Magnetofection is superior to other chemical transfection methods in a microglial cell line
•Glial-Mag magnetofection is a novel method for transfection optimized for phagocytic BV2 cells.•Compared to other chemical transfection methods, Glial-Mag magnetofection yields a high transfection efficiency.•Efficient transfection leads to a short-lived activation of BV2 cells that ceases within 4...
Saved in:
Published in | Journal of neuroscience methods Vol. 293; pp. 169 - 173 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X 1872-678X |
DOI | 10.1016/j.jneumeth.2017.09.017 |
Cover
Abstract | •Glial-Mag magnetofection is a novel method for transfection optimized for phagocytic BV2 cells.•Compared to other chemical transfection methods, Glial-Mag magnetofection yields a high transfection efficiency.•Efficient transfection leads to a short-lived activation of BV2 cells that ceases within 48h.
Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection.
Magnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines.
Magnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection.
Here we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%).
Transfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines. |
---|---|
AbstractList | Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection.BACKGROUNDMicroglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection.Magnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines.NEW METHODMagnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines.Magnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection.RESULTSMagnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection.Here we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%).COMPARISON WITH EXISTING METHODSHere we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%).Transfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines.CONCLUSIONTransfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines. Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection. Magnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines. Magnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection. Here we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%). Transfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines. •Glial-Mag magnetofection is a novel method for transfection optimized for phagocytic BV2 cells.•Compared to other chemical transfection methods, Glial-Mag magnetofection yields a high transfection efficiency.•Efficient transfection leads to a short-lived activation of BV2 cells that ceases within 48h. Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain physiology. In general, phagocytic cells are hard to transfect with plasmid DNA. The BV2 cell line is a murine cell line of microglial origin which is often used to study this cell type in vitro. Unfortunately, this microglial cell line is, like other phagocytic cells, resistant to transfection. Magnetofection is a well-established transfection method that combines DNA with magnetic particles which, under the influence of a magnetic field, ensures a high concentration of particles in proximity of cultured cells. Only recently, Glial-Mag was specifically developed for efficient transfection of microglia and microglial cell lines. Magnetofection with Glial-Mag yielded a transfection efficiency of 34.95% in BV2 cells, 24h after transfection with an eGFP-expressing plasmid. Efficient gene delivery caused a modest and short-lived cell activation (as measured by IL6 secretion) that ceased by 24h after transfection. Here we show that Glial-Mag magnetofection of BV2 cells yielded a significantly higher transfection efficiency (34.95%) compared to other chemical transfection methods including calcium-phoshate precipication (0.34%), X-tremeGENE (3.30%) and Lipofectamine 2000 (12.51%). Transfection of BV2 cells using Glial-Mag magnetofection is superior compared to other chemical transfection methods and could be considered as the method of choice to chemically transfect microglial cell lines. |
Author | Brône, Bert Smolders, Silke Kessels, Sofie Poulhes, Florent Zelphati, Olivier Sapet, Cedric Smolders, Sophie Marie-Thérèse |
Author_xml | – sequence: 1 givenname: Silke surname: Smolders fullname: Smolders, Silke email: silke.smolders@uhasselt.be organization: UHasselt, BIOMED, Diepenbeek, Belgium – sequence: 2 givenname: Sofie surname: Kessels fullname: Kessels, Sofie email: sofie.kessels@uhasselt.be organization: UHasselt, BIOMED, Diepenbeek, Belgium – sequence: 3 givenname: Sophie Marie-Thérèse surname: Smolders fullname: Smolders, Sophie Marie-Thérèse email: sophie.smolders@uhasselt.be organization: UHasselt, BIOMED, Diepenbeek, Belgium – sequence: 4 givenname: Florent surname: Poulhes fullname: Poulhes, Florent email: fpoulhes@ozbiosciences.com organization: Oz Biosciences,parc Scientifique De Luminy − Zone Entreprise. 163 Avenue De Luminy, Case 922. 13288 Marseille Cedex 9, France – sequence: 5 givenname: Olivier surname: Zelphati fullname: Zelphati, Olivier email: ozelphati@ozbiosciences.com organization: Oz Biosciences,parc Scientifique De Luminy − Zone Entreprise. 163 Avenue De Luminy, Case 922. 13288 Marseille Cedex 9, France – sequence: 6 givenname: Cedric surname: Sapet fullname: Sapet, Cedric email: csapet@ozbiosciences.com organization: Oz Biosciences,parc Scientifique De Luminy − Zone Entreprise. 163 Avenue De Luminy, Case 922. 13288 Marseille Cedex 9, France – sequence: 7 givenname: Bert surname: Brône fullname: Brône, Bert email: Bert.brone@uhasselt.be organization: UHasselt, BIOMED, Diepenbeek, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28970164$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEFP3DAQha2KqizQv4B87CXB9ia2I_VQhApUAnEpEhIHy7EnrFeJvdgOUv99HS174cLpHeZ7M_PeCTrywQNC55TUlFB-sa23HuYJ8qZmhIqadHWRL2hFpWAVF_LpCK0K2FaECXKMTlLaEkKajvBv6JjJTpRhs0LP9_rFQw4DmOyCxy7hNO8guhBxDjjkDURsNjA5o0eco_bpgC7Hg03YeaxxmcfwMroCGRhHPDoPZ-jroMcE39_1FD1e__57dVvdPdz8ubq8q8yay1xZqxvZMgr9QDtOW0GksIQRWDfaso4zbqDvBZSc_TA0rIVWMNIyQ4EJK-z6FP3Y793F8DpDympyaflCewhzUrRreLMWUsqCnr-jcz-BVbvoJh3_qUMhBfi5B0qclCIMyrisl7wluxsVJWrpX23VoX-19K9Ip4oUO_9gP1z41Phrb4RS1JuDqJJx4A1YF0vfygb32Yr_JP-k0A |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_109454 crossref_primary_10_2147_BTT_S302095 crossref_primary_10_61229_mpj_v1i1_4 crossref_primary_10_1021_acsanm_4c04586 crossref_primary_10_1016_j_jddst_2019_101282 crossref_primary_10_1016_j_biomaterials_2020_120282 crossref_primary_10_1016_j_jneumeth_2018_11_004 crossref_primary_10_1007_s41061_019_0277_9 crossref_primary_10_4103_1673_5374_249221 crossref_primary_10_2174_1566523219666190902154511 crossref_primary_10_1186_s12974_019_1538_9 crossref_primary_10_3389_fnins_2018_00299 crossref_primary_10_1002_adma_202005363 crossref_primary_10_1021_acsanm_0c02465 crossref_primary_10_1016_j_jmmm_2020_166606 |
Cites_doi | 10.1016/j.biomaterials.2013.09.068 10.1186/1742-2094-9-115 10.1016/j.neures.2015.06.005 10.1016/j.devcel.2015.01.018 10.1016/j.pneurobio.2017.01.002 10.1038/nn.3599 10.1002/glia.22988 10.1002/glia.23006 10.1016/j.neuron.2012.03.026 10.1007/s00401-014-1310-2 10.1007/978-1-59745-396-7_9 10.4103/1673-5374.145362 10.1016/j.addr.2011.08.002 10.1007/s12031-015-0678-3 10.1155/2015/458624 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jneumeth.2017.09.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 173 |
ExternalDocumentID | 28970164 10_1016_j_jneumeth_2017_09_017 S0165027017303461 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c368t-dda48521ebf196157087d020e34ad29626cebb7e201bff425e572052c1e27d7d3 |
IEDL.DBID | AIKHN |
ISSN | 0165-0270 1872-678X |
IngestDate | Fri Sep 05 14:23:23 EDT 2025 Thu Apr 03 06:56:00 EDT 2025 Tue Jul 01 02:57:08 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Fri Feb 23 02:47:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-dda48521ebf196157087d020e34ad29626cebb7e201bff425e572052c1e27d7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28970164 |
PQID | 1946437888 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1946437888 pubmed_primary_28970164 crossref_citationtrail_10_1016_j_jneumeth_2017_09_017 crossref_primary_10_1016_j_jneumeth_2017_09_017 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_09_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 2018-01-00 2018-Jan-01 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Stansley, Post, Hensley (bib0060) 2012; 9 Wang (bib0065) 2016; 58 Plank, Zelphati, Mykhaylyk (bib0045) 2011; 63 Bogie, Stinissen, Hendriks (bib0005) 2014; 128 Koyama, Ikegaya (bib0030) 2015; 100 Casano, Peri (bib0015) 2015; 32 Eyo, Murugan, Wu (bib0020) 2017; 65 Godinho (bib0025) 2014; 35 Mosser (bib0040) 2017; 149–150 Schafer (bib0055) 2012; 74 Wes (bib0070) 2016; 64 Butovsky (bib0010) 2014; 17 Li (bib0035) 2014; 9 Zhang, Edwards, Mosser (bib0075) 2009; 531 Rao, Morales, Pearse (bib0050) 2015; 2015 Plank (10.1016/j.jneumeth.2017.09.017_bib0045) 2011; 63 Rao (10.1016/j.jneumeth.2017.09.017_bib0050) 2015; 2015 Butovsky (10.1016/j.jneumeth.2017.09.017_bib0010) 2014; 17 Wes (10.1016/j.jneumeth.2017.09.017_bib0070) 2016; 64 Schafer (10.1016/j.jneumeth.2017.09.017_bib0055) 2012; 74 Eyo (10.1016/j.jneumeth.2017.09.017_bib0020) 2017; 65 Mosser (10.1016/j.jneumeth.2017.09.017_bib0040) 2017; 149–150 Li (10.1016/j.jneumeth.2017.09.017_bib0035) 2014; 9 Bogie (10.1016/j.jneumeth.2017.09.017_bib0005) 2014; 128 Stansley (10.1016/j.jneumeth.2017.09.017_bib0060) 2012; 9 Casano (10.1016/j.jneumeth.2017.09.017_bib0015) 2015; 32 Koyama (10.1016/j.jneumeth.2017.09.017_bib0030) 2015; 100 Wang (10.1016/j.jneumeth.2017.09.017_bib0065) 2016; 58 Zhang (10.1016/j.jneumeth.2017.09.017_bib0075) 2009; 531 Godinho (10.1016/j.jneumeth.2017.09.017_bib0025) 2014; 35 |
References_xml | – volume: 128 start-page: 191 year: 2014 end-page: 213 ident: bib0005 article-title: Macrophage subsets and microglia in multiple sclerosis publication-title: Acta Neuropathol. – volume: 531 start-page: 123 year: 2009 end-page: 143 ident: bib0075 article-title: The expression of exogenous genes in macrophages: obstacles and opportunities publication-title: Methods Mol. Biol. – volume: 149–150 start-page: 1 year: 2017 end-page: 20 ident: bib0040 article-title: Microglia in CNS development: shaping the brain for the future publication-title: Prog. Neurobiol. – volume: 64 start-page: 1710 year: 2016 end-page: 1732 ident: bib0070 article-title: Targeting microglia for the treatment of Alzheimer's Disease publication-title: Glia – volume: 100 start-page: 1 year: 2015 end-page: 5 ident: bib0030 article-title: Microglia in the pathogenesis of autism spectrum disorders publication-title: Neurosci. Res. – volume: 9 start-page: 1923 year: 2014 end-page: 1928 ident: bib0035 article-title: Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells publication-title: Neural Regener. Res. – volume: 2015 start-page: 458624 year: 2015 ident: bib0050 article-title: The comparative utility of viromer RED and lipofectamine for transient gene introduction into glial cells publication-title: BioMed Res. Int. – volume: 9 start-page: 115 year: 2012 ident: bib0060 article-title: A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease publication-title: J. Neuroinflammation – volume: 63 start-page: 1300 year: 2011 end-page: 1331 ident: bib0045 article-title: Magnetically enhanced nucleic acid delivery: publication-title: Adv. Drug Deliv. Rev. – volume: 65 start-page: 5 year: 2017 end-page: 18 ident: bib0020 article-title: Microglia-Neuron communication in epilepsy publication-title: Glia – volume: 74 start-page: 691 year: 2012 end-page: 705 ident: bib0055 article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner publication-title: Neuron – volume: 17 start-page: 131 year: 2014 end-page: 143 ident: bib0010 article-title: Identification of a unique TGF-beta-dependent molecular and functional signature in microglia publication-title: Nat. Neurosci. – volume: 58 start-page: 287 year: 2016 end-page: 296 ident: bib0065 article-title: TRAM1 promotes microglia M1 polarization publication-title: J. Mol. Neurosci. – volume: 35 start-page: 489 year: 2014 end-page: 499 ident: bib0025 article-title: Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system publication-title: Biomaterials – volume: 32 start-page: 469 year: 2015 end-page: 477 ident: bib0015 article-title: Microglia: multitasking specialists of the brain publication-title: Dev. Cell – volume: 35 start-page: 489 issue: 1 year: 2014 ident: 10.1016/j.jneumeth.2017.09.017_bib0025 article-title: Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.09.068 – volume: 9 start-page: 115 year: 2012 ident: 10.1016/j.jneumeth.2017.09.017_bib0060 article-title: A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-9-115 – volume: 100 start-page: 1 year: 2015 ident: 10.1016/j.jneumeth.2017.09.017_bib0030 article-title: Microglia in the pathogenesis of autism spectrum disorders publication-title: Neurosci. Res. doi: 10.1016/j.neures.2015.06.005 – volume: 32 start-page: 469 issue: 4 year: 2015 ident: 10.1016/j.jneumeth.2017.09.017_bib0015 article-title: Microglia: multitasking specialists of the brain publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.01.018 – volume: 149–150 start-page: 1 year: 2017 ident: 10.1016/j.jneumeth.2017.09.017_bib0040 article-title: Microglia in CNS development: shaping the brain for the future publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2017.01.002 – volume: 17 start-page: 131 issue: 1 year: 2014 ident: 10.1016/j.jneumeth.2017.09.017_bib0010 article-title: Identification of a unique TGF-beta-dependent molecular and functional signature in microglia publication-title: Nat. Neurosci. doi: 10.1038/nn.3599 – volume: 64 start-page: 1710 issue: 10 year: 2016 ident: 10.1016/j.jneumeth.2017.09.017_bib0070 article-title: Targeting microglia for the treatment of Alzheimer's Disease publication-title: Glia doi: 10.1002/glia.22988 – volume: 65 start-page: 5 issue: 1 year: 2017 ident: 10.1016/j.jneumeth.2017.09.017_bib0020 article-title: Microglia-Neuron communication in epilepsy publication-title: Glia doi: 10.1002/glia.23006 – volume: 74 start-page: 691 issue: 4 year: 2012 ident: 10.1016/j.jneumeth.2017.09.017_bib0055 article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner publication-title: Neuron doi: 10.1016/j.neuron.2012.03.026 – volume: 128 start-page: 191 issue: 2 year: 2014 ident: 10.1016/j.jneumeth.2017.09.017_bib0005 article-title: Macrophage subsets and microglia in multiple sclerosis publication-title: Acta Neuropathol. doi: 10.1007/s00401-014-1310-2 – volume: 531 start-page: 123 year: 2009 ident: 10.1016/j.jneumeth.2017.09.017_bib0075 article-title: The expression of exogenous genes in macrophages: obstacles and opportunities publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-396-7_9 – volume: 9 start-page: 1923 issue: 21 year: 2014 ident: 10.1016/j.jneumeth.2017.09.017_bib0035 article-title: Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells publication-title: Neural Regener. Res. doi: 10.4103/1673-5374.145362 – volume: 63 start-page: 1300 issue: 14–15 year: 2011 ident: 10.1016/j.jneumeth.2017.09.017_bib0045 article-title: Magnetically enhanced nucleic acid delivery: Ten years of magnetofection-progress and prospects publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.08.002 – volume: 58 start-page: 287 issue: 2 year: 2016 ident: 10.1016/j.jneumeth.2017.09.017_bib0065 article-title: TRAM1 promotes microglia M1 polarization publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-015-0678-3 – volume: 2015 start-page: 458624 year: 2015 ident: 10.1016/j.jneumeth.2017.09.017_bib0050 article-title: The comparative utility of viromer RED and lipofectamine for transient gene introduction into glial cells publication-title: BioMed Res. Int. doi: 10.1155/2015/458624 |
SSID | ssj0004906 |
Score | 2.33617 |
Snippet | •Glial-Mag magnetofection is a novel method for transfection optimized for phagocytic BV2 cells.•Compared to other chemical transfection methods, Glial-Mag... Microglia, the resident phagocytic cells of the brain, have recently been the subject of intense investigation given their role in pathology and normal brain... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 169 |
SubjectTerms | Animals Cell Line Enzyme-Linked Immunosorbent Assay Flow Cytometry Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Immunohistochemistry Interleukin-6 - genetics Interleukin-6 - metabolism Magnetic Fields Magnetite Nanoparticles - administration & dosage Mice Microglia - cytology Microglia - metabolism Microscopy, Fluorescence Transfection - methods |
Title | Magnetofection is superior to other chemical transfection methods in a microglial cell line |
URI | https://dx.doi.org/10.1016/j.jneumeth.2017.09.017 https://www.ncbi.nlm.nih.gov/pubmed/28970164 https://www.proquest.com/docview/1946437888 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-VIk28TAMGFAbyJLS30MR2muSxQkPdpvICSEh7sOLEQa2Kg2j6sBf-du4cp4C0iYc9RYlsxbo73_3Ovg-AU5MJTVXOAyMED6SWMshyzQOdy0LoONbcNYOZXo4mN_LnbXzbg_MuF4bCKr3ub3W609b-y9BTc_gwmw2vKBEHnSoUKVTDklygTY7WPu3D5vjHr8nlS3pk5lps0ni6sgxfJQrPz-bWrKhZM0V5Ja7kqetd9lcb9S8M6mzRxSf46EEkG7fr3IaesTuwO7boQN__Yd-YC-t05-U78GHqb8934fc0v7OmqdvwK8tmS7ZcUaXj-pE1NXO5WKzwFQRY4yCtH9o2ml6ymWU5u6cgvrsFSi6jc39GSPUz3Fx8vz6fBL65QlCIUdoEZZnLFG230RVuwihOwjQpETsaIfOSZ-jnFEbrxCBZdFXhzjZxwsOYF5HhSZmUYg_6trbmAJjhCNuqalQh9pEaEYhAVVGMZBWFZSRyOYC4I6cqfOVxaoCxUF2I2Vx1bFDEBhVmCh8DGK7nPbS1N96dkXXcUm-kSKGBeHfu1469CrcY0S-3pl4tVZRJut5M03QA-y3f1-tBfzWhKmWH__HnI9jCt7Q92PkC_eZxZY4R6jT6BDbOnqITL9DPTx39pQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEB9kBX2Xh5_vrZ8RHt7qtk26bY-LKOvH7kUFwUNo2lR20VTc7sH_3pk01ScoHjwV2oSGmcnMb5L5APinU66oyrmnOQ89oYTw0kyFnspEzlUUqdA2gxmN-8MbcX4b3S7AcZsLQ2GVTvc3Ot1qa_em56jZe5pMeleUiINOFYoUqmFBLtCioKbWHVgcnF0Mx-_pkaltsUnj6crS_y9ReHo0NXpOzZopyiu2JU9t77JPbdRXGNTaotMV-O1AJBs061yFBW3WYH1g0IF-fGGHzIZ12vPyNVgaudvzdbgbZfdG11UTfmXYZMZmc6p0XD2zumI2F4vlroIAqy2kdUObRtMzNjEsY48UxHf_gJLL6NyfEVLdgJvTk-vjoeeaK3g57ye1VxSZSNB2a1XiJgyi2E_iArGj5iIrwhT9nFwrFWskiypL3Nk6ikM_CvNAh3ERF3wTOqYy-i8wHSJsK8t-idhHKEQgHFVF3hdl4BcBz0QXopacMneVx6kBxoNsQ8ymsmWDJDZIP5X46ELvbd5TU3vj2xlpyy35QYokGohv5x607JW4xYh-mdHVfCaDVND1ZpIkXfjT8P1tPeivxlSlbOsHf96H5eH16FJeno0vtuEXfkmaQ54d6NTPc72LsKdWe06sXwFJD_-L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetofection+is+superior+to+other+chemical+transfection+methods+in+a+microglial+cell+line&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Smolders%2C+Silke&rft.au=Kessels%2C+Sofie&rft.au=Smolders%2C+Sophie+Marie-Th%C3%A9r%C3%A8se&rft.au=Poulhes%2C+Florent&rft.date=2018-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=293&rft.spage=169&rft.epage=173&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.09.017&rft.externalDocID=S0165027017303461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |