Magnetofection is superior to other chemical transfection methods in a microglial cell line

•Glial-Mag magnetofection is a novel method for transfection optimized for phagocytic BV2 cells.•Compared to other chemical transfection methods, Glial-Mag magnetofection yields a high transfection efficiency.•Efficient transfection leads to a short-lived activation of BV2 cells that ceases within 4...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 293; pp. 169 - 173
Main Authors Smolders, Silke, Kessels, Sofie, Smolders, Sophie Marie-Thérèse, Poulhes, Florent, Zelphati, Olivier, Sapet, Cedric, Brône, Bert
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2018
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2017.09.017

Cover

Abstract •Glial-Mag magnetofection is a novel method for transfection optimized for phagocytic BV2 cells.•Compared to other chemical transfection methods, Glial-Mag magnetofection yields a high transfection efficiency.•Efficient transfection leads to a short-lived activation of BV2 cells that ceases within 48h. Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection. Magnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines. Magnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection. Here we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%). Transfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines.
AbstractList Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection.BACKGROUNDMicroglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection.Magnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines.NEW METHODMagnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines.Magnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection.RESULTSMagnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection.Here we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%).COMPARISON WITH EXISTING METHODSHere we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%).Transfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines.CONCLUSIONTransfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines.
Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection. Magnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines. Magnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection. Here we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%). Transfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines.
•Glial-Mag magnetofection is a novel method for transfection optimized for phagocytic BV2 cells.•Compared to other chemical transfection methods, Glial-Mag magnetofection yields a high transfection efficiency.•Efficient transfection leads to a short-lived activation of BV2 cells that ceases within 48h. Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection. Magnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines. Magnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection. Here we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%). Transfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines.
Author Brône, Bert
Smolders, Silke
Kessels, Sofie
Poulhes, Florent
Zelphati, Olivier
Sapet, Cedric
Smolders, Sophie Marie-Thérèse
Author_xml – sequence: 1
  givenname: Silke
  surname: Smolders
  fullname: Smolders, Silke
  email: silke.smolders@uhasselt.be
  organization: UHasselt, BIOMED, Diepenbeek, Belgium
– sequence: 2
  givenname: Sofie
  surname: Kessels
  fullname: Kessels, Sofie
  email: sofie.kessels@uhasselt.be
  organization: UHasselt, BIOMED, Diepenbeek, Belgium
– sequence: 3
  givenname: Sophie Marie-Thérèse
  surname: Smolders
  fullname: Smolders, Sophie Marie-Thérèse
  email: sophie.smolders@uhasselt.be
  organization: UHasselt, BIOMED, Diepenbeek, Belgium
– sequence: 4
  givenname: Florent
