A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization
•Our paper explores a novel hybrid optimization framework that adaptively switches between constituent genetic and Levenberg–Marquardt algorithms.•Our method yields superior convergence performance than either individually.•It solves a longstanding optimization problem in spectrometer design. Advanc...
        Saved in:
      
    
          | Published in | Ultramicroscopy Vol. 202; pp. 100 - 106 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        01.07.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0304-3991 1879-2723 1879-2723  | 
| DOI | 10.1016/j.ultramic.2019.03.004 | 
Cover
| Abstract | •Our paper explores a novel hybrid optimization framework that adaptively switches between constituent genetic and Levenberg–Marquardt algorithms.•Our method yields superior convergence performance than either individually.•It solves a longstanding optimization problem in spectrometer design.
Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg–Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples—the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer—and is found to outperform both the Levenberg–Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future. | 
    
|---|---|
| AbstractList | Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg-Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples-the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer-and is found to outperform both the Levenberg-Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future.Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg-Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples-the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer-and is found to outperform both the Levenberg-Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future. Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg-Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples-the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer-and is found to outperform both the Levenberg-Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future. •Our paper explores a novel hybrid optimization framework that adaptively switches between constituent genetic and Levenberg–Marquardt algorithms.•Our method yields superior convergence performance than either individually.•It solves a longstanding optimization problem in spectrometer design. Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg–Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples—the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer—and is found to outperform both the Levenberg–Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future.  | 
    
| Author | Cheong, Kang Hao Koh, Jin Ming  | 
    
| Author_xml | – sequence: 1 givenname: Kang Hao surname: Cheong fullname: Cheong, Kang Hao email: kanghao_cheong@sutd.edu.sg organization: Science and Math Cluster, Singapore University of Technology and Design, 8 Somapah Road, S487372, Singapore – sequence: 2 givenname: Jin Ming surname: Koh fullname: Koh, Jin Ming organization: Science and Math Cluster, Singapore University of Technology and Design, 8 Somapah Road, S487372, Singapore  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31005022$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU9P3DAQxS1EBQvlKyAfuSQd27t2LHEAIfpH2qqX9lhZjj1ZvErixXZWop--octeeuE00uj93mjeuyCnYxyRkGsGNQMmP23rqS_JDsHVHJiuQdQAyxOyYI3SFVdcnJIFCFhWQmt2Ti5y3gIAg2VzRs4FA1gB5wvy-54-vbQpeLrBEUtw1Rr3OLaYNvS7Tc-TTb5Q229iCuVpoF1M1E4lDragp3mHrqQ4YMFEPeawGWnclTCEP7aEOH4kHzrbZ7x6m5fk1-fHnw9fq_WPL98e7teVE7IplVtZpRotldWiYx2XHReSS5jXXoGXCE4IcFzrpWyAK5CqaaFF5b1cdYqJS3Jz8N2l-DxhLmYI2WHf2xHjlA3njOkVSFCz9PpNOrUDerNLYbDpxRwjmQW3B4FLMeeEnXGh_Ptmzjv0hoF5bcBszbEB89qAAWHmBmZc_ocfL7wL3h1AnIPaB0wmu4CjQx_SnLLxMbxn8RfTTaTa | 
    
| CitedBy_id | crossref_primary_10_3390_s23146630 crossref_primary_10_1007_s13177_021_00273_2 crossref_primary_10_1002_advs_202001126 crossref_primary_10_1007_s11676_020_01246_z crossref_primary_10_1016_j_jocs_2023_102140 crossref_primary_10_1016_j_biosystems_2024_105124 crossref_primary_10_1007_s11071_020_05496_8 crossref_primary_10_1016_j_physa_2020_124714 crossref_primary_10_1016_j_ultramic_2019_04_003 crossref_primary_10_1016_j_inffus_2020_06_006 crossref_primary_10_1007_s10489_022_03438_y crossref_primary_10_1007_s11071_022_07277_x crossref_primary_10_1002_advs_202002324 crossref_primary_10_1007_s10489_021_02216_6 crossref_primary_10_1016_j_chaos_2019_109464 crossref_primary_10_1007_s10489_021_02525_w crossref_primary_10_1103_PhysRevE_102_012213 crossref_primary_10_1016_j_plrev_2024_08_002 crossref_primary_10_1007_s00500_020_04949_x crossref_primary_10_1371_journal_pone_0256836 crossref_primary_10_1016_j_jocs_2022_101871 crossref_primary_10_1016_j_buildenv_2022_109793 crossref_primary_10_1007_s11071_020_05738_9 crossref_primary_10_1016_j_neunet_2021_07_010 crossref_primary_10_1103_PhysRevE_101_052212 crossref_primary_10_3390_ijerph17114179 crossref_primary_10_1002_int_22615 crossref_primary_10_1007_s10489_021_02435_x crossref_primary_10_1007_s10668_024_05129_9 crossref_primary_10_1016_j_swevo_2021_100890 crossref_primary_10_1016_j_bbe_2021_05_010 crossref_primary_10_1007_s00500_023_07947_x crossref_primary_10_1021_acs_iecr_1c01048  | 
    
| Cites_doi | 10.1017/S1431927615013264 10.1142/S0219477502000701 10.1016/j.nima.2010.12.008 10.1016/j.nima.2010.12.055 10.1016/S0010-4655(99)00454-3 10.1038/35017500 10.1016/0375-9601(87)90796-1 10.1364/AO.17.003372 10.1016/j.elspec.2016.02.004 10.1016/j.elspec.2011.08.003 10.1016/j.nima.2003.11.171 10.1117/12.370137 10.1103/PhysRevA.79.021401 10.1007/s11721-007-0002-0 10.1103/PhysRevE.89.022142 10.1116/1.3497021 10.1016/j.elspec.2018.05.009 10.1017/S1431927615013288 10.1088/0370-1328/74/3/310 10.1142/S0219477510000010 10.1063/1.1435841 10.1116/1.571167 10.1016/j.nima.2010.12.017 10.1007/BF02190104 10.1090/qam/10666 10.1007/BF01009452 10.1016/j.elspec.2010.12.038 10.1023/A:1022602019183 10.1063/1.1685454 10.1038/47220 10.1137/0111030 10.1016/j.elspec.2016.09.002  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION NPM 7X8  | 
    
| DOI | 10.1016/j.ultramic.2019.03.004 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1879-2723 | 
    
| EndPage | 106 | 
    
| ExternalDocumentID | 31005022 10_1016_j_ultramic_2019_03_004 S0304399118303693  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSH SSM SSQ SSZ T5K WUQ XPP Y6R ZGI ZMT ZXP ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c368t-c5a778967a93f1f26f2362605a7d70d6e0c330c2994680270678b0be7dd65f713 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0304-3991 1879-2723  | 
    
| IngestDate | Sat Sep 27 18:47:56 EDT 2025 Thu Apr 03 07:07:42 EDT 2025 Thu Oct 09 00:39:07 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Mon Apr 21 03:35:07 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Computational optimization Energy analyzer Electron optics Genetic algorithm Hybrid algorithm  | 
    
| Language | English | 
    
| License | Copyright © 2019 Elsevier B.V. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c368t-c5a778967a93f1f26f2362605a7d70d6e0c330c2994680270678b0be7dd65f713 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 31005022 | 
    
| PQID | 2211950607 | 
    
| PQPubID | 23479 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | proquest_miscellaneous_2211950607 pubmed_primary_31005022 crossref_citationtrail_10_1016_j_ultramic_2019_03_004 crossref_primary_10_1016_j_ultramic_2019_03_004 elsevier_sciencedirect_doi_10_1016_j_ultramic_2019_03_004  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-07-01 | 
    
| PublicationDateYYYYMMDD | 2019-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Ultramicroscopy | 
    
| PublicationTitleAlternate | Ultramicroscopy | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Levenberg (bib0016) 1944; 2 Harmer, Abbott (bib0031) 1999; 402 Khursheed, Hoang, Srinivasan (bib0008) 2012; 184 Read (bib0025) 2002; 73 Edwards (bib0036) 2016; 212 Marquardt (bib0013) 1963; 11 Nunn, Wynne (bib0015) 1959; 74 Poli, Kennedy, Blackwell (bib0024) 2007; 1 Cubric, Fanis, Konishi, Kumashiro (bib0004) 2011; 645 Read, Cubric, Kumashiro, Walker (bib0026) 2004; 519 Cheong, Han, Khursheed, Nelliyan (bib0005) 2015; 21 Abbott (bib0033) 2010; 09 Khursheed, Cheong, Hoang (bib0007) 2010; 28 Kirkpatrick (bib0021) 1984; 34 Koh, Cheong (bib0014) 2018; 227 Aiming, Khursheed (bib0002) 1999; 3777 Shapiro, Wardi (bib0010) 1996; 91 Dilworth (bib0012) 1978; 17 Bonabeau, Dorigo, Theraulaz (bib0022) 2000; 406 Khursheed (bib0001) 2015; 21 Goldberg, Holland (bib0029) 1988; 3 Khursheed (bib0009) 2011; 184 Gu, Wu, Shan, Lin (bib0019) 2001; 4510 Risley (bib0030) 1972; 43 Wu, Szeto (bib0034) 2014; 89 Edwards (bib0035) 2016; 209 Chu, Munro (bib0003) 1981; 19 Vasiljevic (bib0018) 2012 Avriel (bib0011) 2003 Cheong, Khursheed (bib0006) 2011; 645 Szu, Hartley (bib0020) 1987; 122 Gollub, de Vivie-Riedle (bib0023) 2009; 79 Khursheed, Nelliyan, Chao (bib0027) 2011; 645 Brunetti (bib0017) 2000; 124 Holland (bib0028) 1992 Harmer, Abbott (bib0032) 2002; 02 Kirkpatrick (10.1016/j.ultramic.2019.03.004_bib0021) 1984; 34 Gu (10.1016/j.ultramic.2019.03.004_bib0019) 2001; 4510 Dilworth (10.1016/j.ultramic.2019.03.004_bib0012) 1978; 17 Harmer (10.1016/j.ultramic.2019.03.004_sbref0031) 2002; 02 Wu (10.1016/j.ultramic.2019.03.004_bib0034) 2014; 89 Khursheed (10.1016/j.ultramic.2019.03.004_bib0007) 2010; 28 Shapiro (10.1016/j.ultramic.2019.03.004_bib0010) 1996; 91 Avriel (10.1016/j.ultramic.2019.03.004_bib0011) 2003 Marquardt (10.1016/j.ultramic.2019.03.004_bib0013) 1963; 11 Khursheed (10.1016/j.ultramic.2019.03.004_bib0001) 2015; 21 Nunn (10.1016/j.ultramic.2019.03.004_bib0015) 1959; 74 Aiming (10.1016/j.ultramic.2019.03.004_bib0002) 1999; 3777 Cheong (10.1016/j.ultramic.2019.03.004_bib0006) 2011; 645 Brunetti (10.1016/j.ultramic.2019.03.004_bib0017) 2000; 124 Read (10.1016/j.ultramic.2019.03.004_bib0025) 2002; 73 Goldberg (10.1016/j.ultramic.2019.03.004_bib0029) 1988; 3 Levenberg (10.1016/j.ultramic.2019.03.004_bib0016) 1944; 2 Risley (10.1016/j.ultramic.2019.03.004_bib0030) 1972; 43 Koh (10.1016/j.ultramic.2019.03.004_bib0014) 2018; 227 Vasiljevic (10.1016/j.ultramic.2019.03.004_bib0018) 2012 Chu (10.1016/j.ultramic.2019.03.004_bib0003) 1981; 19 Edwards (10.1016/j.ultramic.2019.03.004_bib0036) 2016; 212 Khursheed (10.1016/j.ultramic.2019.03.004_bib0009) 2011; 184 Edwards (10.1016/j.ultramic.2019.03.004_bib0035) 2016; 209 Holland (10.1016/j.ultramic.2019.03.004_bib0028) 1992 Poli (10.1016/j.ultramic.2019.03.004_bib0024) 2007; 1 Szu (10.1016/j.ultramic.2019.03.004_bib0020) 1987; 122 Khursheed (10.1016/j.ultramic.2019.03.004_bib0008) 2012; 184 Harmer (10.1016/j.ultramic.2019.03.004_bib0031) 1999; 402 Cubric (10.1016/j.ultramic.2019.03.004_bib0004) 2011; 645 Read (10.1016/j.ultramic.2019.03.004_bib0026) 2004; 519 Abbott (10.1016/j.ultramic.2019.03.004_bib0033) 2010; 09 Cheong (10.1016/j.ultramic.2019.03.004_bib0005) 2015; 21 Khursheed (10.1016/j.ultramic.2019.03.004_bib0027) 2011; 645 Bonabeau (10.1016/j.ultramic.2019.03.004_bib0022) 2000; 406 Gollub (10.1016/j.ultramic.2019.03.004_bib0023) 2009; 79  | 
    
| References_xml | – volume: 645 start-page: 227 year: 2011 end-page: 233 ident: bib0004 article-title: Parallel acquisition electrostatic electron energy analyzers for high throughput nano-analysis publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A – volume: 212 start-page: 62 year: 2016 end-page: 73 ident: bib0036 article-title: Improving the performance of the cylindrical mirror analyzer II: reducing the dependence of energy resolution on sample position publication-title: J. Electron Spectros. Relat. Phenomena – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: bib0016 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: bib0013 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Indus. Appl.Math. – volume: 519 start-page: 338 year: 2004 end-page: 344 ident: bib0026 article-title: The parallel cylindrical mirror analyzer: axis-to-axis configuration publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A – volume: 21 start-page: 130 year: 2015 end-page: 135 ident: bib0001 article-title: Energy analyzer attachments for the scanning electron microscope publication-title: Microsc. Microanal. – volume: 184 start-page: 57 year: 2011 end-page: 61 ident: bib0009 article-title: Design of a parallel magnetic box energy analyzer attachment for electron microscopes publication-title: J. Electron Spectros. Relat. Phenomena – volume: 17 start-page: 3372 year: 1978 end-page: 3375 ident: bib0012 article-title: Pseudo-second-derivative matrix and its application to automatic lens design publication-title: Appl. Opt. – volume: 406 start-page: 39 year: 2000 ident: bib0022 article-title: Inspiration for optimization from social insect behaviour publication-title: Nature – volume: 74 start-page: 316 year: 1959 ident: bib0015 article-title: Lens designing by electronic digital computer: Ii publication-title: Proc. Phys. Soc. – volume: 402 start-page: 864 year: 1999 end-page: 870 ident: bib0031 article-title: Losing strategies can win by Parrondo’s paradox publication-title: Nature – volume: 1 start-page: 33 year: 2007 end-page: 57 ident: bib0024 article-title: Particle swarm optimization publication-title: Swarm Intell. – volume: 43 start-page: 95 year: 1972 end-page: 103 ident: bib0030 article-title: Design parameters for the cylindrical mirror energy analyzer publication-title: Rev. Sci. Instrum. – volume: 3777 year: 1999 ident: bib0002 article-title: Accurate ray tracing through finite element solved potential distributions in charged particle optics publication-title: Proc. SPIE – volume: 91 start-page: 439 year: 1996 end-page: 454 ident: bib0010 article-title: Convergence analysis of gradient descent stochastic algorithms publication-title: J Optim Theory Appl – volume: 34 start-page: 975 year: 1984 end-page: 986 ident: bib0021 article-title: Optimization by simulated annealing: quantitative studies publication-title: J. Stat. Phys. – volume: 09 start-page: 129 year: 2010 end-page: 156 ident: bib0033 article-title: Asymmetry and disorder: a decade of parrondo’s paradox publication-title: Fluct. Noise Lett. – volume: 19 start-page: 1053 year: 1981 end-page: 1057 ident: bib0003 article-title: Computerized optimization of electron-beam lithography systems publication-title: J. Vac. Sci. Technol. – volume: 124 start-page: 204 year: 2000 end-page: 211 ident: bib0017 article-title: A fast and precise genetic algorithm for a non-linear fitting problem publication-title: Comput. Phys. Commun. – volume: 3 start-page: 95 year: 1988 end-page: 99 ident: bib0029 article-title: Genetic algorithms and machine learning publication-title: Mach. Learn. – volume: 21 start-page: 142 year: 2015 end-page: 147 ident: bib0005 article-title: A parallel radial mirror energy analyzer attachment for the scanning electron microscope publication-title: Microsc. Microanal. – volume: 89 year: 2014 ident: bib0034 article-title: Extended Parrondo's game and Brownian ratchets: strong and weak parrondo effect publication-title: Phys. Rev. E – volume: 79 start-page: 021401 year: 2009 ident: bib0023 article-title: Modified ant-colony-optimization algorithm as an alternative to genetic algorithms publication-title: Phys. Rev. A – volume: 4510 year: 2001 ident: bib0019 article-title: Application of genetic algorithms to the optimization design of electron optical system publication-title: Proc. SPIE – volume: 73 start-page: 1129 year: 2002 end-page: 1139 ident: bib0025 article-title: The parallel cylindrical mirror electron energy analyzer publication-title: Rev. Sci. Instrum. – year: 2012 ident: bib0018 article-title: Classical and Evolutionary Algorithms in the Optimization of Optical Systems – year: 1992 ident: bib0028 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – volume: 02 year: 2002 ident: bib0032 article-title: A review of Parrondo’s paradox publication-title: Fluct. Noise Lett. – volume: 122 start-page: 157 year: 1987 end-page: 162 ident: bib0020 article-title: Fast simulated annealing publication-title: Phys. Lett. A – year: 2003 ident: bib0011 article-title: Nonlinear Programming: Analysis and Methods – volume: 209 start-page: 46 year: 2016 end-page: 52 ident: bib0035 article-title: The segmented cylindrical mirror analyzer (cma) publication-title: J. Electron Spectros. Relat. Phenomena – volume: 645 start-page: 248 year: 2011 end-page: 252 ident: bib0027 article-title: First-order focusing parallel electron energy magnetic sector analyzer designs publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A – volume: 645 start-page: 221 year: 2011 end-page: 226 ident: bib0006 article-title: A parallel magnetic sector mass analyzer design publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A – volume: 227 start-page: 31 year: 2018 end-page: 39 ident: bib0014 article-title: Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms publication-title: J. Electron Spectros. Relat. Phenomena – volume: 28 start-page: C6F10 year: 2010 end-page: C6F14 ident: bib0007 article-title: Design of a parallel mass spectrometer for focused ion beam columns publication-title: J. Vac. Sci. Technol. B Nanotechnol. Microelectron. – volume: 184 start-page: 525 year: 2012 end-page: 532 ident: bib0008 article-title: A wide-range parallel radial mirror analyzer for scanning electron/ion microscopes publication-title: J. Electron Spectros. Relat. Phenomena – volume: 21 start-page: 130 issue: S4 year: 2015 ident: 10.1016/j.ultramic.2019.03.004_bib0001 article-title: Energy analyzer attachments for the scanning electron microscope publication-title: Microsc. Microanal. doi: 10.1017/S1431927615013264 – volume: 02 year: 2002 ident: 10.1016/j.ultramic.2019.03.004_sbref0031 article-title: A review of Parrondo’s paradox publication-title: Fluct. Noise Lett. doi: 10.1142/S0219477502000701 – volume: 645 start-page: 248 issue: 1 year: 2011 ident: 10.1016/j.ultramic.2019.03.004_bib0027 article-title: First-order focusing parallel electron energy magnetic sector analyzer designs publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A doi: 10.1016/j.nima.2010.12.008 – volume: 645 start-page: 227 issue: 1 year: 2011 ident: 10.1016/j.ultramic.2019.03.004_bib0004 article-title: Parallel acquisition electrostatic electron energy analyzers for high throughput nano-analysis publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A doi: 10.1016/j.nima.2010.12.055 – volume: 4510 year: 2001 ident: 10.1016/j.ultramic.2019.03.004_bib0019 article-title: Application of genetic algorithms to the optimization design of electron optical system publication-title: Proc. SPIE – volume: 124 start-page: 204 issue: 2 year: 2000 ident: 10.1016/j.ultramic.2019.03.004_bib0017 article-title: A fast and precise genetic algorithm for a non-linear fitting problem publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(99)00454-3 – volume: 406 start-page: 39 year: 2000 ident: 10.1016/j.ultramic.2019.03.004_bib0022 article-title: Inspiration for optimization from social insect behaviour publication-title: Nature doi: 10.1038/35017500 – volume: 122 start-page: 157 issue: 3 year: 1987 ident: 10.1016/j.ultramic.2019.03.004_bib0020 article-title: Fast simulated annealing publication-title: Phys. Lett. A doi: 10.1016/0375-9601(87)90796-1 – volume: 17 start-page: 3372 issue: 21 year: 1978 ident: 10.1016/j.ultramic.2019.03.004_bib0012 article-title: Pseudo-second-derivative matrix and its application to automatic lens design publication-title: Appl. Opt. doi: 10.1364/AO.17.003372 – volume: 209 start-page: 46 year: 2016 ident: 10.1016/j.ultramic.2019.03.004_bib0035 article-title: The segmented cylindrical mirror analyzer (cma) publication-title: J. Electron Spectros. Relat. Phenomena doi: 10.1016/j.elspec.2016.02.004 – volume: 184 start-page: 525 issue: 11 year: 2012 ident: 10.1016/j.ultramic.2019.03.004_bib0008 article-title: A wide-range parallel radial mirror analyzer for scanning electron/ion microscopes publication-title: J. Electron Spectros. Relat. Phenomena doi: 10.1016/j.elspec.2011.08.003 – volume: 519 start-page: 338 issue: 1 year: 2004 ident: 10.1016/j.ultramic.2019.03.004_bib0026 article-title: The parallel cylindrical mirror analyzer: axis-to-axis configuration publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A doi: 10.1016/j.nima.2003.11.171 – volume: 3777 year: 1999 ident: 10.1016/j.ultramic.2019.03.004_bib0002 article-title: Accurate ray tracing through finite element solved potential distributions in charged particle optics doi: 10.1117/12.370137 – volume: 79 start-page: 021401 year: 2009 ident: 10.1016/j.ultramic.2019.03.004_bib0023 article-title: Modified ant-colony-optimization algorithm as an alternative to genetic algorithms publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.021401 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.ultramic.2019.03.004_bib0024 article-title: Particle swarm optimization publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – volume: 89 year: 2014 ident: 10.1016/j.ultramic.2019.03.004_bib0034 article-title: Extended Parrondo's game and Brownian ratchets: strong and weak parrondo effect publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.022142 – volume: 28 start-page: C6F10 issue: 6 year: 2010 ident: 10.1016/j.ultramic.2019.03.004_bib0007 article-title: Design of a parallel mass spectrometer for focused ion beam columns publication-title: J. Vac. Sci. Technol. B Nanotechnol. Microelectron. doi: 10.1116/1.3497021 – volume: 227 start-page: 31 year: 2018 ident: 10.1016/j.ultramic.2019.03.004_bib0014 article-title: Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms publication-title: J. Electron Spectros. Relat. Phenomena doi: 10.1016/j.elspec.2018.05.009 – volume: 21 start-page: 142 issue: S4 year: 2015 ident: 10.1016/j.ultramic.2019.03.004_bib0005 article-title: A parallel radial mirror energy analyzer attachment for the scanning electron microscope publication-title: Microsc. Microanal. doi: 10.1017/S1431927615013288 – volume: 74 start-page: 316 issue: 3 year: 1959 ident: 10.1016/j.ultramic.2019.03.004_bib0015 article-title: Lens designing by electronic digital computer: Ii publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1328/74/3/310 – volume: 09 start-page: 129 issue: 01 year: 2010 ident: 10.1016/j.ultramic.2019.03.004_bib0033 article-title: Asymmetry and disorder: a decade of parrondo’s paradox publication-title: Fluct. Noise Lett. doi: 10.1142/S0219477510000010 – volume: 73 start-page: 1129 issue: 3 year: 2002 ident: 10.1016/j.ultramic.2019.03.004_bib0025 article-title: The parallel cylindrical mirror electron energy analyzer publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1435841 – volume: 19 start-page: 1053 issue: 4 year: 1981 ident: 10.1016/j.ultramic.2019.03.004_bib0003 article-title: Computerized optimization of electron-beam lithography systems publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.571167 – volume: 645 start-page: 221 issue: 1 year: 2011 ident: 10.1016/j.ultramic.2019.03.004_bib0006 article-title: A parallel magnetic sector mass analyzer design publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A doi: 10.1016/j.nima.2010.12.017 – volume: 91 start-page: 439 issue: 2 year: 1996 ident: 10.1016/j.ultramic.2019.03.004_bib0010 article-title: Convergence analysis of gradient descent stochastic algorithms publication-title: J Optim Theory Appl doi: 10.1007/BF02190104 – volume: 2 start-page: 164 issue: 2 year: 1944 ident: 10.1016/j.ultramic.2019.03.004_bib0016 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 34 start-page: 975 issue: 5 year: 1984 ident: 10.1016/j.ultramic.2019.03.004_bib0021 article-title: Optimization by simulated annealing: quantitative studies publication-title: J. Stat. Phys. doi: 10.1007/BF01009452 – volume: 184 start-page: 57 issue: 1 year: 2011 ident: 10.1016/j.ultramic.2019.03.004_bib0009 article-title: Design of a parallel magnetic box energy analyzer attachment for electron microscopes publication-title: J. Electron Spectros. Relat. Phenomena doi: 10.1016/j.elspec.2010.12.038 – volume: 3 start-page: 95 issue: 2 year: 1988 ident: 10.1016/j.ultramic.2019.03.004_bib0029 article-title: Genetic algorithms and machine learning publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – volume: 43 start-page: 95 issue: 1 year: 1972 ident: 10.1016/j.ultramic.2019.03.004_bib0030 article-title: Design parameters for the cylindrical mirror energy analyzer publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1685454 – volume: 402 start-page: 864 year: 1999 ident: 10.1016/j.ultramic.2019.03.004_bib0031 article-title: Losing strategies can win by Parrondo’s paradox publication-title: Nature doi: 10.1038/47220 – year: 2012 ident: 10.1016/j.ultramic.2019.03.004_bib0018 – year: 2003 ident: 10.1016/j.ultramic.2019.03.004_bib0011 – volume: 11 start-page: 431 issue: 2 year: 1963 ident: 10.1016/j.ultramic.2019.03.004_bib0013 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Indus. Appl.Math. doi: 10.1137/0111030 – year: 1992 ident: 10.1016/j.ultramic.2019.03.004_bib0028 – volume: 212 start-page: 62 year: 2016 ident: 10.1016/j.ultramic.2019.03.004_bib0036 article-title: Improving the performance of the cylindrical mirror analyzer II: reducing the dependence of energy resolution on sample position publication-title: J. Electron Spectros. Relat. Phenomena doi: 10.1016/j.elspec.2016.09.002  | 
    
| SSID | ssj0001048 | 
    
| Score | 2.4435806 | 
    
| Snippet | •Our paper explores a novel hybrid optimization framework that adaptively switches between constituent genetic and Levenberg–Marquardt algorithms.•Our method... Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 100 | 
    
| SubjectTerms | Computational optimization Electron optics Energy analyzer Genetic algorithm Hybrid algorithm  | 
    
| Title | A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization | 
    
| URI | https://dx.doi.org/10.1016/j.ultramic.2019.03.004 https://www.ncbi.nlm.nih.gov/pubmed/31005022 https://www.proquest.com/docview/2211950607  | 
    
| Volume | 202 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001048 issn: 0304-3991 databaseCode: AKRWK dateStart: 19750701 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QEBIXxJvxUpC4lmVtmjTHaWIazwtM4oKiLklh01hhdIdd-O3YfQw4TDtwbNWokePYn-XPNiHn0ne-FJJ5yjrj8aaVnpKJhShFKde0UWJDrHe-uxfdHr9-Cp9WSLuqhUFaZWn7C5ueW-vyTaOUZuN9MGg8YFIP3CsgZDTDCjt-ci5xisHF1w_NA8KNqMgkcA-__lUlPLyYjrIJjn1HilfZ7JQvclCLAGjuiDqbZKNEkLRVbHKLrLjxNlkrZkrOdshzi77OsAyLgmpghaJ3i02akMZF7-LJB6pERuPRSzoZZK9vFEArjadZCsjVWZoXXmIHAxA3tTm7g6ZgVd7Kcs1d0utcPra7XjlDwTOBiDLPhLGUkRIyVkHSTHyR-EEew8TSSmaFYyYImAGnxEUEISo6rz7rO2mtCBOIYPdIbZyO3QGhXPmGmcgkUWA4s1ZZawwgKJkEIFgp6iSsBKdN2WAc51yMdMUkG-pK4BoFrlmgQeB10pivey9abCxdoapz0X-URYMfWLr2rDpIDTcJ0yPx2KXTT-37-UxcwWSd7BcnPN8PpkFCgDuH__jzEVnHp4Lre0xq2WTqTgDRZP3TXGVPyWrr6qZ7_w2EV_Zd | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7x0AouCHYXKK81EtdQN07s-IgQqEDLBZC4rKzUdqCoNFDSAxd-OzN58DggDlyTWLHG45lvNN_MAOyp0IdKKh5o520QdZwKtMocRila-45LMhdTvXP_XHavotPr-HoGDptaGKJV1ra_sumlta6ftGtpth-Gw_YFJfXQvSJCJjOsxSzMR3GoKALbf3nneWC8kVSphCigzz-UCd_tT0fFhOa-E8er7nYafeWhvkKgpSc6XoalGkKyg2qXKzDjx7_hVzVU8vkP_D9gt89Uh8VQN6hEMehRlybicbF-OnkknShYOrrJJ8Pi9p4hamXptMgRunrHyspLamGA8maupHewHM3KfV2v-Reujo8uD7tBPUQhsEImRWDjVKlES5VqkXWyUGahKIOYVDnFnfTcCsEteqVIJhijkvca8IFXzsk4wxB2FebG-divA4t0aLlNbJYIG3HntHPWIoRSmUDBKtmCuBGcsXWHcRp0MTINlezONAI3JHDDhUGBt6D9tu6h6rHx7QrdnIv5pC0GHcG3a3ebgzR4lSg_ko59Pn0yYVgOxZVctWCtOuG3_VAeJEa8s_GDP_-Dhe5lv2d6J-dnm7BIbyri7xbMFZOp30Z4Uwx2SvV9BTV39_I | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+genetic-Levenberg+Marquardt+algorithm+for+automated+spectrometer+design+optimization&rft.jtitle=Ultramicroscopy&rft.au=Cheong%2C+Kang+Hao&rft.au=Koh%2C+Jin+Ming&rft.date=2019-07-01&rft.issn=0304-3991&rft.volume=202&rft.spage=100&rft.epage=106&rft_id=info:doi/10.1016%2Fj.ultramic.2019.03.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ultramic_2019_03_004 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3991&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3991&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3991&client=summon |