Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease
•A data-driven topic modeling approach characterizing sleep EEG and EOG is proposed.•The approach showed potential for evaluating patients with neurodegeneration.•The number of topics linked with REM and N3 could be an early PD biomarker.•The ability to maintain NREM and REM sleep could be an early...
        Saved in:
      
    
          | Published in | Journal of neuroscience methods Vol. 235; pp. 262 - 276 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        30.09.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0165-0270 1872-678X 1872-678X  | 
| DOI | 10.1016/j.jneumeth.2014.07.014 | 
Cover
| Abstract | •A data-driven topic modeling approach characterizing sleep EEG and EOG is proposed.•The approach showed potential for evaluating patients with neurodegeneration.•The number of topics linked with REM and N3 could be an early PD biomarker.•The ability to maintain NREM and REM sleep could be an early PD biomarker.•Patients were classified with 91.4% sensitivity and 68.8% specificity.
Manual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients with neurodegenerative diseases.
This study evaluates sleep using a topic modeling and unsupervised learning approach to identify sleep topics directly from electroencephalography (EEG) and electrooculography (EOG). PSG data from control subjects were used to develop an EOG and an EEG topic model. The models were applied to PSG data from 23 control subjects, 25 patients with periodic leg movements (PLMs), 31 patients with idiopathic REM sleep behavior disorder (iRBD) and 36 patients with Parkinson's disease (PD). The data were divided into training and validation datasets and features reflecting EEG and EOG characteristics based on topics were computed. The most discriminative feature subset for separating iRBD/PD and PLM/controls was estimated using a Lasso-regularized regression model.
The features with highest discriminability were the number and stability of EEG topics linked to REM and N3, respectively. Validation of the model indicated a sensitivity of 91.4% and a specificity of 68.8% when classifying iRBD/PD patients.
The topics showed visual accordance with the manually scored sleep stages, and the features revealed sleep characteristics containing information indicative of neurodegeneration.
This study suggests that the amount of N3 and the ability to maintain NREM and REM sleep have potential as early PD biomarkers. Data-driven analysis of sleep may contribute to the evaluation of neurodegenerative patients. | 
    