  surname: Poulhes
  fullname: Poulhes, Florent
  email: fpoulhes@ozbiosciences.com
  organization: Oz Biosciences,parc Scientifique De Luminy − Zone Entreprise. 163 Avenue De Luminy, Case 922. 13288 Marseille Cedex 9, France
– sequence: 5
  givenname: Olivier
  surname: Zelphati
  fullname: Zelphati, Olivier
  email: ozelphati@ozbiosciences.com
  organization: Oz Biosciences,parc Scientifique De Luminy − Zone Entreprise. 163 Avenue De Luminy, Case 922. 13288 Marseille Cedex 9, France
– sequence: 6
  givenname: Cedric
  surname: Sapet
  fullname: Sapet, Cedric
  email: csapet@ozbiosciences.com
  organization: Oz Biosciences,parc Scientifique De Luminy − Zone Entreprise. 163 Avenue De Luminy, Case 922. 13288 Marseille Cedex 9, France
– sequence: 7
  givenname: Bert
  surname: Brône
  fullname: Brône, Bert
  email: Bert.brone@uhasselt.be
  organization: UHasselt, BIOMED, Diepenbeek, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28970164$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFP3DAQha2KqizQv4B87CXB9ia2I_VQhApUAnEpEhIHy7EnrFeJvdgOUv99HS174cLpHeZ7M_PeCTrywQNC55TUlFB-sa23HuYJ8qZmhIqadHWRL2hFpWAVF_LpCK0K2FaECXKMTlLaEkKajvBv6JjJTpRhs0LP9_rFQw4DmOyCxy7hNO8guhBxDjjkDURsNjA5o0eco_bpgC7Hg03YeaxxmcfwMroCGRhHPDoPZ-jroMcE39_1FD1e__57dVvdPdz8ubq8q8yay1xZqxvZMgr9QDtOW0GksIQRWDfaso4zbqDvBZSc_TA0rIVWMNIyQ4EJK-z6FP3Y793F8DpDympyaflCewhzUrRreLMWUsqCnr-jcz-BVbvoJh3_qUMhBfi5B0qclCIMyrisl7wluxsVJWrpX23VoX-19K9Ip4oUO_9gP1z41Phrb4RS1JuDqJJx4A1YF0vfygb32Yr_JP-k0A
CitedBy_id crossref_primary_10_1016_j_isci_2024_109454
crossref_primary_10_2147_BTT_S302095
crossref_primary_10_61229_mpj_v1i1_4
crossref_primary_10_1021_acsanm_4c04586
crossref_primary_10_1016_j_jddst_2019_101282
crossref_primary_10_1016_j_biomaterials_2020_120282
crossref_primary_10_1016_j_jneumeth_2018_11_004
crossref_primary_10_1007_s41061_019_0277_9
crossref_primary_10_4103_1673_5374_249221
crossref_primary_10_2174_1566523219666190902154511
crossref_primary_10_1186_s12974_019_1538_9
crossref_primary_10_3389_fnins_2018_00299
crossref_primary_10_1002_adma_202005363
crossref_primary_10_1021_acsanm_0c02465
crossref_primary_10_1016_j_jmmm_2020_166606
Cites_doi 10.1016/j.biomaterials.2013.09.068
10.1186/1742-2094-9-115
10.1016/j.neures.2015.06.005
10.1016/j.devcel.2015.01.018
10.1016/j.pneurobio.2017.01.002
10.1038/nn.3599
10.1002/glia.22988
10.1002/glia.23006
10.1016/j.neuron.2012.03.026
10.1007/s00401-014-1310-2
10.1007/978-1-59745-396-7_9
10.4103/1673-5374.145362
10.1016/j.addr.2011.08.002
10.1007/s12031-015-0678-3
10.1155/2015/458624
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jneumeth.2017.09.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 173
ExternalDocumentID 28970164
10_1016_j_jneumeth_2017_09_017
S0165027017303461
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c368t-dda48521ebf196157087d020e34ad29626cebb7e201bff425e572052c1e27d7d3
IEDL.DBID AIKHN
ISSN 0165-0270
1872-678X
IngestDate Fri Sep 05 14:23:23 EDT 2025
Thu Apr 03 06:56:00 EDT 2025
Tue Jul 01 02:57:08 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Fri Feb 23 02:47:44 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-dda48521ebf196157087d020e34ad29626cebb7e201bff425e572052c1e27d7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28970164
PQID 1946437888
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1946437888
pubmed_primary_28970164
crossref_citationtrail_10_1016_j_jneumeth_2017_09_017
crossref_primary_10_1016_j_jneumeth_2017_09_017
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_09_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
2018-01-00
2018-Jan-01
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Stansley, Post, Hensley (bib0060) 2012; 9
Wang (bib0065) 2016; 58
Plank, Zelphati, Mykhaylyk (bib0045) 2011; 63
Bogie, Stinissen, Hendriks (bib0005) 2014; 128
Koyama, Ikegaya (bib0030) 2015; 100
Casano, Peri (bib0015) 2015; 32
Eyo, Murugan, Wu (bib0020) 2017; 65
Godinho (bib0025) 2014; 35
Mosser (bib0040) 2017; 149–150
Schafer (bib0055) 2012; 74
Wes (bib0070) 2016; 64
Butovsky (bib0010) 2014; 17
Li (bib0035) 2014; 9
Zhang, Edwards, Mosser (bib0075) 2009; 531
Rao, Morales, Pearse (bib0050) 2015; 2015
Plank (10.1016/j.jneumeth.2017.09.017_bib0045) 2011; 63
Rao (10.1016/j.jneumeth.2017.09.017_bib0050) 2015; 2015
Butovsky (10.1016/j.jneumeth.2017.09.017_bib0010) 2014; 17
Wes (10.1016/j.jneumeth.2017.09.017_bib0070) 2016; 64
Schafer (10.1016/j.jneumeth.2017.09.017_bib0055) 2012; 74
Eyo (10.1016/j.jneumeth.2017.09.017_bib0020) 2017; 65
Mosser (10.1016/j.jneumeth.2017.09.017_bib0040) 2017; 149–150
Li (10.1016/j.jneumeth.2017.09.017_bib0035) 2014; 9
Bogie (10.1016/j.jneumeth.2017.09.017_bib0005) 2014; 128
Stansley (10.1016/j.jneumeth.2017.09.017_bib0060) 2012; 9
Casano (10.1016/j.jneumeth.2017.09.017_bib0015) 2015; 32
Koyama (10.1016/j.jneumeth.2017.09.017_bib0030) 2015; 100
Wang (10.1016/j.jneumeth.2017.09.017_bib0065) 2016; 58
Zhang (10.1016/j.jneumeth.2017.09.017_bib0075) 2009; 531
Godinho (10.1016/j.jneumeth.2017.09.017_bib0025) 2014; 35
References_xml – volume: 128
  start-page: 191
  year: 2014
  end-page: 213
  ident: bib0005
  article-title: Macrophage subsets and microglia in multiple sclerosis
  publication-title: Acta Neuropathol.
– volume: 531
  start-page: 123
  year: 2009
  end-page: 143
  ident: bib0075
  article-title: The expression of exogenous genes in macrophages: obstacles and opportunities
  publication-title: Methods Mol. Biol.
– volume: 149–150
  start-page: 1
  year: 2017
  end-page: 20
  ident: bib0040
  article-title: Microglia in CNS development: shaping the brain for the future
  publication-title: Prog. Neurobiol.
– volume: 64
  start-page: 1710
  year: 2016
  end-page: 1732
  ident: bib0070
  article-title: Targeting microglia for the treatment of Alzheimer's Disease
  publication-title: Glia
– volume: 100
  start-page: 1
  year: 2015
  end-page: 5
  ident: bib0030
  article-title: Microglia in the pathogenesis of autism spectrum disorders
  publication-title: Neurosci. Res.
– volume: 9
  start-page: 1923
  year: 2014
  end-page: 1928
  ident: bib0035
  article-title: Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells
  publication-title: Neural Regener. Res.
– volume: 2015
  start-page: 458624
  year: 2015
  ident: bib0050
  article-title: The comparative utility of viromer RED and lipofectamine for transient gene introduction into glial cells
  publication-title: BioMed Res. Int.
– volume: 9
  start-page: 115
  year: 2012
  ident: bib0060
  article-title: A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease
  publication-title: J. Neuroinflammation
– volume: 63
  start-page: 1300
  year: 2011
  end-page: 1331
  ident: bib0045
  article-title: Magnetically enhanced nucleic acid delivery:
  publication-title: Adv. Drug Deliv. Rev.
– volume: 65
  start-page: 5
  year: 2017
  end-page: 18
  ident: bib0020
  article-title: Microglia-Neuron communication in epilepsy
  publication-title: Glia
– volume: 74
  start-page: 691
  year: 2012
  end-page: 705
  ident: bib0055
  article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner
  publication-title: Neuron
– volume: 17
  start-page: 131
  year: 2014
  end-page: 143
  ident: bib0010
  article-title: Identification of a unique TGF-beta-dependent molecular and functional signature in microglia
  publication-title: Nat. Neurosci.
– volume: 58
  start-page: 287
  year: 2016
  end-page: 296
  ident: bib0065
  article-title: TRAM1 promotes microglia M1 polarization
  publication-title: J. Mol. Neurosci.
– volume: 35
  start-page: 489
  year: 2014
  end-page: 499
  ident: bib0025
  article-title: Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system
  publication-title: Biomaterials
– volume: 32
  start-page: 469
  year: 2015
  end-page: 477
  ident: bib0015
  article-title: Microglia: multitasking specialists of the brain
  publication-title: Dev. Cell
– volume: 35
  start-page: 489
  issue: 1
  year: 2014
  ident: 10.1016/j.jneumeth.2017.09.017_bib0025
  article-title: Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.09.068
– volume: 9
  start-page: 115
  year: 2012
  ident: 10.1016/j.jneumeth.2017.09.017_bib0060
  article-title: A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-9-115
– volume: 100
  start-page: 1
  year: 2015
  ident: 10.1016/j.jneumeth.2017.09.017_bib0030
  article-title: Microglia in the pathogenesis of autism spectrum disorders
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2015.06.005
– volume: 32
  start-page: 469
  issue: 4
  year: 2015
  ident: 10.1016/j.jneumeth.2017.09.017_bib0015
  article-title: Microglia: multitasking specialists of the brain
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.01.018
– volume: 149–150
  start-page: 1
  year: 2017
  ident: 10.1016/j.jneumeth.2017.09.017_bib0040
  article-title: Microglia in CNS development: shaping the brain for the future
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2017.01.002
– volume: 17
  start-page: 131
  issue: 1
  year: 2014
  ident: 10.1016/j.jneumeth.2017.09.017_bib0010
  article-title: Identification of a unique TGF-beta-dependent molecular and functional signature in microglia
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3599
– volume: 64
  start-page: 1710
  issue: 10
  year: 2016
  ident: 10.1016/j.jneumeth.2017.09.017_bib0070
  article-title: Targeting microglia for the treatment of Alzheimer's Disease
  publication-title: Glia
  doi: 10.1002/glia.22988
– volume: 65
  start-page: 5
  issue: 1
  year: 2017
  ident: 10.1016/j.jneumeth.2017.09.017_bib0020
  article-title: Microglia-Neuron communication in epilepsy
  publication-title: Glia
  doi: 10.1002/glia.23006
– volume: 74
  start-page: 691
  issue: 4
  year: 2012
  ident: 10.1016/j.jneumeth.2017.09.017_bib0055
  article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.026
– volume: 128
  start-page: 191
  issue: 2
  year: 2014
  ident: 10.1016/j.jneumeth.2017.09.017_bib0005
  article-title: Macrophage subsets and microglia in multiple sclerosis
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-014-1310-2
– volume: 531
  start-page: 123
  year: 2009
  ident: 10.1016/j.jneumeth.2017.09.017_bib0075
  article-title: The expression of exogenous genes in macrophages: obstacles and opportunities
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-396-7_9
– volume: 9
  start-page: 1923
  issue: 21
  year: 2014
  ident: 10.1016/j.jneumeth.2017.09.017_bib0035
  article-title: Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells
  publication-title: Neural Regener. Res.
  doi: 10.4103/1673-5374.145362
– volume: 63
  start-page: 1300
  issue: 14–15
  year: 2011
  ident: 10.1016/j.jneumeth.2017.09.017_bib0045
  article-title: Magnetically enhanced nucleic acid delivery: Ten years of magnetofection-progress and prospects
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.08.002
– volume: 58
  start-page: 287
  issue: 2
  year: 2016
  ident: 10.1016/j.jneumeth.2017.09.017_bib0065
  article-title: TRAM1 promotes microglia M1 polarization
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-015-0678-3
– volume: 2015
  start-page: 458624
  year: 2015
  ident: 10.1016/j.jneumeth.2017.09.017_bib0050
  article-title: The comparative utility of viromer RED and lipofectamine for transient gene introduction into glial cells
  publication-title: BioMed Res. Int.
  doi: 10.1155/2015/458624
SSID ssj0004906
Score 2.33617
Snippet •Glial-Mag magnetofection is a novel method for transfection optimized for phagocytic BV2 cells.•Compared to other chemical transfection methods, Glial-Mag...
Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms Animals
Cell Line
Enzyme-Linked Immunosorbent Assay
Flow Cytometry
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Immunohistochemistry
Interleukin-6 - genetics
Interleukin-6 - metabolism
Magnetic Fields
Magnetite Nanoparticles - administration & dosage
Mice
Microglia - cytology
Microglia - metabolism
Microscopy, Fluorescence
Transfection - methods
Title Magnetofection is superior to other chemical transfection methods in a microglial cell line
URI https://dx.doi.org/10.1016/j.jneumeth.2017.09.017
https://www.ncbi.nlm.nih.gov/pubmed/28970164
https://www.proquest.com/docview/1946437888
Volume 293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-VIk28TAMGFAbyJLS30MR2muSxQkPdpvICSEh7sOLEQa2Kg2j6sBf-du4cp4C0iYc9RYlsxbo73_3Ovg-AU5MJTVXOAyMED6SWMshyzQOdy0LoONbcNYOZXo4mN_LnbXzbg_MuF4bCKr3ub3W609b-y9BTc_gwmw2vKBEHnSoUKVTDklygTY7WPu3D5vjHr8nlS3pk5lps0ni6sgxfJQrPz-bWrKhZM0V5Ja7kqetd9lcb9S8M6mzRxSf46EEkG7fr3IaesTuwO7boQN__Yd-YC-t05-U78GHqb8934fc0v7OmqdvwK8tmS7ZcUaXj-pE1NXO5WKzwFQRY4yCtH9o2ml6ymWU5u6cgvrsFSi6jc39GSPUz3Fx8vz6fBL65QlCIUdoEZZnLFG230RVuwihOwjQpETsaIfOSZ-jnFEbrxCBZdFXhzjZxwsOYF5HhSZmUYg_6trbmAJjhCNuqalQh9pEaEYhAVVGMZBWFZSRyOYC4I6cqfOVxaoCxUF2I2Vx1bFDEBhVmCh8DGK7nPbS1N96dkXXcUm-kSKGBeHfu1469CrcY0S-3pl4tVZRJut5M03QA-y3f1-tBfzWhKmWH__HnI9jCt7Q92PkC_eZxZY4R6jT6BDbOnqITL9DPTx39pQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEB9kBX2Xh5_vrZ8RHt7qtk26bY-LKOvH7kUFwUNo2lR20VTc7sH_3pk01ScoHjwV2oSGmcnMb5L5APinU66oyrmnOQ89oYTw0kyFnspEzlUUqdA2gxmN-8MbcX4b3S7AcZsLQ2GVTvc3Ot1qa_em56jZe5pMeleUiINOFYoUqmFBLtCioKbWHVgcnF0Mx-_pkaltsUnj6crS_y9ReHo0NXpOzZopyiu2JU9t77JPbdRXGNTaotMV-O1AJBs061yFBW3WYH1g0IF-fGGHzIZ12vPyNVgaudvzdbgbZfdG11UTfmXYZMZmc6p0XD2zumI2F4vlroIAqy2kdUObRtMzNjEsY48UxHf_gJLL6NyfEVLdgJvTk-vjoeeaK3g57ye1VxSZSNB2a1XiJgyi2E_iArGj5iIrwhT9nFwrFWskiypL3Nk6ikM_CvNAh3ERF3wTOqYy-i8wHSJsK8t-idhHKEQgHFVF3hdl4BcBz0QXopacMneVx6kBxoNsQ8ymsmWDJDZIP5X46ELvbd5TU3vj2xlpyy35QYokGohv5x607JW4xYh-mdHVfCaDVND1ZpIkXfjT8P1tPeivxlSlbOsHf96H5eH16FJeno0vtuEXfkmaQ54d6NTPc72LsKdWe06sXwFJD_-L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetofection+is+superior+to+other+chemical+transfection+methods+in+a+microglial+cell+line&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Smolders%2C+Silke&rft.au=Kessels%2C+Sofie&rft.au=Smolders%2C+Sophie+Marie-Th%C3%A9r%C3%A8se&rft.au=Poulhes%2C+Florent&rft.date=2018-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=293&rft.spage=169&rft.epage=173&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.09.017&rft.externalDocID=S0165027017303461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon