A Comprehensive Study on Colorectal Polyp Segmentation With ResUNet++, Conditional Random Field and Test-Time Augmentation

Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 25; no. 6; pp. 2029 - 2040
Main Authors Jha, Debesh, Smedsrud, Pia H., Johansen, Dag, de Lange, Thomas, Johansen, Havard D., Halvorsen, Pal, Riegler, Michael A.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2021.3049304

Cover

Abstract Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice.
AbstractList Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice.
Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using CRF and TTA. We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other State-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice.
Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice.Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice.
Author Halvorsen, Pal
Jha, Debesh
Johansen, Dag
Smedsrud, Pia H.
Johansen, Havard D.
Riegler, Michael A.
de Lange, Thomas
Author_xml – sequence: 1
  givenname: Debesh
  orcidid: 0000-0002-8078-6730
  surname: Jha
  fullname: Jha, Debesh
  email: debesh@simula.no
  organization: SimulaMet, 0167 Oslo and UiT The Arctic University of Norway, Tromsø
– sequence: 2
  givenname: Pia H.
  orcidid: 0000-0002-1611-5764
  surname: Smedsrud
  fullname: Smedsrud, Pia H.
  email: pia@simula.no
  organization: SimulaMet, 0167 Oslo and University of Oslo, Oslo
– sequence: 3
  givenname: Dag
  surname: Johansen
  fullname: Johansen, Dag
  email: dag.johansen@uit.no
  organization: UiT The Arctic University of Norway, Tromsø
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0003-3989-7487
  surname: de Lange
  fullname: de Lange, Thomas
  email: t.de.lange@medisin.uio.no
  organization: Medical Department Sahlgrenska University Hospital – Mölndal, Region Västra Götaland, Mölndal, Sweden
– sequence: 5
  givenname: Havard D.
  orcidid: 0000-0002-1637-7262
  surname: Johansen
  fullname: Johansen, Havard D.
  email: havard.johansen@uit.no
  organization: UiT The Arctic University of Norway, Tromsø
– sequence: 6
  givenname: Pal
  surname: Halvorsen
  fullname: Halvorsen, Pal
  email: paalh@simula.no
– sequence: 7
  givenname: Michael A.
  orcidid: 0000-0002-3153-2064
  surname: Riegler
  fullname: Riegler, Michael A.
  email: michael@simula.no
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33400658$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/301985$$DView record from Swedish Publication Index
BookMark eNp9kl1r2zAUhsXoWLusP2AMNsNuCp0zffhLl1lY146yjTZll0KyjxMF2_IseyX99TvBSQYZTCAkznneI51XeklOGtcAIa8ZnTJG5cevn65vppxyNhU0kjifkTPOkizknGYn-z2T0Sk5935NcWQYkskLcipERGkSZ2fkaRbMXd12sILG298Q3PdDsQlcg-HKdZD3ugp-uGrTBvewrKHpdW8x-9P2q-AO_MM36C8vPyDdFHabQfxON4WrgysLVRHgPliA78OFrSGYDX9rvCLPS115ON-tE_Jw9Xkxvw5vv3-5mc9uw1wkMgqTPNVxbAwTDFed6FREJo5KEAWXhSllnhcyLgtjTGRKHfPU8FiXPKUsSkumxYTwse7QtHrzqKtKtZ2tdbdRjKqtl2ptVlZtvVQ7L1EUjiL_CO1gDgqnrVoOrcLQclAeUMBkFiP_buTzzvreNqpxncb6VKRYGCEkLkai7dyvAR1RtfU5VJVuwA1e8SiNYy4lSibk_RG6dkOH1iIViyRLMioSpN7uqMHUUByuuH9cBNj-Ts77Dsp_-t7-oeO-0yNNbsfn6jttq_8q34xKCwCHk6RgEWOR-ANNPNAU
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126727
crossref_primary_10_1007_s10278_024_01162_2
crossref_primary_10_1007_s44196_023_00330_6
crossref_primary_10_1109_ACCESS_2024_3410833
crossref_primary_10_3389_frobt_2024_1387491
crossref_primary_10_1016_j_compbiomed_2024_108302
crossref_primary_10_1007_s44267_024_00071_w
crossref_primary_10_1016_j_bspc_2024_106977
crossref_primary_10_1007_s11042_023_16416_4
crossref_primary_10_1016_j_bspc_2024_107269
crossref_primary_10_1016_j_compbiomed_2023_107728
crossref_primary_10_1007_s42979_024_03262_w
crossref_primary_10_1016_j_bspc_2024_106059
crossref_primary_10_1002_acm2_14351
crossref_primary_10_1109_ACCESS_2021_3130200
crossref_primary_10_1109_JBHI_2024_3351287
crossref_primary_10_1016_j_bspc_2023_105515
crossref_primary_10_1016_j_media_2024_103347
crossref_primary_10_3233_AIC_230089
crossref_primary_10_1080_2314808X_2023_2245992
crossref_primary_10_1371_journal_pone_0307777
crossref_primary_10_1007_s12539_024_00682_3
crossref_primary_10_32604_cmc_2024_058467
crossref_primary_10_1007_s12530_023_09533_w
crossref_primary_10_1016_j_procs_2024_09_211
crossref_primary_10_1016_j_bspc_2022_104167
crossref_primary_10_1016_j_bspc_2023_104785
crossref_primary_10_1016_j_compbiomed_2023_106646
crossref_primary_10_1186_s12938_023_01137_4
crossref_primary_10_32604_cmc_2022_019786
crossref_primary_10_3390_a18010042
crossref_primary_10_1016_j_compeleceng_2025_110224
crossref_primary_10_1007_s13534_024_00415_x
crossref_primary_10_1007_s42979_024_02825_1
crossref_primary_10_1615_IntJMultCompEng_2024052181
crossref_primary_10_1186_s12938_023_01160_5
crossref_primary_10_3390_diagnostics13040747
crossref_primary_10_1080_0954898X_2024_2424248
crossref_primary_10_32604_csse_2023_039765
crossref_primary_10_3390_gastroent13030027
crossref_primary_10_1109_TMRB_2024_3349623
crossref_primary_10_3390_app13126977
crossref_primary_10_1016_j_engappai_2023_106749
crossref_primary_10_1002_ima_22997
crossref_primary_10_1088_1361_6560_ac92bb
crossref_primary_10_1109_JBHI_2023_3272168
crossref_primary_10_1007_s10462_023_10621_1
crossref_primary_10_26599_AIR_2023_9150015
crossref_primary_10_1016_j_heliyon_2024_e31395
crossref_primary_10_1007_s11042_024_18607_z
crossref_primary_10_3390_jpm15010010
crossref_primary_10_1007_s40998_023_00664_z
crossref_primary_10_1109_ACCESS_2024_3504297
crossref_primary_10_1016_j_media_2022_102394
crossref_primary_10_1109_TBCAS_2022_3220758
crossref_primary_10_1016_j_media_2024_103288
crossref_primary_10_3389_fphys_2023_1259877
crossref_primary_10_1016_j_media_2021_102007
crossref_primary_10_1016_j_engappai_2023_106634
crossref_primary_10_1016_j_jbi_2023_104304
crossref_primary_10_1109_TGRS_2024_3425673
crossref_primary_10_1007_s11517_023_02908_w
crossref_primary_10_1016_j_jrras_2023_100680
crossref_primary_10_1109_TITS_2024_3420763
crossref_primary_10_1038_s41598_022_09954_8
crossref_primary_10_1049_ipr2_13293
crossref_primary_10_1109_TIM_2023_3322994
crossref_primary_10_1177_07316844231220716
crossref_primary_10_1016_j_bspc_2023_105849
crossref_primary_10_1155_2022_2697932
crossref_primary_10_3390_life13030719
crossref_primary_10_4253_wjge_v14_i5_311
crossref_primary_10_1016_j_jpi_2023_100197
crossref_primary_10_1007_s10278_024_01053_6
crossref_primary_10_1109_ACCESS_2022_3184773
crossref_primary_10_1109_TIM_2024_3379418
crossref_primary_10_3390_jpm12050680
crossref_primary_10_1016_j_compbiomed_2024_108981
crossref_primary_10_1109_ACCESS_2021_3063716
crossref_primary_10_1016_j_aiia_2025_01_005
crossref_primary_10_1016_j_compbiomed_2024_108501
crossref_primary_10_1007_s00521_024_10441_6
crossref_primary_10_1109_JBHI_2022_3147686
crossref_primary_10_1109_JBHI_2021_3138024
crossref_primary_10_1016_j_compag_2024_109182
crossref_primary_10_1016_j_compbiomed_2021_104815
crossref_primary_10_1016_j_aej_2021_04_072
crossref_primary_10_1109_ACCESS_2021_3129480
crossref_primary_10_1016_j_compbiomed_2023_107760
crossref_primary_10_1007_s11203_022_09273_9
crossref_primary_10_3390_s24175845
crossref_primary_10_1007_s13042_023_01802_z
crossref_primary_10_3934_mbe_2024090
crossref_primary_10_1038_s41598_023_42436_z
crossref_primary_10_1016_j_engappai_2023_106213
crossref_primary_10_3390_s25061814
crossref_primary_10_1016_j_cmpb_2023_107877
crossref_primary_10_1109_ACCESS_2023_3338746
crossref_primary_10_1016_j_compbiomed_2024_109206
crossref_primary_10_1016_j_compbiomed_2024_109602
crossref_primary_10_1109_ACCESS_2021_3128607
crossref_primary_10_1016_j_imavis_2024_105068
crossref_primary_10_1016_j_imavis_2024_105069
crossref_primary_10_3390_app12157742
crossref_primary_10_3390_bioengineering10080970
crossref_primary_10_1109_JBHI_2022_3160098
crossref_primary_10_1186_s12876_024_03181_3
crossref_primary_10_1109_ACCESS_2023_3297097
crossref_primary_10_1007_s44230_024_00067_1
crossref_primary_10_1016_j_eswa_2023_120434
crossref_primary_10_1109_ACCESS_2025_3548128
crossref_primary_10_1016_j_media_2023_102984
crossref_primary_10_1109_TMI_2023_3320151
crossref_primary_10_1016_j_gie_2022_08_043
crossref_primary_10_1016_j_compmedimag_2023_102205
crossref_primary_10_1007_s10489_024_06029_1
crossref_primary_10_32604_cmes_2024_048453
crossref_primary_10_3390_app15031427
crossref_primary_10_3390_electronics12091962
crossref_primary_10_1109_TNNLS_2023_3248804
crossref_primary_10_3389_fonc_2023_1095353
crossref_primary_10_1002_int_22974
crossref_primary_10_1002_ima_23002
crossref_primary_10_1016_j_bspc_2024_106513
crossref_primary_10_1080_0952813X_2024_2383659
crossref_primary_10_1002_ima_22795
crossref_primary_10_1007_s11263_024_02286_2
crossref_primary_10_3390_electronics14010062
crossref_primary_10_54939_1859_1043_j_mst_CSCE6_2022_41_55
crossref_primary_10_1615_IntJMultCompEng_2023050387
crossref_primary_10_1109_JBHI_2022_3173948
crossref_primary_10_1016_j_knosys_2025_113233
crossref_primary_10_1002_ima_70039
crossref_primary_10_3390_s21175704
crossref_primary_10_1016_j_compbiomed_2022_105760
crossref_primary_10_1016_j_compbiomed_2023_107028
crossref_primary_10_1016_j_compbiomed_2023_107301
crossref_primary_10_3390_s23031225
crossref_primary_10_1007_s10462_025_11173_2
crossref_primary_10_1016_j_compbiomed_2022_106173
crossref_primary_10_1016_j_compbiomed_2023_107540
crossref_primary_10_1109_TMM_2023_3326949
crossref_primary_10_1016_j_compbiomed_2024_108096
crossref_primary_10_1016_j_eswa_2024_123663
crossref_primary_10_1016_j_neunet_2024_106280
crossref_primary_10_1109_TIM_2024_3417602
crossref_primary_10_1016_j_artmed_2024_102800
crossref_primary_10_1109_TCE_2024_3387444
crossref_primary_10_1016_j_knosys_2024_112228
crossref_primary_10_1007_s11548_022_02696_y
crossref_primary_10_1016_j_bspc_2024_106487
crossref_primary_10_3390_app12042114
crossref_primary_10_1016_j_bspc_2023_105133
crossref_primary_10_1016_j_compbiomed_2022_106207
crossref_primary_10_3390_e25081169
crossref_primary_10_1007_s00371_022_02422_4
crossref_primary_10_1007_s11263_024_02158_9
Cites_doi 10.1109/CVPR.2009.5206848
10.1038/nature14539
10.1109/EIConRus.2019.8657018
10.1109/EMBC.2018.8512197
10.1038/s41551-018-0308-9
10.1016/j.patcog.2012.03.002
10.1142/S2424905X18400020
10.1109/TGRS.2018.2867679
10.1109/ISM46123.2019.00049
10.1109/TPAMI.2016.2644615
10.3322/caac.21492
10.1109/TPAMI.2017.2699184
10.1007/978-981-15-2930-6_9
10.5009/gnl.2012.6.1.64
10.1016/j.neunet.2019.08.025
10.1053/j.gastro.2015.06.044
10.1109/ACCESS.2019.2908386
10.1109/ACCESS.2019.2904094
10.1038/s41551-018-0301-3
10.1007/s11548-013-0926-3
10.1055/s-2007-995618
10.1109/CVPR.2016.90
10.1038/nrgastro.2017.18
10.1109/ACCESS.2019.2900672
10.1109/JBHI.2020.2986926
10.1109/ICMLA.2019.00148
10.1016/j.compmedimag.2015.02.007
10.5220/0007698806320641
10.1038/s41598-019-50567-5
10.1109/CVPR.2018.00745
10.1055/s-0031-1291666
10.1145/3083187.3083212
10.1109/LGRS.2018.2802944
10.1109/AIKE.2018.00048
10.1053/j.gastro.2019.05.011
10.1109/TMI.2017.2664042
10.1007/978-3-319-67543-5_3
10.1155/2017/4037190
10.1109/CVPR.2016.396
10.1109/TMI.2015.2487997
10.1109/CISP-BMEI.2017.8301980
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: info:eu-repo/semantics/openAccess
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
3HK
ADTPV
AOWAS
F1U
ADTOC
UNPAY
DOI 10.1109/JBHI.2021.3049304
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
NORA - Norwegian Open Research Archives
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2040
ExternalDocumentID 10.1109/jbhi.2021.3049304
oai_gup_ub_gu_se_301985
10037_20301
33400658
10_1109_JBHI_2021_3049304
9314114
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Research Council of Norway Project
  grantid: 263248
– fundername: Norges Forskningsråd; Research Council of Norway
  grantid: 270053
  funderid: 10.13039/501100005416
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CHZPO
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
3HK
ATWAV
PQEST
RIG
ADTPV
AOWAS
F1U
ADTOC
UNPAY
ID FETCH-LOGICAL-c3694-6c7a55bb131a55a6a734b54fe3d29dbf9ccd95fdbbb4bfa527b25af270147f1a3
IEDL.DBID UNPAY
ISSN 2168-2194
2168-2208
IngestDate Sun Oct 26 04:06:32 EDT 2025
Thu Aug 21 07:17:12 EDT 2025
Sat Apr 29 05:43:07 EDT 2023
Sun Sep 28 00:05:10 EDT 2025
Mon Jun 30 05:07:36 EDT 2025
Thu Jan 02 22:57:54 EST 2025
Thu Apr 24 22:50:58 EDT 2025
Wed Oct 01 03:40:00 EDT 2025
Wed Aug 27 02:26:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3694-6c7a55bb131a55a6a734b54fe3d29dbf9ccd95fdbbb4bfa527b25af270147f1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Jha, D. (2022). Machine Learning-based Classification, Detection, and Segmentation of Medical Images. (Doctoral thesis). <a href=https://hdl.handle.net/10037/23693>https://hdl.handle.net/10037/23693 .
ORCID 0000-0002-1611-5764
0000-0003-3989-7487
0000-0002-3153-2064
0000-0002-1637-7262
0000-0002-8078-6730
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6221020/9446651/09314114.pdf
PMID 33400658
PQID 2536868036
PQPubID 85417
PageCount 12
ParticipantIDs cristin_nora_10037_20301
crossref_primary_10_1109_JBHI_2021_3049304
swepub_primary_oai_gup_ub_gu_se_301985
pubmed_primary_33400658
proquest_miscellaneous_2475529900
proquest_journals_2536868036
ieee_primary_9314114
unpaywall_primary_10_1109_jbhi_2021_3049304
crossref_citationtrail_10_1109_JBHI_2021_3049304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References zhang (ref58) 0
ref13
ref12
ref15
ref14
ref55
ref11
ref54
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref42
ref41
bernal (ref16) 0
ref49
ref8
nie (ref48) 0
ref7
ref9
ref3
ref6
ref5
wang (ref47) 0
ref34
vaswani (ref38) 0
ref36
ref31
chen (ref44) 0
poomeshwaran (ref24) 0
ref33
ref32
ref2
ref1
he (ref43) 0
jha (ref4) 0
brandao (ref59) 0; 10134
chollet (ref52) 2015
ref23
banik (ref56) 2020
lecun (ref40) 2015; 521
ref25
ref20
ref22
ref21
fan (ref57) 0
ronneberger (ref35) 0
ref27
ref29
ali (ref26) 0
thomaz (ref28) 0
chen (ref37) 0
ioffe (ref39) 0
jha (ref30) 0
ref60
abadi (ref53) 0
ref61
roß (ref10) 2019
References_xml – ident: ref33
  doi: 10.1109/CVPR.2009.5206848
– year: 2015
  ident: ref52
  article-title: Keras
– start-page: 263
  year: 0
  ident: ref57
  article-title: Pranet: Parallel reverse attention network for polyp segmentation
  publication-title: Proc of MICCAI
– volume: 521
  start-page: 436
  year: 2015
  ident: ref40
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 10134
  start-page: 101 340f1
  year: 0
  ident: ref59
  article-title: Fully convolutional neural networks for polyp segmentation in colonoscopy
  publication-title: Med Imag
– ident: ref17
  doi: 10.1109/EIConRus.2019.8657018
– ident: ref19
  doi: 10.1109/EMBC.2018.8512197
– year: 0
  ident: ref44
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
– year: 0
  ident: ref37
  article-title: Rethinking atrous convolution for semantic image segmentation
– ident: ref60
  doi: 10.1038/s41551-018-0308-9
– year: 0
  ident: ref39
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn Rese
– ident: ref12
  doi: 10.1016/j.patcog.2012.03.002
– ident: ref32
  doi: 10.1142/S2424905X18400020
– ident: ref50
  doi: 10.1109/TGRS.2018.2867679
– ident: ref1
  doi: 10.1109/ISM46123.2019.00049
– ident: ref21
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref2
  doi: 10.3322/caac.21492
– ident: ref45
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 109
  year: 2020
  ident: ref56
  article-title: A multi-scale patch-based deep learning system for polyp segmentation
  publication-title: Advan Comput Syst Secur
  doi: 10.1007/978-981-15-2930-6_9
– ident: ref5
  doi: 10.5009/gnl.2012.6.1.64
– ident: ref31
  doi: 10.1016/j.neunet.2019.08.025
– ident: ref8
  doi: 10.1053/j.gastro.2015.06.044
– year: 0
  ident: ref26
  article-title: Endoscopy artifact detection (EAD 2019) challenge dataset
– ident: ref42
  doi: 10.1109/ACCESS.2019.2908386
– start-page: 265
  year: 0
  ident: ref53
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: Proc Ocular Surf Dis Inde
– ident: ref27
  doi: 10.1109/ACCESS.2019.2904094
– year: 2019
  ident: ref10
  article-title: Robust medical instrument segmentation challenge
– year: 0
  ident: ref30
  article-title: DoubleU-Net: A deep convolutional neural network for medical image segmentation
  publication-title: Proc IEEE Int Symp Comput -Based Med Syst
– ident: ref20
  doi: 10.1038/s41551-018-0301-3
– ident: ref13
  doi: 10.1007/s11548-013-0926-3
– ident: ref6
  doi: 10.1055/s-2007-995618
– start-page: 370
  year: 0
  ident: ref48
  article-title: ASDNet: Attention based semi-supervised deep networks for medical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervention
– ident: ref41
  doi: 10.1109/CVPR.2016.90
– start-page: 192
  year: 0
  ident: ref28
  article-title: Training data enhancements for robust polyp segmentation in colonoscopy images
  publication-title: Proc IEEE Symp Comput Based Med Syst
– ident: ref3
  doi: 10.1038/nrgastro.2017.18
– ident: ref25
  doi: 10.1109/ACCESS.2019.2900672
– ident: ref49
  doi: 10.1109/JBHI.2020.2986926
– start-page: 451
  year: 0
  ident: ref4
  article-title: Kvasir-seg: A segmented polyp dataset
  publication-title: Proc Int Conf Multimedia Model
– start-page: 523
  year: 0
  ident: ref47
  article-title: Deep attentional features for prostate segmentation in ultrasound
  publication-title: Proc Med Image Comput Comput -Assisted Intervention
– ident: ref29
  doi: 10.1109/ICMLA.2019.00148
– start-page: 234
  year: 0
  ident: ref35
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc MICCAI
– ident: ref11
  doi: 10.1016/j.compmedimag.2015.02.007
– ident: ref22
  doi: 10.5220/0007698806320641
– ident: ref23
  doi: 10.1038/s41598-019-50567-5
– ident: ref36
  doi: 10.1109/CVPR.2018.00745
– ident: ref61
  doi: 10.1055/s-0031-1291666
– ident: ref51
  doi: 10.1145/3083187.3083212
– ident: ref34
  doi: 10.1109/LGRS.2018.2802944
– ident: ref55
  doi: 10.1109/AIKE.2018.00048
– start-page: 7201
  year: 0
  ident: ref24
  article-title: Polyp segmentation using generative adversarial network
  publication-title: Proc Int Conf Engineering in Medicine and Biology
– ident: ref7
  doi: 10.1053/j.gastro.2019.05.011
– start-page: 5998
  year: 0
  ident: ref38
  article-title: Attention is all you need
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref18
  doi: 10.1109/TMI.2017.2664042
– ident: ref15
  doi: 10.1007/978-3-319-67543-5_3
– year: 0
  ident: ref16
  article-title: Polyp detection benchmark in colonoscopy videos using gtcreator: A novel fully configurable tool for easy and fast annotation of image databases
  publication-title: Proc CARS Conf
– ident: ref9
  doi: 10.1155/2017/4037190
– ident: ref46
  doi: 10.1109/CVPR.2016.396
– start-page: 630
  year: 0
  ident: ref43
  article-title: Identity mappings in deep residual networks
  publication-title: Proc Eur Conf Comput Vis
– ident: ref14
  doi: 10.1109/TMI.2015.2487997
– start-page: 707
  year: 0
  ident: ref58
  article-title: Automated polyp segmentation in colonoscopy frames using fully convolutional neural network and textons
  publication-title: Proc Conf Med Image Understanding Anal
– ident: ref54
  doi: 10.1109/CISP-BMEI.2017.8301980
SSID ssj0000816896
Score 2.686498
Snippet Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high...
SourceID unpaywall
swepub
cristin
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2029
SubjectTerms Abnormalities
Algorithms
Augmentation
Basale medisinske, odontologiske og veterinærmedisinske fag: 710
Basic medical, dental and veterinary science disciplines: 710
Cancer
Colon
Colonoscopy
Colorectal cancer
Colorectal carcinoma
Computer and Information Sciences
Computer architecture
conditional random field
Conditional random fields
Data- och informationsvetenskap (Datateknik)
Datasets
Gastroenterologi och hepatologi
Gastroenterology and Hepatology
generalization
Hospitals
Image segmentation
Learning algorithms
Machine learning
Medical disciplines: 700
Medisinske Fag: 700
Performance enhancement
Physicians
polyp segmentation
Polyps
ResUNet
Segmentation
Task analysis
test-time augmentation
Testing time
Training
VDP
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NPYzxwK8BCwxkJMQDXbrEjp34sSCqMqkTGqvYW2Q7TjvokmpthLq_nnOSBgYT4qGqlVytXP1d_Nl3vgN4gyw1D0VMfSQb1I8Mz32EsvCpm-2MRgov3eHk8YkYTaLjc36-BYfdWRhrbR18ZvuuWfvys9JUbqvsSLIwCl3V6jtxIpqzWt1-Sl1Aoi7HRbHhoyFGrRMzDOTR8fvRJ1wM0rDv3Er42YUdxqJ6Akbma2qDKm7MTXWxldt4Z5dU9B7crYqFWv9Q8_lvk9LwAYw36jSxKN_71Ur3zfUfmR7_V9-HcL9lp2TQwOkRbNniMeyMW__7HlwPiHuBXNlZE_dOXBjimpQFXna9G6Ty5HM5Xy_IFzu9bM81FeTrxWpGTu1ycmJXvd4hSjtPeb0LSU5VkZWXZOhC6Qi2yRn-Db47mkIG1a8-nsBk-PHsw8hvqzf4hgkZ-cLEinOtQxbitxIqZpHmUW5ZRmWmc2lMJnmeaa0jnStOY025ymmMi7Y4DxV7CttFWdh9IMxkhmdK5hmSVRsIFWqrrGFaBiLJNfVgvx3BtEDDcXmYWZxSt9rzINgMaWrarOeu-MY8rVc_gUwdNFIHjbSFhgfvup8smpQf_xLec-PWCbZD5sHBBjdp-1JYppQzkYgEOYMHr7vbaM7OR6MKW1YoE8WcO4oQePCswVvX9wawHrxtANjdcTnCp9UixUvTKl1afLpQJtyDXgfQv1T5pmcXN1R5frsqL2DXSTXhcQewvbqq7EskYiv9qrbAn-0yKcc
  priority: 102
  providerName: IEEE
Title A Comprehensive Study on Colorectal Polyp Segmentation With ResUNet++, Conditional Random Field and Test-Time Augmentation
URI https://ieeexplore.ieee.org/document/9314114
https://www.ncbi.nlm.nih.gov/pubmed/33400658
https://www.proquest.com/docview/2536868036
https://www.proquest.com/docview/2475529900
http://hdl.handle.net/10037/20301
https://gup.ub.gu.se/publication/301985
https://ieeexplore.ieee.org/ielx7/6221020/9446651/09314114.pdf
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2208
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE7cHbgMWGJOREA-UtLEdO81jQVRl0qpprGJ7smzHWQtdWq2NoPv1-CRuYICQ4KlucprW9Xfi7-TcEHrpWGpOREJDRzZoGBuehw7KIqSw2xntKHwKyckHIzEcx_sn_MQ_cKtyYay1VfCZ7cCw8uVP7exb0hUUrJOom4IHkpOuM8VJ7Nh8Z5Hl19GW4I6Lt9DWeHTYP4WOckQ4CJCqE2I9plHPuzVJlHY_68nUmYeUdMDRxKBR2w1T6VVxZYuqeq78iX42tUXvoFtlsVDrr2o2-2lvGtxDcjOrOiTlS6dc6Y65_KXg4_9P-z6662kr7tc4e4Cu2eIhunngHfPb6LKP4c5yYSd1QDyG-MQ1nhfuMHyfcRwfH85n6wX-aM_OfcJTgT9NVxN8ZJfjkV2122-cNLjQq8eT-EgV2fwcDyDGDrsxPnZ_TAg5K7hf_rjGIzQevD9-Nwx9W4fQMJHGoTCJ4lxrwoh7VUIlLNY8zi3LaJrpPDUmS3meaa1jnStOE025ymnirLkkJ4o9Rq1iXtgdhJnJDM9UmmeOxdpIKKKtsobpNBK9XNMA7fg1lYXTKCjQzBJJwQwMULRZZGl8OXToyjGTlVkUpXL_7fCDBIRIj5AAvW4-sqhrgfxNeBtWshH0yxag3Q2SpL9bLCXlTPREz5GJAL1oTjs9B-eNKuy8dDJxwjlwhyhAT2oENtdmLK6oZIBe1ZBszkDx8LNyId2hs1Iurft1JO3xALUbyP42FdCMK1N5-k_Sz9BteFuH0-2i1uqitM8dcVvpvSq7cs_r6HfIRzf5
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6ahrSNB24DFhhgJMQDW7rGl6R5LIiqG2uFRiv2ZtmO0w66pFoboe7Xc5ykgcGEeKhqJY7VU38n_uxzA3iDLDUNwoj6SDaoz41IfYRy6FO32hmNFD52wcmDYdgf85Nzcb4Bh00sjLW2dD6zLdcsbflJbgp3VHYUs4AHrmr1HcE5F1W0VnOiUpaQKAtyUWz4qIq8NmMG7fjo5H3_GLeDNGg5wxJ-dmCLMV4uwch9TalS2Y3VqSy3chvzbNKK3oXtIpur1Q81m_22LPXuw2AtUOWN8r1VLHXLXP-R6_F_JX4A92p-SroVoB7Chs0ewdagtsDvwnWXuFfIlZ1Wnu_EOSKuSJ7hZTe6QTJPPuez1Zx8sZPLOrIpI18vllNyZhfjoV0eHBxib2crL88hyZnKkvyS9JwzHcE2GeHf4LvgFNItfo3xGMa9j6MPfb-u3-AbFsbcD02khNA6YAF-q1BFjGvBU8sSGic6jY1JYpEmWmuuUyVopKlQKY1w2xalgWJPYDPLM7sHhJnEiETFaYJ01bZDFWirrGE6boedVFMP9uoZlBmqjsvEzCJJ3X7Pg_Z6SqWp85678hszWe5_2rF00JAOGrKGhgfvmkfmVdKPf3XedfPWdKynzIP9NW5k_VpYSCpY2Ak7yBo8eN3cRoV2VhqV2bzAPjwSwpGEtgdPK7w1Y68B68HbCoDNHZclfFLMJV6aFHJh8dcFcUd4cNAA9C9RvunpxQ1Rnt0uyivY7o8Gp_L0ePjpOey4JypnuX3YXF4V9gXSsqV-WWrjT52HLRQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE18PfA1YYCAjIR4oaWM7dprHgqjKpFXTWMV4smzHaQtdWq2NoPvr8SVuYICQ4Klucvlw_Lv4d7nzHUIvHEvNiUho6MgGDWPD89BBWYQUZjujHYVPYXHy4UgMx_HBKT_1H9yqtTDW2ir4zHagWfnyZ3b-LekKCtZJ1E3BA8lJ15niJHZsvrPM8qtoR3DHxVtoZzw66n-CinJEOAiQqhJi3aZRz7s1SZR2P-vpzJmHlHTA0cSgUNs1U-lVcWmKqmqu_Il-NrlFb6EbZbFUm69qPv9pbhrcQXLbqzok5UunXOuOufgl4eP_d_suuu1pK-7XOLuHrtjiPrp-6B3zu-iij-HNcm6ndUA8hvjEDV4UbjNczziOj48W880Sf7CTM7_gqcAfZ-spPrar8ciu2-3XThpc6NXnSXysimxxhgcQY4ddG5-4BxPCmhXcL3-c4wEaD96dvB2GvqxDaJhI41CYRHGuNWHE_SqhEhZrHueWZTTNdJ4ak6U8z7TWsc4Vp4mmXOU0cdZckhPFHqJWsSjsHsLMZIZnKs0zx2JtJBTRVlnDdBqJXq5pgPb8mMrCaRQkaGaJpGAGBijaDrI0Ph06VOWYy8osilJ58Gb4XgJCpEdIgF41hyzrXCB_E96FkWwE_bAFaH-LJOnfFitJORM90XNkIkDPm91Oz8F5owq7KJ1MnHAO3CEK0KMagc25GYsrKhmglzUkmz2QPHxSLqXbNCnlyrq7I2mPB6jdQPa3roBmXOrK43-SfoJuwt86nG4ftdbnpX3qiNtaP_Pa-R198zb4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Study+on+Colorectal+Polyp+Segmentation+with+ResUNet%2B%2B%2C+Conditional+Random+Field+and+Test-Time+Augmentation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Jha%2C+D.&rft.au=Smedsrud%2C+P.+H.&rft.au=Johansen%2C+D.&rft.au=de+Lange%2C+Thomas&rft.date=2021-06-01&rft.issn=2168-2208&rft.volume=25&rft.issue=6&rft.spage=2029&rft_id=info:doi/10.1109%2FJBHI.2021.3049304&rft.externalDocID=oai_gup_ub_gu_se_301985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon