Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production

In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-st...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 22; no. 3; pp. 330 - 338
Main Author 吴现力 胡仰栋 伍联营 李红
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2014
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(14)60036-7

Cover

Abstract In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.
AbstractList In order to improve the energy efficiency, reduce the CO sub(2) emission and decrease the cost, a cogeneration system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model of each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost, showing this design method was effective.
In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.
In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogeneration system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model of each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost, showing this design method was effective.
Author 吴现力 胡仰栋 伍联营 李红
AuthorAffiliation College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Author_xml – sequence: 1
  fullname: 吴现力 胡仰栋 伍联营 李红
BookMark eNqFkEFP2zAcRy3EJArbR0DybiAtmx07jiMOaGphncS0SmwaN8tx_u6MUru1XRDfnrRFPXDpyZf3frbfKTr2wQNC55R8pYSKb_eUEF40FacXlF8KQpgo6iM0KktKClbSh2M02iMn6DSlR0JKIqkcIf8rdNBj7Ts8geTmHgeLx2EOHqLOLnh8_5IyLLANEU-ctRDB54FdDErawIOme-d38D-dIX7BU9B5uzkLzxDxLIZubTbAR_TB6j7Bp7fzDP29vfkznhZ3v3_8HH-_KwwTMhemY6STlrSiFVzWuqqHT5VCEsFqU3OtQTZEyKppidGgm6YtZWuhtLRtta5adoYudrvLGFZrSFktXDLQ99pDWCdFRU2rmkvGBrTaoSaGlCJYtYxuoeOLokRt-qptX7WJpyhX276qHryrd55xeVshR-36g_b1zoahwpODqJJx4A10LoLJqgvu4MLnt_v_Bz9fOT_fP5zLhlNRcvYKHKmiKA
CitedBy_id crossref_primary_10_1016_j_egyr_2021_11_253
crossref_primary_10_1016_j_enconman_2025_119523
crossref_primary_10_1016_j_rser_2018_05_022
crossref_primary_10_2139_ssrn_3918928
crossref_primary_10_3389_frsc_2022_856996
crossref_primary_10_1021_acs_iecr_5b03333
crossref_primary_10_1007_s12667_019_00346_y
crossref_primary_10_3390_hydrology4010001
crossref_primary_10_1016_j_desal_2017_11_013
crossref_primary_10_1016_j_egypro_2015_07_342
crossref_primary_10_1016_j_clet_2024_100791
crossref_primary_10_1016_j_seta_2020_100742
Cites_doi 10.1016/j.desal.2005.03.063
10.1016/S0011-9164(96)00160-9
10.1016/j.desal.2005.02.007
10.1016/0011-9164(96)00081-1
10.1016/S0011-9164(03)00382-5
10.1002/aic.690461009
10.1016/S0011-9164(03)00207-8
10.1021/ie020318v
10.1016/S0011-9164(01)00111-4
10.1016/S1359-4311(98)00026-X
10.1016/j.desal.2004.06.056
10.1016/S0011-9164(01)00283-1
10.1205/026387698524901
10.1016/j.desal.2005.03.011
ContentType Journal Article
Copyright 2014 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
Copyright_xml – notice: 2014 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SU
7U5
8FD
C1K
FR3
KR7
L7M
DOI 10.1016/S1004-9541(14)60036-7
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
DocumentTitleAlternate Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production
EISSN 2210-321X
EndPage 338
ExternalDocumentID 10_1016_S1004_9541_14_60036_7
S1004954114600367
48941624
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21076202
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C0
2RA
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92L
92R
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDC
SDF
SDG
SDH
SES
SPC
SPCBC
SSG
SSZ
T5K
TCJ
TGT
UGNYK
W92
~G-
~WA
-SB
-S~
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
7SU
7U5
8FD
ACLOT
C1K
EFKBS
FR3
KR7
L7M
~HD
ID FETCH-LOGICAL-c368t-cd30d8f0b6b6487a570032680637c74aae8906859b0caea99b28bfe2f1bbaa5b3
IEDL.DBID .~1
ISSN 1004-9541
IngestDate Sun Sep 28 07:33:58 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
Tue Jul 01 02:57:07 EDT 2025
Fri Feb 23 02:37:34 EST 2024
Wed Feb 14 10:37:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords optimal design
multi-stage flash desalination
reverse osmosis desalination
thermal power plant
cogeneration system
non-linear programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-cd30d8f0b6b6487a570032680637c74aae8906859b0caea99b28bfe2f1bbaa5b3
Notes In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.
WU Xianli , HU Yangdong, WU Lianying and LI Hong College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
11-3270/TQ
cogeneration system, thermal power plant, multi-stage flash desalination, reverse osmosis desalination,non-linear programming, optimal design
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671574833
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671574833
crossref_primary_10_1016_S1004_9541_14_60036_7
crossref_citationtrail_10_1016_S1004_9541_14_60036_7
elsevier_sciencedirect_doi_10_1016_S1004_9541_14_60036_7
chongqing_primary_48941624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese journal of chemical engineering
PublicationTitleAlternate Chinese Journal of Chemical Engineering
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Marian, Marcovecchio, Sergio (bib10) 2005; 182
Cardona, Piacentino, Marchese (bib20) 2005; 184
Hu, Lu, Xu, Wu (bib16) 2005; 56
Bruno, Fernandez, Castells, Grossmann (bib13) 1998; 76
Helal, El-Nashar (bib19) 2003; 154
Hammond (bib8) 1996; 107
Turek, Dydo (bib11) 2003; 157
Helal (bib1) 2004; 166
Martens (bib7) 1998; 18
Wang, Wang, Xu (bib17) 2003; 54
Mussati, Aguirre, Scenna (bib4) 2001; 138
Du, Wu (bib5) 2003; 54
Al-Khudhiri, A.I., “Optimal design of hybrid MSF/RO desalination plants”, Ph. D. Thesis, Saudi Arabia (2006).
Kamal (bib12) 2005; 180
Mussati, Aguirre, Scenna (bib2) 2003; 42
Malek, Hawlader (bib3) 1996; 105
Taniguchi, Kimura (bib15) 2000; 46
Li, Liu, Han, Pang, Zhang, Zhu (bib6) 2012; 63
Buros (bib9) 1999
El-Nashar (bib18) 2001; 134
Helal (10.1016/S1004-9541(14)60036-7_bib19) 2003; 154
Bruno (10.1016/S1004-9541(14)60036-7_bib13) 1998; 76
Wang (10.1016/S1004-9541(14)60036-7_bib17) 2003; 54
El-Nashar (10.1016/S1004-9541(14)60036-7_bib18) 2001; 134
Malek (10.1016/S1004-9541(14)60036-7_bib3) 1996; 105
Hammond (10.1016/S1004-9541(14)60036-7_bib8) 1996; 107
Du (10.1016/S1004-9541(14)60036-7_bib5) 2003; 54
Martens (10.1016/S1004-9541(14)60036-7_bib7) 1998; 18
Marian (10.1016/S1004-9541(14)60036-7_bib10) 2005; 182
10.1016/S1004-9541(14)60036-7_bib14
Buros (10.1016/S1004-9541(14)60036-7_bib9) 1999
Helal (10.1016/S1004-9541(14)60036-7_bib1) 2004; 166
Turek (10.1016/S1004-9541(14)60036-7_bib11) 2003; 157
Cardona (10.1016/S1004-9541(14)60036-7_bib20) 2005; 184
Li (10.1016/S1004-9541(14)60036-7_bib6) 2012; 63
Hu (10.1016/S1004-9541(14)60036-7_bib16) 2005; 56
Mussati (10.1016/S1004-9541(14)60036-7_bib2) 2003; 42
Taniguchi (10.1016/S1004-9541(14)60036-7_bib15) 2000; 46
Kamal (10.1016/S1004-9541(14)60036-7_bib12) 2005; 180
Mussati (10.1016/S1004-9541(14)60036-7_bib4) 2001; 138
References_xml – volume: 157
  start-page: 51
  year: 2003
  end-page: 56
  ident: bib11
  article-title: “Hybrid membrane-thermal versus simple membrane systems”
  publication-title: Desalination
– volume: 42
  start-page: 4828
  year: 2003
  end-page: 4839
  ident: bib2
  article-title: “Novel configuration for multi stage flash-mixer desalination system”
  publication-title: Ind. Eng. Chem. Res.
– volume: 134
  start-page: 7
  year: 2001
  end-page: 28
  ident: bib18
  article-title: “Cogeneration for power and desalination-state of the art review”
  publication-title: Desalination
– volume: 56
  start-page: 499
  year: 2005
  end-page: 505
  ident: bib16
  article-title: “Cleaning strategy of membrane modules in reverse osmosis seawater desalination system”
  publication-title: CIESC Journal
– volume: 63
  start-page: 1859
  year: 2012
  end-page: 1864
  ident: bib6
  article-title: Process simulation and analysis of thermal vapor compression based oilfield waster desalination systems”
  publication-title: CIESC Journal
– volume: 180
  start-page: 217
  year: 2005
  end-page: 229
  ident: bib12
  article-title: “Integration of seawater desalination with power generation”
  publication-title: Desalination
– volume: 138
  start-page: 341
  year: 2001
  end-page: 347
  ident: bib4
  article-title: “Optimal MSF plant design”
  publication-title: Desalination
– volume: 54
  start-page: 878
  year: 2003
  end-page: 879
  ident: bib17
  article-title: “Hydraulic energy recovery for SWRO desalination plants”
  publication-title: CIESC Journal
– year: 1999
  ident: bib9
  publication-title: The ABCs of Desalting
– volume: 54
  start-page: 362
  year: 2003
  end-page: 367
  ident: bib5
  article-title: “Performance of seawater desalination system coupled with nuclear heating reactor under unsteady state operation conditions”
  publication-title: CIESC Journal
– volume: 46
  start-page: 1967
  year: 2000
  end-page: 1973
  ident: bib15
  article-title: “Estimation of transport parameters of RO menbranes for seawater desalination”
  publication-title: AIChE Journal
– volume: 182
  start-page: 111
  year: 2005
  end-page: 122
  ident: bib10
  article-title: “Optimization of hybrid desalination processes including multi stage flash and reverse osmosis systems”
  publication-title: Desalination
– volume: 18
  start-page: 935
  year: 1998
  end-page: 946
  ident: bib7
  article-title: “The energetic feasibility of CHP compared to the separate production of heat and power”
  publication-title: Applied Thermal Engineering
– volume: 166
  start-page: 25
  year: 2004
  end-page: 39
  ident: bib1
  article-title: “The one-throught MSF design for future large capacity desalination plants”
  publication-title: Desalination
– volume: 105
  start-page: 245
  year: 1996
  end-page: 261
  ident: bib3
  article-title: “Design and economics of RO seawater desalination”
  publication-title: Desalination
– reference: Al-Khudhiri, A.I., “Optimal design of hybrid MSF/RO desalination plants”, Ph. D. Thesis, Saudi Arabia (2006).
– volume: 154
  start-page: 43
  year: 2003
  end-page: 66
  ident: bib19
  article-title: “Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms”
  publication-title: Desalination
– volume: 107
  start-page: 101
  year: 1996
  end-page: 109
  ident: bib8
  article-title: “Modernising the desalination industry”
  publication-title: Desalination
– volume: 184
  start-page: 125
  year: 2005
  end-page: 137
  ident: bib20
  article-title: “Energy saving in two-stage reverse osmosis systems coupled with ultrafiltration processes”
  publication-title: Desalination
– volume: 76
  start-page: 246
  year: 1998
  end-page: 258
  ident: bib13
  article-title: “A rigorous MINLP model for the optimal synthesis and operation of utility plants”
  publication-title: Tran IChemE
– volume: 54
  start-page: 878
  issue: 6
  year: 2003
  ident: 10.1016/S1004-9541(14)60036-7_bib17
  article-title: “Hydraulic energy recovery for SWRO desalination plants”
  publication-title: CIESC Journal
– volume: 184
  start-page: 125
  year: 2005
  ident: 10.1016/S1004-9541(14)60036-7_bib20
  article-title: “Energy saving in two-stage reverse osmosis systems coupled with ultrafiltration processes”
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.03.063
– volume: 107
  start-page: 101
  year: 1996
  ident: 10.1016/S1004-9541(14)60036-7_bib8
  article-title: “Modernising the desalination industry”
  publication-title: Desalination
  doi: 10.1016/S0011-9164(96)00160-9
– volume: 180
  start-page: 217
  year: 2005
  ident: 10.1016/S1004-9541(14)60036-7_bib12
  article-title: “Integration of seawater desalination with power generation”
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.02.007
– year: 1999
  ident: 10.1016/S1004-9541(14)60036-7_bib9
– volume: 105
  start-page: 245
  year: 1996
  ident: 10.1016/S1004-9541(14)60036-7_bib3
  article-title: “Design and economics of RO seawater desalination”
  publication-title: Desalination
  doi: 10.1016/0011-9164(96)00081-1
– volume: 157
  start-page: 51
  year: 2003
  ident: 10.1016/S1004-9541(14)60036-7_bib11
  article-title: “Hybrid membrane-thermal versus simple membrane systems”
  publication-title: Desalination
  doi: 10.1016/S0011-9164(03)00382-5
– volume: 46
  start-page: 1967
  issue: 10
  year: 2000
  ident: 10.1016/S1004-9541(14)60036-7_bib15
  article-title: “Estimation of transport parameters of RO menbranes for seawater desalination”
  publication-title: AIChE Journal
  doi: 10.1002/aic.690461009
– volume: 154
  start-page: 43
  year: 2003
  ident: 10.1016/S1004-9541(14)60036-7_bib19
  article-title: “Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms”
  publication-title: Desalination
  doi: 10.1016/S0011-9164(03)00207-8
– volume: 42
  start-page: 4828
  issue: 20
  year: 2003
  ident: 10.1016/S1004-9541(14)60036-7_bib2
  article-title: “Novel configuration for multi stage flash-mixer desalination system”
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020318v
– volume: 134
  start-page: 7
  year: 2001
  ident: 10.1016/S1004-9541(14)60036-7_bib18
  article-title: “Cogeneration for power and desalination-state of the art review”
  publication-title: Desalination
  doi: 10.1016/S0011-9164(01)00111-4
– volume: 18
  start-page: 935
  issue: 11
  year: 1998
  ident: 10.1016/S1004-9541(14)60036-7_bib7
  article-title: “The energetic feasibility of CHP compared to the separate production of heat and power”
  publication-title: Applied Thermal Engineering
  doi: 10.1016/S1359-4311(98)00026-X
– volume: 166
  start-page: 25
  year: 2004
  ident: 10.1016/S1004-9541(14)60036-7_bib1
  article-title: “The one-throught MSF design for future large capacity desalination plants”
  publication-title: Desalination
  doi: 10.1016/j.desal.2004.06.056
– volume: 56
  start-page: 499
  issue: 3
  year: 2005
  ident: 10.1016/S1004-9541(14)60036-7_bib16
  article-title: “Cleaning strategy of membrane modules in reverse osmosis seawater desalination system”
  publication-title: CIESC Journal
– ident: 10.1016/S1004-9541(14)60036-7_bib14
– volume: 138
  start-page: 341
  year: 2001
  ident: 10.1016/S1004-9541(14)60036-7_bib4
  article-title: “Optimal MSF plant design”
  publication-title: Desalination
  doi: 10.1016/S0011-9164(01)00283-1
– volume: 63
  start-page: 1859
  issue: 6
  year: 2012
  ident: 10.1016/S1004-9541(14)60036-7_bib6
  article-title: Process simulation and analysis of thermal vapor compression based oilfield waster desalination systems”
  publication-title: CIESC Journal
– volume: 76
  start-page: 246
  year: 1998
  ident: 10.1016/S1004-9541(14)60036-7_bib13
  article-title: “A rigorous MINLP model for the optimal synthesis and operation of utility plants”
  publication-title: Tran IChemE
  doi: 10.1205/026387698524901
– volume: 54
  start-page: 362
  issue: 3
  year: 2003
  ident: 10.1016/S1004-9541(14)60036-7_bib5
  article-title: “Performance of seawater desalination system coupled with nuclear heating reactor under unsteady state operation conditions”
  publication-title: CIESC Journal
– volume: 182
  start-page: 111
  year: 2005
  ident: 10.1016/S1004-9541(14)60036-7_bib10
  article-title: “Optimization of hybrid desalination processes including multi stage flash and reverse osmosis systems”
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.03.011
SSID ssj0020818
Score 2.0573685
Snippet In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power...
In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogeneration system for desalination water, heat and power...
In order to improve the energy efficiency, reduce the CO sub(2) emission and decrease the cost, a cogeneration system for desalination water, heat and power...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 330
SubjectTerms Cogeneration
cogeneration system
Cost engineering
Desalination
Design engineering
Economics
Modules
multi-stage flash desalination
non-linear programming
optimal design
Optimization
reverse osmosis desalination
thermal power plant
Thermoelectricity
二氧化碳排放
流程模型
热电联产系统
热电联供系统
电力生产
维护费用
脱盐水
设计方法
Title Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production
URI http://lib.cqvip.com/qk/84275X/201403/48941624.html
https://dx.doi.org/10.1016/S1004-9541(14)60036-7
https://www.proquest.com/docview/1671574833
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: ACRLP
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: AIKHN
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: .~1
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: AKRWK
  dateStart: 20060201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iL_ogfuLmBxF8ULCuadM2fRzTMRVloKJvIWnTOZjtnNurf7t3aTs_QARfw-UIuet9NHe_I-TIi3Tg6pg5WaqEw03KndjXHP9bub7n-5Fnpzfc3Ia9B371FDwtkE7dC4NllZXtL226tdbVSqu6zdZ4OGzdIdZZHHBsq0VUFewoR_Qv0Omz93mZh4eQbfbF04VTAPVnF0_JwS4eM35imTgRYiw8F_ngFTzHb77qh9W2rqi7RlarGJK2y2OukwWTb5CVL8iCmyTHGWcjqvKUntsaDVpktFMMLMg0yoKWUOUUYlZ6Xg1JmQLtC7b-IjFsU9isa4kfISKdnNIeGG7Ls4-z1Wi_RIsFgi3y0L247_ScarSCk_ihmDpJ6rupyFwd6hBSFoUo9xDICQhYoiTiShkRu6EIYu0myqg41p7QmfEyprVSgfa3yWJe5GaHUKPDDHiwTCQJzzhTHktB5JDpQCbnMtMgzfmFynEJoSG5iCES9HiD8PqGZVKBkuNsjJGcV5-hkCQKCbIUaYUkowY5m2-rWf6xQdTik9_US4Ln-GvrYS1uCZ8evqeo3BSzN8nCiAURaLXf_D_7XbIMMRgvy9r2yOJ0MjP7EOdM9YFV5AOy1L687t1-AIFD9RE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPqKUgFmjrShyKRNg4cWLniJaiUGCFBAhulp04gEQTHsv_Z8ZJthSpQuox1swo8kzmEXu-AdiKpE1Cm_GgKo0KhCtFkMVW0H-rMI7iWEZ-esPJOM0vxK-r5GoGRn0vDF2r7Hx_69O9t-5Wht1uDu9vb4dnhHWWJYLaaglVRc7CvMBHNPb5vcOjfDytuwi1zR96hvgiSPGnkacV4hd_cLHt5QSSYBZumvr6AYPHv8LVG8fto9HBR1jq0ki2177pJ5hx9TJ8eAUu-BlqGnN2x0xdsn1_TYM1FRs11x5nmtTBWrRyhmkr2-_mpEyQ9jd1_xIxshnq1_XEl5iUPu6wHH23l3lK49XYaQsYiwQrcHHw83yUB910haCIUzUJijIOS1WFNrUpVi2GgO4xl1OYs8hCCmOcysJUJZkNC-NMltlI2cpFFbfWmMTGqzBXN7VbA-ZsWqEMXqmiEJXgJuIlah2LHSzmQu4GsD7dUH3fomhooTJMBiMxANHvsC46XHIaj3GnpxfQSEmalISFivZK0nIAu1O2XuQ7DKpXn_7LwjQGj_dYv_fq1vj10ZGKqV3z_KR5Knki0bDj9f8X_w0W8vOTY318OD7agEVMyUR7y20T5iaPz-4Lpj0T-7Uz6xflW_e8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+and+Design+of+Cogeneration+System+for+Different+Demands+of+Desalination+Water%2C+Heat+and+Power+Production&rft.jtitle=Chinese+journal+of+chemical+engineering&rft.au=WU%2C+Xianli&rft.au=HU%2C+Yangdong&rft.au=WU%2C+Lianying&rft.au=LI%2C+Hong&rft.date=2014-03-01&rft.pub=Elsevier+B.V&rft.issn=1004-9541&rft.eissn=2210-321X&rft.volume=22&rft.issue=3&rft.spage=330&rft.epage=338&rft_id=info:doi/10.1016%2FS1004-9541%2814%2960036-7&rft.externalDocID=S1004954114600367
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84275X%2F84275X.jpg