Energy dissipation due to viscosity during deformation of a capillary surface subject to contact angle hysteresis
A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity...
Saved in:
Published in | Physica. B, Condensed matter Vol. 435; pp. 28 - 30 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0921-4526 1873-2135 |
DOI | 10.1016/j.physb.2013.10.024 |
Cover
Abstract | A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity of the fluids involved.
In this paper, we consider a simplified problem where a liquid and a gas are bounded between two parallel plane surfaces with a capillary surface between the liquid–gas interface. The liquid–plane interface is considered to be non-ideal, which implies that the contact angle of the capillary surface at the interface is set-valued, and change in the contact angle exhibits hysteresis. We analyze a two-point boundary value problem for the fluid flow described by the Navier–Stokes and continuity equations, wherein a capillary surface with one contact angle is deformed to another with a different contact angle. The main contribution of this paper is that we show the existence of non-unique classical solutions to this problem, and numerically compute the dissipation. |
---|---|
AbstractList | A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity of the fluids involved. In this paper, we consider a simplified problem where a liquid and a gas are bounded between two parallel plane surfaces with a capillary surface between the liquid-gas interface. The liquid-plane interface is considered to be non-ideal, which implies that the contact angle of the capillary surface at the interface is set-valued, and change in the contact angle exhibits hysteresis. We analyze a two-point boundary value problem for the fluid flow described by the Navier-Stokes and continuity equations, wherein a capillary surface with one contact angle is deformed to another with a different contact angle. The main contribution of this paper is that we show the existence of non-unique classical solutions to this problem, and numerically compute the dissipation. A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The physical phenomena that cause dissipation of energy during a motion of the contact line are hysteresis in the contact angle dynamics, and viscosity of the fluids involved. In this paper, we consider a simplified problem where a liquid and a gas are bounded between two parallel plane surfaces with a capillary surface between the liquid–gas interface. The liquid–plane interface is considered to be non-ideal, which implies that the contact angle of the capillary surface at the interface is set-valued, and change in the contact angle exhibits hysteresis. We analyze a two-point boundary value problem for the fluid flow described by the Navier–Stokes and continuity equations, wherein a capillary surface with one contact angle is deformed to another with a different contact angle. The main contribution of this paper is that we show the existence of non-unique classical solutions to this problem, and numerically compute the dissipation. |
Author | Iyer, Ram Athukorallage, Bhagya |
Author_xml | – sequence: 1 givenname: Bhagya surname: Athukorallage fullname: Athukorallage, Bhagya email: bhagya.athukorala@ttu.edu – sequence: 2 givenname: Ram surname: Iyer fullname: Iyer, Ram email: ram.iyer@ttu.edu |
BookMark | eNqFkT1vIyEQhtEpkWLn8gvSUF6zDrNf7BZXnCzfhxQpTa5GLAwO1hrWwEbyvz82TpXiQjNoeB80875rcuW8Q0LugW2AQftw2Ewv5zhsSgZV7mxYWX8hK-h4VZRQNVdkxfoSirop2xuyjvHA8gEOK3LaOQz7M9U2RjvJZL2jekaaPH21UfloU36cg3V7qtH4cLxovKGSKjnZcZThTOMcjFSY63BAlRZceZdkvkq3H5Hm8RIGjDZ-JddGjhHv3ust-ftz97z9XTw-_fqz_fFYqKrtUwGD1p1kABI0w67kLbLOmMZINnColQE0bKg7Xpuqk7IvdV5ugIHLrh8a3le35Nvl3yn404wxiWNeCPO8Dv0cBbSc99A02aBPpU0NddWxepH2F6kKPsaARiib3ixJQdpRABNLIuIg3hIRSyJLMyeS2eoDOwV7zPZ9Qn2_UJjNerUYRFQWnUJtQ7ZaaG__y_8DHLWq5w |
CitedBy_id | crossref_primary_10_1051_mmnp_2019028 |
Cites_doi | 10.2514/1.1329 10.1137/0147034 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. |
Copyright_xml | – notice: 2013 Elsevier B.V. |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1016/j.physb.2013.10.024 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-2135 |
EndPage | 30 |
ExternalDocumentID | 10_1016_j_physb_2013_10_024 S092145261300642X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADIYS AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ T5K TN5 XPP YNT ZMT ~02 ~G- 29O 6TJ AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACNNM ACRPL ADMUD ADNMO ADVLN AEIPS AFFNX AFJKZ AGCQF AGHFR AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HMV HVGLF HZ~ H~9 MVM NDZJH R2- SEW SPG SSH SSZ VOH WUQ XJT XOL 7U5 8FD EFKBS L7M ACLOT ~HD |
ID | FETCH-LOGICAL-c369t-1bdd8a011a1d0e8276e08ff5fa0b714cf1ef0b4874f38aa92d526b1b7a89b5793 |
IEDL.DBID | AIKHN |
ISSN | 0921-4526 |
IngestDate | Sun Sep 28 00:15:18 EDT 2025 Fri Sep 05 07:30:46 EDT 2025 Tue Jul 01 03:14:50 EDT 2025 Thu Apr 24 23:07:13 EDT 2025 Fri Feb 23 02:28:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Two-point boundary value problem Contact angle hysteresis Navier–Stokes equation Viscous dissipation Calculus of variations Capillary surfaces |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-1bdd8a011a1d0e8276e08ff5fa0b714cf1ef0b4874f38aa92d526b1b7a89b5793 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1541438041 |
PQPubID | 23500 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_1677915521 proquest_miscellaneous_1541438041 crossref_citationtrail_10_1016_j_physb_2013_10_024 crossref_primary_10_1016_j_physb_2013_10_024 elsevier_sciencedirect_doi_10_1016_j_physb_2013_10_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-15 |
PublicationDateYYYYMMDD | 2014-02-15 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Physica. B, Condensed matter |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gelfand, Fomin (bib4) 2000 Finn (bib2) 1986 Deen (bib6) 1998 de Gennes, Brochard-Wyart, Quere (bib1) 2003 Holsapple, Venkataraman, Doman (bib5) 2004; 27 Vogel (bib3) 1987; 47 Gelfand (10.1016/j.physb.2013.10.024_bib4) 2000 Holsapple (10.1016/j.physb.2013.10.024_bib5) 2004; 27 de Gennes (10.1016/j.physb.2013.10.024_bib1) 2003 Finn (10.1016/j.physb.2013.10.024_bib2) 1986 Deen (10.1016/j.physb.2013.10.024_bib6) 1998 Vogel (10.1016/j.physb.2013.10.024_bib3) 1987; 47 |
References_xml | – year: 2003 ident: bib1 article-title: Capillarity and Wetting Phenomena – volume: 47 start-page: 516 year: 1987 ident: bib3 publication-title: SIAM J. Appl. Math. – year: 2000 ident: bib4 article-title: Calculus of Variations – volume: 27 start-page: 301 year: 2004 ident: bib5 publication-title: J. Guid. Control Dyn. – year: 1998 ident: bib6 article-title: Analysis of Transport Phenomena – year: 1986 ident: bib2 article-title: Equilibrium Capillary Surfaces – volume: 27 start-page: 301 year: 2004 ident: 10.1016/j.physb.2013.10.024_bib5 publication-title: J. Guid. Control Dyn. doi: 10.2514/1.1329 – year: 2003 ident: 10.1016/j.physb.2013.10.024_bib1 – year: 1986 ident: 10.1016/j.physb.2013.10.024_bib2 – volume: 47 start-page: 516 issue: 3 year: 1987 ident: 10.1016/j.physb.2013.10.024_bib3 publication-title: SIAM J. Appl. Math. doi: 10.1137/0147034 – year: 1998 ident: 10.1016/j.physb.2013.10.024_bib6 – year: 2000 ident: 10.1016/j.physb.2013.10.024_bib4 |
SSID | ssj0000171 |
Score | 2.0542777 |
Snippet | A capillary surface is the boundary between two immiscible fluids. When the two fluids are in contact with a solid surface, there is a contact line. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 28 |
SubjectTerms | Calculus of variations Capillarity Capillary surfaces Computational fluid dynamics Contact Contact angle Contact angle hysteresis Fluid flow Fluids Hysteresis Navier-Stokes equations Navier–Stokes equation Two-point boundary value problem Viscous dissipation |
Title | Energy dissipation due to viscosity during deformation of a capillary surface subject to contact angle hysteresis |
URI | https://dx.doi.org/10.1016/j.physb.2013.10.024 https://www.proquest.com/docview/1541438041 https://www.proquest.com/docview/1677915521 |
Volume | 435 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5BERI8TBsDDbYhT-JxobHzy3lECNRtGi-A1Lfo7NhQVKVd0yLxwt_OXZogmEQfeEri2JLls8939nffARxZVcZIVluQaU8OSoJhgDRNAszJHFeyTLOIY4f_XqSD6_j3MBmuwWkXC8Owylb3L3V6o63bkn47mv3paNS_DHNm2VZsALMVPVyHDUW7ve7BxsmvP4OLFyxSjd_F9QNu0JEPNTAvPkAwDPGKjhnlpeK3Nqj_VHWz_5x_hA-t4ShOln37BGuu2oHtF3SCO7DZwDlt_Rn-nTUhfYJv21vMtCgXTswn4n5UWwZq0c8mQlGU7jmAUUy8QGFxyqmIZg-iXsw8WkdPw8c13Jyh7UivWN2MnbhlHmhy2Ef1Llyfn12dDoI2uUJgozSfB9KUpUZa3SjL0GmVpS7U3iceQ5PJ2HrpfGjInYl9pBFzVdLIGWky1LlJaFXvQa-aVO4LCOe8DNEm6G0ea2-1jxheniJmZFDpZB9UN6KFbZnHOQHGuOggZndFI4aCxcCFJIZ9-PncaLok3lhdPe1EVbyaPwVtDasb_ugEW9DK4usSrNxkUReSM6RHzM-0ok6aZcywr-TBezvwFbboK2YkuEy-QW8-W7jvZOjMzSGsHz_Kw3Y6PwFEMf8k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RoKpwQC1tVV7FlXrsNut9eo8IgcIrl4KUmzX22jQV2oRsUqn_npnNLqJI5MBpV7ZHsjx-zNjffAPw3UZlgmS1Bbny5KCkGAZI0yTAgszxSJZZHnPs8NUwG9wk56N0tAbHXSwMwyrbvX-5pze7dVvSb0ezPx2P-7_Cglm2IzaA2YoevYH1hJNa92D96OxiMHzCItX4Xdw-YIGOfKiBefEFgmGIV_yTUV5R8tIB9Wyrbs6f0_ew1RqO4mjZtw-w5qpt2HxCJ7gNbxs4p60_wv1JE9In-LW9xUyLcuHEfCL-jmvLQC2qbCIURekeAxjFxAsUFqecimj2T9SLmUfr6Gv4uobFGdqO9IvV7Z0Tv5kHmhz2cf0Jbk5Pro8HQZtcIbBxVswDacpSIa1ulGXoVJRnLlTepx5Dk8vEeul8aMidSXysEIuopJEz0uSoCpPSqv4MvWpSuS8gnPMyRJuit0WivFU-Znh5hpiTQaXSHYi6EdW2ZR7nBBh3uoOY_dGNGjSrgQtJDTvw41FouiTeWN0861Sl_5s_mo6G1YLfOsVqWln8XIKVmyxqLXkyxczPtKJNlufMsB_J3dd24BDeDa6vLvXl2fBiDzaoJmFUuEz3oTefLdwBGT1z87Wd1A9HEQEZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+dissipation+due+to+viscosity+during+deformation+of+a+capillary+surface+subject+to+contact+angle+hysteresis&rft.jtitle=Physica.+B%2C+Condensed+matter&rft.au=Athukorallage%2C+Bhagya&rft.au=Iyer%2C+Ram&rft.date=2014-02-15&rft.issn=0921-4526&rft.volume=435&rft.spage=28&rft.epage=30&rft_id=info:doi/10.1016%2Fj.physb.2013.10.024&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-4526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-4526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-4526&client=summon |