β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protei...
Saved in:
Published in | Cell chemical biology Vol. 32; no. 1; pp. 174 - 191.e8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
16.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2451-9456 2451-9456 2451-9448 |
DOI | 10.1016/j.chembiol.2024.11.001 |
Cover
Abstract | Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protein interactions. We demonstrate βHB-induced protein insolubility is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. This mechanism is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We generate libraries of the βHB-induced protein insolublome using mass spectrometry proteomics, and identify common protein domains and upstream regulators. We show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain. These data indicate a metabolically regulated mechanism of proteostasis relevant to aging and AD.
[Display omitted]
•βHB regulates protein solubility and is selective for a misfolding structural state•βHB-induced insolubility is not dependent on covalent modification, pH, or solute load•Protein targets of βHB include neurodegeneration-related proteins such as amyloid-β•βHB effects are observable in vitro, ex vivo, and in vivo in nematode and mouse models
Ketone bodies, small molecules that provide lipid-derived energy to cells during fasting, have been linked to various mechanisms of brain aging and increased healthy longevity in mice, and other fasting metabolism mechanisms have been linked to proteostasis. These data fill an important puzzle piece in the literature on pathogenic protein clearance under varying metabolic states. Here, we provide a direct molecular mechanism for the regulation of misfolded proteins by ketone bodies and related metabolites. While many factors can affect protein solubility in vitro, we showed that this mechanism is robust and reproducibly not dependent on covalent protein modification, pH, or solute load. Importantly, we reproduced the ex vivo effect in vivo, using a ketone ester to indirectly deliver exogenous R-βHB to the mouse brain via hepatic metabolism to R-βHB and physiological transport of R-βHB into the brain without other exogenous biochemical alterations. R-βHB insolubilization targets that we identified ex vivo strongly overlap with targets found in vivo, supporting the similarity of mechanism between the ex vivo and in vivo systems. We validated the physiological relevance of the mechanism by showing rescue in cell-based and C. elegans models of amyloid-β proteotoxicity. Given that proteostatic mechanisms like autophagy are known to be activated by nutrient deprivation, it is unsurprising that evolutionary pressures would encourage the clearance of pathogenic proteins during ketosis to promote cellular health in organisms seeking additional substrate for ATP production. In this situation, ketone bodies are janitors of damaged proteins, chaperoning away molecular waste so organisms can operate at peak molecular fitness. This mechanism can be leveraged for therapeutic development in aging and NDDs, including via pharmacological approaches for which we provide proof of principle with BH-BD. Understanding the molecular mechanisms of metabolism is an essential aspect of the future of accessible therapeutic interventions in aging and NDDs.
Madhavan et al. identify and characterize the selective regulation of protein solubility by the ketone body β-hydroxybutyrate (βHB) across a range of models. βHB exposure rescues cell-based and C. elegans models of amyloid-β proteotoxicity, and induces clearance of neurodegeneration-related proteins from aged mouse brain following exogenous ketone supplementation. |
---|---|
AbstractList | Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protein interactions. We demonstrate βHB-induced protein insolubility is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. This mechanism is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We generate libraries of the βHB-induced protein insolublome using mass spectrometry proteomics, and identify common protein domains and upstream regulators. We show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain. These data indicate a metabolically regulated mechanism of proteostasis relevant to aging and AD. Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protein interactions. We demonstrate βHB-induced protein insolubility is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. This mechanism is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We generate libraries of the βHB-induced protein insolublome using mass spectrometry proteomics, and identify common protein domains and upstream regulators. We show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain. These data indicate a metabolically regulated mechanism of proteostasis relevant to aging and AD. [Display omitted] •βHB regulates protein solubility and is selective for a misfolding structural state•βHB-induced insolubility is not dependent on covalent modification, pH, or solute load•Protein targets of βHB include neurodegeneration-related proteins such as amyloid-β•βHB effects are observable in vitro, ex vivo, and in vivo in nematode and mouse models Ketone bodies, small molecules that provide lipid-derived energy to cells during fasting, have been linked to various mechanisms of brain aging and increased healthy longevity in mice, and other fasting metabolism mechanisms have been linked to proteostasis. These data fill an important puzzle piece in the literature on pathogenic protein clearance under varying metabolic states. Here, we provide a direct molecular mechanism for the regulation of misfolded proteins by ketone bodies and related metabolites. While many factors can affect protein solubility in vitro, we showed that this mechanism is robust and reproducibly not dependent on covalent protein modification, pH, or solute load. Importantly, we reproduced the ex vivo effect in vivo, using a ketone ester to indirectly deliver exogenous R-βHB to the mouse brain via hepatic metabolism to R-βHB and physiological transport of R-βHB into the brain without other exogenous biochemical alterations. R-βHB insolubilization targets that we identified ex vivo strongly overlap with targets found in vivo, supporting the similarity of mechanism between the ex vivo and in vivo systems. We validated the physiological relevance of the mechanism by showing rescue in cell-based and C. elegans models of amyloid-β proteotoxicity. Given that proteostatic mechanisms like autophagy are known to be activated by nutrient deprivation, it is unsurprising that evolutionary pressures would encourage the clearance of pathogenic proteins during ketosis to promote cellular health in organisms seeking additional substrate for ATP production. In this situation, ketone bodies are janitors of damaged proteins, chaperoning away molecular waste so organisms can operate at peak molecular fitness. This mechanism can be leveraged for therapeutic development in aging and NDDs, including via pharmacological approaches for which we provide proof of principle with BH-BD. Understanding the molecular mechanisms of metabolism is an essential aspect of the future of accessible therapeutic interventions in aging and NDDs. Madhavan et al. identify and characterize the selective regulation of protein solubility by the ketone body β-hydroxybutyrate (βHB) across a range of models. βHB exposure rescues cell-based and C. elegans models of amyloid-β proteotoxicity, and induces clearance of neurodegeneration-related proteins from aged mouse brain following exogenous ketone supplementation. |
Author | Bhaumik, Dipa Chamoli, Manish Gray, Wyatt Shah, Samah Eap, Brenda Schilling, Birgit Chaudhuri, Asish R. Ceyhan, Kaya E. Garcia, Thelma Y. Diaz, Diego Blade, Thanh Peralta, Sawyer Nomura, Mitsunori Lithgow, Gordon J. Madhavan, Sidharth S. Panda, Oishika Verdin, Eric King, Christina D. Newman, John C. Roa Diaz, Stephanie Lin, Anwen Foulger, Anna C. Stubbs, Brianna J. Ulrich, Scott M. |
Author_xml | – sequence: 1 givenname: Sidharth S. orcidid: 0000-0001-8163-0917 surname: Madhavan fullname: Madhavan, Sidharth S. organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 2 givenname: Stephanie surname: Roa Diaz fullname: Roa Diaz, Stephanie organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 3 givenname: Sawyer surname: Peralta fullname: Peralta, Sawyer organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 4 givenname: Mitsunori surname: Nomura fullname: Nomura, Mitsunori organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 5 givenname: Christina D. surname: King fullname: King, Christina D. organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 6 givenname: Kaya E. surname: Ceyhan fullname: Ceyhan, Kaya E. organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 7 givenname: Anwen surname: Lin fullname: Lin, Anwen organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 8 givenname: Dipa surname: Bhaumik fullname: Bhaumik, Dipa organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 9 givenname: Anna C. surname: Foulger fullname: Foulger, Anna C. organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 10 givenname: Samah surname: Shah fullname: Shah, Samah organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 11 givenname: Thanh surname: Blade fullname: Blade, Thanh organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 12 givenname: Wyatt surname: Gray fullname: Gray, Wyatt organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 13 givenname: Manish surname: Chamoli fullname: Chamoli, Manish organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 14 givenname: Brenda surname: Eap fullname: Eap, Brenda organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 15 givenname: Oishika surname: Panda fullname: Panda, Oishika organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 16 givenname: Diego surname: Diaz fullname: Diaz, Diego organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 17 givenname: Thelma Y. surname: Garcia fullname: Garcia, Thelma Y. organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 18 givenname: Brianna J. surname: Stubbs fullname: Stubbs, Brianna J. organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 19 givenname: Scott M. surname: Ulrich fullname: Ulrich, Scott M. organization: Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA – sequence: 20 givenname: Gordon J. surname: Lithgow fullname: Lithgow, Gordon J. organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 21 givenname: Birgit surname: Schilling fullname: Schilling, Birgit organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 22 givenname: Eric surname: Verdin fullname: Verdin, Eric organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 23 givenname: Asish R. surname: Chaudhuri fullname: Chaudhuri, Asish R. organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 24 givenname: John C. orcidid: 0000-0002-8455-0100 surname: Newman fullname: Newman, John C. email: jnewman@buckinstitute.org organization: Buck Institute for Research on Aging, Novato, CA 94945, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39626664$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtOwzAURS1UBKWwBeQNJNhx4iQSA6qKn1SJCYwtf16oqySubBdRlsVCWBOpShFi0tF7g3OudO8ZGvWuB4QuKUkpofxqmeoFdMq6Ns1IlqeUpoTQIzTO8oImdV7w0Z__FF2EsCQDwVlJWXmCTlnNM855Pkb66zNZbIx37xu1jhsvI2AbsMQdRKlcazX28LpuZXQeuwavvIvgQpRhoGyP4wKwfAWDZW_wtP1YgO3AY2MDyABYeWn7c3TcyDbAxc-doJe72-fZQzJ_un-cTeeJZryKCTCWE50Bh1pXVcllXlR5USpN6qZsQCvKoVCVlpTmUGXGqLI2xRakrKDMsAm63OWu1qoDI1bedtJvxL7tAPAdoL0LwUPzi1AitsuKpdgvK7bLCkrFsNsgXv8TtY0yWtfHoWB7WL_Z6TC0f7PgRdAWeg3GetBRGGcPRXwD9s-azQ |
CitedBy_id | crossref_primary_10_1080_21551197_2025_2466163 crossref_primary_10_3390_nu17010149 |
Cites_doi | 10.1038/s42003-024-05860-z 10.1146/annurev-nutr-071816-064916 10.1016/j.cmet.2017.08.005 10.1016/j.xcrm.2024.101593 10.1038/s41467-017-00249-5 10.1016/j.cell.2022.11.001 10.1371/journal.pone.0075713 10.1016/j.fct.2020.111859 10.1073/pnas.1402228111 10.1126/sciadv.abe2771 10.1038/s41586-022-04649-6 10.1016/j.celrep.2017.02.004 10.1126/science.aaf6846 10.1038/s41556-019-0440-0 10.1186/1471-2202-9-S2-S16 10.1186/1471-2350-12-137 10.1016/S0197-4580(03)00087-3 10.1016/j.cmet.2017.08.004 10.1016/j.jalz.2014.01.006 10.1038/s41421-019-0103-0 10.1089/omi.2011.0118 10.1021/acs.jproteome.7b00170 10.1016/j.arr.2019.101001 10.3389/fphys.2017.00848 10.3389/fnagi.2020.00150 10.1073/pnas.2635903100 10.1523/JNEUROSCI.20-11-04050.2000 10.1016/j.neurobiolaging.2004.09.014 10.1074/jbc.M707751200 10.1016/j.bbrc.2017.03.069 10.3390/cells12030486 10.3389/fnmol.2023.1214092 10.1038/s41418-020-00682-y 10.1001/jamaneurol.2015.0613 10.1056/NEJM199603213341202 10.1146/annurev.nutr.26.061505.111258 10.1146/annurev-nutr-111120-111518 10.1186/s12974-020-01948-5 10.3389/fneur.2023.1123290 10.1074/mcp.RA117.000314 10.1074/mcp.O111.016717 10.1038/jcbfm.2009.35 10.1016/j.cell.2013.05.039 10.1002/pmic.201100463 10.1111/jnc.12127 10.1016/j.exger.2017.07.004 10.1007/s11064-015-1700-4 10.2174/1381612826666200115103646 10.1371/journal.pone.0153495 10.1016/j.nbd.2006.12.019 10.1016/S0166-4328(01)00297-2 10.1038/s41586-022-04828-5 10.1007/s00401-006-0127-z 10.1371/journal.pcbi.1005752 10.18632/aging.100683 10.3233/JAD-220640 10.1126/science.1227166 10.1016/j.celrep.2021.109487 10.1007/s11357-023-00769-7 10.1021/bi068010l 10.1096/fj.08-106104 10.1186/1756-0500-2-243 10.1038/s41593-018-0235-9 10.1016/j.cell.2015.12.056 10.1126/science.1255555 10.1038/s43587-022-00204-0 10.1007/s00216-012-6320-0 10.1186/1743-7075-6-31 10.1073/pnas.090106797 10.1074/jbc.M109.096586 10.1186/1743-7075-2-28 10.1186/1750-1326-7-57 10.1038/nn.4160 10.1016/j.cell.2022.12.032 10.1016/j.fct.2021.112084 10.1016/j.cell.2016.07.031 10.1186/s13195-016-0181-2 10.1016/j.neurobiolaging.2012.11.023 10.1073/pnas.97.10.5440 10.1056/NEJMoa2212948 10.1016/j.molcel.2016.03.036 10.1038/nm.3804 10.1016/j.cmet.2016.12.022 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/j.chembiol.2024.11.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2451-9456 2451-9448 |
EndPage | 191.e8 |
ExternalDocumentID | 39626664 10_1016_j_chembiol_2024_11_001 S2451945624004598 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG044281 – fundername: NIA NIH HHS grantid: R01 AG067333 – fundername: NIA NIH HHS grantid: T32 AG000266 – fundername: NIA NIH HHS grantid: T32 AG052374 |
GroupedDBID | 0R~ 457 53G 6I. AACTN AAEDT AAEDW AAFTH AAKRW AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ACGFS ACIUM ADBBV AFTJW AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FCP FDB FIRID HH5 JIG KOO M41 O9- OK1 ROL 186 AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD RIG SSZ CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c368t-e3340c2e6e9c8876a458457bc09f7fecb16e5b8ca114e82ddb79d5876a13513d3 |
ISSN | 2451-9456 |
IngestDate | Tue Jul 22 01:42:07 EDT 2025 Tue Jul 01 02:04:07 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Sun Apr 06 06:53:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | neurodegenerative disease ketone body aging proteostasis Alzheimer disease |
Language | English |
License | This is an open access article under the CC BY-NC license. Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-e3340c2e6e9c8876a458457bc09f7fecb16e5b8ca114e82ddb79d5876a13513d3 |
ORCID | 0000-0001-8163-0917 0000-0002-8455-0100 |
OpenAccessLink | https://dx.doi.org/10.1016/j.chembiol.2024.11.001 |
PMID | 39626664 |
ParticipantIDs | pubmed_primary_39626664 crossref_primary_10_1016_j_chembiol_2024_11_001 crossref_citationtrail_10_1016_j_chembiol_2024_11_001 elsevier_sciencedirect_doi_10_1016_j_chembiol_2024_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-16 |
PublicationDateYYYYMMDD | 2025-01-16 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell chemical biology |
PublicationTitleAlternate | Cell Chem Biol |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bohnen, Albin, Bohnen (bib28) 2023; 14 Roberts, Wallace, Tomilov, Zhou, Marcotte, Tran, Perez, Gutierrez-Casado, Koike, Knotts (bib30) 2017; 26 Goedert (bib2) 2015; 349 Henderson, Poirier (bib40) 2011; 12 Avgerinos, Egan, Mattson, Kapogiannis (bib41) 2020; 58 Di Lucente, Persico, Zhou, Jin, Ramsey, Rutkowsky, Montgomery, Tomilov, Kim, Giorgio (bib43) 2024; 7 Ottens, Franz, Hoppe (bib67) 2021; 28 Van Der Auwera, Wera, Van Leuven, Henderson (bib46) 2005; 2 Bruderer, Bernhardt, Gandhi, Xuan, Sondermann, Schmidt, Gomez-Varela, Reiter (bib81) 2017; 16 Reiman, Chen, Alexander, Caselli, Bandy, Osborne, Saunders, Hardy, Raichle (bib8) 2004; 101 Rohart, Gautier, Singh, Lê Cao (bib82) 2017; 13 Newport, Vanitallie, Kashiwaya, King, Veech (bib37) 2015; 11 Stiernagle (bib74) 2006 Youm, Nguyen, Grant, Goldberg, Bodogai, Kim, D’Agostino, Planavsky, Lupfer, Kanneganti (bib26) 2015; 21 Kashiwaya, Bergman, Lee, Wan, King, Mughal, Okun, Clarke, Mattson, Veech (bib32) 2013; 34 Matlack, Tardiff, Narayan, Hamamichi, Caldwell, Caldwell, Lindquist (bib78) 2014; 111 Zhou, Kim, Ramsey, Rutkowsky (bib31) 2023; 45 Halagappa, Guo, Pearson, Matsuoka, Cutler, LaFerla, Mattson (bib48) 2007; 26 Blighe, Rana, Lewis (bib83) 2018 Escher, Reiter, MacLean, Ossola, Herzog, Chilton, MacCoss, Rinner (bib80) 2012; 12 Shippy, Wilhelm, Viharkumar, Raife, Ulland (bib45) 2020; 17 Wu, Hu, Xu, Chen, Guo, Dai, Feng, Zhou, Tang, Zhan (bib84) 2021; 2 Small, Ercoli, S Silverman, Huang, Komo, Bookheimer, Lavretsky, Miller, Siddarth, Rasgon (bib9) 2000; 97 Newman, Covarrubias, Zhao, Yu, Gut, Ng, Huang, Haldar, Verdin (bib29) 2017; 26 Camberos-Luna, Gerónimo-Olvera, Montiel, Rincon-Heredia, Massieu (bib49) 2016; 41 Pierce, DeWaal, Van Remmen, Richardson, Chaudhuri (bib60) 2006; 45 Newman, Verdin (bib14) 2017; 37 Zhang, Tang, Ma, Zhou, Liu, Zeng, Zhu, Xu, Chen, Wei (bib21) 2020; 22 Acuña-Catalán, Shah, Wehrfritz, Nomura, Acevedo, Olmos, Quiroz, Huerta, Bons, Ampuero (bib42) 2024; 5 Wilson, Cookson, Van Den Bosch, Zetterberg, Holtzman, Dewachter (bib5) 2023; 186 Li, He, Contrepois, Liu, Kim, Wiggenhorn, Tanzo, Tung, Lyu, Zushin (bib71) 2022; 606 Braak, Alafuzoff, Arzberger, Kretzschmar, Del Tredici (bib56) 2006; 112 Koronowski, Greco, Huang, Kim, Fribourgh, Crosby, Mathur, Ren, Partch, Jang (bib23) 2021; 36 Stubbs, Nikiforov, Rihner, Weston, Higley, Stump, Krane, Gadupudi, Verdin, Newman (bib73) 2021; 150 McColl, Roberts, Pukala, Kenche, Roberts, Link, Ryan, Masters, Barnham, Bush, Cherny (bib77) 2012; 7 Newman, Kroll, Ulrich, Palop, Verdin (bib33) 2017 Henderson, Vogel, Barr, Garvin, Jones, Costantini (bib36) 2009; 6 Shaw, Lelie, Durazo, Nersissian, Xu, Chan, Gralla, Tiwari, Hayward, Borchelt (bib65) 2008; 283 Kashiwaya, Takeshima, Mori, Nakashima, Clarke, Veech (bib44) 2000; 97 Yassine, Finch (bib6) 2020; 12 Mucke, Masliah, Yu, Mallory, Rockenstein, Tatsuno, Hu, Kholodenko, Johnson-Wood, McConlogue (bib72) 2000; 20 Sharma, Schmitt, Bergner, Tyanova, Kannaiyan, Manrique-Hoyos, Kongi, Cantuti, Hanisch, Philips (bib86) 2015; 18 Logovinsky, Satlin, Lai, Swanson, Kaplow, Osswald, Basun, Lannfelt (bib57) 2016; 8 Collins, Hunter, Liu, Schilling, Rosenberger, Bader, Chan, Gibson, Gingras, Held (bib62) 2017; 8 Therriault, Pascoal, Lussier, Tissot, Chamoun, Bezgin, Servaes, Benedet, Ashton, Karikari (bib55) 2022; 2 López-Otín, Galluzzi, Freije, Madeo, Kroemer (bib12) 2016; 166 Dmitrieva-Posocco, Wong, Lundgren, Golos, Descamps, Dohnalová, Cramer, Tian, Yueh, Eskiocak (bib24) 2022; 605 Xie, Zhang, Chung, Tang, Huang, Dai, Qi, Li, Colak, Chen (bib19) 2016; 62 Soto, Pritzkow (bib1) 2018; 21 López-Otín, Blasco, Partridge, Serrano, Kroemer (bib13) 2022; 186 Crabtree, Blade, Hyde, Buga, Kackley, Sapper, Panda, Roa-Diaz, Anthony, Newman (bib64) 2023; 42 Puchalska, Crawford (bib15) 2021; 41 Zilberter, Ivanov, Ziyatdinova, Mukhtarov, Malkov, Alpár, Tortoriello, Botting, Fülöp, Osypov (bib34) 2013; 125 Shimazu, Hirschey, Newman, He, Shirakawa, Le Moan, Grueter, Lim, Saunders, Stevens (bib25) 2013; 339 Borzova, Markossian, Chebotareva, Kleymenov, Poliansky, Muranov, Stein-Margolina, Shubin, Markov, Kurganov (bib59) 2016; 11 Yu, Wang, Han, He (bib85) 2012; 16 Willette, Bendlin, Starks, Birdsill, Johnson, Christian, Okonkwo, La Rue, Hermann, Koscik (bib10) 2015; 72 García-Velázquez, Massieu (bib54) 2023; 16 Goldberg, Asher, Molony, Shaw, Zeiss, Wang, Morozova-Roche, Herzog, Iwasaki, Dixit (bib27) 2017; 18 Brownlow, Benner, D’Agostino, Gordon, Morgan (bib35) 2013; 8 Reiman, Caselli, Yun, Chen, Bandy, Minoshima, Thibodeau, Osborne (bib7) 1996; 334 van Hall, Strømstad, Rasmussen, Jans, Zaar, Gam, Quistorff, Secher, Nielsen (bib69) 2009; 29 Tsutsui, Mochizuki, Maeda, Noge, Kitagawa, Min, Todoroki, Inoue, Toyo’oka (bib79) 2012; 404 Stubbs, Blade, Mills, Thomas, Yufei, Nelson, Higley, Nikiforov, Rhiner, Verdin, Newman (bib63) 2021; 147 Patel, Malinovska, Saha, Wang, Alberti, Krishnan, Hyman (bib68) 2017; 356 Wickam (bib87) 2016 De Strooper, Karran (bib3) 2016; 164 Burger (bib89) 2018; 17 Huang, Zhang, Weng, Delaney, Tang, Yan, Qi, Peng, Cole, Roeder, Zhao (bib22) 2021; 7 Weis, Moullintraffort, Heichette, Chrétien, Garnier (bib75) 2010; 285 Gillet, Navarro, Tate, Röst, Selevsek, Reiter, Bonner, Aebersold (bib61) 2012; 11 Hu, Xie, Zhou, Wen, Song, Luo, Deng, Pan, Chen (bib52) 2023; 91 Hu, Zhu, Lai, Long, Zha, Hu, Zhang, Chen (bib53) 2017; 486 Zhang, Cao, Niu, Yang, Ma, Zhao, Li (bib20) 2019; 5 Montiel, Montes-Ortega, Flores-Yáñez, Massieu (bib50) 2020; 26 Cahill (bib16) 2006; 26 van Dyck, Swanson, Aisen, Bateman, Chen, Gee, Kanekiyo, Li, Reyderman, Cohen (bib58) 2023; 388 Puchalska, Crawford (bib17) 2017; 25 Gómora-García, Montiel, Hüttenrauch, Salcido-Gómez, García-Velázquez, Ramiro-Cortés, Gomora, Castro-Obregón, Massieu (bib51) 2023; 12 Edwards, Canfield, Copes, Rehan, Lipps, Bradshaw (bib76) 2014; 6 Holden, Horton (bib66) 2009; 2 Croteau, Castellano, Fortier, Bocti, Fulop, Paquet, Cunnane (bib4) 2018; 107 Benjamini, Drai, Elmer, Kafkafi, Golani (bib88) 2001; 125 Costantini, Barr, Vogel, Henderson (bib39) 2008; 9 López-Otín, Blasco, Partridge, Serrano, Kroemer (bib11) 2013; 153 Stubbs, Cox, Evans, Santer, Miller, Faull, Magor-Elliott, Hiyama, Stirling, Clarke (bib18) 2017; 8 Quistorff, Secher, Van Lieshout (bib70) 2008; 22 Reger, Henderson, Hale, Cholerton, Baker, Watson, Hyde, Chapman, Craft (bib38) 2004; 25 Patel, Gordon, Connor, Good, Engelman, Mason, Morgan, Morgan, Finch (bib47) 2005; 26 Gómora-García (10.1016/j.chembiol.2024.11.001_bib51) 2023; 12 Tsutsui (10.1016/j.chembiol.2024.11.001_bib79) 2012; 404 Bruderer (10.1016/j.chembiol.2024.11.001_bib81) 2017; 16 Newman (10.1016/j.chembiol.2024.11.001_bib29) 2017; 26 Kashiwaya (10.1016/j.chembiol.2024.11.001_bib32) 2013; 34 Yassine (10.1016/j.chembiol.2024.11.001_bib6) 2020; 12 Shaw (10.1016/j.chembiol.2024.11.001_bib65) 2008; 283 Koronowski (10.1016/j.chembiol.2024.11.001_bib23) 2021; 36 Edwards (10.1016/j.chembiol.2024.11.001_bib76) 2014; 6 van Hall (10.1016/j.chembiol.2024.11.001_bib69) 2009; 29 Goldberg (10.1016/j.chembiol.2024.11.001_bib27) 2017; 18 Newman (10.1016/j.chembiol.2024.11.001_bib33) 2017 Hu (10.1016/j.chembiol.2024.11.001_bib53) 2017; 486 Collins (10.1016/j.chembiol.2024.11.001_bib62) 2017; 8 García-Velázquez (10.1016/j.chembiol.2024.11.001_bib54) 2023; 16 Roberts (10.1016/j.chembiol.2024.11.001_bib30) 2017; 26 Goedert (10.1016/j.chembiol.2024.11.001_bib2) 2015; 349 Shimazu (10.1016/j.chembiol.2024.11.001_bib25) 2013; 339 Brownlow (10.1016/j.chembiol.2024.11.001_bib35) 2013; 8 van Dyck (10.1016/j.chembiol.2024.11.001_bib58) 2023; 388 Gillet (10.1016/j.chembiol.2024.11.001_bib61) 2012; 11 Puchalska (10.1016/j.chembiol.2024.11.001_bib17) 2017; 25 Zhang (10.1016/j.chembiol.2024.11.001_bib21) 2020; 22 López-Otín (10.1016/j.chembiol.2024.11.001_bib12) 2016; 166 Hu (10.1016/j.chembiol.2024.11.001_bib52) 2023; 91 Newport (10.1016/j.chembiol.2024.11.001_bib37) 2015; 11 Kashiwaya (10.1016/j.chembiol.2024.11.001_bib44) 2000; 97 Henderson (10.1016/j.chembiol.2024.11.001_bib36) 2009; 6 Holden (10.1016/j.chembiol.2024.11.001_bib66) 2009; 2 Ottens (10.1016/j.chembiol.2024.11.001_bib67) 2021; 28 Camberos-Luna (10.1016/j.chembiol.2024.11.001_bib49) 2016; 41 Logovinsky (10.1016/j.chembiol.2024.11.001_bib57) 2016; 8 Li (10.1016/j.chembiol.2024.11.001_bib71) 2022; 606 Bohnen (10.1016/j.chembiol.2024.11.001_bib28) 2023; 14 Stubbs (10.1016/j.chembiol.2024.11.001_bib63) 2021; 147 Wilson (10.1016/j.chembiol.2024.11.001_bib5) 2023; 186 McColl (10.1016/j.chembiol.2024.11.001_bib77) 2012; 7 Blighe (10.1016/j.chembiol.2024.11.001_bib83) 2018 Montiel (10.1016/j.chembiol.2024.11.001_bib50) 2020; 26 López-Otín (10.1016/j.chembiol.2024.11.001_bib13) 2022; 186 Matlack (10.1016/j.chembiol.2024.11.001_bib78) 2014; 111 Henderson (10.1016/j.chembiol.2024.11.001_bib40) 2011; 12 Van Der Auwera (10.1016/j.chembiol.2024.11.001_bib46) 2005; 2 Patel (10.1016/j.chembiol.2024.11.001_bib47) 2005; 26 Reger (10.1016/j.chembiol.2024.11.001_bib38) 2004; 25 Zhou (10.1016/j.chembiol.2024.11.001_bib31) 2023; 45 Huang (10.1016/j.chembiol.2024.11.001_bib22) 2021; 7 Puchalska (10.1016/j.chembiol.2024.11.001_bib15) 2021; 41 Shippy (10.1016/j.chembiol.2024.11.001_bib45) 2020; 17 Benjamini (10.1016/j.chembiol.2024.11.001_bib88) 2001; 125 Pierce (10.1016/j.chembiol.2024.11.001_bib60) 2006; 45 Croteau (10.1016/j.chembiol.2024.11.001_bib4) 2018; 107 Stubbs (10.1016/j.chembiol.2024.11.001_bib73) 2021; 150 Avgerinos (10.1016/j.chembiol.2024.11.001_bib41) 2020; 58 Di Lucente (10.1016/j.chembiol.2024.11.001_bib43) 2024; 7 Reiman (10.1016/j.chembiol.2024.11.001_bib7) 1996; 334 Sharma (10.1016/j.chembiol.2024.11.001_bib86) 2015; 18 Small (10.1016/j.chembiol.2024.11.001_bib9) 2000; 97 Crabtree (10.1016/j.chembiol.2024.11.001_bib64) 2023; 42 Quistorff (10.1016/j.chembiol.2024.11.001_bib70) 2008; 22 Zhang (10.1016/j.chembiol.2024.11.001_bib20) 2019; 5 Stiernagle (10.1016/j.chembiol.2024.11.001_bib74) 2006 Dmitrieva-Posocco (10.1016/j.chembiol.2024.11.001_bib24) 2022; 605 Soto (10.1016/j.chembiol.2024.11.001_bib1) 2018; 21 Acuña-Catalán (10.1016/j.chembiol.2024.11.001_bib42) 2024; 5 Wickam (10.1016/j.chembiol.2024.11.001_bib87) 2016 Stubbs (10.1016/j.chembiol.2024.11.001_bib18) 2017; 8 Mucke (10.1016/j.chembiol.2024.11.001_bib72) 2000; 20 Costantini (10.1016/j.chembiol.2024.11.001_bib39) 2008; 9 Weis (10.1016/j.chembiol.2024.11.001_bib75) 2010; 285 Rohart (10.1016/j.chembiol.2024.11.001_bib82) 2017; 13 Reiman (10.1016/j.chembiol.2024.11.001_bib8) 2004; 101 Newman (10.1016/j.chembiol.2024.11.001_bib14) 2017; 37 López-Otín (10.1016/j.chembiol.2024.11.001_bib11) 2013; 153 Escher (10.1016/j.chembiol.2024.11.001_bib80) 2012; 12 De Strooper (10.1016/j.chembiol.2024.11.001_bib3) 2016; 164 Burger (10.1016/j.chembiol.2024.11.001_bib89) 2018; 17 Youm (10.1016/j.chembiol.2024.11.001_bib26) 2015; 21 Halagappa (10.1016/j.chembiol.2024.11.001_bib48) 2007; 26 Therriault (10.1016/j.chembiol.2024.11.001_bib55) 2022; 2 Borzova (10.1016/j.chembiol.2024.11.001_bib59) 2016; 11 Patel (10.1016/j.chembiol.2024.11.001_bib68) 2017; 356 Cahill (10.1016/j.chembiol.2024.11.001_bib16) 2006; 26 Willette (10.1016/j.chembiol.2024.11.001_bib10) 2015; 72 Zilberter (10.1016/j.chembiol.2024.11.001_bib34) 2013; 125 Wu (10.1016/j.chembiol.2024.11.001_bib84) 2021; 2 Xie (10.1016/j.chembiol.2024.11.001_bib19) 2016; 62 Braak (10.1016/j.chembiol.2024.11.001_bib56) 2006; 112 Yu (10.1016/j.chembiol.2024.11.001_bib85) 2012; 16 37461525 - bioRxiv. 2023 Jul 03:2023.07.03.547547. doi: 10.1101/2023.07.03.547547. |
References_xml | – volume: 186 start-page: 693 year: 2023 end-page: 714 ident: bib5 article-title: Hallmarks of neurodegenerative diseases publication-title: Cell – volume: 58 year: 2020 ident: bib41 article-title: Medium Chain Triglycerides induce mild ketosis and may improve cognition in Alzheimer’s disease. A systematic review and meta-analysis of human studies publication-title: Ageing Res. Rev. – volume: 12 year: 2020 ident: bib6 article-title: APOE Alleles and Diet in Brain Aging and Alzheimer’s Disease publication-title: Front. Aging Neurosci. – volume: 16 start-page: 2296 year: 2017 end-page: 2309 ident: bib81 article-title: Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results publication-title: Mol. Cell. Proteomics – volume: 25 start-page: 262 year: 2017 end-page: 284 ident: bib17 article-title: Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics publication-title: Cell Metab. – volume: 186 start-page: 243 year: 2022 end-page: 278 ident: bib13 article-title: Hallmarks of aging: An expanding universe publication-title: Cell – volume: 5 start-page: 101593 year: 2024 ident: bib42 article-title: Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice publication-title: Cell Rep. Med. – volume: 26 start-page: 1 year: 2006 end-page: 22 ident: bib16 article-title: Fuel Metabolism in Starvation publication-title: Annu. Rev. Nutr. – volume: 2 start-page: 526 year: 2022 end-page: 535 ident: bib55 article-title: Biomarker modeling of Alzheimer’s disease using PET-based Braak staging publication-title: Nat. Aging – volume: 283 start-page: 8340 year: 2008 end-page: 8350 ident: bib65 article-title: Detergent-insoluble Aggregates Associated with Amyotrophic Lateral Sclerosis in Transgenic Mice Contain Primarily Full-length, Unmodified Superoxide Dismutase-1 publication-title: J. Biol. Chem. – volume: 16 year: 2023 ident: bib54 article-title: The proteomic effects of ketone bodies: implications for proteostasis and brain proteinopathies publication-title: Front. Mol. Neurosci. – volume: 7 start-page: 57 year: 2012 ident: bib77 article-title: Utility of an improved model of amyloid-beta (Aβ₁₋₄₂) toxicity in Caenorhabditis elegans for drug screening for Alzheimer’s disease publication-title: Mol. Neurodegener. – volume: 14 year: 2023 ident: bib28 article-title: Ketogenic interventions in mild cognitive impairment, Alzheimer’s disease, and Parkinson’s disease: A systematic review and critical appraisal publication-title: Front. Neurol. – year: 2017 ident: bib33 article-title: Ketogenic diet or BHB improves epileptiform spikes, memory, survival in Alzheimer’s model publication-title: bioRxiv – volume: 2 start-page: 243 year: 2009 ident: bib66 article-title: Crude subcellular fractionation of cultured mammalian cell lines publication-title: BMC Res. Notes – volume: 111 start-page: 4013 year: 2014 end-page: 4018 ident: bib78 article-title: Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity publication-title: Proc. Natl. Acad. Sci. USA – volume: 45 start-page: 2481 year: 2023 end-page: 2494 ident: bib31 article-title: Ketogenic diets initiated in late mid-life improved measures of spatial memory in male mice publication-title: GeroScience – volume: 34 start-page: 1530 year: 2013 end-page: 1539 ident: bib32 article-title: A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease publication-title: Neurobiol. Aging – volume: 7 year: 2021 ident: bib22 article-title: The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway publication-title: Sci. Adv. – volume: 6 start-page: 621 year: 2014 end-page: 644 ident: bib76 article-title: D-beta-hydroxybutyrate extends lifespan in C. elegans publication-title: Aging (Albany NY) – volume: 26 start-page: 547 year: 2017 end-page: 557.e8 ident: bib29 article-title: Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice publication-title: Cell Metab. – volume: 29 start-page: 1121 year: 2009 end-page: 1129 ident: bib69 article-title: Blood lactate is an important energy source for the human brain publication-title: J. Cereb. Blood Flow Metab. – volume: 21 start-page: 263 year: 2015 end-page: 269 ident: bib26 article-title: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease publication-title: Nat. Med. – volume: 356 start-page: 753 year: 2017 end-page: 756 ident: bib68 article-title: ATP as a biological hydrotrope publication-title: Science – volume: 9 start-page: S16 year: 2008 ident: bib39 article-title: Hypometabolism as a therapeutic target in Alzheimer’s disease publication-title: BMC Neurosci. – volume: 22 start-page: 3443 year: 2008 end-page: 3449 ident: bib70 article-title: Lactate fuels the human brain during exercise publication-title: FASEB J. – volume: 97 start-page: 5440 year: 2000 end-page: 5444 ident: bib44 article-title: d-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 486 start-page: 492 year: 2017 end-page: 498 ident: bib53 article-title: HMGCS2 promotes autophagic degradation of the amyloid-β precursor protein through ketone body-mediated mechanisms publication-title: Biochem. Biophys. Res. Commun. – volume: 26 start-page: 539 year: 2017 end-page: 546.e5 ident: bib30 article-title: A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice publication-title: Cell Metab. – volume: 26 start-page: 1377 year: 2020 end-page: 1387 ident: bib50 article-title: Treatment with the Ketone Body D-β-hydroxybutyrate Attenuates Autophagy Activated by NMDA and Reduces Excitotoxic Neuronal Damage in the Rat Striatum In Vivo publication-title: Curr. Pharm. Des. – volume: 18 start-page: 1819 year: 2015 end-page: 1831 ident: bib86 article-title: Cell type– and brain region–resolved mouse brain proteome publication-title: Nat. Neurosci. – volume: 12 start-page: 137 year: 2011 ident: bib40 article-title: Pharmacogenetic analysis of the effects of polymorphisms in APOE, IDE and IL1B on a ketone body based therapeutic on cognition in mild to moderate Alzheimer’s disease; a randomized, double-blind, placebo-controlled study publication-title: BMC Med. Genet. – volume: 41 start-page: 600 year: 2016 end-page: 609 ident: bib49 article-title: The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons publication-title: Neurochem. Res. – volume: 8 start-page: 291 year: 2017 ident: bib62 article-title: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry publication-title: Nat. Commun. – volume: 334 start-page: 752 year: 1996 end-page: 758 ident: bib7 article-title: Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E publication-title: N. Engl. J. Med. – volume: 125 start-page: 157 year: 2013 end-page: 171 ident: bib34 article-title: Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer’s disease publication-title: J. Neurochem. – volume: 8 start-page: 14 year: 2016 ident: bib57 article-title: Safety and tolerability of BAN2401--a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody publication-title: Alzheimer's Res. Ther. – volume: 11 year: 2012 ident: bib61 article-title: Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis publication-title: Mol. Cell. Proteomics – volume: 45 start-page: 5686 year: 2006 ident: bib60 article-title: A novel approach for screening the proteome for changes in protein conformation publication-title: Biochemistry – volume: 13 year: 2017 ident: bib82 article-title: mixOmics: An R package for ‘omics feature selection and multiple data integration publication-title: PLoS Comput. Biol. – volume: 101 start-page: 284 year: 2004 end-page: 289 ident: bib8 article-title: Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 12 year: 2018 end-page: 22 ident: bib89 article-title: Gentle Introduction to the Statistical Foundations of False Discovery Rate in Quantitative Proteomics publication-title: J. Proteome Res. – volume: 164 start-page: 603 year: 2016 end-page: 615 ident: bib3 article-title: The Cellular Phase of Alzheimer’s Disease publication-title: Cell – volume: 22 start-page: 18 year: 2020 end-page: 25 ident: bib21 article-title: Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8 + T-cell memory development publication-title: Nat. Cell Biol. – volume: 7 start-page: 195 year: 2024 ident: bib43 article-title: Ketogenic diet and BHB rescue the fall of long-term potentiation in an Alzheimer’s mouse model and stimulates synaptic plasticity pathway enzymes publication-title: Commun. Biol. – volume: 72 start-page: 1013 year: 2015 end-page: 1020 ident: bib10 article-title: Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer’s disease publication-title: JAMA Neurol. – volume: 16 start-page: 284 year: 2012 end-page: 287 ident: bib85 article-title: clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters publication-title: OMICS A J. Integr. Biol. – volume: 5 start-page: 35 year: 2019 ident: bib20 article-title: Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3 publication-title: Cell Discov. – volume: 166 start-page: 802 year: 2016 end-page: 821 ident: bib12 article-title: Metabolic Control of Longevity publication-title: Cell – volume: 605 start-page: 160 year: 2022 end-page: 165 ident: bib24 article-title: β-Hydroxybutyrate suppresses colorectal cancer publication-title: Nature – volume: 21 start-page: 1332 year: 2018 end-page: 1340 ident: bib1 article-title: Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases publication-title: Nat. Neurosci. – volume: 41 start-page: 49 year: 2021 end-page: 77 ident: bib15 article-title: Metabolic and Signaling Roles of Ketone Bodies in Health and Disease publication-title: Annu. Rev. Nutr. – volume: 18 start-page: 2077 year: 2017 end-page: 2087 ident: bib27 article-title: β-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares publication-title: Cell Rep. – volume: 25 start-page: 311 year: 2004 end-page: 314 ident: bib38 article-title: Effects of beta-hydroxybutyrate on cognition in memory-impaired adults publication-title: Neurobiol. Aging – volume: 37 start-page: 51 year: 2017 end-page: 76 ident: bib14 article-title: β-Hydroxybutyrate: A Signaling Metabolite publication-title: Annu. Rev. Nutr. – volume: 11 year: 2016 ident: bib59 article-title: Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin publication-title: PLoS One – volume: 17 year: 2020 ident: bib45 article-title: β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology publication-title: J. Neuroinflammation – volume: 12 start-page: 1111 year: 2012 end-page: 1121 ident: bib80 article-title: Using iRT, a normalized retention time for more targeted measurement of peptides publication-title: Proteomics – volume: 404 start-page: 1925 year: 2012 end-page: 1934 ident: bib79 article-title: Simultaneous determination of dl-lactic acid and dl-3-hydroxybutyric acid enantiomers in saliva of diabetes mellitus patients by high-throughput LC–ESI-MS/MS publication-title: Anal. Bioanal. Chem. – volume: 125 start-page: 279 year: 2001 end-page: 284 ident: bib88 article-title: Controlling the false discovery rate in behavior genetics research publication-title: Behav. Brain Res. – volume: 285 start-page: 9525 year: 2010 end-page: 9534 ident: bib75 article-title: The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation publication-title: J. Biol. Chem. – volume: 91 start-page: 407 year: 2023 end-page: 426 ident: bib52 article-title: HMGCS2-Induced Autophagic Degradation of Tau Involves Ketone Body and ANKRD24 publication-title: J. Alzheimers Dis. – volume: 6 start-page: 31 year: 2009 ident: bib36 article-title: Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial publication-title: Nutr. Metab. – volume: 11 start-page: 99 year: 2015 end-page: 103 ident: bib37 article-title: A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s publication-title: Alzheimers Dement. – volume: 150 year: 2021 ident: bib73 article-title: Toxicological evaluation of the ketogenic ester bis hexanoyl (R)-1,3-butanediol: Subchronic toxicity in Sprague Dawley rats publication-title: Food Chem. Toxicol. – volume: 2 start-page: 28 year: 2005 ident: bib46 article-title: A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease publication-title: Nutr. Metab. – volume: 20 start-page: 4050 year: 2000 end-page: 4058 ident: bib72 article-title: High-Level Neuronal Expression of Aβ1–42 in Wild-Type Human Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque Formation publication-title: J. Neurosci. – year: 2018 ident: bib83 article-title: EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling – volume: 36 year: 2021 ident: bib23 article-title: Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation publication-title: Cell Rep. – volume: 339 start-page: 211 year: 2013 end-page: 214 ident: bib25 article-title: Suppression of Oxidative Stress by β-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor publication-title: Science – start-page: 1 year: 2006 end-page: 11 ident: bib74 article-title: Maintenance of C. elegans – volume: 349 year: 2015 ident: bib2 article-title: Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein publication-title: Science – volume: 12 start-page: 486 year: 2023 ident: bib51 article-title: Effect of the Ketone Body, D-β-Hydroxybutyrate, on Sirtuin2-Mediated Regulation of Mitochondrial Quality Control and the Autophagy-Lysosomal Pathway publication-title: Cells – volume: 8 year: 2013 ident: bib35 article-title: Ketogenic Diet Improves Motor Performance but Not Cognition in Two Mouse Models of Alzheimer’s Pathology publication-title: PLoS One – volume: 26 start-page: 995 year: 2005 end-page: 1000 ident: bib47 article-title: Caloric restriction attenuates Aβ-deposition in Alzheimer transgenic models publication-title: Neurobiol. Aging – volume: 147 year: 2021 ident: bib63 article-title: stability and publication-title: Food Chem. Toxicol. – volume: 97 start-page: 6037 year: 2000 end-page: 6042 ident: bib9 article-title: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 505 year: 2021 end-page: 521 ident: bib67 article-title: Build-UPS and break-downs: metabolism impacts on proteostasis and aging publication-title: Cell Death Differ. – volume: 2 year: 2021 ident: bib84 article-title: clusterProfiler 4.0: A universal enrichment tool for interpreting omics data publication-title: Innovation – volume: 62 start-page: 194 year: 2016 end-page: 206 ident: bib19 article-title: Metabolic Regulation of Gene Expression by Histone Lysine β-hydroxybutyrylation publication-title: Mol. Cell – volume: 107 start-page: 18 year: 2018 end-page: 26 ident: bib4 article-title: A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease publication-title: Exp. Gerontol. – volume: 606 start-page: 785 year: 2022 end-page: 790 ident: bib71 article-title: An exercise-inducible metabolite that suppresses feeding and obesity publication-title: Nature – year: 2016 ident: bib87 article-title: ggplot2: Elegant Graphics for Data Analysis – volume: 153 start-page: 1194 year: 2013 end-page: 1217 ident: bib11 article-title: The Hallmarks of Aging publication-title: Cell – volume: 42 start-page: 169 year: 2023 end-page: 177 ident: bib64 article-title: Bis Hexanoyl (R)-1,3-Butanediol, a Novel Ketogenic Ester, Acutely Increases Circulating r- and s-ß-Hydroxybutyrate Concentrations in Healthy Adults publication-title: J. Am. Nutr. Assoc. – volume: 112 start-page: 389 year: 2006 end-page: 404 ident: bib56 article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathol. – volume: 8 year: 2017 ident: bib18 article-title: On the Metabolism of Exogenous Ketones in Humans publication-title: Front. Physiol. – volume: 26 start-page: 212 year: 2007 end-page: 220 ident: bib48 article-title: Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease publication-title: Neurobiol. Dis. – volume: 388 start-page: 9 year: 2023 end-page: 21 ident: bib58 article-title: Lecanemab in Early Alzheimer’s Disease publication-title: N. Engl. J. Med. – volume: 7 start-page: 195 year: 2024 ident: 10.1016/j.chembiol.2024.11.001_bib43 article-title: Ketogenic diet and BHB rescue the fall of long-term potentiation in an Alzheimer’s mouse model and stimulates synaptic plasticity pathway enzymes publication-title: Commun. Biol. doi: 10.1038/s42003-024-05860-z – volume: 37 start-page: 51 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib14 article-title: β-Hydroxybutyrate: A Signaling Metabolite publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-071816-064916 – volume: 26 start-page: 539 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib30 article-title: A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.08.005 – volume: 5 start-page: 101593 year: 2024 ident: 10.1016/j.chembiol.2024.11.001_bib42 article-title: Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2024.101593 – volume: 8 start-page: 291 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib62 article-title: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry publication-title: Nat. Commun. doi: 10.1038/s41467-017-00249-5 – volume: 186 start-page: 243 year: 2022 ident: 10.1016/j.chembiol.2024.11.001_bib13 article-title: Hallmarks of aging: An expanding universe publication-title: Cell doi: 10.1016/j.cell.2022.11.001 – volume: 8 year: 2013 ident: 10.1016/j.chembiol.2024.11.001_bib35 article-title: Ketogenic Diet Improves Motor Performance but Not Cognition in Two Mouse Models of Alzheimer’s Pathology publication-title: PLoS One doi: 10.1371/journal.pone.0075713 – volume: 147 year: 2021 ident: 10.1016/j.chembiol.2024.11.001_bib63 article-title: In vitro stability and in vivo pharmacokinetics of the novel ketogenic ester, bis hexanoyl (R)-1,3-butanediol publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2020.111859 – volume: 111 start-page: 4013 year: 2014 ident: 10.1016/j.chembiol.2024.11.001_bib78 article-title: Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1402228111 – volume: 7 year: 2021 ident: 10.1016/j.chembiol.2024.11.001_bib22 article-title: The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway publication-title: Sci. Adv. doi: 10.1126/sciadv.abe2771 – volume: 605 start-page: 160 year: 2022 ident: 10.1016/j.chembiol.2024.11.001_bib24 article-title: β-Hydroxybutyrate suppresses colorectal cancer publication-title: Nature doi: 10.1038/s41586-022-04649-6 – volume: 18 start-page: 2077 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib27 article-title: β-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.02.004 – volume: 356 start-page: 753 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib68 article-title: ATP as a biological hydrotrope publication-title: Science doi: 10.1126/science.aaf6846 – volume: 22 start-page: 18 year: 2020 ident: 10.1016/j.chembiol.2024.11.001_bib21 article-title: Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8 + T-cell memory development publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0440-0 – volume: 9 start-page: S16 year: 2008 ident: 10.1016/j.chembiol.2024.11.001_bib39 article-title: Hypometabolism as a therapeutic target in Alzheimer’s disease publication-title: BMC Neurosci. doi: 10.1186/1471-2202-9-S2-S16 – volume: 12 start-page: 137 year: 2011 ident: 10.1016/j.chembiol.2024.11.001_bib40 article-title: Pharmacogenetic analysis of the effects of polymorphisms in APOE, IDE and IL1B on a ketone body based therapeutic on cognition in mild to moderate Alzheimer’s disease; a randomized, double-blind, placebo-controlled study publication-title: BMC Med. Genet. doi: 10.1186/1471-2350-12-137 – volume: 25 start-page: 311 year: 2004 ident: 10.1016/j.chembiol.2024.11.001_bib38 article-title: Effects of beta-hydroxybutyrate on cognition in memory-impaired adults publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(03)00087-3 – volume: 26 start-page: 547 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib29 article-title: Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.08.004 – volume: 11 start-page: 99 year: 2015 ident: 10.1016/j.chembiol.2024.11.001_bib37 article-title: A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2014.01.006 – volume: 5 start-page: 35 year: 2019 ident: 10.1016/j.chembiol.2024.11.001_bib20 article-title: Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3 publication-title: Cell Discov. doi: 10.1038/s41421-019-0103-0 – volume: 16 start-page: 284 year: 2012 ident: 10.1016/j.chembiol.2024.11.001_bib85 article-title: clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters publication-title: OMICS A J. Integr. Biol. doi: 10.1089/omi.2011.0118 – volume: 17 start-page: 12 year: 2018 ident: 10.1016/j.chembiol.2024.11.001_bib89 article-title: Gentle Introduction to the Statistical Foundations of False Discovery Rate in Quantitative Proteomics publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.7b00170 – year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib33 article-title: Ketogenic diet or BHB improves epileptiform spikes, memory, survival in Alzheimer’s model publication-title: bioRxiv – volume: 58 year: 2020 ident: 10.1016/j.chembiol.2024.11.001_bib41 article-title: Medium Chain Triglycerides induce mild ketosis and may improve cognition in Alzheimer’s disease. A systematic review and meta-analysis of human studies publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2019.101001 – volume: 8 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib18 article-title: On the Metabolism of Exogenous Ketones in Humans publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00848 – volume: 12 year: 2020 ident: 10.1016/j.chembiol.2024.11.001_bib6 article-title: APOE Alleles and Diet in Brain Aging and Alzheimer’s Disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2020.00150 – volume: 101 start-page: 284 year: 2004 ident: 10.1016/j.chembiol.2024.11.001_bib8 article-title: Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2635903100 – volume: 20 start-page: 4050 year: 2000 ident: 10.1016/j.chembiol.2024.11.001_bib72 article-title: High-Level Neuronal Expression of Aβ1–42 in Wild-Type Human Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque Formation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-11-04050.2000 – volume: 26 start-page: 995 year: 2005 ident: 10.1016/j.chembiol.2024.11.001_bib47 article-title: Caloric restriction attenuates Aβ-deposition in Alzheimer transgenic models publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2004.09.014 – volume: 42 start-page: 169 year: 2023 ident: 10.1016/j.chembiol.2024.11.001_bib64 article-title: Bis Hexanoyl (R)-1,3-Butanediol, a Novel Ketogenic Ester, Acutely Increases Circulating r- and s-ß-Hydroxybutyrate Concentrations in Healthy Adults publication-title: J. Am. Nutr. Assoc. – volume: 283 start-page: 8340 year: 2008 ident: 10.1016/j.chembiol.2024.11.001_bib65 article-title: Detergent-insoluble Aggregates Associated with Amyotrophic Lateral Sclerosis in Transgenic Mice Contain Primarily Full-length, Unmodified Superoxide Dismutase-1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M707751200 – volume: 486 start-page: 492 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib53 article-title: HMGCS2 promotes autophagic degradation of the amyloid-β precursor protein through ketone body-mediated mechanisms publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.03.069 – volume: 12 start-page: 486 year: 2023 ident: 10.1016/j.chembiol.2024.11.001_bib51 article-title: Effect of the Ketone Body, D-β-Hydroxybutyrate, on Sirtuin2-Mediated Regulation of Mitochondrial Quality Control and the Autophagy-Lysosomal Pathway publication-title: Cells doi: 10.3390/cells12030486 – volume: 16 year: 2023 ident: 10.1016/j.chembiol.2024.11.001_bib54 article-title: The proteomic effects of ketone bodies: implications for proteostasis and brain proteinopathies publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2023.1214092 – volume: 28 start-page: 505 year: 2021 ident: 10.1016/j.chembiol.2024.11.001_bib67 article-title: Build-UPS and break-downs: metabolism impacts on proteostasis and aging publication-title: Cell Death Differ. doi: 10.1038/s41418-020-00682-y – volume: 72 start-page: 1013 year: 2015 ident: 10.1016/j.chembiol.2024.11.001_bib10 article-title: Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer’s disease publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2015.0613 – volume: 334 start-page: 752 year: 1996 ident: 10.1016/j.chembiol.2024.11.001_bib7 article-title: Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199603213341202 – volume: 26 start-page: 1 year: 2006 ident: 10.1016/j.chembiol.2024.11.001_bib16 article-title: Fuel Metabolism in Starvation publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev.nutr.26.061505.111258 – volume: 41 start-page: 49 year: 2021 ident: 10.1016/j.chembiol.2024.11.001_bib15 article-title: Metabolic and Signaling Roles of Ketone Bodies in Health and Disease publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-111120-111518 – volume: 17 year: 2020 ident: 10.1016/j.chembiol.2024.11.001_bib45 article-title: β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology publication-title: J. Neuroinflammation doi: 10.1186/s12974-020-01948-5 – volume: 14 year: 2023 ident: 10.1016/j.chembiol.2024.11.001_bib28 article-title: Ketogenic interventions in mild cognitive impairment, Alzheimer’s disease, and Parkinson’s disease: A systematic review and critical appraisal publication-title: Front. Neurol. doi: 10.3389/fneur.2023.1123290 – volume: 16 start-page: 2296 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib81 article-title: Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.RA117.000314 – volume: 11 year: 2012 ident: 10.1016/j.chembiol.2024.11.001_bib61 article-title: Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.O111.016717 – volume: 29 start-page: 1121 year: 2009 ident: 10.1016/j.chembiol.2024.11.001_bib69 article-title: Blood lactate is an important energy source for the human brain publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2009.35 – volume: 153 start-page: 1194 year: 2013 ident: 10.1016/j.chembiol.2024.11.001_bib11 article-title: The Hallmarks of Aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 12 start-page: 1111 year: 2012 ident: 10.1016/j.chembiol.2024.11.001_bib80 article-title: Using iRT, a normalized retention time for more targeted measurement of peptides publication-title: Proteomics doi: 10.1002/pmic.201100463 – volume: 125 start-page: 157 year: 2013 ident: 10.1016/j.chembiol.2024.11.001_bib34 article-title: Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer’s disease publication-title: J. Neurochem. doi: 10.1111/jnc.12127 – volume: 107 start-page: 18 year: 2018 ident: 10.1016/j.chembiol.2024.11.001_bib4 article-title: A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2017.07.004 – volume: 41 start-page: 600 year: 2016 ident: 10.1016/j.chembiol.2024.11.001_bib49 article-title: The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons publication-title: Neurochem. Res. doi: 10.1007/s11064-015-1700-4 – volume: 26 start-page: 1377 year: 2020 ident: 10.1016/j.chembiol.2024.11.001_bib50 article-title: Treatment with the Ketone Body D-β-hydroxybutyrate Attenuates Autophagy Activated by NMDA and Reduces Excitotoxic Neuronal Damage in the Rat Striatum In Vivo publication-title: Curr. Pharm. Des. doi: 10.2174/1381612826666200115103646 – start-page: 1 year: 2006 ident: 10.1016/j.chembiol.2024.11.001_bib74 – volume: 2 year: 2021 ident: 10.1016/j.chembiol.2024.11.001_bib84 article-title: clusterProfiler 4.0: A universal enrichment tool for interpreting omics data publication-title: Innovation – volume: 11 year: 2016 ident: 10.1016/j.chembiol.2024.11.001_bib59 article-title: Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin publication-title: PLoS One doi: 10.1371/journal.pone.0153495 – volume: 26 start-page: 212 year: 2007 ident: 10.1016/j.chembiol.2024.11.001_bib48 article-title: Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2006.12.019 – volume: 125 start-page: 279 year: 2001 ident: 10.1016/j.chembiol.2024.11.001_bib88 article-title: Controlling the false discovery rate in behavior genetics research publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(01)00297-2 – volume: 606 start-page: 785 year: 2022 ident: 10.1016/j.chembiol.2024.11.001_bib71 article-title: An exercise-inducible metabolite that suppresses feeding and obesity publication-title: Nature doi: 10.1038/s41586-022-04828-5 – volume: 112 start-page: 389 year: 2006 ident: 10.1016/j.chembiol.2024.11.001_bib56 article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathol. doi: 10.1007/s00401-006-0127-z – volume: 13 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib82 article-title: mixOmics: An R package for ‘omics feature selection and multiple data integration publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005752 – volume: 6 start-page: 621 year: 2014 ident: 10.1016/j.chembiol.2024.11.001_bib76 article-title: D-beta-hydroxybutyrate extends lifespan in C. elegans publication-title: Aging (Albany NY) doi: 10.18632/aging.100683 – volume: 91 start-page: 407 year: 2023 ident: 10.1016/j.chembiol.2024.11.001_bib52 article-title: HMGCS2-Induced Autophagic Degradation of Tau Involves Ketone Body and ANKRD24 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-220640 – volume: 339 start-page: 211 year: 2013 ident: 10.1016/j.chembiol.2024.11.001_bib25 article-title: Suppression of Oxidative Stress by β-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor publication-title: Science doi: 10.1126/science.1227166 – volume: 36 year: 2021 ident: 10.1016/j.chembiol.2024.11.001_bib23 article-title: Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109487 – year: 2018 ident: 10.1016/j.chembiol.2024.11.001_bib83 – volume: 45 start-page: 2481 year: 2023 ident: 10.1016/j.chembiol.2024.11.001_bib31 article-title: Ketogenic diets initiated in late mid-life improved measures of spatial memory in male mice publication-title: GeroScience doi: 10.1007/s11357-023-00769-7 – volume: 45 start-page: 5686 year: 2006 ident: 10.1016/j.chembiol.2024.11.001_bib60 article-title: A novel approach for screening the proteome for changes in protein conformation publication-title: Biochemistry doi: 10.1021/bi068010l – volume: 22 start-page: 3443 year: 2008 ident: 10.1016/j.chembiol.2024.11.001_bib70 article-title: Lactate fuels the human brain during exercise publication-title: FASEB J. doi: 10.1096/fj.08-106104 – volume: 2 start-page: 243 year: 2009 ident: 10.1016/j.chembiol.2024.11.001_bib66 article-title: Crude subcellular fractionation of cultured mammalian cell lines publication-title: BMC Res. Notes doi: 10.1186/1756-0500-2-243 – volume: 21 start-page: 1332 year: 2018 ident: 10.1016/j.chembiol.2024.11.001_bib1 article-title: Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0235-9 – volume: 164 start-page: 603 year: 2016 ident: 10.1016/j.chembiol.2024.11.001_bib3 article-title: The Cellular Phase of Alzheimer’s Disease publication-title: Cell doi: 10.1016/j.cell.2015.12.056 – volume: 349 year: 2015 ident: 10.1016/j.chembiol.2024.11.001_bib2 article-title: Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein publication-title: Science doi: 10.1126/science.1255555 – volume: 2 start-page: 526 year: 2022 ident: 10.1016/j.chembiol.2024.11.001_bib55 article-title: Biomarker modeling of Alzheimer’s disease using PET-based Braak staging publication-title: Nat. Aging doi: 10.1038/s43587-022-00204-0 – volume: 404 start-page: 1925 year: 2012 ident: 10.1016/j.chembiol.2024.11.001_bib79 article-title: Simultaneous determination of dl-lactic acid and dl-3-hydroxybutyric acid enantiomers in saliva of diabetes mellitus patients by high-throughput LC–ESI-MS/MS publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6320-0 – volume: 6 start-page: 31 year: 2009 ident: 10.1016/j.chembiol.2024.11.001_bib36 article-title: Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial publication-title: Nutr. Metab. doi: 10.1186/1743-7075-6-31 – volume: 97 start-page: 6037 year: 2000 ident: 10.1016/j.chembiol.2024.11.001_bib9 article-title: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.090106797 – volume: 285 start-page: 9525 year: 2010 ident: 10.1016/j.chembiol.2024.11.001_bib75 article-title: The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.096586 – year: 2016 ident: 10.1016/j.chembiol.2024.11.001_bib87 – volume: 2 start-page: 28 year: 2005 ident: 10.1016/j.chembiol.2024.11.001_bib46 article-title: A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease publication-title: Nutr. Metab. doi: 10.1186/1743-7075-2-28 – volume: 7 start-page: 57 year: 2012 ident: 10.1016/j.chembiol.2024.11.001_bib77 article-title: Utility of an improved model of amyloid-beta (Aβ₁₋₄₂) toxicity in Caenorhabditis elegans for drug screening for Alzheimer’s disease publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-7-57 – volume: 18 start-page: 1819 year: 2015 ident: 10.1016/j.chembiol.2024.11.001_bib86 article-title: Cell type– and brain region–resolved mouse brain proteome publication-title: Nat. Neurosci. doi: 10.1038/nn.4160 – volume: 186 start-page: 693 year: 2023 ident: 10.1016/j.chembiol.2024.11.001_bib5 article-title: Hallmarks of neurodegenerative diseases publication-title: Cell doi: 10.1016/j.cell.2022.12.032 – volume: 150 year: 2021 ident: 10.1016/j.chembiol.2024.11.001_bib73 article-title: Toxicological evaluation of the ketogenic ester bis hexanoyl (R)-1,3-butanediol: Subchronic toxicity in Sprague Dawley rats publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2021.112084 – volume: 166 start-page: 802 year: 2016 ident: 10.1016/j.chembiol.2024.11.001_bib12 article-title: Metabolic Control of Longevity publication-title: Cell doi: 10.1016/j.cell.2016.07.031 – volume: 8 start-page: 14 year: 2016 ident: 10.1016/j.chembiol.2024.11.001_bib57 article-title: Safety and tolerability of BAN2401--a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody publication-title: Alzheimer's Res. Ther. doi: 10.1186/s13195-016-0181-2 – volume: 34 start-page: 1530 year: 2013 ident: 10.1016/j.chembiol.2024.11.001_bib32 article-title: A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2012.11.023 – volume: 97 start-page: 5440 year: 2000 ident: 10.1016/j.chembiol.2024.11.001_bib44 article-title: d-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.10.5440 – volume: 388 start-page: 9 year: 2023 ident: 10.1016/j.chembiol.2024.11.001_bib58 article-title: Lecanemab in Early Alzheimer’s Disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2212948 – volume: 62 start-page: 194 year: 2016 ident: 10.1016/j.chembiol.2024.11.001_bib19 article-title: Metabolic Regulation of Gene Expression by Histone Lysine β-hydroxybutyrylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.03.036 – volume: 21 start-page: 263 year: 2015 ident: 10.1016/j.chembiol.2024.11.001_bib26 article-title: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease publication-title: Nat. Med. doi: 10.1038/nm.3804 – volume: 25 start-page: 262 year: 2017 ident: 10.1016/j.chembiol.2024.11.001_bib17 article-title: Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.12.022 – reference: 37461525 - bioRxiv. 2023 Jul 03:2023.07.03.547547. doi: 10.1101/2023.07.03.547547. |
SSID | ssj0001637137 |
Score | 2.489136 |
Snippet | Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 174 |
SubjectTerms | 3-Hydroxybutyric Acid - metabolism 3-Hydroxybutyric Acid - pharmacology aging Aging - metabolism Alzheimer disease Alzheimer Disease - metabolism Alzheimer Disease - pathology Amyloid beta-Peptides - metabolism Animals Brain - metabolism Brain - pathology Humans ketone body Mice neurodegenerative disease proteostasis Proteostasis - drug effects |
Title | β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain |
URI | https://dx.doi.org/10.1016/j.chembiol.2024.11.001 https://www.ncbi.nlm.nih.gov/pubmed/39626664 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbp9tJLabt9bF_o0O0l2E1s-XVMw5alsKGQXdibkWSZeEnsJetQkv_TP9Af0t_UGUl-tATSx8UYEclC82U0Gs18Q8g75cvQE17ucMYjh4UqdkSUwyklYILl-Yj5HPOdL2bh-RX7fB1cDwbfelFLm1q4crc3r-RfpAptIFfMkv0LybaDQgO8g3zhCRKG5x_J-HR6dvrRcxbbDINRxKbeIvED1ijXpaFBvkvN0KzLzVf6PkDzMlRgEiIRiY1xBJWiCVuHk-VuoYoVFg039zZDgRUk-gbsFH19smEZsBROnVs7W3B7szQv4B3vhOZud6nDQcXyXRtdhuntnW5e86UxZef867YLGp5Vq40uhjS8KOq7TVmti76rwsOoQMdkUhr_WZND0wUsgZrzWDB2EhZYQuw9bVZPd37QFo9G6Y5NnR-7f8MB1FXx3t3BOCpuXFwlXCAXJslcJHG1DpVfmbfnOA2cBcbZsiCJ75H7XgQmmtb_QefKC_3IsLO28-7lou__3AEzqGfjXD4iD-3hhE4M0h6TgSqfkONJCeBZbel7qsOFtcSPifzx_Xfg0eKOctoCj7bAo1VO-8CjRUkBeBSBRwF4tAUetcCjGnhPydWns8vpuWMrdjjSD-PaUb7PRtJToUok7F4hx1v4IBJylORRrqQYhyoQseRwClexl2UiSrIAf4iFIv3Mf0aOyqpULwiNRjDYWIAKwYpEkSdkwDjsNiwch_mIj09I0CxgKi2dPVZVWaZN3OJN2ix8igsPZ10M4DwhH9p-t4bQ5WCPpJFPas1SY26mgKuDfZ8bgbbf8pMQbOKQvfyPUV-RB93f6zU5qtcb9QZs41q81ciE5-zLxU9vtb4U |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B2-hydroxybutyrate+is+a+metabolic+regulator+of+proteostasis+in+the+aged+and+Alzheimer+disease+brain&rft.jtitle=Cell+chemical+biology&rft.au=Madhavan%2C+Sidharth+S.&rft.au=Roa+Diaz%2C+Stephanie&rft.au=Peralta%2C+Sawyer&rft.au=Nomura%2C+Mitsunori&rft.date=2025-01-16&rft.pub=Elsevier+Ltd&rft.issn=2451-9456&rft.eissn=2451-9456&rft.volume=32&rft.issue=1&rft.spage=174&rft.epage=191.e8&rft_id=info:doi/10.1016%2Fj.chembiol.2024.11.001&rft.externalDocID=S2451945624004598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9456&client=summon |