A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization

•Our paper explores a novel hybrid optimization framework that adaptively switches between constituent genetic and Levenberg–Marquardt algorithms.•Our method yields superior convergence performance than either individually.•It solves a longstanding optimization problem in spectrometer design. Advanc...

Full description

Saved in:
Bibliographic Details
Published inUltramicroscopy Vol. 202; pp. 100 - 106
Main Authors Cheong, Kang Hao, Koh, Jin Ming
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2019
Subjects
Online AccessGet full text
ISSN0304-3991
1879-2723
1879-2723
DOI10.1016/j.ultramic.2019.03.004

Cover

Abstract •Our paper explores a novel hybrid optimization framework that adaptively switches between constituent genetic and Levenberg–Marquardt algorithms.•Our method yields superior convergence performance than either individually.•It solves a longstanding optimization problem in spectrometer design. Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg–Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples—the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer—and is found to outperform both the Levenberg–Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future.
AbstractList Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg-Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples-the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer-and is found to outperform both the Levenberg-Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future.Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg-Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples-the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer-and is found to outperform both the Levenberg-Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future.
Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg-Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples-the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer-and is found to outperform both the Levenberg-Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future.
•Our paper explores a novel hybrid optimization framework that adaptively switches between constituent genetic and Levenberg–Marquardt algorithms.•Our method yields superior convergence performance than either individually.•It solves a longstanding optimization problem in spectrometer design. Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic electron-optical systems. These augmented methodologies accelerate the optimization process, and can yield better-performing instruments. While classical gradient-based methods had been explored, modern alternatives such as genetic algorithms have rarely been applied. In this paper, we propose a novel fully-automated hybrid optimization method for use on electron-optical systems. An adaptive switching scheme between a Levenberg–Marquardt and a genetic sub-algorithm enables the simultaneous exploitation of the computational efficiency of the former and the robustness of the latter. The hybrid algorithm is demonstrated on two test examples—the parallel cylindrical mirror analyzer, and the first-order focusing parallel magnetic sector analyzer—and is found to outperform both the Levenberg–Marquardt and genetic algorithms individually. Our work is significant as a versatile tool for parallel energy spectrometer design, and can greatly aid the development of mechanically-complex parallel energy analyzers, which are expected to be of utility to the semiconductor industry in the near future.
Author Cheong, Kang Hao
Koh, Jin Ming
Author_xml – sequence: 1
  givenname: Kang Hao
  surname: Cheong
  fullname: Cheong, Kang Hao
  email: kanghao_cheong@sutd.edu.sg
  organization: Science and Math Cluster, Singapore University of Technology and Design, 8 Somapah Road, S487372, Singapore
– sequence: 2
  givenname: Jin Ming
  surname: Koh
  fullname: Koh, Jin Ming
  organization: Science and Math Cluster, Singapore University of Technology and Design, 8 Somapah Road, S487372, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31005022$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9P3DAQxS1EBQvlKyAfuSQd27t2LHEAIfpH2qqX9lhZjj1ZvErixXZWop--octeeuE00uj93mjeuyCnYxyRkGsGNQMmP23rqS_JDsHVHJiuQdQAyxOyYI3SFVdcnJIFCFhWQmt2Ti5y3gIAg2VzRs4FA1gB5wvy-54-vbQpeLrBEUtw1Rr3OLaYNvS7Tc-TTb5Q229iCuVpoF1M1E4lDragp3mHrqQ4YMFEPeawGWnclTCEP7aEOH4kHzrbZ7x6m5fk1-fHnw9fq_WPL98e7teVE7IplVtZpRotldWiYx2XHReSS5jXXoGXCE4IcFzrpWyAK5CqaaFF5b1cdYqJS3Jz8N2l-DxhLmYI2WHf2xHjlA3njOkVSFCz9PpNOrUDerNLYbDpxRwjmQW3B4FLMeeEnXGh_Ptmzjv0hoF5bcBszbEB89qAAWHmBmZc_ocfL7wL3h1AnIPaB0wmu4CjQx_SnLLxMbxn8RfTTaTa
CitedBy_id crossref_primary_10_3390_s23146630
crossref_primary_10_1007_s13177_021_00273_2
crossref_primary_10_1002_advs_202001126
crossref_primary_10_1007_s11676_020_01246_z
crossref_primary_10_1016_j_jocs_2023_102140
crossref_primary_10_1016_j_biosystems_2024_105124
crossref_primary_10_1007_s11071_020_05496_8
crossref_primary_10_1016_j_physa_2020_124714
crossref_primary_10_1016_j_ultramic_2019_04_003
crossref_primary_10_1016_j_inffus_2020_06_006
crossref_primary_10_1007_s10489_022_03438_y
crossref_primary_10_1007_s11071_022_07277_x
crossref_primary_10_1002_advs_202002324
crossref_primary_10_1007_s10489_021_02216_6
crossref_primary_10_1016_j_chaos_2019_109464
crossref_primary_10_1007_s10489_021_02525_w
crossref_primary_10_1103_PhysRevE_102_012213
crossref_primary_10_1016_j_plrev_2024_08_002
crossref_primary_10_1007_s00500_020_04949_x
crossref_primary_10_1371_journal_pone_0256836
crossref_primary_10_1016_j_jocs_2022_101871
crossref_primary_10_1016_j_buildenv_2022_109793
crossref_primary_10_1007_s11071_020_05738_9
crossref_primary_10_1016_j_neunet_2021_07_010
crossref_primary_10_1103_PhysRevE_101_052212
crossref_primary_10_3390_ijerph17114179
crossref_primary_10_1002_int_22615
crossref_primary_10_1007_s10489_021_02435_x
crossref_primary_10_1007_s10668_024_05129_9
crossref_primary_10_1016_j_swevo_2021_100890
crossref_primary_10_1016_j_bbe_2021_05_010
crossref_primary_10_1007_s00500_023_07947_x
crossref_primary_10_1021_acs_iecr_1c01048
Cites_doi 10.1017/S1431927615013264
10.1142/S0219477502000701
10.1016/j.nima.2010.12.008
10.1016/j.nima.2010.12.055
10.1016/S0010-4655(99)00454-3
10.1038/35017500
10.1016/0375-9601(87)90796-1
10.1364/AO.17.003372
10.1016/j.elspec.2016.02.004
10.1016/j.elspec.2011.08.003
10.1016/j.nima.2003.11.171
10.1117/12.370137
10.1103/PhysRevA.79.021401
10.1007/s11721-007-0002-0
10.1103/PhysRevE.89.022142
10.1116/1.3497021
10.1016/j.elspec.2018.05.009
10.1017/S1431927615013288
10.1088/0370-1328/74/3/310
10.1142/S0219477510000010
10.1063/1.1435841
10.1116/1.571167
10.1016/j.nima.2010.12.017
10.1007/BF02190104
10.1090/qam/10666
10.1007/BF01009452
10.1016/j.elspec.2010.12.038
10.1023/A:1022602019183
10.1063/1.1685454
10.1038/47220
10.1137/0111030
10.1016/j.elspec.2016.09.002
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ultramic.2019.03.004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-2723
EndPage 106
ExternalDocumentID 31005022
10_1016_j_ultramic_2019_03_004
S0304399118303693
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSM
SSQ
SSZ
T5K
WUQ
XPP
Y6R
ZGI
ZMT
ZXP
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
NPM
7X8
ID FETCH-LOGICAL-c368t-c5a778967a93f1f26f2362605a7d70d6e0c330c2994680270678b0be7dd65f713
IEDL.DBID .~1
ISSN 0304-3991
1879-2723
IngestDate Sat Sep 27 18:47:56 EDT 2025
Thu Apr 03 07:07:42 EDT 2025
Thu Oct 09 00:39:07 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Mon Apr 21 03:35:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Computational optimization
Energy analyzer
Electron optics
Genetic algorithm
Hybrid algorithm
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-c5a778967a93f1f26f2362605a7d70d6e0c330c2994680270678b0be7dd65f713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31005022
PQID 2211950607
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2211950607
pubmed_primary_31005022
crossref_citationtrail_10_1016_j_ultramic_2019_03_004
crossref_primary_10_1016_j_ultramic_2019_03_004
elsevier_sciencedirect_doi_10_1016_j_ultramic_2019_03_004
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultramicroscopy
PublicationTitleAlternate Ultramicroscopy
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Levenberg (bib0016) 1944; 2
Harmer, Abbott (bib0031) 1999; 402
Khursheed, Hoang, Srinivasan (bib0008) 2012; 184
Read (bib0025) 2002; 73
Edwards (bib0036) 2016; 212
Marquardt (bib0013) 1963; 11
Nunn, Wynne (bib0015) 1959; 74
Poli, Kennedy, Blackwell (bib0024) 2007; 1
Cubric, Fanis, Konishi, Kumashiro (bib0004) 2011; 645
Read, Cubric, Kumashiro, Walker (bib0026) 2004; 519
Cheong, Han, Khursheed, Nelliyan (bib0005) 2015; 21
Abbott (bib0033) 2010; 09
Khursheed, Cheong, Hoang (bib0007) 2010; 28
Kirkpatrick (bib0021) 1984; 34
Koh, Cheong (bib0014) 2018; 227
Aiming, Khursheed (bib0002) 1999; 3777
Shapiro, Wardi (bib0010) 1996; 91
Dilworth (bib0012) 1978; 17
Bonabeau, Dorigo, Theraulaz (bib0022) 2000; 406
Khursheed (bib0001) 2015; 21
Goldberg, Holland (bib0029) 1988; 3
Khursheed (bib0009) 2011; 184
Gu, Wu, Shan, Lin (bib0019) 2001; 4510
Risley (bib0030) 1972; 43
Wu, Szeto (bib0034) 2014; 89
Edwards (bib0035) 2016; 209
Chu, Munro (bib0003) 1981; 19
Vasiljevic (bib0018) 2012
Avriel (bib0011) 2003
Cheong, Khursheed (bib0006) 2011; 645
Szu, Hartley (bib0020) 1987; 122
Gollub, de Vivie-Riedle (bib0023) 2009; 79
Khursheed, Nelliyan, Chao (bib0027) 2011; 645
Brunetti (bib0017) 2000; 124
Holland (bib0028) 1992
Harmer, Abbott (bib0032) 2002; 02
Kirkpatrick (10.1016/j.ultramic.2019.03.004_bib0021) 1984; 34
Gu (10.1016/j.ultramic.2019.03.004_bib0019) 2001; 4510
Dilworth (10.1016/j.ultramic.2019.03.004_bib0012) 1978; 17
Harmer (10.1016/j.ultramic.2019.03.004_sbref0031) 2002; 02
Wu (10.1016/j.ultramic.2019.03.004_bib0034) 2014; 89
Khursheed (10.1016/j.ultramic.2019.03.004_bib0007) 2010; 28
Shapiro (10.1016/j.ultramic.2019.03.004_bib0010) 1996; 91
Avriel (10.1016/j.ultramic.2019.03.004_bib0011) 2003
Marquardt (10.1016/j.ultramic.2019.03.004_bib0013) 1963; 11
Khursheed (10.1016/j.ultramic.2019.03.004_bib0001) 2015; 21
Nunn (10.1016/j.ultramic.2019.03.004_bib0015) 1959; 74
Aiming (10.1016/j.ultramic.2019.03.004_bib0002) 1999; 3777
Cheong (10.1016/j.ultramic.2019.03.004_bib0006) 2011; 645
Brunetti (10.1016/j.ultramic.2019.03.004_bib0017) 2000; 124
Read (10.1016/j.ultramic.2019.03.004_bib0025) 2002; 73
Goldberg (10.1016/j.ultramic.2019.03.004_bib0029) 1988; 3
Levenberg (10.1016/j.ultramic.2019.03.004_bib0016) 1944; 2
Risley (10.1016/j.ultramic.2019.03.004_bib0030) 1972; 43
Koh (10.1016/j.ultramic.2019.03.004_bib0014) 2018; 227
Vasiljevic (10.1016/j.ultramic.2019.03.004_bib0018) 2012
Chu (10.1016/j.ultramic.2019.03.004_bib0003) 1981; 19
Edwards (10.1016/j.ultramic.2019.03.004_bib0036) 2016; 212
Khursheed (10.1016/j.ultramic.2019.03.004_bib0009) 2011; 184
Edwards (10.1016/j.ultramic.2019.03.004_bib0035) 2016; 209
Holland (10.1016/j.ultramic.2019.03.004_bib0028) 1992
Poli (10.1016/j.ultramic.2019.03.004_bib0024) 2007; 1
Szu (10.1016/j.ultramic.2019.03.004_bib0020) 1987; 122
Khursheed (10.1016/j.ultramic.2019.03.004_bib0008) 2012; 184
Harmer (10.1016/j.ultramic.2019.03.004_bib0031) 1999; 402
Cubric (10.1016/j.ultramic.2019.03.004_bib0004) 2011; 645
Read (10.1016/j.ultramic.2019.03.004_bib0026) 2004; 519
Abbott (10.1016/j.ultramic.2019.03.004_bib0033) 2010; 09
Cheong (10.1016/j.ultramic.2019.03.004_bib0005) 2015; 21
Khursheed (10.1016/j.ultramic.2019.03.004_bib0027) 2011; 645
Bonabeau (10.1016/j.ultramic.2019.03.004_bib0022) 2000; 406
Gollub (10.1016/j.ultramic.2019.03.004_bib0023) 2009; 79
References_xml – volume: 645
  start-page: 227
  year: 2011
  end-page: 233
  ident: bib0004
  article-title: Parallel acquisition electrostatic electron energy analyzers for high throughput nano-analysis
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
– volume: 212
  start-page: 62
  year: 2016
  end-page: 73
  ident: bib0036
  article-title: Improving the performance of the cylindrical mirror analyzer II: reducing the dependence of energy resolution on sample position
  publication-title: J. Electron Spectros. Relat. Phenomena
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: bib0016
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: bib0013
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Indus. Appl.Math.
– volume: 519
  start-page: 338
  year: 2004
  end-page: 344
  ident: bib0026
  article-title: The parallel cylindrical mirror analyzer: axis-to-axis configuration
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
– volume: 21
  start-page: 130
  year: 2015
  end-page: 135
  ident: bib0001
  article-title: Energy analyzer attachments for the scanning electron microscope
  publication-title: Microsc. Microanal.
– volume: 184
  start-page: 57
  year: 2011
  end-page: 61
  ident: bib0009
  article-title: Design of a parallel magnetic box energy analyzer attachment for electron microscopes
  publication-title: J. Electron Spectros. Relat. Phenomena
– volume: 17
  start-page: 3372
  year: 1978
  end-page: 3375
  ident: bib0012
  article-title: Pseudo-second-derivative matrix and its application to automatic lens design
  publication-title: Appl. Opt.
– volume: 406
  start-page: 39
  year: 2000
  ident: bib0022
  article-title: Inspiration for optimization from social insect behaviour
  publication-title: Nature
– volume: 74
  start-page: 316
  year: 1959
  ident: bib0015
  article-title: Lens designing by electronic digital computer: Ii
  publication-title: Proc. Phys. Soc.
– volume: 402
  start-page: 864
  year: 1999
  end-page: 870
  ident: bib0031
  article-title: Losing strategies can win by Parrondo’s paradox
  publication-title: Nature
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: bib0024
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
– volume: 43
  start-page: 95
  year: 1972
  end-page: 103
  ident: bib0030
  article-title: Design parameters for the cylindrical mirror energy analyzer
  publication-title: Rev. Sci. Instrum.
– volume: 3777
  year: 1999
  ident: bib0002
  article-title: Accurate ray tracing through finite element solved potential distributions in charged particle optics
  publication-title: Proc. SPIE
– volume: 91
  start-page: 439
  year: 1996
  end-page: 454
  ident: bib0010
  article-title: Convergence analysis of gradient descent stochastic algorithms
  publication-title: J Optim Theory Appl
– volume: 34
  start-page: 975
  year: 1984
  end-page: 986
  ident: bib0021
  article-title: Optimization by simulated annealing: quantitative studies
  publication-title: J. Stat. Phys.
– volume: 09
  start-page: 129
  year: 2010
  end-page: 156
  ident: bib0033
  article-title: Asymmetry and disorder: a decade of parrondo’s paradox
  publication-title: Fluct. Noise Lett.
– volume: 19
  start-page: 1053
  year: 1981
  end-page: 1057
  ident: bib0003
  article-title: Computerized optimization of electron-beam lithography systems
  publication-title: J. Vac. Sci. Technol.
– volume: 124
  start-page: 204
  year: 2000
  end-page: 211
  ident: bib0017
  article-title: A fast and precise genetic algorithm for a non-linear fitting problem
  publication-title: Comput. Phys. Commun.
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: bib0029
  article-title: Genetic algorithms and machine learning
  publication-title: Mach. Learn.
– volume: 21
  start-page: 142
  year: 2015
  end-page: 147
  ident: bib0005
  article-title: A parallel radial mirror energy analyzer attachment for the scanning electron microscope
  publication-title: Microsc. Microanal.
– volume: 89
  year: 2014
  ident: bib0034
  article-title: Extended Parrondo's game and Brownian ratchets: strong and weak parrondo effect
  publication-title: Phys. Rev. E
– volume: 79
  start-page: 021401
  year: 2009
  ident: bib0023
  article-title: Modified ant-colony-optimization algorithm as an alternative to genetic algorithms
  publication-title: Phys. Rev. A
– volume: 4510
  year: 2001
  ident: bib0019
  article-title: Application of genetic algorithms to the optimization design of electron optical system
  publication-title: Proc. SPIE
– volume: 73
  start-page: 1129
  year: 2002
  end-page: 1139
  ident: bib0025
  article-title: The parallel cylindrical mirror electron energy analyzer
  publication-title: Rev. Sci. Instrum.
– year: 2012
  ident: bib0018
  article-title: Classical and Evolutionary Algorithms in the Optimization of Optical Systems
– year: 1992
  ident: bib0028
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– volume: 02
  year: 2002
  ident: bib0032
  article-title: A review of Parrondo’s paradox
  publication-title: Fluct. Noise Lett.
– volume: 122
  start-page: 157
  year: 1987
  end-page: 162
  ident: bib0020
  article-title: Fast simulated annealing
  publication-title: Phys. Lett. A
– year: 2003
  ident: bib0011
  article-title: Nonlinear Programming: Analysis and Methods
– volume: 209
  start-page: 46
  year: 2016
  end-page: 52
  ident: bib0035
  article-title: The segmented cylindrical mirror analyzer (cma)
  publication-title: J. Electron Spectros. Relat. Phenomena
– volume: 645
  start-page: 248
  year: 2011
  end-page: 252
  ident: bib0027
  article-title: First-order focusing parallel electron energy magnetic sector analyzer designs
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
– volume: 645
  start-page: 221
  year: 2011
  end-page: 226
  ident: bib0006
  article-title: A parallel magnetic sector mass analyzer design
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
– volume: 227
  start-page: 31
  year: 2018
  end-page: 39
  ident: bib0014
  article-title: Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms
  publication-title: J. Electron Spectros. Relat. Phenomena
– volume: 28
  start-page: C6F10
  year: 2010
  end-page: C6F14
  ident: bib0007
  article-title: Design of a parallel mass spectrometer for focused ion beam columns
  publication-title: J. Vac. Sci. Technol. B Nanotechnol. Microelectron.
– volume: 184
  start-page: 525
  year: 2012
  end-page: 532
  ident: bib0008
  article-title: A wide-range parallel radial mirror analyzer for scanning electron/ion microscopes
  publication-title: J. Electron Spectros. Relat. Phenomena
– volume: 21
  start-page: 130
  issue: S4
  year: 2015
  ident: 10.1016/j.ultramic.2019.03.004_bib0001
  article-title: Energy analyzer attachments for the scanning electron microscope
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927615013264
– volume: 02
  year: 2002
  ident: 10.1016/j.ultramic.2019.03.004_sbref0031
  article-title: A review of Parrondo’s paradox
  publication-title: Fluct. Noise Lett.
  doi: 10.1142/S0219477502000701
– volume: 645
  start-page: 248
  issue: 1
  year: 2011
  ident: 10.1016/j.ultramic.2019.03.004_bib0027
  article-title: First-order focusing parallel electron energy magnetic sector analyzer designs
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/j.nima.2010.12.008
– volume: 645
  start-page: 227
  issue: 1
  year: 2011
  ident: 10.1016/j.ultramic.2019.03.004_bib0004
  article-title: Parallel acquisition electrostatic electron energy analyzers for high throughput nano-analysis
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/j.nima.2010.12.055
– volume: 4510
  year: 2001
  ident: 10.1016/j.ultramic.2019.03.004_bib0019
  article-title: Application of genetic algorithms to the optimization design of electron optical system
  publication-title: Proc. SPIE
– volume: 124
  start-page: 204
  issue: 2
  year: 2000
  ident: 10.1016/j.ultramic.2019.03.004_bib0017
  article-title: A fast and precise genetic algorithm for a non-linear fitting problem
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(99)00454-3
– volume: 406
  start-page: 39
  year: 2000
  ident: 10.1016/j.ultramic.2019.03.004_bib0022
  article-title: Inspiration for optimization from social insect behaviour
  publication-title: Nature
  doi: 10.1038/35017500
– volume: 122
  start-page: 157
  issue: 3
  year: 1987
  ident: 10.1016/j.ultramic.2019.03.004_bib0020
  article-title: Fast simulated annealing
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(87)90796-1
– volume: 17
  start-page: 3372
  issue: 21
  year: 1978
  ident: 10.1016/j.ultramic.2019.03.004_bib0012
  article-title: Pseudo-second-derivative matrix and its application to automatic lens design
  publication-title: Appl. Opt.
  doi: 10.1364/AO.17.003372
– volume: 209
  start-page: 46
  year: 2016
  ident: 10.1016/j.ultramic.2019.03.004_bib0035
  article-title: The segmented cylindrical mirror analyzer (cma)
  publication-title: J. Electron Spectros. Relat. Phenomena
  doi: 10.1016/j.elspec.2016.02.004
– volume: 184
  start-page: 525
  issue: 11
  year: 2012
  ident: 10.1016/j.ultramic.2019.03.004_bib0008
  article-title: A wide-range parallel radial mirror analyzer for scanning electron/ion microscopes
  publication-title: J. Electron Spectros. Relat. Phenomena
  doi: 10.1016/j.elspec.2011.08.003
– volume: 519
  start-page: 338
  issue: 1
  year: 2004
  ident: 10.1016/j.ultramic.2019.03.004_bib0026
  article-title: The parallel cylindrical mirror analyzer: axis-to-axis configuration
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/j.nima.2003.11.171
– volume: 3777
  year: 1999
  ident: 10.1016/j.ultramic.2019.03.004_bib0002
  article-title: Accurate ray tracing through finite element solved potential distributions in charged particle optics
  doi: 10.1117/12.370137
– volume: 79
  start-page: 021401
  year: 2009
  ident: 10.1016/j.ultramic.2019.03.004_bib0023
  article-title: Modified ant-colony-optimization algorithm as an alternative to genetic algorithms
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.021401
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.ultramic.2019.03.004_bib0024
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume: 89
  year: 2014
  ident: 10.1016/j.ultramic.2019.03.004_bib0034
  article-title: Extended Parrondo's game and Brownian ratchets: strong and weak parrondo effect
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.022142
– volume: 28
  start-page: C6F10
  issue: 6
  year: 2010
  ident: 10.1016/j.ultramic.2019.03.004_bib0007
  article-title: Design of a parallel mass spectrometer for focused ion beam columns
  publication-title: J. Vac. Sci. Technol. B Nanotechnol. Microelectron.
  doi: 10.1116/1.3497021
– volume: 227
  start-page: 31
  year: 2018
  ident: 10.1016/j.ultramic.2019.03.004_bib0014
  article-title: Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms
  publication-title: J. Electron Spectros. Relat. Phenomena
  doi: 10.1016/j.elspec.2018.05.009
– volume: 21
  start-page: 142
  issue: S4
  year: 2015
  ident: 10.1016/j.ultramic.2019.03.004_bib0005
  article-title: A parallel radial mirror energy analyzer attachment for the scanning electron microscope
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927615013288
– volume: 74
  start-page: 316
  issue: 3
  year: 1959
  ident: 10.1016/j.ultramic.2019.03.004_bib0015
  article-title: Lens designing by electronic digital computer: Ii
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/74/3/310
– volume: 09
  start-page: 129
  issue: 01
  year: 2010
  ident: 10.1016/j.ultramic.2019.03.004_bib0033
  article-title: Asymmetry and disorder: a decade of parrondo’s paradox
  publication-title: Fluct. Noise Lett.
  doi: 10.1142/S0219477510000010
– volume: 73
  start-page: 1129
  issue: 3
  year: 2002
  ident: 10.1016/j.ultramic.2019.03.004_bib0025
  article-title: The parallel cylindrical mirror electron energy analyzer
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1435841
– volume: 19
  start-page: 1053
  issue: 4
  year: 1981
  ident: 10.1016/j.ultramic.2019.03.004_bib0003
  article-title: Computerized optimization of electron-beam lithography systems
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.571167
– volume: 645
  start-page: 221
  issue: 1
  year: 2011
  ident: 10.1016/j.ultramic.2019.03.004_bib0006
  article-title: A parallel magnetic sector mass analyzer design
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
  doi: 10.1016/j.nima.2010.12.017
– volume: 91
  start-page: 439
  issue: 2
  year: 1996
  ident: 10.1016/j.ultramic.2019.03.004_bib0010
  article-title: Convergence analysis of gradient descent stochastic algorithms
  publication-title: J Optim Theory Appl
  doi: 10.1007/BF02190104
– volume: 2
  start-page: 164
  issue: 2
  year: 1944
  ident: 10.1016/j.ultramic.2019.03.004_bib0016
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 34
  start-page: 975
  issue: 5
  year: 1984
  ident: 10.1016/j.ultramic.2019.03.004_bib0021
  article-title: Optimization by simulated annealing: quantitative studies
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01009452
– volume: 184
  start-page: 57
  issue: 1
  year: 2011
  ident: 10.1016/j.ultramic.2019.03.004_bib0009
  article-title: Design of a parallel magnetic box energy analyzer attachment for electron microscopes
  publication-title: J. Electron Spectros. Relat. Phenomena
  doi: 10.1016/j.elspec.2010.12.038
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 10.1016/j.ultramic.2019.03.004_bib0029
  article-title: Genetic algorithms and machine learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022602019183
– volume: 43
  start-page: 95
  issue: 1
  year: 1972
  ident: 10.1016/j.ultramic.2019.03.004_bib0030
  article-title: Design parameters for the cylindrical mirror energy analyzer
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1685454
– volume: 402
  start-page: 864
  year: 1999
  ident: 10.1016/j.ultramic.2019.03.004_bib0031
  article-title: Losing strategies can win by Parrondo’s paradox
  publication-title: Nature
  doi: 10.1038/47220
– year: 2012
  ident: 10.1016/j.ultramic.2019.03.004_bib0018
– year: 2003
  ident: 10.1016/j.ultramic.2019.03.004_bib0011
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 10.1016/j.ultramic.2019.03.004_bib0013
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Indus. Appl.Math.
  doi: 10.1137/0111030
– year: 1992
  ident: 10.1016/j.ultramic.2019.03.004_bib0028
– volume: 212
  start-page: 62
  year: 2016
  ident: 10.1016/j.ultramic.2019.03.004_bib0036
  article-title: Improving the performance of the cylindrical mirror analyzer II: reducing the dependence of energy resolution on sample position
  publication-title: J. Electron Spectros. Relat. Phenomena
  doi: 10.1016/j.elspec.2016.09.002
SSID ssj0001048
Score 2.4435806
Snippet •Our paper explores a novel hybrid optimization framework that adaptively switches between constituent genetic and Levenberg–Marquardt algorithms.•Our method...
Advancements in computational tools have driven increasingly automated, simulation-centric approaches in the design and optimization of spectroscopic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100
SubjectTerms Computational optimization
Electron optics
Energy analyzer
Genetic algorithm
Hybrid algorithm
Title A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization
URI https://dx.doi.org/10.1016/j.ultramic.2019.03.004
https://www.ncbi.nlm.nih.gov/pubmed/31005022
https://www.proquest.com/docview/2211950607
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001048
  issn: 0304-3991
  databaseCode: AKRWK
  dateStart: 19750701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QEBIXxJvxUpC4lmVtmjTHaWIazwtM4oKiLklh01hhdIdd-O3YfQw4TDtwbNWokePYn-XPNiHn0ne-FJJ5yjrj8aaVnpKJhShFKde0UWJDrHe-uxfdHr9-Cp9WSLuqhUFaZWn7C5ueW-vyTaOUZuN9MGg8YFIP3CsgZDTDCjt-ci5xisHF1w_NA8KNqMgkcA-__lUlPLyYjrIJjn1HilfZ7JQvclCLAGjuiDqbZKNEkLRVbHKLrLjxNlkrZkrOdshzi77OsAyLgmpghaJ3i02akMZF7-LJB6pERuPRSzoZZK9vFEArjadZCsjVWZoXXmIHAxA3tTm7g6ZgVd7Kcs1d0utcPra7XjlDwTOBiDLPhLGUkRIyVkHSTHyR-EEew8TSSmaFYyYImAGnxEUEISo6rz7rO2mtCBOIYPdIbZyO3QGhXPmGmcgkUWA4s1ZZawwgKJkEIFgp6iSsBKdN2WAc51yMdMUkG-pK4BoFrlmgQeB10pivey9abCxdoapz0X-URYMfWLr2rDpIDTcJ0yPx2KXTT-37-UxcwWSd7BcnPN8PpkFCgDuH__jzEVnHp4Lre0xq2WTqTgDRZP3TXGVPyWrr6qZ7_w2EV_Zd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7x0AouCHYXKK81EtdQN07s-IgQqEDLBZC4rKzUdqCoNFDSAxd-OzN58DggDlyTWLHG45lvNN_MAOyp0IdKKh5o520QdZwKtMocRila-45LMhdTvXP_XHavotPr-HoGDptaGKJV1ra_sumlta6ftGtpth-Gw_YFJfXQvSJCJjOsxSzMR3GoKALbf3nneWC8kVSphCigzz-UCd_tT0fFhOa-E8er7nYafeWhvkKgpSc6XoalGkKyg2qXKzDjx7_hVzVU8vkP_D9gt89Uh8VQN6hEMehRlybicbF-OnkknShYOrrJJ8Pi9p4hamXptMgRunrHyspLamGA8maupHewHM3KfV2v-Reujo8uD7tBPUQhsEImRWDjVKlES5VqkXWyUGahKIOYVDnFnfTcCsEteqVIJhijkvca8IFXzsk4wxB2FebG-divA4t0aLlNbJYIG3HntHPWIoRSmUDBKtmCuBGcsXWHcRp0MTINlezONAI3JHDDhUGBt6D9tu6h6rHx7QrdnIv5pC0GHcG3a3ebgzR4lSg_ko59Pn0yYVgOxZVctWCtOuG3_VAeJEa8s_GDP_-Dhe5lv2d6J-dnm7BIbyri7xbMFZOp30Z4Uwx2SvV9BTV39_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+genetic-Levenberg+Marquardt+algorithm+for+automated+spectrometer+design+optimization&rft.jtitle=Ultramicroscopy&rft.au=Cheong%2C+Kang+Hao&rft.au=Koh%2C+Jin+Ming&rft.date=2019-07-01&rft.issn=0304-3991&rft.volume=202&rft.spage=100&rft.epage=106&rft_id=info:doi/10.1016%2Fj.ultramic.2019.03.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ultramic_2019_03_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3991&client=summon