|---|---|
| AbstractList | Manual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients with neurodegenerative diseases.BACKGROUNDManual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients with neurodegenerative diseases.This study evaluates sleep using a topic modeling and unsupervised learning approach to identify sleep topics directly from electroencephalography (EEG) and electrooculography (EOG). PSG data from control subjects were used to develop an EOG and an EEG topic model. The models were applied to PSG data from 23 control subjects, 25 patients with periodic leg movements (PLMs), 31 patients with idiopathic REM sleep behavior disorder (iRBD) and 36 patients with Parkinson's disease (PD). The data were divided into training and validation datasets and features reflecting EEG and EOG characteristics based on topics were computed. The most discriminative feature subset for separating iRBD/PD and PLM/controls was estimated using a Lasso-regularized regression model.NEW METHODThis study evaluates sleep using a topic modeling and unsupervised learning approach to identify sleep topics directly from electroencephalography (EEG) and electrooculography (EOG). PSG data from control subjects were used to develop an EOG and an EEG topic model. The models were applied to PSG data from 23 control subjects, 25 patients with periodic leg movements (PLMs), 31 patients with idiopathic REM sleep behavior disorder (iRBD) and 36 patients with Parkinson's disease (PD). The data were divided into training and validation datasets and features reflecting EEG and EOG characteristics based on topics were computed. The most discriminative feature subset for separating iRBD/PD and PLM/controls was estimated using a Lasso-regularized regression model.The features with highest discriminability were the number and stability of EEG topics linked to REM and N3, respectively. Validation of the model indicated a sensitivity of 91.4% and a specificity of 68.8% when classifying iRBD/PD patients.RESULTSThe features with highest discriminability were the number and stability of EEG topics linked to REM and N3, respectively. Validation of the model indicated a sensitivity of 91.4% and a specificity of 68.8% when classifying iRBD/PD patients.The topics showed visual accordance with the manually scored sleep stages, and the features revealed sleep characteristics containing information indicative of neurodegeneration.COMPARISON WITH EXISTING METHODThe topics showed visual accordance with the manually scored sleep stages, and the features revealed sleep characteristics containing information indicative of neurodegeneration.This study suggests that the amount of N3 and the ability to maintain NREM and REM sleep have potential as early PD biomarkers. Data-driven analysis of sleep may contribute to the evaluation of neurodegenerative patients.CONCLUSIONSThis study suggests that the amount of N3 and the ability to maintain NREM and REM sleep have potential as early PD biomarkers. Data-driven analysis of sleep may contribute to the evaluation of neurodegenerative patients. Manual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients with neurodegenerative diseases. This study evaluates sleep using a topic modeling and unsupervised learning approach to identify sleep topics directly from electroencephalography (EEG) and electrooculography (EOG). PSG data from control subjects were used to develop an EOG and an EEG topic model. The models were applied to PSG data from 23 control subjects, 25 patients with periodic leg movements (PLMs), 31 patients with idiopathic REM sleep behavior disorder (iRBD) and 36 patients with Parkinson's disease (PD). The data were divided into training and validation datasets and features reflecting EEG and EOG characteristics based on topics were computed. The most discriminative feature subset for separating iRBD/PD and PLM/controls was estimated using a Lasso-regularized regression model. The features with highest discriminability were the number and stability of EEG topics linked to REM and N3, respectively. Validation of the model indicated a sensitivity of 91.4% and a specificity of 68.8% when classifying iRBD/PD patients. The topics showed visual accordance with the manually scored sleep stages, and the features revealed sleep characteristics containing information indicative of neurodegeneration. This study suggests that the amount of N3 and the ability to maintain NREM and REM sleep have potential as early PD biomarkers. Data-driven analysis of sleep may contribute to the evaluation of neurodegenerative patients. •A data-driven topic modeling approach characterizing sleep EEG and EOG is proposed.•The approach showed potential for evaluating patients with neurodegeneration.•The number of topics linked with REM and N3 could be an early PD biomarker.•The ability to maintain NREM and REM sleep could be an early PD biomarker.•Patients were classified with 91.4% sensitivity and 68.8% specificity. Manual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients with neurodegenerative diseases. This study evaluates sleep using a topic modeling and unsupervised learning approach to identify sleep topics directly from electroencephalography (EEG) and electrooculography (EOG). PSG data from control subjects were used to develop an EOG and an EEG topic model. The models were applied to PSG data from 23 control subjects, 25 patients with periodic leg movements (PLMs), 31 patients with idiopathic REM sleep behavior disorder (iRBD) and 36 patients with Parkinson's disease (PD). The data were divided into training and validation datasets and features reflecting EEG and EOG characteristics based on topics were computed. The most discriminative feature subset for separating iRBD/PD and PLM/controls was estimated using a Lasso-regularized regression model. The features with highest discriminability were the number and stability of EEG topics linked to REM and N3, respectively. Validation of the model indicated a sensitivity of 91.4% and a specificity of 68.8% when classifying iRBD/PD patients. The topics showed visual accordance with the manually scored sleep stages, and the features revealed sleep characteristics containing information indicative of neurodegeneration. This study suggests that the amount of N3 and the ability to maintain NREM and REM sleep have potential as early PD biomarkers. Data-driven analysis of sleep may contribute to the evaluation of neurodegenerative patients.  | 
    
| Author | Zoetmulder, Marielle Koch, Henriette Arvastson, Lars Jennum, Poul Christensen, Julie A.E. Christensen, Søren R. Sorensen, Helge B.D. Frandsen, Rune  | 
    
| Author_xml | – sequence: 1 givenname: Julie A.E. surname: Christensen fullname: Christensen, Julie A.E. email: julie.a.e.christensen@gmail.com organization: Department of Electrical Engineering, Technical University of Denmark, Orsteds Plads, Building 349, DK-2800 Kongens Lyngby, Denmark – sequence: 2 givenname: Marielle surname: Zoetmulder fullname: Zoetmulder, Marielle organization: Danish Center for Sleep Medicine, University of Copenhagen, Department of Clinical Neurophysiology, Glostrup Hospital, Entrance 5, Nordre Ringvej 57, DK-2600 Glostrup, Denmark – sequence: 3 givenname: Henriette surname: Koch fullname: Koch, Henriette organization: Department of Electrical Engineering, Technical University of Denmark, Orsteds Plads, Building 349, DK-2800 Kongens Lyngby, Denmark – sequence: 4 givenname: Rune surname: Frandsen fullname: Frandsen, Rune organization: Danish Center for Sleep Medicine, University of Copenhagen, Department of Clinical Neurophysiology, Glostrup Hospital, Entrance 5, Nordre Ringvej 57, DK-2600 Glostrup, Denmark – sequence: 5 givenname: Lars surname: Arvastson fullname: Arvastson, Lars organization: H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark – sequence: 6 givenname: Søren R. surname: Christensen fullname: Christensen, Søren R. organization: H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark – sequence: 7 givenname: Poul surname: Jennum fullname: Jennum, Poul organization: Danish Center for Sleep Medicine, University of Copenhagen, Department of Clinical Neurophysiology, Glostrup Hospital, Entrance 5, Nordre Ringvej 57, DK-2600 Glostrup, Denmark – sequence: 8 givenname: Helge B.D. surname: Sorensen fullname: Sorensen, Helge B.D. organization: Department of Electrical Engineering, Technical University of Denmark, Orsteds Plads, Building 349, DK-2800 Kongens Lyngby, Denmark  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25088694$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkcFuEzEURS3UiqaFX6i8g81M7cnYM5FYgNoQKlVqFyCxszzPz9Rhxg62E8Tf45AWVd10dWXrnLt495Qc-eCRkHPOas64vFjXa4_bCfN93TDe1qyrS7wiM953TSW7_vsRmRVQVKzp2Ak5TWnNGGsXTL4mJ41gfS8X7Yz8vtJZVya6HXo6BYOj8z9osDSNiBu6XK6o9oYub1c04g71mCjc66ghY3QpO0jUeeNA59Kw9zYRqzsdfzqfgn-X_tlP38Yl1AnfkGNbyvDtQ56Rb5-XXy-_VDe3q-vLTzcVzGWfK9NCY4VujDbWNpL3TIKwrZAcBtQwZy1rFjCYAbjphwFao-3AhBDadn35nZ-R94feTQy_tpiymlwCHEftMWyT4kIs9rVzXtDzB3Q7TGjUJrpJxz_q8VgFkAcAYkgpov2PcKb2q6i1elxF7VdRrFMlivjhmQgul4sFn6N248v6x4OO5VA7h1ElcOgBjYsIWZngXqr4C_h1r6s | 
    
| CitedBy_id | crossref_primary_10_1093_sleep_zsab167 crossref_primary_10_1080_14737175_2019_1640603 crossref_primary_10_1111_jsr_12780 crossref_primary_10_1016_j_sleep_2020_11_033 crossref_primary_10_3389_fneur_2021_765203 crossref_primary_10_1007_s40675_025_00328_w crossref_primary_10_1007_s40846_022_00695_7 crossref_primary_10_1016_j_jneumeth_2018_05_019 crossref_primary_10_1049_iet_ipr_2019_0277 crossref_primary_10_1017_S0033291716003147 crossref_primary_10_3389_fnrgo_2020_606719 crossref_primary_10_1093_sleep_zsad030 crossref_primary_10_1016_j_sleep_2020_04_010 crossref_primary_10_1038_mp_2016_5 crossref_primary_10_3390_brainsci14090871 crossref_primary_10_1016_j_medntd_2020_100030 crossref_primary_10_1093_sleep_zsac288 crossref_primary_10_1016_j_clinph_2015_03_006 crossref_primary_10_1016_j_jneumeth_2014_07_002 crossref_primary_10_1016_j_jneumeth_2018_11_016 crossref_primary_10_1093_sleep_zsz142 crossref_primary_10_3390_s22155491 crossref_primary_10_1515_bmt_2018_0109 crossref_primary_10_1177_0954411920924496 crossref_primary_10_1016_j_bpsc_2016_06_009 crossref_primary_10_1002_mds_28562 crossref_primary_10_1002_ana_25853  | 
    
| Cites_doi | 10.1016/S1474-4422(06)70476-8 10.1152/physrev.00032.2011 10.1109/TBME.2005.851512 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.neuron.2010.11.032 10.1016/j.sleep.2012.10.009 10.1016/j.sleep.2013.06.013 10.1212/WNL.46.2.388 10.1136/jnnp.2009.174748 10.1016/S0197-4580(02)00065-9 10.1016/0022-510X(72)90068-8 10.1016/j.clinph.2013.08.013 10.1016/S0960-9822(00)00430-9 10.2174/157015908787386050 10.1212/WNL.0b013e3181ca0166 10.1016/S0166-2236(00)02002-6 10.1038/nature04767 10.1016/j.jns.2011.06.022 10.1016/j.jneumeth.2014.07.002  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.jneumeth.2014.07.014 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Anatomy & Physiology  | 
    
| EISSN | 1872-678X | 
    
| EndPage | 276 | 
    
| ExternalDocumentID | 25088694 10_1016_j_jneumeth_2014_07_014 S0165027014002659  | 
    
| Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- SEW SNS WUQ X7M ZGI ~HD CGR CUY CVF ECM EIF NPM SSH 7X8  | 
    
| ID | FETCH-LOGICAL-c368t-d4c2f5a2dadff261806c5f4561cbeac304029cbdbc1d8bbc4dafb0555af78dbc3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0165-0270 1872-678X  | 
    
| IngestDate | Sun Sep 28 01:33:17 EDT 2025 Thu Apr 03 07:02:40 EDT 2025 Thu Oct 02 04:34:32 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Fri Feb 23 02:33:23 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Topic modeling Electrooculography Automatic classification Electroencephalography Parkinson's disease Polysomnography  | 
    
| Language | English | 
    
| License | Copyright © 2014 Elsevier B.V. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c368t-d4c2f5a2dadff261806c5f4561cbeac304029cbdbc1d8bbc4dafb0555af78dbc3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3  | 
    
| PMID | 25088694 | 
    
| PQID | 1559618031 | 
    
| PQPubID | 23479 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_1559618031 pubmed_primary_25088694 crossref_primary_10_1016_j_jneumeth_2014_07_014 crossref_citationtrail_10_1016_j_jneumeth_2014_07_014 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2014_07_014  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-09-30 | 
    
| PublicationDateYYYYMMDD | 2014-09-30 | 
    
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-30 day: 30  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Journal of neuroscience methods | 
    
| PublicationTitleAlternate | J Neurosci Methods | 
    
| PublicationYear | 2014 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Christensen, Frandsen, Kempfner, Arvastson, Christensen, Jennum (bib0030) 2012 Postuma, Gagnon, Rompré, Montplaisir (bib0105) 2010; 74 Saper, Chou, Scammell (bib0500) 2001; 24 Schwartz, Roth (bib0130) 2008; 6 Rodrigues Brazète, Montplaisir, Petit, Postuma, Bertrand, Génier Marchand (bib0110) 2013; 14 Brown, Basheer, McKenna, Strecker, McCarley (bib0015) 2012; 92 Hastie, Tibshirani, Friedman (bib0055) 2008 Carpenter (bib0025) 2000; 10 Wenk (bib0150) 2003; 64 Christensen, Kempfner, Zoetmulder, Arvastson, Christensen, Sorensen (bib0040) 2014; 125 Saper, Fuller, Pedersen, Lu, Scammell (bib0115) 2010; 68 Iber, Ancoli-Israel, Chesson, Quan (bib0060) 2007 Lu, Sherman, Devor, Saper (bib0090) 2006; 441 Postuma, Gagnon, Montplaisir (bib0100) 2010; 81 Braak, Del Tredici, Rüb, de Vos, Steur, Braak (bib0020) 2003; 24 Schenck, Bundlie, Mahowald (bib0125) 1996; 46 Agarwal, Takeuchi, Laroche, Gotman (bib0005) 2005; 52 Kempfner, Sorensen, Zoetmulder, Jennum, Sorensen (bib0070) 2010 Koch, Christensen, Arvastson, Christensen, Jennum, Sorensen (bib0075) 2013 Christensen, Koch, Frandsen, Kempfner, Arvastson, Christensen (bib0035) 2013 Tibshirani (bib0135) 1996; 58 Blei, Ng, Jordan (bib0010) 2003; 3 Mosimann, Müri, Burn, Felblinger, O’Brien, McKeith (bib0095) 2005; 128 Corin, Elizan, Bender (bib0045) 1972; 15 Schenck, Boeve, Mahowald (bib0120) 2013; 14 Van Esbroeck, Westover (bib0140) 2012 Verbeek (bib0145) 2006 Iranzo, Molinuevo, Santamaría, Serradell, Martí, Valldeoriola (bib0065) 2006; 5 Latreille, Carrier, Montplaisir, Lafortune, Gagnon (bib0085) 2011; 310 Koch, Christensen, Frandsen, Arvastson, Christensen, Jennum (bib0080) 2014 Mosimann (10.1016/j.jneumeth.2014.07.014_bib0095) 2005; 128 Christensen (10.1016/j.jneumeth.2014.07.014_bib0030) 2012 Wenk (10.1016/j.jneumeth.2014.07.014_bib0150) 2003; 64 Kempfner (10.1016/j.jneumeth.2014.07.014_bib0070) 2010 Blei (10.1016/j.jneumeth.2014.07.014_bib0010) 2003; 3 Christensen (10.1016/j.jneumeth.2014.07.014_bib0035) 2013 Corin (10.1016/j.jneumeth.2014.07.014_bib0045) 1972; 15 Schwartz (10.1016/j.jneumeth.2014.07.014_bib0130) 2008; 6 Rodrigues Brazète (10.1016/j.jneumeth.2014.07.014_bib0110) 2013; 14 Saper (10.1016/j.jneumeth.2014.07.014_bib0115) 2010; 68 Verbeek (10.1016/j.jneumeth.2014.07.014_bib0145) 2006 Braak (10.1016/j.jneumeth.2014.07.014_bib0020) 2003; 24 Christensen (10.1016/j.jneumeth.2014.07.014_bib0040) 2014; 125 Iber (10.1016/j.jneumeth.2014.07.014_bib0060) 2007 Postuma (10.1016/j.jneumeth.2014.07.014_bib0105) 2010; 74 Latreille (10.1016/j.jneumeth.2014.07.014_bib0085) 2011; 310 Agarwal (10.1016/j.jneumeth.2014.07.014_bib0005) 2005; 52 Schenck (10.1016/j.jneumeth.2014.07.014_bib0120) 2013; 14 Koch (10.1016/j.jneumeth.2014.07.014_bib0080) 2014 Iranzo (10.1016/j.jneumeth.2014.07.014_bib0065) 2006; 5 Van Esbroeck (10.1016/j.jneumeth.2014.07.014_bib0140) 2012 Tibshirani (10.1016/j.jneumeth.2014.07.014_bib0135) 1996; 58 Hastie (10.1016/j.jneumeth.2014.07.014_bib0055) 2008 Saper (10.1016/j.jneumeth.2014.07.014_bib0500) 2001; 24 Koch (10.1016/j.jneumeth.2014.07.014_bib0075) 2013 Lu (10.1016/j.jneumeth.2014.07.014_bib0090) 2006; 441 Schenck (10.1016/j.jneumeth.2014.07.014_bib0125) 1996; 46 Brown (10.1016/j.jneumeth.2014.07.014_bib0015) 2012; 92 Carpenter (10.1016/j.jneumeth.2014.07.014_bib0025) 2000; 10 Postuma (10.1016/j.jneumeth.2014.07.014_bib0100) 2010; 81  | 
    
| References_xml | – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: bib0010 article-title: Latent Dirichlet Allocation publication-title: J Mach Learn Res – volume: 125 start-page: 512 year: 2014 end-page: 519 ident: bib0040 article-title: Decreased sleep spindle density in patients with idiopathic REM sleep behaviour disorder and patients with Parkinson's disease publication-title: Clin Neurophysiol – year: 2006 ident: bib0145 article-title: Matlab Latent Dirichlet Allocation toolbox – start-page: 441 year: 2013 end-page: 444 ident: bib0035 article-title: Classification of iRBD and Parkinson's disease patients based on eye movements during sleep publication-title: Conf Proc IEEE Eng Med Biol Soc 2013 – volume: 24 start-page: 726 year: 2001 end-page: 731 ident: bib0500 article-title: The sleep switch: hypothalamic control of sleep and wakefulness publication-title: Trends Neurosci. – year: 2007 ident: bib0060 article-title: The AASM Manual for the Scoring of Sleep and Associated Events: rules, terminology, and technical specification publication-title: Am Acad Sleep Med – volume: 46 start-page: 388 year: 1996 end-page: 393 ident: bib0125 article-title: Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder publication-title: Neurology – start-page: 2941 year: 2012 end-page: 2944 ident: bib0030 article-title: Separation of Parkinson's patients in early and mature stages and control subjects using one EOG channel publication-title: Conf Proc IEEE Eng Med Biol Soc 2012 – volume: 92 start-page: 1087 year: 2012 end-page: 1187 ident: bib0015 article-title: Control of sleep and wakefulness publication-title: Physiol Rev – volume: 52 start-page: 1390 year: 2005 end-page: 1396 ident: bib0005 article-title: Detection of rapid-eye movements in sleep studies publication-title: IEEE Trans Biomed Eng – volume: 6 start-page: 367 year: 2008 end-page: 378 ident: bib0130 article-title: Neurophysiology of sleep and wakefulness: basic science and clinical implications publication-title: Curr Neuropharmacol – volume: 310 start-page: 159 year: 2011 end-page: 162 ident: bib0085 article-title: Non-rapid eye movement sleep characteristics in idiopathic REM sleep behavior disorder publication-title: J Neurol Sci – year: 2008 ident: bib0055 article-title: The elements of statistical learning – volume: 441 start-page: 589 year: 2006 end-page: 594 ident: bib0090 article-title: A putative flip-flop switch for control of REM sleep publication-title: Nature – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0135 article-title: Regression shrinkage and selection via the Lasso publication-title: J R Stat Soc Series B Stat Methodol – year: 2014 ident: bib0080 article-title: Automatic sleep classification using a data-driven topic model reveals latent sleep states publication-title: J Neurosci Methods – volume: 10 start-page: R291 year: 2000 end-page: R293 ident: bib0025 article-title: The neural control of looking publication-title: Curr Biol – start-page: 5090 year: 2012 end-page: 5093 ident: bib0140 article-title: Data-driven modeling of sleep states from EEG publication-title: Conf Proc IEEE Eng Med Biol Soc 2012 – start-page: 4275 year: 2013 end-page: 4278 ident: bib0075 article-title: Classification of iRBD and Parkinson's patients using a general data-driven sleep staging model build on EEG publication-title: Conf Proc IEEE Eng Med Biol Soc 2013 – start-page: 5093 year: 2010 end-page: 5096 ident: bib0070 article-title: REM behaviour disorder detection associated with neurodegenerative diseases publication-title: Conf Proc IEEE Eng Med Biol Soc 2010 – volume: 74 start-page: 239 year: 2010 end-page: 244 ident: bib0105 article-title: Severity of REM atonia loss in idiopathic REM sleep behavior disorder predicts Parkinson disease publication-title: Neurology – volume: 15 start-page: 251 year: 1972 end-page: 265 ident: bib0045 article-title: Oculomotor function in patients with Parkinson's disease publication-title: J Neurol Sci – volume: 128 start-page: 76 year: 2005 end-page: 1267 ident: bib0095 article-title: Saccadic eye movement changes in Parkinson's disease dementia and dementia with Lewy bodies publication-title: Brain – volume: 14 start-page: 1059 year: 2013 end-page: 1063 ident: bib0110 article-title: Electroencephalogram slowing in rapid eye movement sleep behavior disorder is associated with mild cognitive impairment publication-title: Sleep Med – volume: 24 start-page: 197 year: 2003 end-page: 211 ident: bib0020 article-title: Staging of brain pathology related to sporadic Parkinson's disease publication-title: Neurobiol Aging – volume: 14 start-page: 744 year: 2013 end-page: 748 ident: bib0120 article-title: Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series publication-title: Sleep Med – volume: 81 start-page: 1008 year: 2010 end-page: 1013 ident: bib0100 article-title: Clinical prediction of Parkinson's disease: planning for the age of neuroprotection publication-title: J Neurol Neurosurg Psychiatry – volume: 64 start-page: 7 year: 2003 end-page: 10 ident: bib0150 article-title: Neuropathologic changes in Alzheimer's disease publication-title: J Clin Psychiatry – volume: 5 start-page: 572 year: 2006 end-page: 577 ident: bib0065 article-title: Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study publication-title: Lancet Neurol – volume: 68 start-page: 1023 year: 2010 end-page: 1042 ident: bib0115 article-title: Sleep state switching publication-title: Neuron – year: 2007 ident: 10.1016/j.jneumeth.2014.07.014_bib0060 article-title: The AASM Manual for the Scoring of Sleep and Associated Events: rules, terminology, and technical specification publication-title: Am Acad Sleep Med – volume: 5 start-page: 572 issue: 7 year: 2006 ident: 10.1016/j.jneumeth.2014.07.014_bib0065 article-title: Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study publication-title: Lancet Neurol doi: 10.1016/S1474-4422(06)70476-8 – start-page: 5090 year: 2012 ident: 10.1016/j.jneumeth.2014.07.014_bib0140 article-title: Data-driven modeling of sleep states from EEG – volume: 92 start-page: 1087 issue: 3 year: 2012 ident: 10.1016/j.jneumeth.2014.07.014_bib0015 article-title: Control of sleep and wakefulness publication-title: Physiol Rev doi: 10.1152/physrev.00032.2011 – volume: 52 start-page: 1390 issue: 8 year: 2005 ident: 10.1016/j.jneumeth.2014.07.014_bib0005 article-title: Detection of rapid-eye movements in sleep studies publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2005.851512 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.jneumeth.2014.07.014_bib0135 article-title: Regression shrinkage and selection via the Lasso publication-title: J R Stat Soc Series B Stat Methodol doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 68 start-page: 1023 issue: 6 year: 2010 ident: 10.1016/j.jneumeth.2014.07.014_bib0115 article-title: Sleep state switching publication-title: Neuron doi: 10.1016/j.neuron.2010.11.032 – volume: 14 start-page: 744 issue: 8 year: 2013 ident: 10.1016/j.jneumeth.2014.07.014_bib0120 article-title: Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series publication-title: Sleep Med doi: 10.1016/j.sleep.2012.10.009 – volume: 14 start-page: 1059 issue: 11 year: 2013 ident: 10.1016/j.jneumeth.2014.07.014_bib0110 article-title: Electroencephalogram slowing in rapid eye movement sleep behavior disorder is associated with mild cognitive impairment publication-title: Sleep Med doi: 10.1016/j.sleep.2013.06.013 – volume: 46 start-page: 388 year: 1996 ident: 10.1016/j.jneumeth.2014.07.014_bib0125 article-title: Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder publication-title: Neurology doi: 10.1212/WNL.46.2.388 – start-page: 441 year: 2013 ident: 10.1016/j.jneumeth.2014.07.014_bib0035 article-title: Classification of iRBD and Parkinson's disease patients based on eye movements during sleep – volume: 64 start-page: 7 issue: 9 year: 2003 ident: 10.1016/j.jneumeth.2014.07.014_bib0150 article-title: Neuropathologic changes in Alzheimer's disease publication-title: J Clin Psychiatry – start-page: 2941 year: 2012 ident: 10.1016/j.jneumeth.2014.07.014_bib0030 article-title: Separation of Parkinson's patients in early and mature stages and control subjects using one EOG channel – volume: 81 start-page: 1008 issue: 9 year: 2010 ident: 10.1016/j.jneumeth.2014.07.014_bib0100 article-title: Clinical prediction of Parkinson's disease: planning for the age of neuroprotection publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2009.174748 – start-page: 5093 year: 2010 ident: 10.1016/j.jneumeth.2014.07.014_bib0070 article-title: REM behaviour disorder detection associated with neurodegenerative diseases – volume: 128 start-page: 76 issue: Pt 6 year: 2005 ident: 10.1016/j.jneumeth.2014.07.014_bib0095 article-title: Saccadic eye movement changes in Parkinson's disease dementia and dementia with Lewy bodies publication-title: Brain – volume: 24 start-page: 197 issue: 2 year: 2003 ident: 10.1016/j.jneumeth.2014.07.014_bib0020 article-title: Staging of brain pathology related to sporadic Parkinson's disease publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(02)00065-9 – volume: 15 start-page: 251 issue: 3 year: 1972 ident: 10.1016/j.jneumeth.2014.07.014_bib0045 article-title: Oculomotor function in patients with Parkinson's disease publication-title: J Neurol Sci doi: 10.1016/0022-510X(72)90068-8 – year: 2006 ident: 10.1016/j.jneumeth.2014.07.014_bib0145 – volume: 125 start-page: 512 issue: 3 year: 2014 ident: 10.1016/j.jneumeth.2014.07.014_bib0040 article-title: Decreased sleep spindle density in patients with idiopathic REM sleep behaviour disorder and patients with Parkinson's disease publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2013.08.013 – year: 2008 ident: 10.1016/j.jneumeth.2014.07.014_bib0055 – volume: 10 start-page: R291 issue: 8 year: 2000 ident: 10.1016/j.jneumeth.2014.07.014_bib0025 article-title: The neural control of looking publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00430-9 – volume: 3 start-page: 993 year: 2003 ident: 10.1016/j.jneumeth.2014.07.014_bib0010 article-title: Latent Dirichlet Allocation publication-title: J Mach Learn Res – volume: 6 start-page: 367 issue: 4 year: 2008 ident: 10.1016/j.jneumeth.2014.07.014_bib0130 article-title: Neurophysiology of sleep and wakefulness: basic science and clinical implications publication-title: Curr Neuropharmacol doi: 10.2174/157015908787386050 – start-page: 4275 year: 2013 ident: 10.1016/j.jneumeth.2014.07.014_bib0075 article-title: Classification of iRBD and Parkinson's patients using a general data-driven sleep staging model build on EEG – volume: 74 start-page: 239 issue: 3 year: 2010 ident: 10.1016/j.jneumeth.2014.07.014_bib0105 article-title: Severity of REM atonia loss in idiopathic REM sleep behavior disorder predicts Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0b013e3181ca0166 – volume: 24 start-page: 726 issue: 12 year: 2001 ident: 10.1016/j.jneumeth.2014.07.014_bib0500 article-title: The sleep switch: hypothalamic control of sleep and wakefulness publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(00)02002-6 – volume: 441 start-page: 589 issue: 7093 year: 2006 ident: 10.1016/j.jneumeth.2014.07.014_bib0090 article-title: A putative flip-flop switch for control of REM sleep publication-title: Nature doi: 10.1038/nature04767 – volume: 310 start-page: 159 issue: 1–2 year: 2011 ident: 10.1016/j.jneumeth.2014.07.014_bib0085 article-title: Non-rapid eye movement sleep characteristics in idiopathic REM sleep behavior disorder publication-title: J Neurol Sci doi: 10.1016/j.jns.2011.06.022 – year: 2014 ident: 10.1016/j.jneumeth.2014.07.014_bib0080 article-title: Automatic sleep classification using a data-driven topic model reveals latent sleep states publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.07.002  | 
    
| SSID | ssj0004906 | 
    
| Score | 2.2915914 | 
    
| Snippet | •A data-driven topic modeling approach characterizing sleep EEG and EOG is proposed.•The approach showed potential for evaluating patients with... Manual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 262 | 
    
| SubjectTerms | Aged Algorithms Artificial Intelligence Automatic classification Electroencephalography Electroencephalography - methods Electrooculography Electrooculography - methods Female Humans Male Middle Aged Models, Neurological Nocturnal Myoclonus Syndrome - diagnosis Nocturnal Myoclonus Syndrome - physiopathology Parkinson Disease - diagnosis Parkinson Disease - physiopathology Parkinson's disease Polysomnography Polysomnography - methods Regression Analysis Sensitivity and Specificity Signal Processing, Computer-Assisted Sleep Stages - physiology Topic modeling  | 
    
| Title | Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease | 
    
| URI | https://dx.doi.org/10.1016/j.jneumeth.2014.07.014 https://www.ncbi.nlm.nih.gov/pubmed/25088694 https://www.proquest.com/docview/1559618031  | 
    
| Volume | 235 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LSuRAsBgUFi_i21kf9ILoKU4m6U46x0FHZ3dRDyp4a_oJDrOZYR6Il_327eokOh7Ew55CNynSVFXXI_UCONFpkVkT2yiRMo2oZnHEucsjw6kzxvsTPFTI3dxmg0f664k9teCiqYXBtMpa9lcyPUjreqdTY7MzeX7u3GMhjneq0EXwjgTDIj5Kc5xicP73Pc2DFmG-Jr6M8cp4qUp4eD4s7QInNWOKFw1NPLv0MwX1mQEaFNHVBqzXFiTpVYfchJYtt2C7V3rv-c8rOSUhpzP8LN-Cbzd16HwbXi7lXEZmitKNhPk3XmmRsSOzkbUT0u9fE1ka0r-7JtjVyXMl0R-bORMMb-vQKBzhMH8Ea6ZD-djZLEAvr-vQzw48XvUfLgZRPXUh0mnG55GhOnFMJkYa57x_xeNMM4d2llZeSqf-1ieFVkbpruFKaWqkU9g2TLqc-910F1bKcWn3gTjDMwxzcq4sZXlXuUxaxjS1ngkKmraBNagWum5JjpMxRqLJPRuKhkQCSSTiXPhHGzpvcJOqKceXEEVDSfGBvYTXHF_C_mhIL_zdw4CKLO14MRMY0kUEpd027FU88XaeBC3frKDf_-PLB7CGqyo95RBW5tOFPfI20FwdByY_htXez9-D238kTAhv | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTuMwcMRDgr2seNPlZSS0ewpNEztxjggKZZeyhwWJm-WnRAVpRVutuPDteJyExwFx4BTFySjWzHgemRfAgU6LzJrYRomUaUQ1iyPOXR4ZTp0x3p_goUKuf5n1runvG3YzA8dNLQymVdayv5LpQVrXK-0am-3R7W37HxbieKcKXQTvSLBiFuYpS3L0wA6fXvM8aBEGbOLbGLCM35QJDw4HpZ3iqGbM8aKhi2eHfqShPrJAgyY6XYLvtQlJjqpdLsOMLVdg9aj07vP9I_lJQlJn-Fu-Agv9Ona-Cv9P5ERG5gHFGwkDcLzWIkNHxnfWjki3e0ZkaUj37xnBtk6eLYl-382ZYHxbh07hCIcJJFg0HerHfo0D9Nv7OvazBten3avjXlSPXYh0mvFJZKhOHJOJkcY572DxONPMoaGllRfTqT_2SaGVUbpjuFKaGukU9g2TLud-NV2HuXJY2k0gzvAM45ycK0tZ3lEuk5YxTa3ngoKmLWANqoWue5LjaIw70SSfDURDIoEkEnEu_KUF7Re4UdWV41OIoqGkeMdfwquOT2H3G9ILf_gwoiJLO5yOBcZ0EUFppwUbFU-87CdB0zcr6I8vfHkPFntX_QtxcX75Zwu-4ZMqV2Ub5iYPU7vjDaKJ2g0M_wwojwoE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+modeling+of+sleep+EEG+and+EOG+reveals+characteristics+indicative+of+pre-Parkinson%27s+and+Parkinson%27s+disease&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Christensen%2C+Julie+A+E&rft.au=Zoetmulder%2C+Marielle&rft.au=Koch%2C+Henriette&rft.au=Frandsen%2C+Rune&rft.date=2014-09-30&rft.eissn=1872-678X&rft.volume=235&rft.spage=262&rft_id=info:doi/10.1016%2Fj.jneumeth.2014.07.014&rft_id=info%3Apmid%2F25088694&rft.externalDocID=25088694 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |