A Comprehensive Study on Colorectal Polyp Segmentation With ResUNet++, Conditional Random Field and Test-Time Augmentation
Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 25; no. 6; pp. 2029 - 2040 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2021.3049304 |
Cover
| Abstract | Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice. |
|---|---|
| AbstractList | Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice. Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using CRF and TTA. We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other State-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice. Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice.Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice. |
| Author | Halvorsen, Pal Jha, Debesh Johansen, Dag Smedsrud, Pia H. Johansen, Havard D. Riegler, Michael A. de Lange, Thomas |
| Author_xml | – sequence: 1 givenname: Debesh orcidid: 0000-0002-8078-6730 surname: Jha fullname: Jha, Debesh email: debesh@simula.no organization: SimulaMet, 0167 Oslo and UiT The Arctic University of Norway, Tromsø – sequence: 2 givenname: Pia H. orcidid: 0000-0002-1611-5764 surname: Smedsrud fullname: Smedsrud, Pia H. email: pia@simula.no organization: SimulaMet, 0167 Oslo and University of Oslo, Oslo – sequence: 3 givenname: Dag surname: Johansen fullname: Johansen, Dag email: dag.johansen@uit.no organization: UiT The Arctic University of Norway, Tromsø – sequence: 4 givenname: Thomas orcidid: 0000-0003-3989-7487 surname: de Lange fullname: de Lange, Thomas email: t.de.lange@medisin.uio.no organization: Medical Department Sahlgrenska University Hospital – Mölndal, Region Västra Götaland, Mölndal, Sweden – sequence: 5 givenname: Havard D. orcidid: 0000-0002-1637-7262 surname: Johansen fullname: Johansen, Havard D. email: havard.johansen@uit.no organization: UiT The Arctic University of Norway, Tromsø – sequence: 6 givenname: Pal surname: Halvorsen fullname: Halvorsen, Pal email: paalh@simula.no – sequence: 7 givenname: Michael A. orcidid: 0000-0002-3153-2064 surname: Riegler fullname: Riegler, Michael A. email: michael@simula.no |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33400658$$D View this record in MEDLINE/PubMed https://gup.ub.gu.se/publication/301985$$DView record from Swedish Publication Index |
| BookMark | eNp9kl1r2zAUhsXoWLusP2AMNsNuCp0zffhLl1lY146yjTZll0KyjxMF2_IseyX99TvBSQYZTCAkznneI51XeklOGtcAIa8ZnTJG5cevn65vppxyNhU0kjifkTPOkizknGYn-z2T0Sk5935NcWQYkskLcipERGkSZ2fkaRbMXd12sILG298Q3PdDsQlcg-HKdZD3ugp-uGrTBvewrKHpdW8x-9P2q-AO_MM36C8vPyDdFHabQfxON4WrgysLVRHgPliA78OFrSGYDX9rvCLPS115ON-tE_Jw9Xkxvw5vv3-5mc9uw1wkMgqTPNVxbAwTDFed6FREJo5KEAWXhSllnhcyLgtjTGRKHfPU8FiXPKUsSkumxYTwse7QtHrzqKtKtZ2tdbdRjKqtl2ptVlZtvVQ7L1EUjiL_CO1gDgqnrVoOrcLQclAeUMBkFiP_buTzzvreNqpxncb6VKRYGCEkLkai7dyvAR1RtfU5VJVuwA1e8SiNYy4lSibk_RG6dkOH1iIViyRLMioSpN7uqMHUUByuuH9cBNj-Ts77Dsp_-t7-oeO-0yNNbsfn6jttq_8q34xKCwCHk6RgEWOR-ANNPNAU |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126727 crossref_primary_10_1007_s10278_024_01162_2 crossref_primary_10_1007_s44196_023_00330_6 crossref_primary_10_1109_ACCESS_2024_3410833 crossref_primary_10_3389_frobt_2024_1387491 crossref_primary_10_1016_j_compbiomed_2024_108302 crossref_primary_10_1007_s44267_024_00071_w crossref_primary_10_1016_j_bspc_2024_106977 crossref_primary_10_1007_s11042_023_16416_4 crossref_primary_10_1016_j_bspc_2024_107269 crossref_primary_10_1016_j_compbiomed_2023_107728 crossref_primary_10_1007_s42979_024_03262_w crossref_primary_10_1016_j_bspc_2024_106059 crossref_primary_10_1002_acm2_14351 crossref_primary_10_1109_ACCESS_2021_3130200 crossref_primary_10_1109_JBHI_2024_3351287 crossref_primary_10_1016_j_bspc_2023_105515 crossref_primary_10_1016_j_media_2024_103347 crossref_primary_10_3233_AIC_230089 crossref_primary_10_1080_2314808X_2023_2245992 crossref_primary_10_1371_journal_pone_0307777 crossref_primary_10_1007_s12539_024_00682_3 crossref_primary_10_32604_cmc_2024_058467 crossref_primary_10_1007_s12530_023_09533_w crossref_primary_10_1016_j_procs_2024_09_211 crossref_primary_10_1016_j_bspc_2022_104167 crossref_primary_10_1016_j_bspc_2023_104785 crossref_primary_10_1016_j_compbiomed_2023_106646 crossref_primary_10_1186_s12938_023_01137_4 crossref_primary_10_32604_cmc_2022_019786 crossref_primary_10_3390_a18010042 crossref_primary_10_1016_j_compeleceng_2025_110224 crossref_primary_10_1007_s13534_024_00415_x crossref_primary_10_1007_s42979_024_02825_1 crossref_primary_10_1615_IntJMultCompEng_2024052181 crossref_primary_10_1186_s12938_023_01160_5 crossref_primary_10_3390_diagnostics13040747 crossref_primary_10_1080_0954898X_2024_2424248 crossref_primary_10_32604_csse_2023_039765 crossref_primary_10_3390_gastroent13030027 crossref_primary_10_1109_TMRB_2024_3349623 crossref_primary_10_3390_app13126977 crossref_primary_10_1016_j_engappai_2023_106749 crossref_primary_10_1002_ima_22997 crossref_primary_10_1088_1361_6560_ac92bb crossref_primary_10_1109_JBHI_2023_3272168 crossref_primary_10_1007_s10462_023_10621_1 crossref_primary_10_26599_AIR_2023_9150015 crossref_primary_10_1016_j_heliyon_2024_e31395 crossref_primary_10_1007_s11042_024_18607_z crossref_primary_10_3390_jpm15010010 crossref_primary_10_1007_s40998_023_00664_z crossref_primary_10_1109_ACCESS_2024_3504297 crossref_primary_10_1016_j_media_2022_102394 crossref_primary_10_1109_TBCAS_2022_3220758 crossref_primary_10_1016_j_media_2024_103288 crossref_primary_10_3389_fphys_2023_1259877 crossref_primary_10_1016_j_media_2021_102007 crossref_primary_10_1016_j_engappai_2023_106634 crossref_primary_10_1016_j_jbi_2023_104304 crossref_primary_10_1109_TGRS_2024_3425673 crossref_primary_10_1007_s11517_023_02908_w crossref_primary_10_1016_j_jrras_2023_100680 crossref_primary_10_1109_TITS_2024_3420763 crossref_primary_10_1038_s41598_022_09954_8 crossref_primary_10_1049_ipr2_13293 crossref_primary_10_1109_TIM_2023_3322994 crossref_primary_10_1177_07316844231220716 crossref_primary_10_1016_j_bspc_2023_105849 crossref_primary_10_1155_2022_2697932 crossref_primary_10_3390_life13030719 crossref_primary_10_4253_wjge_v14_i5_311 crossref_primary_10_1016_j_jpi_2023_100197 crossref_primary_10_1007_s10278_024_01053_6 crossref_primary_10_1109_ACCESS_2022_3184773 crossref_primary_10_1109_TIM_2024_3379418 crossref_primary_10_3390_jpm12050680 crossref_primary_10_1016_j_compbiomed_2024_108981 crossref_primary_10_1109_ACCESS_2021_3063716 crossref_primary_10_1016_j_aiia_2025_01_005 crossref_primary_10_1016_j_compbiomed_2024_108501 crossref_primary_10_1007_s00521_024_10441_6 crossref_primary_10_1109_JBHI_2022_3147686 crossref_primary_10_1109_JBHI_2021_3138024 crossref_primary_10_1016_j_compag_2024_109182 crossref_primary_10_1016_j_compbiomed_2021_104815 crossref_primary_10_1016_j_aej_2021_04_072 crossref_primary_10_1109_ACCESS_2021_3129480 crossref_primary_10_1016_j_compbiomed_2023_107760 crossref_primary_10_1007_s11203_022_09273_9 crossref_primary_10_3390_s24175845 crossref_primary_10_1007_s13042_023_01802_z crossref_primary_10_3934_mbe_2024090 crossref_primary_10_1038_s41598_023_42436_z crossref_primary_10_1016_j_engappai_2023_106213 crossref_primary_10_3390_s25061814 crossref_primary_10_1016_j_cmpb_2023_107877 crossref_primary_10_1109_ACCESS_2023_3338746 crossref_primary_10_1016_j_compbiomed_2024_109206 crossref_primary_10_1016_j_compbiomed_2024_109602 crossref_primary_10_1109_ACCESS_2021_3128607 crossref_primary_10_1016_j_imavis_2024_105068 crossref_primary_10_1016_j_imavis_2024_105069 crossref_primary_10_3390_app12157742 crossref_primary_10_3390_bioengineering10080970 crossref_primary_10_1109_JBHI_2022_3160098 crossref_primary_10_1186_s12876_024_03181_3 crossref_primary_10_1109_ACCESS_2023_3297097 crossref_primary_10_1007_s44230_024_00067_1 crossref_primary_10_1016_j_eswa_2023_120434 crossref_primary_10_1109_ACCESS_2025_3548128 crossref_primary_10_1016_j_media_2023_102984 crossref_primary_10_1109_TMI_2023_3320151 crossref_primary_10_1016_j_gie_2022_08_043 crossref_primary_10_1016_j_compmedimag_2023_102205 crossref_primary_10_1007_s10489_024_06029_1 crossref_primary_10_32604_cmes_2024_048453 crossref_primary_10_3390_app15031427 crossref_primary_10_3390_electronics12091962 crossref_primary_10_1109_TNNLS_2023_3248804 crossref_primary_10_3389_fonc_2023_1095353 crossref_primary_10_1002_int_22974 crossref_primary_10_1002_ima_23002 crossref_primary_10_1016_j_bspc_2024_106513 crossref_primary_10_1080_0952813X_2024_2383659 crossref_primary_10_1002_ima_22795 crossref_primary_10_1007_s11263_024_02286_2 crossref_primary_10_3390_electronics14010062 crossref_primary_10_54939_1859_1043_j_mst_CSCE6_2022_41_55 crossref_primary_10_1615_IntJMultCompEng_2023050387 crossref_primary_10_1109_JBHI_2022_3173948 crossref_primary_10_1016_j_knosys_2025_113233 crossref_primary_10_1002_ima_70039 crossref_primary_10_3390_s21175704 crossref_primary_10_1016_j_compbiomed_2022_105760 crossref_primary_10_1016_j_compbiomed_2023_107028 crossref_primary_10_1016_j_compbiomed_2023_107301 crossref_primary_10_3390_s23031225 crossref_primary_10_1007_s10462_025_11173_2 crossref_primary_10_1016_j_compbiomed_2022_106173 crossref_primary_10_1016_j_compbiomed_2023_107540 crossref_primary_10_1109_TMM_2023_3326949 crossref_primary_10_1016_j_compbiomed_2024_108096 crossref_primary_10_1016_j_eswa_2024_123663 crossref_primary_10_1016_j_neunet_2024_106280 crossref_primary_10_1109_TIM_2024_3417602 crossref_primary_10_1016_j_artmed_2024_102800 crossref_primary_10_1109_TCE_2024_3387444 crossref_primary_10_1016_j_knosys_2024_112228 crossref_primary_10_1007_s11548_022_02696_y crossref_primary_10_1016_j_bspc_2024_106487 crossref_primary_10_3390_app12042114 crossref_primary_10_1016_j_bspc_2023_105133 crossref_primary_10_1016_j_compbiomed_2022_106207 crossref_primary_10_3390_e25081169 crossref_primary_10_1007_s00371_022_02422_4 crossref_primary_10_1007_s11263_024_02158_9 |
| Cites_doi | 10.1109/CVPR.2009.5206848 10.1038/nature14539 10.1109/EIConRus.2019.8657018 10.1109/EMBC.2018.8512197 10.1038/s41551-018-0308-9 10.1016/j.patcog.2012.03.002 10.1142/S2424905X18400020 10.1109/TGRS.2018.2867679 10.1109/ISM46123.2019.00049 10.1109/TPAMI.2016.2644615 10.3322/caac.21492 10.1109/TPAMI.2017.2699184 10.1007/978-981-15-2930-6_9 10.5009/gnl.2012.6.1.64 10.1016/j.neunet.2019.08.025 10.1053/j.gastro.2015.06.044 10.1109/ACCESS.2019.2908386 10.1109/ACCESS.2019.2904094 10.1038/s41551-018-0301-3 10.1007/s11548-013-0926-3 10.1055/s-2007-995618 10.1109/CVPR.2016.90 10.1038/nrgastro.2017.18 10.1109/ACCESS.2019.2900672 10.1109/JBHI.2020.2986926 10.1109/ICMLA.2019.00148 10.1016/j.compmedimag.2015.02.007 10.5220/0007698806320641 10.1038/s41598-019-50567-5 10.1109/CVPR.2018.00745 10.1055/s-0031-1291666 10.1145/3083187.3083212 10.1109/LGRS.2018.2802944 10.1109/AIKE.2018.00048 10.1053/j.gastro.2019.05.011 10.1109/TMI.2017.2664042 10.1007/978-3-319-67543-5_3 10.1155/2017/4037190 10.1109/CVPR.2016.396 10.1109/TMI.2015.2487997 10.1109/CISP-BMEI.2017.8301980 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 info:eu-repo/semantics/openAccess |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 – notice: info:eu-repo/semantics/openAccess |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 3HK ADTPV AOWAS F1U ADTOC UNPAY |
| DOI | 10.1109/JBHI.2021.3049304 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic NORA - Norwegian Open Research Archives SwePub SwePub Articles SWEPUB Göteborgs universitet Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 2040 |
| ExternalDocumentID | 10.1109/jbhi.2021.3049304 oai_gup_ub_gu_se_301985 10037_20301 33400658 10_1109_JBHI_2021_3049304 9314114 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Research Council of Norway Project grantid: 263248 – fundername: Norges Forskningsråd; Research Council of Norway grantid: 270053 funderid: 10.13039/501100005416 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CHZPO NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 3HK ATWAV PQEST RIG ADTPV AOWAS F1U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3694-6c7a55bb131a55a6a734b54fe3d29dbf9ccd95fdbbb4bfa527b25af270147f1a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Oct 26 04:06:32 EDT 2025 Thu Aug 21 07:17:12 EDT 2025 Sat Apr 29 05:43:07 EDT 2023 Sun Sep 28 00:05:10 EDT 2025 Mon Jun 30 05:07:36 EDT 2025 Thu Jan 02 22:57:54 EST 2025 Thu Apr 24 22:50:58 EDT 2025 Wed Oct 01 03:40:00 EDT 2025 Wed Aug 27 02:26:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3694-6c7a55bb131a55a6a734b54fe3d29dbf9ccd95fdbbb4bfa527b25af270147f1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Jha, D. (2022). Machine Learning-based Classification, Detection, and Segmentation of Medical Images. (Doctoral thesis). <a href=https://hdl.handle.net/10037/23693>https://hdl.handle.net/10037/23693 . |
| ORCID | 0000-0002-1611-5764 0000-0003-3989-7487 0000-0002-3153-2064 0000-0002-1637-7262 0000-0002-8078-6730 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6221020/9446651/09314114.pdf |
| PMID | 33400658 |
| PQID | 2536868036 |
| PQPubID | 85417 |
| PageCount | 12 |
| ParticipantIDs | cristin_nora_10037_20301 crossref_primary_10_1109_JBHI_2021_3049304 swepub_primary_oai_gup_ub_gu_se_301985 pubmed_primary_33400658 proquest_miscellaneous_2475529900 proquest_journals_2536868036 ieee_primary_9314114 unpaywall_primary_10_1109_jbhi_2021_3049304 crossref_citationtrail_10_1109_JBHI_2021_3049304 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | zhang (ref58) 0 ref13 ref12 ref15 ref14 ref55 ref11 ref54 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref42 ref41 bernal (ref16) 0 ref49 ref8 nie (ref48) 0 ref7 ref9 ref3 ref6 ref5 wang (ref47) 0 ref34 vaswani (ref38) 0 ref36 ref31 chen (ref44) 0 poomeshwaran (ref24) 0 ref33 ref32 ref2 ref1 he (ref43) 0 jha (ref4) 0 brandao (ref59) 0; 10134 chollet (ref52) 2015 ref23 banik (ref56) 2020 lecun (ref40) 2015; 521 ref25 ref20 ref22 ref21 fan (ref57) 0 ronneberger (ref35) 0 ref27 ref29 ali (ref26) 0 thomaz (ref28) 0 chen (ref37) 0 ioffe (ref39) 0 jha (ref30) 0 ref60 abadi (ref53) 0 ref61 roß (ref10) 2019 |
| References_xml | – ident: ref33 doi: 10.1109/CVPR.2009.5206848 – year: 2015 ident: ref52 article-title: Keras – start-page: 263 year: 0 ident: ref57 article-title: Pranet: Parallel reverse attention network for polyp segmentation publication-title: Proc of MICCAI – volume: 521 start-page: 436 year: 2015 ident: ref40 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 10134 start-page: 101 340f1 year: 0 ident: ref59 article-title: Fully convolutional neural networks for polyp segmentation in colonoscopy publication-title: Med Imag – ident: ref17 doi: 10.1109/EIConRus.2019.8657018 – ident: ref19 doi: 10.1109/EMBC.2018.8512197 – year: 0 ident: ref44 article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs – year: 0 ident: ref37 article-title: Rethinking atrous convolution for semantic image segmentation – ident: ref60 doi: 10.1038/s41551-018-0308-9 – year: 0 ident: ref39 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn Rese – ident: ref12 doi: 10.1016/j.patcog.2012.03.002 – ident: ref32 doi: 10.1142/S2424905X18400020 – ident: ref50 doi: 10.1109/TGRS.2018.2867679 – ident: ref1 doi: 10.1109/ISM46123.2019.00049 – ident: ref21 doi: 10.1109/TPAMI.2016.2644615 – ident: ref2 doi: 10.3322/caac.21492 – ident: ref45 doi: 10.1109/TPAMI.2017.2699184 – start-page: 109 year: 2020 ident: ref56 article-title: A multi-scale patch-based deep learning system for polyp segmentation publication-title: Advan Comput Syst Secur doi: 10.1007/978-981-15-2930-6_9 – ident: ref5 doi: 10.5009/gnl.2012.6.1.64 – ident: ref31 doi: 10.1016/j.neunet.2019.08.025 – ident: ref8 doi: 10.1053/j.gastro.2015.06.044 – year: 0 ident: ref26 article-title: Endoscopy artifact detection (EAD 2019) challenge dataset – ident: ref42 doi: 10.1109/ACCESS.2019.2908386 – start-page: 265 year: 0 ident: ref53 article-title: Tensorflow: A system for large-scale machine learning publication-title: Proc Ocular Surf Dis Inde – ident: ref27 doi: 10.1109/ACCESS.2019.2904094 – year: 2019 ident: ref10 article-title: Robust medical instrument segmentation challenge – year: 0 ident: ref30 article-title: DoubleU-Net: A deep convolutional neural network for medical image segmentation publication-title: Proc IEEE Int Symp Comput -Based Med Syst – ident: ref20 doi: 10.1038/s41551-018-0301-3 – ident: ref13 doi: 10.1007/s11548-013-0926-3 – ident: ref6 doi: 10.1055/s-2007-995618 – start-page: 370 year: 0 ident: ref48 article-title: ASDNet: Attention based semi-supervised deep networks for medical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention – ident: ref41 doi: 10.1109/CVPR.2016.90 – start-page: 192 year: 0 ident: ref28 article-title: Training data enhancements for robust polyp segmentation in colonoscopy images publication-title: Proc IEEE Symp Comput Based Med Syst – ident: ref3 doi: 10.1038/nrgastro.2017.18 – ident: ref25 doi: 10.1109/ACCESS.2019.2900672 – ident: ref49 doi: 10.1109/JBHI.2020.2986926 – start-page: 451 year: 0 ident: ref4 article-title: Kvasir-seg: A segmented polyp dataset publication-title: Proc Int Conf Multimedia Model – start-page: 523 year: 0 ident: ref47 article-title: Deep attentional features for prostate segmentation in ultrasound publication-title: Proc Med Image Comput Comput -Assisted Intervention – ident: ref29 doi: 10.1109/ICMLA.2019.00148 – start-page: 234 year: 0 ident: ref35 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc MICCAI – ident: ref11 doi: 10.1016/j.compmedimag.2015.02.007 – ident: ref22 doi: 10.5220/0007698806320641 – ident: ref23 doi: 10.1038/s41598-019-50567-5 – ident: ref36 doi: 10.1109/CVPR.2018.00745 – ident: ref61 doi: 10.1055/s-0031-1291666 – ident: ref51 doi: 10.1145/3083187.3083212 – ident: ref34 doi: 10.1109/LGRS.2018.2802944 – ident: ref55 doi: 10.1109/AIKE.2018.00048 – start-page: 7201 year: 0 ident: ref24 article-title: Polyp segmentation using generative adversarial network publication-title: Proc Int Conf Engineering in Medicine and Biology – ident: ref7 doi: 10.1053/j.gastro.2019.05.011 – start-page: 5998 year: 0 ident: ref38 article-title: Attention is all you need publication-title: Proc Conf Neural Inf Process Syst – ident: ref18 doi: 10.1109/TMI.2017.2664042 – ident: ref15 doi: 10.1007/978-3-319-67543-5_3 – year: 0 ident: ref16 article-title: Polyp detection benchmark in colonoscopy videos using gtcreator: A novel fully configurable tool for easy and fast annotation of image databases publication-title: Proc CARS Conf – ident: ref9 doi: 10.1155/2017/4037190 – ident: ref46 doi: 10.1109/CVPR.2016.396 – start-page: 630 year: 0 ident: ref43 article-title: Identity mappings in deep residual networks publication-title: Proc Eur Conf Comput Vis – ident: ref14 doi: 10.1109/TMI.2015.2487997 – start-page: 707 year: 0 ident: ref58 article-title: Automated polyp segmentation in colonoscopy frames using fully convolutional neural network and textons publication-title: Proc Conf Med Image Understanding Anal – ident: ref54 doi: 10.1109/CISP-BMEI.2017.8301980 |
| SSID | ssj0000816896 |
| Score | 2.686498 |
| Snippet | Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high... |
| SourceID | unpaywall swepub cristin proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2029 |
| SubjectTerms | Abnormalities Algorithms Augmentation Basale medisinske, odontologiske og veterinærmedisinske fag: 710 Basic medical, dental and veterinary science disciplines: 710 Cancer Colon Colonoscopy Colorectal cancer Colorectal carcinoma Computer and Information Sciences Computer architecture conditional random field Conditional random fields Data- och informationsvetenskap (Datateknik) Datasets Gastroenterologi och hepatologi Gastroenterology and Hepatology generalization Hospitals Image segmentation Learning algorithms Machine learning Medical disciplines: 700 Medisinske Fag: 700 Performance enhancement Physicians polyp segmentation Polyps ResUNet Segmentation Task analysis test-time augmentation Testing time Training VDP |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NPYzxwK8BCwxkJMQDXbrEjp34sSCqMqkTGqvYW2Q7TjvokmpthLq_nnOSBgYT4qGqlVytXP1d_Nl3vgN4gyw1D0VMfSQb1I8Mz32EsvCpm-2MRgov3eHk8YkYTaLjc36-BYfdWRhrbR18ZvuuWfvys9JUbqvsSLIwCl3V6jtxIpqzWt1-Sl1Aoi7HRbHhoyFGrRMzDOTR8fvRJ1wM0rDv3Er42YUdxqJ6Akbma2qDKm7MTXWxldt4Z5dU9B7crYqFWv9Q8_lvk9LwAYw36jSxKN_71Ur3zfUfmR7_V9-HcL9lp2TQwOkRbNniMeyMW__7HlwPiHuBXNlZE_dOXBjimpQFXna9G6Ty5HM5Xy_IFzu9bM81FeTrxWpGTu1ycmJXvd4hSjtPeb0LSU5VkZWXZOhC6Qi2yRn-Db47mkIG1a8-nsBk-PHsw8hvqzf4hgkZ-cLEinOtQxbitxIqZpHmUW5ZRmWmc2lMJnmeaa0jnStOY025ymmMi7Y4DxV7CttFWdh9IMxkhmdK5hmSVRsIFWqrrGFaBiLJNfVgvx3BtEDDcXmYWZxSt9rzINgMaWrarOeu-MY8rVc_gUwdNFIHjbSFhgfvup8smpQf_xLec-PWCbZD5sHBBjdp-1JYppQzkYgEOYMHr7vbaM7OR6MKW1YoE8WcO4oQePCswVvX9wawHrxtANjdcTnCp9UixUvTKl1afLpQJtyDXgfQv1T5pmcXN1R5frsqL2DXSTXhcQewvbqq7EskYiv9qrbAn-0yKcc priority: 102 providerName: IEEE |
| Title | A Comprehensive Study on Colorectal Polyp Segmentation With ResUNet++, Conditional Random Field and Test-Time Augmentation |
| URI | https://ieeexplore.ieee.org/document/9314114 https://www.ncbi.nlm.nih.gov/pubmed/33400658 https://www.proquest.com/docview/2536868036 https://www.proquest.com/docview/2475529900 http://hdl.handle.net/10037/20301 https://gup.ub.gu.se/publication/301985 https://ieeexplore.ieee.org/ielx7/6221020/9446651/09314114.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2208 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE7cHbgMWGJOREA-UtLEdO81jQVRl0qpprGJ7smzHWQtdWq2NoPv1-CRuYICQ4KlucprW9Xfi7-TcEHrpWGpOREJDRzZoGBuehw7KIqSw2xntKHwKyckHIzEcx_sn_MQ_cKtyYay1VfCZ7cCw8uVP7exb0hUUrJOom4IHkpOuM8VJ7Nh8Z5Hl19GW4I6Lt9DWeHTYP4WOckQ4CJCqE2I9plHPuzVJlHY_68nUmYeUdMDRxKBR2w1T6VVxZYuqeq78iX42tUXvoFtlsVDrr2o2-2lvGtxDcjOrOiTlS6dc6Y65_KXg4_9P-z6662kr7tc4e4Cu2eIhunngHfPb6LKP4c5yYSd1QDyG-MQ1nhfuMHyfcRwfH85n6wX-aM_OfcJTgT9NVxN8ZJfjkV2122-cNLjQq8eT-EgV2fwcDyDGDrsxPnZ_TAg5K7hf_rjGIzQevD9-Nwx9W4fQMJHGoTCJ4lxrwoh7VUIlLNY8zi3LaJrpPDUmS3meaa1jnStOE025ymnirLkkJ4o9Rq1iXtgdhJnJDM9UmmeOxdpIKKKtsobpNBK9XNMA7fg1lYXTKCjQzBJJwQwMULRZZGl8OXToyjGTlVkUpXL_7fCDBIRIj5AAvW4-sqhrgfxNeBtWshH0yxag3Q2SpL9bLCXlTPREz5GJAL1oTjs9B-eNKuy8dDJxwjlwhyhAT2oENtdmLK6oZIBe1ZBszkDx8LNyId2hs1Iurft1JO3xALUbyP42FdCMK1N5-k_Sz9BteFuH0-2i1uqitM8dcVvpvSq7cs_r6HfIRzf5 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6ahrSNB24DFhhgJMQDW7rGl6R5LIiqG2uFRiv2ZtmO0w66pFoboe7Xc5ykgcGEeKhqJY7VU38n_uxzA3iDLDUNwoj6SDaoz41IfYRy6FO32hmNFD52wcmDYdgf85Nzcb4Bh00sjLW2dD6zLdcsbflJbgp3VHYUs4AHrmr1HcE5F1W0VnOiUpaQKAtyUWz4qIq8NmMG7fjo5H3_GLeDNGg5wxJ-dmCLMV4uwch9TalS2Y3VqSy3chvzbNKK3oXtIpur1Q81m_22LPXuw2AtUOWN8r1VLHXLXP-R6_F_JX4A92p-SroVoB7Chs0ewdagtsDvwnWXuFfIlZ1Wnu_EOSKuSJ7hZTe6QTJPPuez1Zx8sZPLOrIpI18vllNyZhfjoV0eHBxib2crL88hyZnKkvyS9JwzHcE2GeHf4LvgFNItfo3xGMa9j6MPfb-u3-AbFsbcD02khNA6YAF-q1BFjGvBU8sSGic6jY1JYpEmWmuuUyVopKlQKY1w2xalgWJPYDPLM7sHhJnEiETFaYJ01bZDFWirrGE6boedVFMP9uoZlBmqjsvEzCJJ3X7Pg_Z6SqWp85678hszWe5_2rF00JAOGrKGhgfvmkfmVdKPf3XedfPWdKynzIP9NW5k_VpYSCpY2Ak7yBo8eN3cRoV2VhqV2bzAPjwSwpGEtgdPK7w1Y68B68HbCoDNHZclfFLMJV6aFHJh8dcFcUd4cNAA9C9RvunpxQ1Rnt0uyivY7o8Gp_L0ePjpOey4JypnuX3YXF4V9gXSsqV-WWrjT52HLRQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE18PfA1YYCAjIR4oaWM7dprHgqjKpFXTWMV4smzHaQtdWq2NoPvr8SVuYICQ4Klucvlw_Lv4d7nzHUIvHEvNiUho6MgGDWPD89BBWYQUZjujHYVPYXHy4UgMx_HBKT_1H9yqtTDW2ir4zHagWfnyZ3b-LekKCtZJ1E3BA8lJ15niJHZsvrPM8qtoR3DHxVtoZzw66n-CinJEOAiQqhJi3aZRz7s1SZR2P-vpzJmHlHTA0cSgUNs1U-lVcWmKqmqu_Il-NrlFb6EbZbFUm69qPv9pbhrcQXLbqzok5UunXOuOufgl4eP_d_suuu1pK-7XOLuHrtjiPrp-6B3zu-iij-HNcm6ndUA8hvjEDV4UbjNczziOj48W880Sf7CTM7_gqcAfZ-spPrar8ciu2-3XThpc6NXnSXysimxxhgcQY4ddG5-4BxPCmhXcL3-c4wEaD96dvB2GvqxDaJhI41CYRHGuNWHE_SqhEhZrHueWZTTNdJ4ak6U8z7TWsc4Vp4mmXOU0cdZckhPFHqJWsSjsHsLMZIZnKs0zx2JtJBTRVlnDdBqJXq5pgPb8mMrCaRQkaGaJpGAGBijaDrI0Ph06VOWYy8osilJ58Gb4XgJCpEdIgF41hyzrXCB_E96FkWwE_bAFaH-LJOnfFitJORM90XNkIkDPm91Oz8F5owq7KJ1MnHAO3CEK0KMagc25GYsrKhmglzUkmz2QPHxSLqXbNCnlyrq7I2mPB6jdQPa3roBmXOrK43-SfoJuwt86nG4ftdbnpX3qiNtaP_Pa-R198zb4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Study+on+Colorectal+Polyp+Segmentation+with+ResUNet%2B%2B%2C+Conditional+Random+Field+and+Test-Time+Augmentation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Jha%2C+D.&rft.au=Smedsrud%2C+P.+H.&rft.au=Johansen%2C+D.&rft.au=de+Lange%2C+Thomas&rft.date=2021-06-01&rft.issn=2168-2208&rft.volume=25&rft.issue=6&rft.spage=2029&rft_id=info:doi/10.1109%2FJBHI.2021.3049304&rft.externalDocID=oai_gup_ub_gu_se_301985 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |