Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production
In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-st...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 22; no. 3; pp. 330 - 338 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1004-9541 2210-321X |
DOI | 10.1016/S1004-9541(14)60036-7 |
Cover
Abstract | In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective. |
---|---|
AbstractList | In order to improve the energy efficiency, reduce the CO sub(2) emission and decrease the cost, a cogeneration system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model of each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost, showing this design method was effective. In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective. In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogeneration system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model of each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost, showing this design method was effective. |
Author | 吴现力 胡仰栋 伍联营 李红 |
AuthorAffiliation | College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China |
Author_xml | – sequence: 1 fullname: 吴现力 胡仰栋 伍联营 李红 |
BookMark | eNqFkEFP2zAcRy3EJArbR0DybiAtmx07jiMOaGphncS0SmwaN8tx_u6MUru1XRDfnrRFPXDpyZf3frbfKTr2wQNC55R8pYSKb_eUEF40FacXlF8KQpgo6iM0KktKClbSh2M02iMn6DSlR0JKIqkcIf8rdNBj7Ts8geTmHgeLx2EOHqLOLnh8_5IyLLANEU-ctRDB54FdDErawIOme-d38D-dIX7BU9B5uzkLzxDxLIZubTbAR_TB6j7Bp7fzDP29vfkznhZ3v3_8HH-_KwwTMhemY6STlrSiFVzWuqqHT5VCEsFqU3OtQTZEyKppidGgm6YtZWuhtLRtta5adoYudrvLGFZrSFktXDLQ99pDWCdFRU2rmkvGBrTaoSaGlCJYtYxuoeOLokRt-qptX7WJpyhX276qHryrd55xeVshR-36g_b1zoahwpODqJJx4A10LoLJqgvu4MLnt_v_Bz9fOT_fP5zLhlNRcvYKHKmiKA |
CitedBy_id | crossref_primary_10_1016_j_egyr_2021_11_253 crossref_primary_10_1016_j_enconman_2025_119523 crossref_primary_10_1016_j_rser_2018_05_022 crossref_primary_10_2139_ssrn_3918928 crossref_primary_10_3389_frsc_2022_856996 crossref_primary_10_1021_acs_iecr_5b03333 crossref_primary_10_1007_s12667_019_00346_y crossref_primary_10_3390_hydrology4010001 crossref_primary_10_1016_j_desal_2017_11_013 crossref_primary_10_1016_j_egypro_2015_07_342 crossref_primary_10_1016_j_clet_2024_100791 crossref_primary_10_1016_j_seta_2020_100742 |
Cites_doi | 10.1016/j.desal.2005.03.063 10.1016/S0011-9164(96)00160-9 10.1016/j.desal.2005.02.007 10.1016/0011-9164(96)00081-1 10.1016/S0011-9164(03)00382-5 10.1002/aic.690461009 10.1016/S0011-9164(03)00207-8 10.1021/ie020318v 10.1016/S0011-9164(01)00111-4 10.1016/S1359-4311(98)00026-X 10.1016/j.desal.2004.06.056 10.1016/S0011-9164(01)00283-1 10.1205/026387698524901 10.1016/j.desal.2005.03.011 |
ContentType | Journal Article |
Copyright | 2014 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP) |
Copyright_xml | – notice: 2014 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP) |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7SU 7U5 8FD C1K FR3 KR7 L7M |
DOI | 10.1016/S1004-9541(14)60036-7 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Economics |
DocumentTitleAlternate | Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production |
EISSN | 2210-321X |
EndPage | 338 |
ExternalDocumentID | 10_1016_S1004_9541_14_60036_7 S1004954114600367 48941624 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21076202 |
GroupedDBID | --K --M .~1 0R~ 188 1B1 1~. 1~5 29B 2B. 2C0 2RA 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8RM 92H 92I 92L 92R 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CDRFL CHBEP CQIGP CS3 CW9 DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDC SDF SDG SDH SES SPC SPCBC SSG SSZ T5K TCJ TGT UGNYK W92 ~G- ~WA -SB -S~ AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L 7SU 7U5 8FD ACLOT C1K EFKBS FR3 KR7 L7M ~HD |
ID | FETCH-LOGICAL-c368t-cd30d8f0b6b6487a570032680637c74aae8906859b0caea99b28bfe2f1bbaa5b3 |
IEDL.DBID | .~1 |
ISSN | 1004-9541 |
IngestDate | Sun Sep 28 07:33:58 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 Tue Jul 01 02:57:07 EDT 2025 Fri Feb 23 02:37:34 EST 2024 Wed Feb 14 10:37:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | optimal design multi-stage flash desalination reverse osmosis desalination thermal power plant cogeneration system non-linear programming |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-cd30d8f0b6b6487a570032680637c74aae8906859b0caea99b28bfe2f1bbaa5b3 |
Notes | In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective. WU Xianli , HU Yangdong, WU Lianying and LI Hong College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China 11-3270/TQ cogeneration system, thermal power plant, multi-stage flash desalination, reverse osmosis desalination,non-linear programming, optimal design ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671574833 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1671574833 crossref_primary_10_1016_S1004_9541_14_60036_7 crossref_citationtrail_10_1016_S1004_9541_14_60036_7 elsevier_sciencedirect_doi_10_1016_S1004_9541_14_60036_7 chongqing_primary_48941624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese journal of chemical engineering |
PublicationTitleAlternate | Chinese Journal of Chemical Engineering |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Marian, Marcovecchio, Sergio (bib10) 2005; 182 Cardona, Piacentino, Marchese (bib20) 2005; 184 Hu, Lu, Xu, Wu (bib16) 2005; 56 Bruno, Fernandez, Castells, Grossmann (bib13) 1998; 76 Helal, El-Nashar (bib19) 2003; 154 Hammond (bib8) 1996; 107 Turek, Dydo (bib11) 2003; 157 Helal (bib1) 2004; 166 Martens (bib7) 1998; 18 Wang, Wang, Xu (bib17) 2003; 54 Mussati, Aguirre, Scenna (bib4) 2001; 138 Du, Wu (bib5) 2003; 54 Al-Khudhiri, A.I., “Optimal design of hybrid MSF/RO desalination plants”, Ph. D. Thesis, Saudi Arabia (2006). Kamal (bib12) 2005; 180 Mussati, Aguirre, Scenna (bib2) 2003; 42 Malek, Hawlader (bib3) 1996; 105 Taniguchi, Kimura (bib15) 2000; 46 Li, Liu, Han, Pang, Zhang, Zhu (bib6) 2012; 63 Buros (bib9) 1999 El-Nashar (bib18) 2001; 134 Helal (10.1016/S1004-9541(14)60036-7_bib19) 2003; 154 Bruno (10.1016/S1004-9541(14)60036-7_bib13) 1998; 76 Wang (10.1016/S1004-9541(14)60036-7_bib17) 2003; 54 El-Nashar (10.1016/S1004-9541(14)60036-7_bib18) 2001; 134 Malek (10.1016/S1004-9541(14)60036-7_bib3) 1996; 105 Hammond (10.1016/S1004-9541(14)60036-7_bib8) 1996; 107 Du (10.1016/S1004-9541(14)60036-7_bib5) 2003; 54 Martens (10.1016/S1004-9541(14)60036-7_bib7) 1998; 18 Marian (10.1016/S1004-9541(14)60036-7_bib10) 2005; 182 10.1016/S1004-9541(14)60036-7_bib14 Buros (10.1016/S1004-9541(14)60036-7_bib9) 1999 Helal (10.1016/S1004-9541(14)60036-7_bib1) 2004; 166 Turek (10.1016/S1004-9541(14)60036-7_bib11) 2003; 157 Cardona (10.1016/S1004-9541(14)60036-7_bib20) 2005; 184 Li (10.1016/S1004-9541(14)60036-7_bib6) 2012; 63 Hu (10.1016/S1004-9541(14)60036-7_bib16) 2005; 56 Mussati (10.1016/S1004-9541(14)60036-7_bib2) 2003; 42 Taniguchi (10.1016/S1004-9541(14)60036-7_bib15) 2000; 46 Kamal (10.1016/S1004-9541(14)60036-7_bib12) 2005; 180 Mussati (10.1016/S1004-9541(14)60036-7_bib4) 2001; 138 |
References_xml | – volume: 157 start-page: 51 year: 2003 end-page: 56 ident: bib11 article-title: “Hybrid membrane-thermal versus simple membrane systems” publication-title: Desalination – volume: 42 start-page: 4828 year: 2003 end-page: 4839 ident: bib2 article-title: “Novel configuration for multi stage flash-mixer desalination system” publication-title: Ind. Eng. Chem. Res. – volume: 134 start-page: 7 year: 2001 end-page: 28 ident: bib18 article-title: “Cogeneration for power and desalination-state of the art review” publication-title: Desalination – volume: 56 start-page: 499 year: 2005 end-page: 505 ident: bib16 article-title: “Cleaning strategy of membrane modules in reverse osmosis seawater desalination system” publication-title: CIESC Journal – volume: 63 start-page: 1859 year: 2012 end-page: 1864 ident: bib6 article-title: Process simulation and analysis of thermal vapor compression based oilfield waster desalination systems” publication-title: CIESC Journal – volume: 180 start-page: 217 year: 2005 end-page: 229 ident: bib12 article-title: “Integration of seawater desalination with power generation” publication-title: Desalination – volume: 138 start-page: 341 year: 2001 end-page: 347 ident: bib4 article-title: “Optimal MSF plant design” publication-title: Desalination – volume: 54 start-page: 878 year: 2003 end-page: 879 ident: bib17 article-title: “Hydraulic energy recovery for SWRO desalination plants” publication-title: CIESC Journal – year: 1999 ident: bib9 publication-title: The ABCs of Desalting – volume: 54 start-page: 362 year: 2003 end-page: 367 ident: bib5 article-title: “Performance of seawater desalination system coupled with nuclear heating reactor under unsteady state operation conditions” publication-title: CIESC Journal – volume: 46 start-page: 1967 year: 2000 end-page: 1973 ident: bib15 article-title: “Estimation of transport parameters of RO menbranes for seawater desalination” publication-title: AIChE Journal – volume: 182 start-page: 111 year: 2005 end-page: 122 ident: bib10 article-title: “Optimization of hybrid desalination processes including multi stage flash and reverse osmosis systems” publication-title: Desalination – volume: 18 start-page: 935 year: 1998 end-page: 946 ident: bib7 article-title: “The energetic feasibility of CHP compared to the separate production of heat and power” publication-title: Applied Thermal Engineering – volume: 166 start-page: 25 year: 2004 end-page: 39 ident: bib1 article-title: “The one-throught MSF design for future large capacity desalination plants” publication-title: Desalination – volume: 105 start-page: 245 year: 1996 end-page: 261 ident: bib3 article-title: “Design and economics of RO seawater desalination” publication-title: Desalination – reference: Al-Khudhiri, A.I., “Optimal design of hybrid MSF/RO desalination plants”, Ph. D. Thesis, Saudi Arabia (2006). – volume: 154 start-page: 43 year: 2003 end-page: 66 ident: bib19 article-title: “Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms” publication-title: Desalination – volume: 107 start-page: 101 year: 1996 end-page: 109 ident: bib8 article-title: “Modernising the desalination industry” publication-title: Desalination – volume: 184 start-page: 125 year: 2005 end-page: 137 ident: bib20 article-title: “Energy saving in two-stage reverse osmosis systems coupled with ultrafiltration processes” publication-title: Desalination – volume: 76 start-page: 246 year: 1998 end-page: 258 ident: bib13 article-title: “A rigorous MINLP model for the optimal synthesis and operation of utility plants” publication-title: Tran IChemE – volume: 54 start-page: 878 issue: 6 year: 2003 ident: 10.1016/S1004-9541(14)60036-7_bib17 article-title: “Hydraulic energy recovery for SWRO desalination plants” publication-title: CIESC Journal – volume: 184 start-page: 125 year: 2005 ident: 10.1016/S1004-9541(14)60036-7_bib20 article-title: “Energy saving in two-stage reverse osmosis systems coupled with ultrafiltration processes” publication-title: Desalination doi: 10.1016/j.desal.2005.03.063 – volume: 107 start-page: 101 year: 1996 ident: 10.1016/S1004-9541(14)60036-7_bib8 article-title: “Modernising the desalination industry” publication-title: Desalination doi: 10.1016/S0011-9164(96)00160-9 – volume: 180 start-page: 217 year: 2005 ident: 10.1016/S1004-9541(14)60036-7_bib12 article-title: “Integration of seawater desalination with power generation” publication-title: Desalination doi: 10.1016/j.desal.2005.02.007 – year: 1999 ident: 10.1016/S1004-9541(14)60036-7_bib9 – volume: 105 start-page: 245 year: 1996 ident: 10.1016/S1004-9541(14)60036-7_bib3 article-title: “Design and economics of RO seawater desalination” publication-title: Desalination doi: 10.1016/0011-9164(96)00081-1 – volume: 157 start-page: 51 year: 2003 ident: 10.1016/S1004-9541(14)60036-7_bib11 article-title: “Hybrid membrane-thermal versus simple membrane systems” publication-title: Desalination doi: 10.1016/S0011-9164(03)00382-5 – volume: 46 start-page: 1967 issue: 10 year: 2000 ident: 10.1016/S1004-9541(14)60036-7_bib15 article-title: “Estimation of transport parameters of RO menbranes for seawater desalination” publication-title: AIChE Journal doi: 10.1002/aic.690461009 – volume: 154 start-page: 43 year: 2003 ident: 10.1016/S1004-9541(14)60036-7_bib19 article-title: “Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms” publication-title: Desalination doi: 10.1016/S0011-9164(03)00207-8 – volume: 42 start-page: 4828 issue: 20 year: 2003 ident: 10.1016/S1004-9541(14)60036-7_bib2 article-title: “Novel configuration for multi stage flash-mixer desalination system” publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020318v – volume: 134 start-page: 7 year: 2001 ident: 10.1016/S1004-9541(14)60036-7_bib18 article-title: “Cogeneration for power and desalination-state of the art review” publication-title: Desalination doi: 10.1016/S0011-9164(01)00111-4 – volume: 18 start-page: 935 issue: 11 year: 1998 ident: 10.1016/S1004-9541(14)60036-7_bib7 article-title: “The energetic feasibility of CHP compared to the separate production of heat and power” publication-title: Applied Thermal Engineering doi: 10.1016/S1359-4311(98)00026-X – volume: 166 start-page: 25 year: 2004 ident: 10.1016/S1004-9541(14)60036-7_bib1 article-title: “The one-throught MSF design for future large capacity desalination plants” publication-title: Desalination doi: 10.1016/j.desal.2004.06.056 – volume: 56 start-page: 499 issue: 3 year: 2005 ident: 10.1016/S1004-9541(14)60036-7_bib16 article-title: “Cleaning strategy of membrane modules in reverse osmosis seawater desalination system” publication-title: CIESC Journal – ident: 10.1016/S1004-9541(14)60036-7_bib14 – volume: 138 start-page: 341 year: 2001 ident: 10.1016/S1004-9541(14)60036-7_bib4 article-title: “Optimal MSF plant design” publication-title: Desalination doi: 10.1016/S0011-9164(01)00283-1 – volume: 63 start-page: 1859 issue: 6 year: 2012 ident: 10.1016/S1004-9541(14)60036-7_bib6 article-title: Process simulation and analysis of thermal vapor compression based oilfield waster desalination systems” publication-title: CIESC Journal – volume: 76 start-page: 246 year: 1998 ident: 10.1016/S1004-9541(14)60036-7_bib13 article-title: “A rigorous MINLP model for the optimal synthesis and operation of utility plants” publication-title: Tran IChemE doi: 10.1205/026387698524901 – volume: 54 start-page: 362 issue: 3 year: 2003 ident: 10.1016/S1004-9541(14)60036-7_bib5 article-title: “Performance of seawater desalination system coupled with nuclear heating reactor under unsteady state operation conditions” publication-title: CIESC Journal – volume: 182 start-page: 111 year: 2005 ident: 10.1016/S1004-9541(14)60036-7_bib10 article-title: “Optimization of hybrid desalination processes including multi stage flash and reverse osmosis systems” publication-title: Desalination doi: 10.1016/j.desal.2005.03.011 |
SSID | ssj0020818 |
Score | 2.0573685 |
Snippet | In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power... In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogeneration system for desalination water, heat and power... In order to improve the energy efficiency, reduce the CO sub(2) emission and decrease the cost, a cogeneration system for desalination water, heat and power... |
SourceID | proquest crossref elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 330 |
SubjectTerms | Cogeneration cogeneration system Cost engineering Desalination Design engineering Economics Modules multi-stage flash desalination non-linear programming optimal design Optimization reverse osmosis desalination thermal power plant Thermoelectricity 二氧化碳排放 流程模型 热电联产系统 热电联供系统 电力生产 维护费用 脱盐水 设计方法 |
Title | Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production |
URI | http://lib.cqvip.com/qk/84275X/201403/48941624.html https://dx.doi.org/10.1016/S1004-9541(14)60036-7 https://www.proquest.com/docview/1671574833 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: ACRLP dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: AIKHN dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: .~1 dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2210-321X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020818 issn: 1004-9541 databaseCode: AKRWK dateStart: 20060201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iL_ogfuLmBxF8ULCuadM2fRzTMRVloKJvIWnTOZjtnNurf7t3aTs_QARfw-UIuet9NHe_I-TIi3Tg6pg5WaqEw03KndjXHP9bub7n-5Fnpzfc3Ia9B371FDwtkE7dC4NllZXtL226tdbVSqu6zdZ4OGzdIdZZHHBsq0VUFewoR_Qv0Omz93mZh4eQbfbF04VTAPVnF0_JwS4eM35imTgRYiw8F_ngFTzHb77qh9W2rqi7RlarGJK2y2OukwWTb5CVL8iCmyTHGWcjqvKUntsaDVpktFMMLMg0yoKWUOUUYlZ6Xg1JmQLtC7b-IjFsU9isa4kfISKdnNIeGG7Ls4-z1Wi_RIsFgi3y0L247_ScarSCk_ihmDpJ6rupyFwd6hBSFoUo9xDICQhYoiTiShkRu6EIYu0myqg41p7QmfEyprVSgfa3yWJe5GaHUKPDDHiwTCQJzzhTHktB5JDpQCbnMtMgzfmFynEJoSG5iCES9HiD8PqGZVKBkuNsjJGcV5-hkCQKCbIUaYUkowY5m2-rWf6xQdTik9_US4Ln-GvrYS1uCZ8evqeo3BSzN8nCiAURaLXf_D_7XbIMMRgvy9r2yOJ0MjP7EOdM9YFV5AOy1L687t1-AIFD9RE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPqKUgFmjrShyKRNg4cWLniJaiUGCFBAhulp04gEQTHsv_Z8ZJthSpQuox1swo8kzmEXu-AdiKpE1Cm_GgKo0KhCtFkMVW0H-rMI7iWEZ-esPJOM0vxK-r5GoGRn0vDF2r7Hx_69O9t-5Wht1uDu9vb4dnhHWWJYLaaglVRc7CvMBHNPb5vcOjfDytuwi1zR96hvgiSPGnkacV4hd_cLHt5QSSYBZumvr6AYPHv8LVG8fto9HBR1jq0ki2177pJ5hx9TJ8eAUu-BlqGnN2x0xdsn1_TYM1FRs11x5nmtTBWrRyhmkr2-_mpEyQ9jd1_xIxshnq1_XEl5iUPu6wHH23l3lK49XYaQsYiwQrcHHw83yUB910haCIUzUJijIOS1WFNrUpVi2GgO4xl1OYs8hCCmOcysJUJZkNC-NMltlI2cpFFbfWmMTGqzBXN7VbA-ZsWqEMXqmiEJXgJuIlah2LHSzmQu4GsD7dUH3fomhooTJMBiMxANHvsC46XHIaj3GnpxfQSEmalISFivZK0nIAu1O2XuQ7DKpXn_7LwjQGj_dYv_fq1vj10ZGKqV3z_KR5Knki0bDj9f8X_w0W8vOTY318OD7agEVMyUR7y20T5iaPz-4Lpj0T-7Uz6xflW_e8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+and+Design+of+Cogeneration+System+for+Different+Demands+of+Desalination+Water%2C+Heat+and+Power+Production&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=WU%2C+Xianli&rft.au=HU%2C+Yangdong&rft.au=WU%2C+Lianying&rft.au=LI%2C+Hong&rft.date=2014-03-01&rft.pub=Elsevier+B.V&rft.issn=1004-9541&rft.eissn=2210-321X&rft.volume=22&rft.issue=3&rft.spage=330&rft.epage=338&rft_id=info:doi/10.1016%2FS1004-9541%2814%2960036-7&rft.externalDocID=S1004954114600367 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84275X%2F84275X.jpg |