Energy dissipation due to viscosity during deformation of a capillary surface subject to contact angle hysteresis

A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity...

Full description

Saved in:
Bibliographic Details
Published inPhysica. B, Condensed matter Vol. 435; pp. 28 - 30
Main Authors Athukorallage, Bhagya, Iyer, Ram
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2014
Subjects
Online AccessGet full text
ISSN0921-4526
1873-2135
DOI10.1016/j.physb.2013.10.024

Cover

Abstract A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity of the fluids involved. In this paper, we consider a simplified problem where a liquid and a gas are bounded between two parallel plane surfaces with a capillary surface between the liquid–gas interface. The liquid–plane interface is considered to be non-ideal, which implies that the contact angle of the capillary surface at the interface is set-valued, and change in the contact angle exhibits hysteresis. We analyze a two-point boundary value problem for the fluid flow described by the Navier–Stokes and continuity equations, wherein a capillary surface with one contact angle is deformed to another with a different contact angle. The main contribution of this paper is that we show the existence of non-unique classical solutions to this problem, and numerically compute the dissipation.
AbstractList A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity of the fluids involved. In this paper, we consider a simplified problem where a liquid and a gas are bounded between two parallel plane surfaces with a capillary surface between the liquid-gas interface. The liquid-plane interface is considered to be non-ideal, which implies that the contact angle of the capillary surface at the interface is set-valued, and change in the contact angle exhibits hysteresis. We analyze a two-point boundary value problem for the fluid flow described by the Navier-Stokes and continuity equations, wherein a capillary surface with one contact angle is deformed to another with a different contact angle. The main contribution of this paper is that we show the existence of non-unique classical solutions to this problem, and numerically compute the dissipation.
A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity of the fluids involved. In this paper, we consider a simplified problem where a liquid and a gas are bounded between two parallel plane surfaces with a capillary surface between the liquid–gas interface. The liquid–plane interface is considered to be non-ideal, which implies that the contact angle of the capillary surface at the interface is set-valued, and change in the contact angle exhibits hysteresis. We analyze a two-point boundary value problem for the fluid flow described by the Navier–Stokes and continuity equations, wherein a capillary surface with one contact angle is deformed to another with a different contact angle. The main contribution of this paper is that we show the existence of non-unique classical solutions to this problem, and numerically compute the dissipation.
Author Iyer, Ram
Athukorallage, Bhagya
Author_xml – sequence: 1
  givenname: Bhagya
  surname: Athukorallage
  fullname: Athukorallage, Bhagya
  email: bhagya.athukorala@ttu.edu
– sequence: 2
  givenname: Ram
  surname: Iyer
  fullname: Iyer, Ram
  email: ram.iyer@ttu.edu
BookMark eNqFkT1vIyEQhtEpkWLn8gvSUF6zDrNf7BZXnCzfhxQpTa5GLAwO1hrWwEbyvz82TpXiQjNoeB80875rcuW8Q0LugW2AQftw2Ewv5zhsSgZV7mxYWX8hK-h4VZRQNVdkxfoSirop2xuyjvHA8gEOK3LaOQz7M9U2RjvJZL2jekaaPH21UfloU36cg3V7qtH4cLxovKGSKjnZcZThTOMcjFSY63BAlRZceZdkvkq3H5Hm8RIGjDZ-JddGjhHv3ust-ftz97z9XTw-_fqz_fFYqKrtUwGD1p1kABI0w67kLbLOmMZINnColQE0bKg7Xpuqk7IvdV5ugIHLrh8a3le35Nvl3yn404wxiWNeCPO8Dv0cBbSc99A02aBPpU0NddWxepH2F6kKPsaARiib3ixJQdpRABNLIuIg3hIRSyJLMyeS2eoDOwV7zPZ9Qn2_UJjNerUYRFQWnUJtQ7ZaaG__y_8DHLWq5w
CitedBy_id crossref_primary_10_1051_mmnp_2019028
Cites_doi 10.2514/1.1329
10.1137/0147034
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/j.physb.2013.10.024
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2135
EndPage 30
ExternalDocumentID 10_1016_j_physb_2013_10_024
S092145261300642X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
T5K
TN5
XPP
YNT
ZMT
~02
~G-
29O
6TJ
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACNNM
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFFNX
AFJKZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HMV
HVGLF
HZ~
H~9
MVM
NDZJH
R2-
SEW
SPG
SSH
SSZ
VOH
WUQ
XJT
XOL
7U5
8FD
EFKBS
L7M
ACLOT
~HD
ID FETCH-LOGICAL-c369t-1bdd8a011a1d0e8276e08ff5fa0b714cf1ef0b4874f38aa92d526b1b7a89b5793
IEDL.DBID AIKHN
ISSN 0921-4526
IngestDate Sun Sep 28 00:15:18 EDT 2025
Fri Sep 05 07:30:46 EDT 2025
Tue Jul 01 03:14:50 EDT 2025
Thu Apr 24 23:07:13 EDT 2025
Fri Feb 23 02:28:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Two-point boundary value problem
Contact angle hysteresis
Navier–Stokes equation
Viscous dissipation
Calculus of variations
Capillary surfaces
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-1bdd8a011a1d0e8276e08ff5fa0b714cf1ef0b4874f38aa92d526b1b7a89b5793
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1541438041
PQPubID 23500
PageCount 3
ParticipantIDs proquest_miscellaneous_1677915521
proquest_miscellaneous_1541438041
crossref_citationtrail_10_1016_j_physb_2013_10_024
crossref_primary_10_1016_j_physb_2013_10_024
elsevier_sciencedirect_doi_10_1016_j_physb_2013_10_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-15
PublicationDateYYYYMMDD 2014-02-15
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Physica. B, Condensed matter
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gelfand, Fomin (bib4) 2000
Finn (bib2) 1986
Deen (bib6) 1998
de Gennes, Brochard-Wyart, Quere (bib1) 2003
Holsapple, Venkataraman, Doman (bib5) 2004; 27
Vogel (bib3) 1987; 47
Gelfand (10.1016/j.physb.2013.10.024_bib4) 2000
Holsapple (10.1016/j.physb.2013.10.024_bib5) 2004; 27
de Gennes (10.1016/j.physb.2013.10.024_bib1) 2003
Finn (10.1016/j.physb.2013.10.024_bib2) 1986
Deen (10.1016/j.physb.2013.10.024_bib6) 1998
Vogel (10.1016/j.physb.2013.10.024_bib3) 1987; 47
References_xml – year: 2003
  ident: bib1
  article-title: Capillarity and Wetting Phenomena
– volume: 47
  start-page: 516
  year: 1987
  ident: bib3
  publication-title: SIAM J. Appl. Math.
– year: 2000
  ident: bib4
  article-title: Calculus of Variations
– volume: 27
  start-page: 301
  year: 2004
  ident: bib5
  publication-title: J. Guid. Control Dyn.
– year: 1998
  ident: bib6
  article-title: Analysis of Transport Phenomena
– year: 1986
  ident: bib2
  article-title: Equilibrium Capillary Surfaces
– volume: 27
  start-page: 301
  year: 2004
  ident: 10.1016/j.physb.2013.10.024_bib5
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.1329
– year: 2003
  ident: 10.1016/j.physb.2013.10.024_bib1
– year: 1986
  ident: 10.1016/j.physb.2013.10.024_bib2
– volume: 47
  start-page: 516
  issue: 3
  year: 1987
  ident: 10.1016/j.physb.2013.10.024_bib3
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0147034
– year: 1998
  ident: 10.1016/j.physb.2013.10.024_bib6
– year: 2000
  ident: 10.1016/j.physb.2013.10.024_bib4
SSID ssj0000171
Score 2.0542777
Snippet A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28
SubjectTerms Calculus of variations
Capillarity
Capillary surfaces
Computational fluid dynamics
Contact
Contact angle
Contact angle hysteresis
Fluid flow
Fluids
Hysteresis
Navier-Stokes equations
Navier–Stokes equation
Two-point boundary value problem
Viscous dissipation
Title Energy dissipation due to viscosity during deformation of a capillary surface subject to contact angle hysteresis
URI https://dx.doi.org/10.1016/j.physb.2013.10.024
https://www.proquest.com/docview/1541438041
https://www.proquest.com/docview/1677915521
Volume 435
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5BERI8TBsDDbYhT-JxobHzy3lECNRtGi-A1Lfo7NhQVKVd0yLxwt_OXZogmEQfeEri2JLls8939nffARxZVcZIVluQaU8OSoJhgDRNAszJHFeyTLOIY4f_XqSD6_j3MBmuwWkXC8Owylb3L3V6o63bkn47mv3paNS_DHNm2VZsALMVPVyHDUW7ve7BxsmvP4OLFyxSjd_F9QNu0JEPNTAvPkAwDPGKjhnlpeK3Nqj_VHWz_5x_hA-t4ShOln37BGuu2oHtF3SCO7DZwDlt_Rn-nTUhfYJv21vMtCgXTswn4n5UWwZq0c8mQlGU7jmAUUy8QGFxyqmIZg-iXsw8WkdPw8c13Jyh7UivWN2MnbhlHmhy2Ef1Llyfn12dDoI2uUJgozSfB9KUpUZa3SjL0GmVpS7U3iceQ5PJ2HrpfGjInYl9pBFzVdLIGWky1LlJaFXvQa-aVO4LCOe8DNEm6G0ea2-1jxheniJmZFDpZB9UN6KFbZnHOQHGuOggZndFI4aCxcCFJIZ9-PncaLok3lhdPe1EVbyaPwVtDasb_ugEW9DK4usSrNxkUReSM6RHzM-0ok6aZcywr-TBezvwFbboK2YkuEy-QW8-W7jvZOjMzSGsHz_Kw3Y6PwFEMf8k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RoKpwQC1tVV7FlXrsNut9eo8IgcIrl4KUmzX22jQV2oRsUqn_npnNLqJI5MBpV7ZHsjx-zNjffAPw3UZlgmS1Bbny5KCkGAZI0yTAgszxSJZZHnPs8NUwG9wk56N0tAbHXSwMwyrbvX-5pze7dVvSb0ezPx2P-7_Cglm2IzaA2YoevYH1hJNa92D96OxiMHzCItX4Xdw-YIGOfKiBefEFgmGIV_yTUV5R8tIB9Wyrbs6f0_ew1RqO4mjZtw-w5qpt2HxCJ7gNbxs4p60_wv1JE9In-LW9xUyLcuHEfCL-jmvLQC2qbCIURekeAxjFxAsUFqecimj2T9SLmUfr6Gv4uobFGdqO9IvV7Z0Tv5kHmhz2cf0Jbk5Pro8HQZtcIbBxVswDacpSIa1ulGXoVJRnLlTepx5Dk8vEeul8aMidSXysEIuopJEz0uSoCpPSqv4MvWpSuS8gnPMyRJuit0WivFU-Znh5hpiTQaXSHYi6EdW2ZR7nBBh3uoOY_dGNGjSrgQtJDTvw41FouiTeWN0861Sl_5s_mo6G1YLfOsVqWln8XIKVmyxqLXkyxczPtKJNlufMsB_J3dd24BDeDa6vLvXl2fBiDzaoJmFUuEz3oTefLdwBGT1z87Wd1A9HEQEZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+dissipation+due+to+viscosity+during+deformation+of+a+capillary+surface+subject+to+contact+angle+hysteresis&rft.jtitle=Physica.+B%2C+Condensed+matter&rft.au=Athukorallage%2C+Bhagya&rft.au=Iyer%2C+Ram&rft.date=2014-02-15&rft.issn=0921-4526&rft.volume=435&rft.spage=28&rft.epage=30&rft_id=info:doi/10.1016%2Fj.physb.2013.10.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-4526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-4526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-4526&client=summon