 10⁻¹⁴−10⁻¹⁵. This is close to the error (of about 10⁻¹⁶) of computing exponential factors in the Butler–Volmer model, when standard double precision variables are used for simulation. Simultaneously, the computational time is only about 111 times longer compared to the time of computing the exponential factors. The procedure should therefore be of interest to those who simulate electro-analytical experiments.
► A new procedure for computing Marcus–Hush–Chidsey rate constants. ► The procedure is highly accurate (14–15 digits) and computationally inexpensive. ► Relies on minimax polynomial approximations. ► Can be used for digital simulations of electro-analytical experiments. Theoretical modelling and digital simulation of electro-analytical experiments for electrochemical reactions subject to the Marcus–Hush–Chidsey kinetics have recently attracted considerable attention. Such simulations are difficult, due to the lack of fast and accurate algorithms for computing rate constants which are expressed by complicated integrals. By modifying series expansions for the integrals, reported by Oldham and Myland [K.B. Oldham, J.C. Myland, J. Electroanal. Chem. 655 (2011) 65], an approximate procedure of calculating the rate constants is obtained, which is not only inexpensive computationally, but also highly accurate. Further reduction of the computational cost is achieved by replacing one of the integrals by a piecewise polynomial approximation. Theoretical arguments and computational tests suggest that the relative error of the procedure is about 10−14−10−15. This is close to the error (of about 10−16) of computing exponential factors in the Butler–Volmer model, when standard double precision variables are used for simulation. Simultaneously, the computational time is only about 111 times longer compared to the time of computing the exponential factors. The procedure should therefore be of interest to those who simulate electro-analytical experiments.
Author Bieniasz, Lesław K.
Author_xml – sequence: 1
  givenname: Lesław K.
  surname: Bieniasz
  fullname: Bieniasz, Lesław K.
  email: nbbienia@cyf-kr.edu.pl
  organization: Faculty of Physics, Mathematics, and Computer Science, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland
BookMark eNqFkcFu1DAQhi1UJNrCK4CPvSTYTuI4Ug-tVoVFKuIAPVvOeNJ4lY23tlNpb30H3pAnwVXKhUtPM4fv9-j_fEZOZj8jIR85Kznj8vOu3OGEMOK-FIyLkqmS8eYNOeWqrQrRyO4k700rCimb9h05i3HHmFCKi1Oir-kheEC7BKSDDzSYg7PUzJaO7n6cjtQALMEkpOD3hyWZ5PxM_UC_mwBL_PP0e7vEMY_N6GzEI31h55jMnOJ78nYwU8QPL_Oc3H25-bXZFrc_vn7bXN8WUMkuFaJmxnaM9wNjVvasEpUCO1T9ILhB2VvbdYBK1thCrbhpqprXqsvlAID1sjonF-u7uc3DgjHpvYuA02Rm9EvUXLaqETWXIqOXKwrBxxhw0ODWWikYN2nO9LNXvdP_vOpnr5opnb3muPwvfghub8Lx9eCnNTgYr819cFHf_cxAwxjnnRIqE1crgdnUo8OgIzic8--4gJC09e61I38BC-2lAw
CitedBy_id crossref_primary_10_1016_j_jelechem_2020_114762
crossref_primary_10_1016_j_jelechem_2015_04_018
crossref_primary_10_1021_acs_jpcc_2c06537
crossref_primary_10_1149_2_0171711jes
crossref_primary_10_1016_j_jelechem_2015_11_040
crossref_primary_10_1021_cr4006654
Cites_doi 10.1145/321281.321282
10.1126/science.251.4996.919
10.1016/0013-4686(68)80032-5
10.1145/103162.103163
10.1016/j.jelechem.2012.02.026
10.1090/S0025-5718-1969-0247736-4
10.1016/j.jelechem.2011.01.044
10.1146/annurev.pc.15.100164.001103
10.1145/362588.362600
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jelechem.2012.08.015
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-2569
EndPage 118
ExternalDocumentID 10_1016_j_jelechem_2012_08_015
US201500119828
S1572665712003189
GroupedDBID --K
--M
-~X
.~1
1B1
1RT
1~.
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
M23
M2Z
M41
MO0
N9A
NQ-
O-L
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
RPZ
SCB
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
YQT
~02
186
29K
AAQXK
ABFNM
ABPIF
ABPTK
AFFNX
AJQLL
ASPBG
AVWKF
AZFZN
D-I
FBQ
FEDTE
FGOYB
HMU
HVGLF
R2-
RIG
ROL
SCH
SEW
WUQ
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
ACLOT
EFKBS
L.6
~HD
ID FETCH-LOGICAL-c369t-240ad901bf00d6b03238cdf3bf21ae6bdd99ce864e7c481a5341489256ccc0b63
IEDL.DBID .~1
ISSN 1572-6657
IngestDate Thu Sep 25 08:45:51 EDT 2025
Tue Jul 01 00:21:46 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Dec 27 19:14:51 EST 2023
Fri Feb 23 02:32:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rate constants
Minimax approximation
Marcus theory
Computational electrochemistry
Digital simulation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-240ad901bf00d6b03238cdf3bf21ae6bdd99ce864e7c481a5341489256ccc0b63
Notes http://dx.doi.org/10.1016/j.jelechem.2012.08.015
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1678524162
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_1678524162
crossref_citationtrail_10_1016_j_jelechem_2012_08_015
crossref_primary_10_1016_j_jelechem_2012_08_015
fao_agris_US201500119828
elsevier_sciencedirect_doi_10_1016_j_jelechem_2012_08_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of electroanalytical chemistry (Lausanne, Switzerland)
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Oldham, Myland (b0035) 2011; 655
Hush (b0025) 1968; 13
Bard, Faulkner (b0005) 1980
Marcus (b0020) 1964; 15
Britz (b0015) 2005
Cody (b0075) 1969; 23
Chidsey (b0030) 1991; 251
Schmitt (b0080) 1971; 14
Web site checked on February 28th, 2012.
Mocak (b0010) 2005
Goldberg (b0045) 1991; 23
MATHEMATICA, Wolfram Res. Inc., Champaigne Il.
Migliore, Nitzan (b0050) 2012; 671
Abramowitz, Stegun (b0055) 1972
The web site checked on May 23rd, 2012.
<
Fraser (b0065) 1965; 12
Hart, Cheney, Lawson, Maehly, Mesztenyi, Rice, Thacher, Witzgall (b0060) 1968
Chidsey (10.1016/j.jelechem.2012.08.015_b0030) 1991; 251
Marcus (10.1016/j.jelechem.2012.08.015_b0020) 1964; 15
10.1016/j.jelechem.2012.08.015_b0070
Goldberg (10.1016/j.jelechem.2012.08.015_b0045) 1991; 23
Fraser (10.1016/j.jelechem.2012.08.015_b0065) 1965; 12
10.1016/j.jelechem.2012.08.015_b0040
Bard (10.1016/j.jelechem.2012.08.015_b0005) 1980
Cody (10.1016/j.jelechem.2012.08.015_b0075) 1969; 23
Oldham (10.1016/j.jelechem.2012.08.015_b0035) 2011; 655
Mocak (10.1016/j.jelechem.2012.08.015_b0010) 2005
Abramowitz (10.1016/j.jelechem.2012.08.015_b0055) 1972
Migliore (10.1016/j.jelechem.2012.08.015_b0050) 2012; 671
Schmitt (10.1016/j.jelechem.2012.08.015_b0080) 1971; 14
Britz (10.1016/j.jelechem.2012.08.015_b0015) 2005
Hush (10.1016/j.jelechem.2012.08.015_b0025) 1968; 13
Hart (10.1016/j.jelechem.2012.08.015_b0060) 1968
References_xml – year: 2005
  ident: b0015
  article-title: Digital Simulation in Electrochemistry
– volume: 655
  start-page: 65
  year: 2011
  ident: b0035
  publication-title: J. Electroanal. Chem.
– volume: 13
  start-page: 1005
  year: 1968
  ident: b0025
  publication-title: Electrochim. Acta
– volume: 251
  start-page: 919
  year: 1991
  ident: b0030
  publication-title: Science
– reference: MATHEMATICA, Wolfram Res. Inc., Champaigne Il., <
– volume: 23
  start-page: 5
  year: 1991
  ident: b0045
  publication-title: ACM Comput. Surv.
– year: 1972
  ident: b0055
  article-title: Handbook of Mathematical Functions
– reference: >. The web site checked on May 23rd, 2012.
– volume: 23
  start-page: 631
  year: 1969
  ident: b0075
  publication-title: Math. Comput.
– volume: 14
  start-page: 355
  year: 1971
  ident: b0080
  publication-title: Commun. ACM
– volume: 12
  start-page: 295
  year: 1965
  ident: b0065
  publication-title: J. ACM
– year: 1980
  ident: b0005
  article-title: Electrochemical Methods: Fundamentals and Applications
– volume: 15
  start-page: 155
  year: 1964
  ident: b0020
  publication-title: Annu. Rev. Phys. Chem.
– start-page: 208
  year: 2005
  ident: b0010
  publication-title: Encyclopedia of Analytical Science
– reference: <
– volume: 671
  start-page: 99
  year: 2012
  ident: b0050
  publication-title: J. Electroanal. Chem.
– reference: >. Web site checked on February 28th, 2012.
– year: 1968
  ident: b0060
  article-title: Computer Approximations
– year: 1980
  ident: 10.1016/j.jelechem.2012.08.015_b0005
– volume: 12
  start-page: 295
  year: 1965
  ident: 10.1016/j.jelechem.2012.08.015_b0065
  publication-title: J. ACM
  doi: 10.1145/321281.321282
– ident: 10.1016/j.jelechem.2012.08.015_b0040
– ident: 10.1016/j.jelechem.2012.08.015_b0070
– year: 1972
  ident: 10.1016/j.jelechem.2012.08.015_b0055
– year: 1968
  ident: 10.1016/j.jelechem.2012.08.015_b0060
– volume: 251
  start-page: 919
  year: 1991
  ident: 10.1016/j.jelechem.2012.08.015_b0030
  publication-title: Science
  doi: 10.1126/science.251.4996.919
– volume: 13
  start-page: 1005
  year: 1968
  ident: 10.1016/j.jelechem.2012.08.015_b0025
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(68)80032-5
– volume: 23
  start-page: 5
  year: 1991
  ident: 10.1016/j.jelechem.2012.08.015_b0045
  publication-title: ACM Comput. Surv.
  doi: 10.1145/103162.103163
– volume: 671
  start-page: 99
  year: 2012
  ident: 10.1016/j.jelechem.2012.08.015_b0050
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2012.02.026
– year: 2005
  ident: 10.1016/j.jelechem.2012.08.015_b0015
– volume: 23
  start-page: 631
  year: 1969
  ident: 10.1016/j.jelechem.2012.08.015_b0075
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1969-0247736-4
– volume: 655
  start-page: 65
  year: 2011
  ident: 10.1016/j.jelechem.2012.08.015_b0035
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2011.01.044
– start-page: 208
  year: 2005
  ident: 10.1016/j.jelechem.2012.08.015_b0010
– volume: 15
  start-page: 155
  year: 1964
  ident: 10.1016/j.jelechem.2012.08.015_b0020
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.15.100164.001103
– volume: 14
  start-page: 355
  year: 1971
  ident: 10.1016/j.jelechem.2012.08.015_b0080
  publication-title: Commun. ACM
  doi: 10.1145/362588.362600
SSID ssj0028812
Score 2.0805821
Snippet ► A new procedure for computing Marcus–Hush–Chidsey rate constants. ► The procedure is highly accurate (14–15 digits) and computationally inexpensive. ► Relies...
Theoretical modelling and digital simulation of electro-analytical experiments for electrochemical reactions subject to the Marcus–Hush–Chidsey kinetics have...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms algorithms
Computational electrochemistry
computer simulation
Digital simulation
electrochemistry
Marcus theory
Minimax approximation
Rate constants
Title A procedure for rapid and highly accurate computation of Marcus–Hush–Chidsey rate constants
URI https://dx.doi.org/10.1016/j.jelechem.2012.08.015
https://www.proquest.com/docview/1678524162
Volume 683
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: ACRLP
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: AIKHN
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2569
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028812
  issn: 1572-6657
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF7S9NBeQtK05M0GepWtlVbr1dGYGDcmOTQ1yW3Zl2qbIBvLOuQS8h_yD_NLMqOHaWkhh5yExA4SM6P5ZndehHzvAcy5hPMg9rBF4dbbwHDpA6N7kQFIz4TDc8irazGa8Mu75G6LDNpaGEyrbGx_bdMra9086Tbc7C5ns-4NS3oRxg1YVGkmFvFh9y_Q6c7jJs0jkrKOeMLiAFf_USU878xx1szUY0U6ngnKTojjcf8PUB8yvfjHYFcoNNwlO437SPv1F-6RLZ9_IZ8G7dS2faL6tMIkV648BYeUrvRy5qjOHcXOxPcPVFtbYn8IaquBDpVk6CKjV6DyZfHy9DwqiylcBtOZK_wDbdZWbuS6-Eomw4tfg1HQDFEIbCzSNUZPtAPQN1kYOmHCGDDauiw2WcS0F8a5NLVeCu57lkumE4A1LlPwhKy1oRHxN7KdL3J_QKix8HdrkKeXjDPmpBDggPhMZIkMbZgckqTlnLJNh3EcdHGv2lSyuWo5rpDjCidgMqDrbuiWdY-NNynSVjDqL21RAARv0h6AJJX-DUZUTW4iPPLBxnew9Twk5614FYgNQyc694uyUAwwPQFnR0RH73j1MfmMd3WK2gnZXq9Kfwo-zdqcVUp7Rj72f4xH13gd_7wdvwIjLfjt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECUS55Beiq5IuqQs0KtiUSJp6mgYDZTFviQGciO4qbYRyIZlHXLrP_QP-yWd0RK0SIEcchIgcSBhZjTvkUPOEPJtBDDnBedRGmCKwl1wkeUqRNaMEguQXkiP65DTmczn_OJW3O6RSX8WBrdVdrG_jelNtO7uDDttDjfL5fCaiVGCeQOWNJ6Z7ZMDLiAmD8jB-Pwynz3Mu5Rqk54wPkKBvw4Kr05X2G5mEfBQOi4LqtMYO-T-H6P2C7N-FLMbIDp7RV52DJKO2498TfZC-YYcTvrGbW-JHtMGlny9DRQ4Kd2azdJTU3qKxYnv7qlxrsYSEdQ1PR0a49B1Qafg9XX1--evvK4WcJkslr4K97Qb2zDJXfWOzM--30zyqOujELlUZjtMoBgPuG-LOPbSxinAtPNFaouEmSCt91nmgpI8jBxXzAhANq4yIEPOudjK9D0ZlOsyHBFqHfzgBkwaFOOMeSUlcJBQyEKo2MXimIhec9p1Rcax18Wd7neTrXSvcY0a19gEk4Hc8EFu05bZeFIi6w2j_3EYDVjwpOwRWFKbHxBH9fw6wVUfrH0Hs89j8rU3rwazYfbElGFdV5oBrAvgOzL58IxXfyGH-c30Sl-dzy4_khf4pN2x9okMdts6fAaKs7MnnQv_Acfg-fU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+procedure+for+rapid+and+highly+accurate+computation+of+Marcus%E2%80%93Hush%E2%80%93Chidsey+rate+constants&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=Bieniasz%2C+Les%C5%82aw+K.&rft.date=2012-09-01&rft.issn=1572-6657&rft.volume=683&rft.spage=112&rft.epage=118&rft_id=info:doi/10.1016%2Fj.jelechem.2012.08.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jelechem_2012_08_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon