A fisher linear discriminant analysis classifier fused with naïve Bayes for simultaneous detection in an asynchronous brain-computer interface
An asynchronous event-related potential-based brain computer interface (ERP-BCI) permits the subjects to output intentions at their own pace, which provides a more free and practical communication pathways without the need for muscle activity. The core of constructing this type of system is to discr...
Saved in:
Published in | Journal of neuroscience methods Vol. 371; p. 109496 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X 1872-678X |
DOI | 10.1016/j.jneumeth.2022.109496 |
Cover
Abstract | An asynchronous event-related potential-based brain computer interface (ERP-BCI) permits the subjects to output intentions at their own pace, which provides a more free and practical communication pathways without the need for muscle activity. The core of constructing this type of system is to discriminate both the intentions and brain states.
This study proposes a fisher linear discriminant analysis classification algorithm fused with naïve Bayes (B-FLDA) for the ERP-BCI to simultaneous recognize the subjects’ intentions, working and idle states. This method uses the spectral characteristics of visual-evoked potential and the time-domain characteristics of ERP to simultaneously detect brain states and target stimulus, and obtain the final discrimination result through probability fusion.
The accuracy and the information transfer rate increase to 98.61% and 62.80 bits/min under 10 repetitions and 1 repetition, respectively. The three parameters of receiver operator characteristic curve have achieved better performance.
Ten subjects participate in this study with the proposed algorithms and two other control methods. The accuracy and information transfer rate of this algorithm are better than the other methods.
It indicates that the naïve Bayes-FLDA algorithm is able to improve the performance of an asynchronous BCI system by detecting the intentions and states simultaneously.
•A novel classification algorithm for asynchronous event-related potential-based brain-computer interface.•A triple classifier simultaneously detects the brain states, targets, and non-targets with higher accuracies.•A naïve Bayes classifier calculates the sample probabilities based on the distance of the linear discriminant analysis. |
---|---|
AbstractList | An asynchronous event-related potential-based brain computer interface (ERP-BCI) permits the subjects to output intentions at their own pace, which provides a more free and practical communication pathways without the need for muscle activity. The core of constructing this type of system is to discriminate both the intentions and brain states.BACKGROUNDAn asynchronous event-related potential-based brain computer interface (ERP-BCI) permits the subjects to output intentions at their own pace, which provides a more free and practical communication pathways without the need for muscle activity. The core of constructing this type of system is to discriminate both the intentions and brain states.This study proposes a fisher linear discriminant analysis classification algorithm fused with naïve Bayes (B-FLDA) for the ERP-BCI to simultaneous recognize the subjects' intentions, working and idle states. This method uses the spectral characteristics of visual-evoked potential and the time-domain characteristics of ERP to simultaneously detect brain states and target stimulus, and obtain the final discrimination result through probability fusion.NEW METHODSThis study proposes a fisher linear discriminant analysis classification algorithm fused with naïve Bayes (B-FLDA) for the ERP-BCI to simultaneous recognize the subjects' intentions, working and idle states. This method uses the spectral characteristics of visual-evoked potential and the time-domain characteristics of ERP to simultaneously detect brain states and target stimulus, and obtain the final discrimination result through probability fusion.The accuracy and the information transfer rate increase to 98.61% and 62.80 bits/min under 10 repetitions and 1 repetition, respectively. The three parameters of receiver operator characteristic curve have achieved better performance.RESULTSThe accuracy and the information transfer rate increase to 98.61% and 62.80 bits/min under 10 repetitions and 1 repetition, respectively. The three parameters of receiver operator characteristic curve have achieved better performance.Ten subjects participate in this study with the proposed algorithms and two other control methods. The accuracy and information transfer rate of this algorithm are better than the other methods.COMPARISON WITH EXISTING METHODSTen subjects participate in this study with the proposed algorithms and two other control methods. The accuracy and information transfer rate of this algorithm are better than the other methods.It indicates that the naïve Bayes-FLDA algorithm is able to improve the performance of an asynchronous BCI system by detecting the intentions and states simultaneously.CONCLUSIONSIt indicates that the naïve Bayes-FLDA algorithm is able to improve the performance of an asynchronous BCI system by detecting the intentions and states simultaneously. An asynchronous event-related potential-based brain computer interface (ERP-BCI) permits the subjects to output intentions at their own pace, which provides a more free and practical communication pathways without the need for muscle activity. The core of constructing this type of system is to discriminate both the intentions and brain states. This study proposes a fisher linear discriminant analysis classification algorithm fused with naïve Bayes (B-FLDA) for the ERP-BCI to simultaneous recognize the subjects’ intentions, working and idle states. This method uses the spectral characteristics of visual-evoked potential and the time-domain characteristics of ERP to simultaneously detect brain states and target stimulus, and obtain the final discrimination result through probability fusion. The accuracy and the information transfer rate increase to 98.61% and 62.80 bits/min under 10 repetitions and 1 repetition, respectively. The three parameters of receiver operator characteristic curve have achieved better performance. Ten subjects participate in this study with the proposed algorithms and two other control methods. The accuracy and information transfer rate of this algorithm are better than the other methods. It indicates that the naïve Bayes-FLDA algorithm is able to improve the performance of an asynchronous BCI system by detecting the intentions and states simultaneously. •A novel classification algorithm for asynchronous event-related potential-based brain-computer interface.•A triple classifier simultaneously detects the brain states, targets, and non-targets with higher accuracies.•A naïve Bayes classifier calculates the sample probabilities based on the distance of the linear discriminant analysis. An asynchronous event-related potential-based brain computer interface (ERP-BCI) permits the subjects to output intentions at their own pace, which provides a more free and practical communication pathways without the need for muscle activity. The core of constructing this type of system is to discriminate both the intentions and brain states. This study proposes a fisher linear discriminant analysis classification algorithm fused with naïve Bayes (B-FLDA) for the ERP-BCI to simultaneous recognize the subjects' intentions, working and idle states. This method uses the spectral characteristics of visual-evoked potential and the time-domain characteristics of ERP to simultaneously detect brain states and target stimulus, and obtain the final discrimination result through probability fusion. The accuracy and the information transfer rate increase to 98.61% and 62.80 bits/min under 10 repetitions and 1 repetition, respectively. The three parameters of receiver operator characteristic curve have achieved better performance. Ten subjects participate in this study with the proposed algorithms and two other control methods. The accuracy and information transfer rate of this algorithm are better than the other methods. It indicates that the naïve Bayes-FLDA algorithm is able to improve the performance of an asynchronous BCI system by detecting the intentions and states simultaneously. |
ArticleNumber | 109496 |
Author | Liao, Wenzhe Xu, Guizhi Zhang, Pengfei Yang, Guang Li, Mengfan Guo, Miaomiao |
Author_xml | – sequence: 1 givenname: Mengfan surname: Li fullname: Li, Mengfan email: mfli@hebut.edu.cn organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 300132 Tianjin, China – sequence: 2 givenname: Pengfei surname: Zhang fullname: Zhang, Pengfei organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 300132 Tianjin, China – sequence: 3 givenname: Guang surname: Yang fullname: Yang, Guang organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 300132 Tianjin, China – sequence: 4 givenname: Guizhi surname: Xu fullname: Xu, Guizhi organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 300132 Tianjin, China – sequence: 5 givenname: Miaomiao surname: Guo fullname: Guo, Miaomiao organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 300132 Tianjin, China – sequence: 6 givenname: Wenzhe surname: Liao fullname: Liao, Wenzhe organization: School of Artificial Intelligence, Hebei University of Technology, 300132 Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35151667$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdFuFCEYhYmpsdvqKzRcejMrMDM_O4kX1saqSRNvNPGOUPjJspmBFZiafQofxYfoi8lmujfe9AYS-M6B_5wLchZiQEKuOFtzxuHdbr0LOE9YtmvBhKiHQzfAC7LiGykakJufZ2RVwb5hQrJzcpHzjjHWDQxekfO25z0HkCvy55o6n7eY6OgD6kStzyb5yQcdCtVBj4fsMzWjztk7Xzk3Z7T0ty9bGvTj3wekH_UBM3Ux0eyneSw6YJwztVjQFB8D9aE6UZ0PwWxTDMfL-6R9aEyc9nOppj7U1WmDr8lLp8eMb572S_Lj9tP3my_N3bfPX2-u7xrTwqY0buiRaztAZ7TtpJOD6S1wLqDrbQucddYMCAwkgpa6BWQgkHdGdIIZObSX5O3iu0_x14y5qKkOjuO4fF4JEBsYarK8oldP6Hw_oVX7Go9OB3UKsQLvF8CkmHNCp4wv-jh5qVOOijN17Ezt1KkzdexMLZ1VOfwnP73wrPDDIsQa1EPtRmXjMRi0PtXklY3-OYt_xhi49A |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2023_110015 crossref_primary_10_1016_j_measurement_2023_112482 crossref_primary_10_1007_s11517_023_02793_3 crossref_primary_10_1007_s11042_023_15725_y crossref_primary_10_1109_ACCESS_2024_3384378 crossref_primary_10_1016_j_jneumeth_2024_110108 crossref_primary_10_1109_ACCESS_2023_3317516 crossref_primary_10_1016_j_jneumeth_2023_109806 crossref_primary_10_1016_j_jneumeth_2024_110280 crossref_primary_10_1016_j_slast_2024_100187 crossref_primary_10_34133_cbsystems_0024 |
Cites_doi | 10.1016/j.bspc.2017.11.014 10.1121/1.398700 10.1080/03091902.2017.1394388 10.1016/S1388-2457(02)00057-3 10.1109/TNSRE.2019.2934645 10.3150/bj/1106314847 10.1016/j.jneumeth.2011.08.023 10.1016/j.compbiomed.2018.05.019 10.1109/TBME.2008.919128 10.1515/bmt-2016-0050 10.1109/JSAC.2020.3020677 10.1111/psyp.13569 10.1155/2020/8882764 10.1109/ACCESS.2021.3050545 10.1109/TAMD.2015.2434951 10.1109/JBHI.2016.2532354 10.1109/TBME.2013.2270283 10.1142/S0129065716500106 10.1080/10447318.2018.1502000 10.1109/TBME.2011.2116018 10.1109/TNSRE.2015.2439298 10.3390/e21030230 10.1088/1741-2560/8/2/025025 10.1088/1741-2560/8/2/025015 10.1109/TBME.2013.2254486 10.1109/TBME.2010.2055564 10.1213/ANE.0000000000002864 10.1088/1741-2560/9/3/036012 10.1109/TNSRE.2017.2766365 10.1016/j.cobme.2017.11.004 10.1109/TPAMI.2005.159 10.1109/TNSRE.2018.2847316 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jneumeth.2022.109496 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
ExternalDocumentID | 35151667 10_1016_j_jneumeth_2022_109496 S0165027022000231 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c368t-f95e1ad964cad47f79c5d6112645d36104dc9e6067e6a7a36e062e14c2420c793 |
IEDL.DBID | AIKHN |
ISSN | 0165-0270 1872-678X |
IngestDate | Fri Sep 05 09:15:13 EDT 2025 Wed Feb 19 02:26:51 EST 2025 Thu Apr 24 22:55:56 EDT 2025 Tue Jul 01 02:57:15 EDT 2025 Fri Feb 23 02:40:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain-computer interface Event-related potential Simultaneous discrimination Asynchronous Fusion probability |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-f95e1ad964cad47f79c5d6112645d36104dc9e6067e6a7a36e062e14c2420c793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35151667 |
PQID | 2628690221 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2628690221 pubmed_primary_35151667 crossref_citationtrail_10_1016_j_jneumeth_2022_109496 crossref_primary_10_1016_j_jneumeth_2022_109496 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 2022-04-00 2022-Apr-01 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | McFarland, Parvaz, Sarnacki, Goldstein, Wolpaw (bib15) 2016; 14 Allison, Kübler, Jin (bib1) 2020; 57 Tsiouris, Pezoulas, Zervakis, Konitsiotis, Koutsouris, Fotiadis (bib26) 2018; 99 Bin, Gao, Wang, Li, Hong, Gao (bib4) 2011; 8 Panicker, Puthusserypady, Sun (bib17) 2011; 58 Aloise, Schettini, Aricò, Leotta, Salinari, Mattia, Cincotti (bib2) 2011; 8 Zhou, Liu, Yuan, Li (bib35) 2013; 60 Yu, Li, Long, Gu (bib31) 2012; 9 Zhang, Guan, Wang (bib33) 2008; 55 Zhang, Li, Yan, Zhang, Wu, Yu, Gu (bib34) 2015; 24 Sözer, Fidan (bib24) 2018; 1 Song, Sepulveda (bib23) 2018; 26 Varanasi, Aazhang (bib27) 1989; 86 Wu, Han, Yang, Wang (bib29) 2020; 39 Li, Long, Yu, Yu, Wang, Zhang, Guan (bib10) 2010; 57 Sharmila, Mahalakshmi (bib22) 2017; 41 Yu, Zhou, Liu, Jiang, Yin, Zhang, Hu (bib32) 2017; 25 Xu, Liu, Chen, Qi, He, Zhou, Wan, Ming (bib30) 2016; 26 Miao, Chen, Zhang, Jin, Xu, Daly, Jung (bib16) 2020; 1 Tang, Liu, Jiang, Yu, Hu, Zhou (bib25) 2019; 35 Martínez-Cagigal, Santamaría-Vázquez, Hornero (bib13) 2019; 21 Rytkönen, Zitting, Porkka-Heiskanen (bib19) 2011; 202 Schober, Boer, Schwarte (bib21) 2018; 126 Ma, Qiu (bib12) 2018; 63 Gong, Li, Xu, Lin (bib36) 2019 Chai, Naik, Nguyen, Ling, Tran, Craig, Nguyen (bib5) 2016; 21 Duan, Lin, Li, Zhang (bib6) 2015; 7 Li, Yang, Liu, Gong, Xu, Lin (bib9) 2021; 9 McFarland, Wolpaw (bib14) 2017; 4 Peng, Long, Ding (bib18) 2005; 27 Bickel, Levina (bib3) 2004; 10 Gong, Xu, Li, Lin (bib7) 2020; 337 Li, Pan, Wang, Yu (bib11) 2013; 60 Li, Zhang, Khan, Mi (bib8) 2018; 41 Santamaria-Vazquez, Martinez-Cagigal, Gomez-Pilar, Hornero (bib20) 2019; 27 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib28) 2002; 113 McFarland (10.1016/j.jneumeth.2022.109496_bib14) 2017; 4 Bin (10.1016/j.jneumeth.2022.109496_bib4) 2011; 8 Miao (10.1016/j.jneumeth.2022.109496_bib16) 2020; 1 Yu (10.1016/j.jneumeth.2022.109496_bib32) 2017; 25 Gong (10.1016/j.jneumeth.2022.109496_bib7) 2020; 337 Ma (10.1016/j.jneumeth.2022.109496_bib12) 2018; 63 Sözer (10.1016/j.jneumeth.2022.109496_bib24) 2018; 1 Gong (10.1016/j.jneumeth.2022.109496_bib36) 2019 Sharmila (10.1016/j.jneumeth.2022.109496_bib22) 2017; 41 Tang (10.1016/j.jneumeth.2022.109496_bib25) 2019; 35 McFarland (10.1016/j.jneumeth.2022.109496_bib15) 2016; 14 Panicker (10.1016/j.jneumeth.2022.109496_bib17) 2011; 58 Chai (10.1016/j.jneumeth.2022.109496_bib5) 2016; 21 Li (10.1016/j.jneumeth.2022.109496_bib8) 2018; 41 Rytkönen (10.1016/j.jneumeth.2022.109496_bib19) 2011; 202 Tsiouris (10.1016/j.jneumeth.2022.109496_bib26) 2018; 99 Li (10.1016/j.jneumeth.2022.109496_bib9) 2021; 9 Zhou (10.1016/j.jneumeth.2022.109496_bib35) 2013; 60 Martínez-Cagigal (10.1016/j.jneumeth.2022.109496_bib13) 2019; 21 Wolpaw (10.1016/j.jneumeth.2022.109496_bib28) 2002; 113 Varanasi (10.1016/j.jneumeth.2022.109496_bib27) 1989; 86 Xu (10.1016/j.jneumeth.2022.109496_bib30) 2016; 26 Peng (10.1016/j.jneumeth.2022.109496_bib18) 2005; 27 Song (10.1016/j.jneumeth.2022.109496_bib23) 2018; 26 Li (10.1016/j.jneumeth.2022.109496_bib10) 2010; 57 Aloise (10.1016/j.jneumeth.2022.109496_bib2) 2011; 8 Wu (10.1016/j.jneumeth.2022.109496_bib29) 2020; 39 Zhang (10.1016/j.jneumeth.2022.109496_bib34) 2015; 24 Schober (10.1016/j.jneumeth.2022.109496_bib21) 2018; 126 Allison (10.1016/j.jneumeth.2022.109496_bib1) 2020; 57 Zhang (10.1016/j.jneumeth.2022.109496_bib33) 2008; 55 Santamaria-Vazquez (10.1016/j.jneumeth.2022.109496_bib20) 2019; 27 Duan (10.1016/j.jneumeth.2022.109496_bib6) 2015; 7 Yu (10.1016/j.jneumeth.2022.109496_bib31) 2012; 9 Bickel (10.1016/j.jneumeth.2022.109496_bib3) 2004; 10 Li (10.1016/j.jneumeth.2022.109496_bib11) 2013; 60 |
References_xml | – volume: 8 start-page: 1 year: 2011 end-page: 11 ident: bib2 article-title: P300-based brain–computer interface for environmental control: an asynchronous approach publication-title: J. Neural Eng. – volume: 60 start-page: 3375 year: 2013 end-page: 3381 ident: bib35 article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG publication-title: IEEE Trans. Biomed. Eng. – volume: 57 start-page: 2495 year: 2010 end-page: 2505 ident: bib10 article-title: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential publication-title: IEEE Trans. Biomed. Eng. – volume: 26 start-page: 1353 year: 2018 end-page: 1362 ident: bib23 article-title: A novel technique for selecting EMG-contaminated EEG channels in self-paced brain–computer Interface task onset publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 41 start-page: 670 year: 2017 end-page: 680 ident: bib22 article-title: Wavelet-based feature extraction for classification of epileptic seizure EEG signal publication-title: J. Med. Eng. Technol. – volume: 126 start-page: 1763 year: 2018 end-page: 1768 ident: bib21 article-title: Correlation coefficients: appropriate use and interpretation publication-title: Anesth. Analg. – volume: 55 start-page: 1754 year: 2008 end-page: 1763 ident: bib33 article-title: Asynchronous P300-based brain–computer interfaces: a computational approach with statistical models publication-title: IEEE Trans. Biomed. Eng. – volume: 337 start-page: 1 year: 2020 end-page: 10 ident: bib7 article-title: An idle state-detecting method based on transient visual evoked potentials for an asynchronous ERP-based BCI publication-title: J. Neurosci. Methods – volume: 4 start-page: 194 year: 2017 end-page: 200 ident: bib14 article-title: EEG-based brain–computer interfaces publication-title: Curr. Opin. Biomed. Eng. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib28 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. – volume: 1 start-page: 98 year: 2018 end-page: 105 ident: bib24 article-title: Novel spatial filter for SSVEP-based BCI: a generated reference filter approach – volume: 86 start-page: 1404 year: 1989 end-page: 1415 ident: bib27 article-title: Parametric generalized Gaussian density estimation publication-title: J. Acoust. Soc. Am. – volume: 9 start-page: 1 year: 2012 end-page: 15 ident: bib31 article-title: Surfing the internet with a BCI mouse publication-title: J. Neural Eng. – volume: 25 start-page: 2516 year: 2017 end-page: 2526 ident: bib32 article-title: Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and P300 potential publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 367 year: 2019 end-page: 371 ident: bib36 article-title: Transient visual evoked potential-based method of detecting idle brain state in the event-related potential-based brain-computer interface publication-title: IEEE CAC, – volume: 26 start-page: 1 year: 2016 end-page: 12 ident: bib30 article-title: Incorporation of inter-subject information to improve the accuracy of subject-specific P300 classifiers publication-title: Int. J. Neural Syst. – volume: 14 start-page: 1 year: 2016 end-page: 10 ident: bib15 article-title: Prediction of subjective ratings of emotional pictures by EEG features publication-title: J. Neural Eng. – volume: 39 start-page: 479 year: 2020 end-page: 490 ident: bib29 article-title: Exploiting transfer learning for emotion recognition under cloud-edge-client collaborations publication-title: IEEE J. Sel. Areas Commun. – volume: 7 start-page: 332 year: 2015 end-page: 341 ident: bib6 article-title: Design of a multimodal EEG-based hybrid BCI system with visual servo module publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 21 start-page: 230 year: 2019 ident: bib13 article-title: Asynchronous control of P300-based brain–computer interfaces using sample entropy publication-title: Entropy – volume: 27 start-page: 1883 year: 2019 end-page: 1892 ident: bib20 article-title: Asynchronous control of ERP-based BCI spellers using steady-state visual evoked potentials elicited by peripheral stimuli publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 10 start-page: 989 year: 2004 end-page: 1010 ident: bib3 article-title: Some theory for Fisher’s linear discriminant function, `naive Bayes’, and some alternatives when there are many more variables than observations publication-title: Bernoulli – volume: 9 start-page: 9972 year: 2021 end-page: 9981 ident: bib9 article-title: The effect of SOA on an asynchronous ERP and VEP-based BCI publication-title: IEEE Access – volume: 24 start-page: 128 year: 2015 end-page: 139 ident: bib34 article-title: Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 1 start-page: 1 year: 2020 end-page: 10 ident: bib16 article-title: BCI-based rehabilitation on the stroke in sequela stage publication-title: Neural Plast. – volume: 202 start-page: 60 year: 2011 end-page: 64 ident: bib19 article-title: Automated sleep scoring in rats and mice using the naive Bayes classifier publication-title: J. Neurosci. Methods – volume: 63 start-page: 105 year: 2018 end-page: 112 ident: bib12 article-title: Quasi-periodic fluctuation in Donchin’s speller signals and its potential use for asynchronous control publication-title: Biomed. Technol. – volume: 57 start-page: 1 year: 2020 end-page: 18 ident: bib1 article-title: 30+ years of P300 brain–computer interfaces publication-title: Psychophysiology – volume: 99 start-page: 24 year: 2018 end-page: 37 ident: bib26 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. – volume: 8 start-page: 1 year: 2011 end-page: 6 ident: bib4 article-title: A high-speed BCI based on code modulation VEP publication-title: J. Neural Eng. – volume: 60 start-page: 3156 year: 2013 end-page: 3166 ident: bib11 article-title: A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control publication-title: IEEE Trans. Biomed. Eng. – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib18 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 41 start-page: 222 year: 2018 end-page: 232 ident: bib8 article-title: A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition publication-title: Biomed. Signal Process. Control – volume: 21 start-page: 715 year: 2016 end-page: 724 ident: bib5 article-title: Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system publication-title: IEEE J. Biomed. Health Inf. – volume: 35 start-page: 846 year: 2019 end-page: 858 ident: bib25 article-title: Toward brain-actuated mobile platform publication-title: Int. J. Hum. Comput. Interact. – volume: 58 start-page: 1781 year: 2011 end-page: 1788 ident: bib17 article-title: An asynchronous P300 BCI with SSVEP-based control state detection publication-title: IEEE Trans. Biomed. Eng. – volume: 41 start-page: 222 issue: 1 year: 2018 ident: 10.1016/j.jneumeth.2022.109496_bib8 article-title: A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.11.014 – volume: 86 start-page: 1404 issue: 4 year: 1989 ident: 10.1016/j.jneumeth.2022.109496_bib27 article-title: Parametric generalized Gaussian density estimation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.398700 – volume: 41 start-page: 670 issue: 8 year: 2017 ident: 10.1016/j.jneumeth.2022.109496_bib22 article-title: Wavelet-based feature extraction for classification of epileptic seizure EEG signal publication-title: J. Med. Eng. Technol. doi: 10.1080/03091902.2017.1394388 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.jneumeth.2022.109496_bib28 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 27 start-page: 1883 issue: 9 year: 2019 ident: 10.1016/j.jneumeth.2022.109496_bib20 article-title: Asynchronous control of ERP-based BCI spellers using steady-state visual evoked potentials elicited by peripheral stimuli publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2934645 – volume: 10 start-page: 989 issue: 6 year: 2004 ident: 10.1016/j.jneumeth.2022.109496_bib3 article-title: Some theory for Fisher’s linear discriminant function, `naive Bayes’, and some alternatives when there are many more variables than observations publication-title: Bernoulli doi: 10.3150/bj/1106314847 – volume: 202 start-page: 60 issue: 1 year: 2011 ident: 10.1016/j.jneumeth.2022.109496_bib19 article-title: Automated sleep scoring in rats and mice using the naive Bayes classifier publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.08.023 – volume: 99 start-page: 24 issue: 1 year: 2018 ident: 10.1016/j.jneumeth.2022.109496_bib26 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – volume: 55 start-page: 1754 issue: 6 year: 2008 ident: 10.1016/j.jneumeth.2022.109496_bib33 article-title: Asynchronous P300-based brain–computer interfaces: a computational approach with statistical models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.919128 – volume: 63 start-page: 105 issue: 2 year: 2018 ident: 10.1016/j.jneumeth.2022.109496_bib12 article-title: Quasi-periodic fluctuation in Donchin’s speller signals and its potential use for asynchronous control publication-title: Biomed. Technol. doi: 10.1515/bmt-2016-0050 – volume: 39 start-page: 479 issue: 2 year: 2020 ident: 10.1016/j.jneumeth.2022.109496_bib29 article-title: Exploiting transfer learning for emotion recognition under cloud-edge-client collaborations publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3020677 – volume: 57 start-page: 1 issue: 7 year: 2020 ident: 10.1016/j.jneumeth.2022.109496_bib1 article-title: 30+ years of P300 brain–computer interfaces publication-title: Psychophysiology doi: 10.1111/psyp.13569 – volume: 14 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jneumeth.2022.109496_bib15 article-title: Prediction of subjective ratings of emotional pictures by EEG features publication-title: J. Neural Eng. – volume: 1 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.jneumeth.2022.109496_bib16 article-title: BCI-based rehabilitation on the stroke in sequela stage publication-title: Neural Plast. doi: 10.1155/2020/8882764 – volume: 9 start-page: 9972 issue: 1 year: 2021 ident: 10.1016/j.jneumeth.2022.109496_bib9 article-title: The effect of SOA on an asynchronous ERP and VEP-based BCI publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050545 – volume: 7 start-page: 332 issue: 4 year: 2015 ident: 10.1016/j.jneumeth.2022.109496_bib6 article-title: Design of a multimodal EEG-based hybrid BCI system with visual servo module publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2434951 – start-page: 367 year: 2019 ident: 10.1016/j.jneumeth.2022.109496_bib36 article-title: Transient visual evoked potential-based method of detecting idle brain state in the event-related potential-based brain-computer interface publication-title: IEEE CAC, – volume: 21 start-page: 715 issue: 3 year: 2016 ident: 10.1016/j.jneumeth.2022.109496_bib5 article-title: Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2016.2532354 – volume: 60 start-page: 3156 issue: 11 year: 2013 ident: 10.1016/j.jneumeth.2022.109496_bib11 article-title: A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2270283 – volume: 26 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.jneumeth.2022.109496_bib30 article-title: Incorporation of inter-subject information to improve the accuracy of subject-specific P300 classifiers publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500106 – volume: 35 start-page: 846 issue: 10 year: 2019 ident: 10.1016/j.jneumeth.2022.109496_bib25 article-title: Toward brain-actuated mobile platform publication-title: Int. J. Hum. Comput. Interact. doi: 10.1080/10447318.2018.1502000 – volume: 58 start-page: 1781 issue: 6 year: 2011 ident: 10.1016/j.jneumeth.2022.109496_bib17 article-title: An asynchronous P300 BCI with SSVEP-based control state detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2116018 – volume: 24 start-page: 128 issue: 1 year: 2015 ident: 10.1016/j.jneumeth.2022.109496_bib34 article-title: Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2439298 – volume: 21 start-page: 230 issue: 3 year: 2019 ident: 10.1016/j.jneumeth.2022.109496_bib13 article-title: Asynchronous control of P300-based brain–computer interfaces using sample entropy publication-title: Entropy doi: 10.3390/e21030230 – volume: 8 start-page: 1 issue: 2 year: 2011 ident: 10.1016/j.jneumeth.2022.109496_bib2 article-title: P300-based brain–computer interface for environmental control: an asynchronous approach publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025025 – volume: 8 start-page: 1 issue: 2 year: 2011 ident: 10.1016/j.jneumeth.2022.109496_bib4 article-title: A high-speed BCI based on code modulation VEP publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025015 – volume: 60 start-page: 3375 issue: 12 year: 2013 ident: 10.1016/j.jneumeth.2022.109496_bib35 article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2254486 – volume: 57 start-page: 2495 issue: 10 year: 2010 ident: 10.1016/j.jneumeth.2022.109496_bib10 article-title: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2055564 – volume: 126 start-page: 1763 issue: 5 year: 2018 ident: 10.1016/j.jneumeth.2022.109496_bib21 article-title: Correlation coefficients: appropriate use and interpretation publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000002864 – volume: 9 start-page: 1 issue: 3 year: 2012 ident: 10.1016/j.jneumeth.2022.109496_bib31 article-title: Surfing the internet with a BCI mouse publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/3/036012 – volume: 337 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.jneumeth.2022.109496_bib7 article-title: An idle state-detecting method based on transient visual evoked potentials for an asynchronous ERP-based BCI publication-title: J. Neurosci. Methods – volume: 25 start-page: 2516 issue: 12 year: 2017 ident: 10.1016/j.jneumeth.2022.109496_bib32 article-title: Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and P300 potential publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2766365 – volume: 4 start-page: 194 issue: 1 year: 2017 ident: 10.1016/j.jneumeth.2022.109496_bib14 article-title: EEG-based brain–computer interfaces publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.11.004 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.jneumeth.2022.109496_bib18 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 26 start-page: 1353 issue: 7 year: 2018 ident: 10.1016/j.jneumeth.2022.109496_bib23 article-title: A novel technique for selecting EMG-contaminated EEG channels in self-paced brain–computer Interface task onset publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2847316 – volume: 1 start-page: 98 year: 2018 ident: 10.1016/j.jneumeth.2022.109496_bib24 article-title: Novel spatial filter for SSVEP-based BCI: a generated reference filter approach |
SSID | ssj0004906 |
Score | 2.4327574 |
Snippet | An asynchronous event-related potential-based brain computer interface (ERP-BCI) permits the subjects to output intentions at their own pace, which provides a... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109496 |
SubjectTerms | Algorithms Asynchronous Bayes Theorem Brain-computer interface Brain-Computer Interfaces Discriminant Analysis Electroencephalography - methods Event-related potential Evoked Potentials, Visual Fusion probability Humans Simultaneous discrimination |
Title | A fisher linear discriminant analysis classifier fused with naïve Bayes for simultaneous detection in an asynchronous brain-computer interface |
URI | https://dx.doi.org/10.1016/j.jneumeth.2022.109496 https://www.ncbi.nlm.nih.gov/pubmed/35151667 https://www.proquest.com/docview/2628690221 |
Volume | 371 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbKVkJcELT8bIFqkBC3dBPHcTbHpaJaQO0FKvUWOfZEygrcapNF2guv0EfhIXgxZhKngATqgWMSO7E8zsw39nwzQryax1VsZJxF1mY2UiaxkdF5HWk1R1XV2krF5OTTM708V-8vsosdcTxyYTisMuj-Qaf32jrcmYXZnF01zewjE3FiplPJPmsLuUC7kqz9fCJ2F-8-LM9-0SOLvsQmt-cjy_g3ovDqaOVxw8WayVWUkpMrKc7f_3cb9S8M2tuikwfifgCRsBjG-VDsoN8T-wtPDvSXLbyGPqyz3y_fE3dPw-n5vrheQN2HwANjS7MGpuQOZb18ByakJwHLgLqpaSxQb1p0wHu14M2P718R3pgttkBIF9qGgxGNx8tNCw67PqbLQ-PpTWDarbecd5cfVlyGIrKhfgRwhop1bSw-Eucnbz8dL6NQkCGyqZ53UV1kmBhXaGWNU3mdFzZzmklIKnMpATHlbIHkEuWoTW5SjbGWmCgSuIwtaYLHYuIvPT4VYDF1eUUeskvJZ0p0hUZVSNpB1zq3Mp6KbBRBaUO2ci6a8bkcw9JW5Si6kkVXDqKbitlNv6shX8etPYpRwuUfK68ko3Jr35fjkijpt-SzlmHaS8mU34JaJlPxZFgrN-NJCUMmWucH__HlZ-IeXw0xRM_FpFtv8AXBo646FHeOviWH4Sf4CaJpEtU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqrQRcELT8bPkbJMQtbOI4zua4VFRb2t0LrdSb5ThjKaviVpss0j5FH4WH4MXwJE4BCdQD1zhOrIw9_iae7xvG3k3jMtY8ziJjMhMJnZhIy9xGUkxRlFYaLoicvFjK-bn4fJFd7LDDgQtDaZXB9_c-vfPW4cokfM3JdV1PvhARJyY6Fe9UW3wItCuoqPWI7c6OT-bLX_TIoiuxSffTkWX8G1F49WHlcEPFmn2oyDmJKwnS7__7HvUvDNrtRUeP2MMAImHWj_Mx20G3x_ZnzgfQX7fwHrq0zu5_-R67twin5_vsZga2S4EHwpZ6DUTJ7ct6uRZ0kCcBQ4C6tn4sYDcNVkD_asHpH9-_IXzUW2zAI11oakpG1A6vNg1U2HY5XQ5q558Eutk6Q7q71FhSGYrIhPoRQAoVa6sNPmHnR5_ODudRKMgQmVRO28gWGSa6KqQwuhK5zQuTVZJISCKrUg_ERGUK9CFRjlLnOpUYS46J8AbnsfGe4CkbuSuHzxkYTKu89BFylfqYKZElalGi9w7SytzweMyywQTKBLVyKppxqYa0tJUaTKfIdKo33ZhNbvtd93odd_YoBgurP2ae8pvKnX3fDlNC-WVJZy39Z1ecKL-FvzMZs2f9XLkdT-oxZCJlfvAfb37D7s_PFqfq9Hh58oI9oJY-n-glG7XrDb7yUKktX4el8BMaEBS7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fisher+linear+discriminant+analysis+classifier+fused+with+na%C3%AFve+Bayes+for+simultaneous+detection+in+an+asynchronous+brain-computer+interface&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Li%2C+Mengfan&rft.au=Zhang%2C+Pengfei&rft.au=Yang%2C+Guang&rft.au=Xu%2C+Guizhi&rft.date=2022-04-01&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=371&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109496&rft.externalDocID=S0165027022000231 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |