Modified Moth-Flame Optimization Algorithm-Based Multilevel Minimum Cross Entropy Thresholding for Image Segmentation
Multilevel thresholding is a widely used image segmentation technique. However, multilevel thresholding becomes more and more computationally expensive as the number of thresholds increase. Therefore, it is essential to incorporate some suitable optimization technique to make it practical. In this a...
Saved in:
| Published in | International journal of swarm intelligence research Vol. 11; no. 4; pp. 123 - 139 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hershey
IGI Global
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1947-9263 1947-9271 |
| DOI | 10.4018/IJSIR.2020100106 |
Cover
| Abstract | Multilevel thresholding is a widely used image segmentation technique. However, multilevel thresholding becomes more and more computationally expensive as the number of thresholds increase. Therefore, it is essential to incorporate some suitable optimization technique to make it practical. In this article, a modification is proposed to the Moth-Flame Optimization (MFO) algorithm and then it is applied to multilevel thresholding for image segmentation. Cross entropy is used as the objective function to select the optimal thresholds. A set of benchmark test images are used to evaluate the proposed technique. The Mean Structural SIMilarity (MSSIM) index is used to measure the quality of the segmented images. The results of the proposed technique are compared with the original MFO, PSO, BFO, and WOA. Experimental results and analysis suggest that the proposed technique outperforms other techniques in terms of segmentation quality images and stability. Moreover, computation time required for multilevel thresholding is also reduced to a manageable level. |
|---|---|
| AbstractList | Multilevel thresholding is a widely used image segmentation technique. However, multilevel thresholding becomes more and more computationally expensive as the number of thresholds increase. Therefore, it is essential to incorporate some suitable optimization technique to make it practical. In this article, a modification is proposed to the Moth-Flame Optimization (MFO) algorithm and then it is applied to multilevel thresholding for image segmentation. Cross entropy is used as the objective function to select the optimal thresholds. A set of benchmark test images are used to evaluate the proposed technique. The Mean Structural SIMilarity (MSSIM) index is used to measure the quality of the segmented images. The results of the proposed technique are compared with the original MFO, PSO, BFO, and WOA. Experimental results and analysis suggest that the proposed technique outperforms other techniques in terms of segmentation quality images and stability. Moreover, computation time required for multilevel thresholding is also reduced to a manageable level. |
| Author | Khairuzzaman, Abdul Kayom Md Chaudhury, Saurabh |
| AuthorAffiliation | National Institute of Technology, Silchar, India |
| AuthorAffiliation_xml | – name: National Institute of Technology, Silchar, India |
| Author_xml | – sequence: 1 givenname: Abdul surname: Khairuzzaman middlename: Kayom Md fullname: Khairuzzaman, Abdul Kayom Md organization: National Institute of Technology, Silchar, India – sequence: 2 givenname: Saurabh surname: Chaudhury fullname: Chaudhury, Saurabh organization: National Institute of Technology, Silchar, India |
| BookMark | eNp9UV1LwzAUDTLBqXv3MeCLL9U0Sb8edUydbAhuPoesvekibVPTVJi_3naTDUQNFxIu55zce84pGlSmAoQufHLNiR_fTJ8W05drSijxSVfhERr6CY-8hEb-YP8O2QkaNc0b6U7AoyhgQ9TOTaaVhgzPjVt794UsAT_XTpf6UzptKnxb5MZqty69O9n0uLZwuoAPKPBcV7psSzy2pmnwpHLW1Bu8XFto1qbIdJVjZSyeljIHvIC8hMptRc_RsZJFA6Pv-wy93k-W40dv9vwwHd_OvJSFsfNSSgIGK5ryIMziNEm6_UIlOQSrgDOAQHWNFYEkiqVUaZhwJWPGuAxWGYOYsjN0udOtrXlvoXHizbS26r4UNGGUU8IJ71DhDpX2e1hQItW7OZ2VuhA-Eb3LYuuyOLjcEckPYm11Ke3mP8rDjqJzfRimD0D0AYhtAGIfwF86vt8pXf2i9BMo6kyxL9WzpqQ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2022_119095 crossref_primary_10_1007_s42235_022_00207_y crossref_primary_10_1007_s42835_022_01118_y crossref_primary_10_1007_s10462_022_10218_0 crossref_primary_10_1007_s11227_021_04150_3 crossref_primary_10_1007_s11831_022_09801_z crossref_primary_10_1007_s41870_024_01831_z crossref_primary_10_1007_s11042_022_13073_x crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_3390_fractalfract8020087 crossref_primary_10_1007_s13198_024_02696_y |
| Cites_doi | 10.1016/j.eswa.2011.05.069 10.1109/TSMC.1979.4310076 10.4018/IJAMC.2019070105 10.1016/j.enconman.2016.06.052 10.1016/j.amc.2006.06.057 </ALIGNMENT>10.1109/ICEC.1998.699146 10.1016/j.knosys.2011.02.013 10.1117/1.1631316 10.1016/0734-189X(85)90125-2 10.1007/s10489-016-0832-9 10.1016/S0167-8655(98)00057-9 10.1007/978-81-322-2009-1 10.1016/0031-3203(93)90115-D 10.1016/j.knosys.2015.07.006 10.1016/j.asoc.2017.05.057 10.1016/j.patrec.2014.11.009 10.1007/s00500-014-1345-2 </ALIGNMENT>10.1109/ICETECT.2011.5760167 10.1109/ICENCO.2015.7416360 10.3139/120.111024 10.1016/j.eswa.2017.04.023 10.4018/IJAMC.2017100104 10.1016/0031-3203(93)90135-J 10.11591/telkomnika.v11i9.3273 </ALIGNMENT>10.1109/ICNN.1995.488968 10.1016/j.engappai.2010.12.001 10.1016/j.advengsoft.2016.01.008 10.1007/s10489-011-0330-z 10.1016/j.eswa.2009.12.050 10.1016/0734-189X(88)90022-9 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
| Copyright_xml | – notice: Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
| DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.4018/IJSIR.2020100106 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1947-9271 |
| EndPage | 139 |
| ExternalDocumentID | 10_4018_IJSIR_2020100106 fied_Moth_Flame_Optimizat10_4018_IJSIR_202010010611 |
| GroupedDBID | 0R ABEPT ADEKF ALMA_UNASSIGNED_HOLDINGS COVLG EBS HZ JRD MV1 NEEBM O9- RIF 0R~ 4.4 AAYVP AAYXX ABJCF ABPHS ACOJC ADMLS AFKRA ARAPS BAAKF BENPR BGLVJ BYHXH CBWLS CCPQU CDTDJ CIGCI CITATION CKMBR CNQXE CTSEY EJD H13 HCIFZ HZ~ IAO ICD IMI ITC K7- M7S N95 PHGZM PHGZT PQGLB PTHSS 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c368t-c2053eb2c456d8c992016fa4e5b543ee5f201b0e978aafc694fa8334a5bd3e823 |
| IEDL.DBID | BENPR |
| ISSN | 1947-9263 |
| IngestDate | Fri Jul 25 10:14:56 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Wed Oct 15 13:10:22 EDT 2025 Fri Jan 15 00:04:30 EST 2021 Tue Jan 05 23:29:30 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-c2053eb2c456d8c992016fa4e5b543ee5f201b0e978aafc694fa8334a5bd3e823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5191-5743 |
| PQID | 2932420404 |
| PQPubID | 2045809 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2932420404 igi_journals_fied_Moth_Flame_Optimizat10_4018_IJSIR_202010010611 crossref_primary_10_4018_IJSIR_2020100106 crossref_citationtrail_10_4018_IJSIR_2020100106 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hershey |
| PublicationPlace_xml | – name: Hershey |
| PublicationTitle | International journal of swarm intelligence research |
| PublicationYear | 2020 |
| Publisher | IGI Global |
| Publisher_xml | – name: IGI Global |
| References | IJSIR.2020100106-4 IJSIR.2020100106-16 IJSIR.2020100106-5 IJSIR.2020100106-15 IJSIR.2020100106-6 IJSIR.2020100106-18 IJSIR.2020100106-7 IJSIR.2020100106-17 IJSIR.2020100106-0 IJSIR.2020100106-12 IJSIR.2020100106-1 IJSIR.2020100106-11 IJSIR.2020100106-33 IJSIR.2020100106-2 IJSIR.2020100106-14 IJSIR.2020100106-3 IJSIR.2020100106-13 IJSIR.2020100106-10 IJSIR.2020100106-32 IJSIR.2020100106-31 Z.Wang (IJSIR.2020100106-29) 2004; 13 F.Wilcoxon (IJSIR.2020100106-30) 1945; 1 IJSIR.2020100106-27 IJSIR.2020100106-26 IJSIR.2020100106-28 IJSIR.2020100106-23 IJSIR.2020100106-22 IJSIR.2020100106-25 IJSIR.2020100106-24 IJSIR.2020100106-21 IJSIR.2020100106-20 IJSIR.2020100106-8 IJSIR.2020100106-9 IJSIR.2020100106-19 |
| References_xml | – ident: IJSIR.2020100106-5 doi: 10.1016/j.eswa.2011.05.069 – ident: IJSIR.2020100106-19 doi: 10.1109/TSMC.1979.4310076 – ident: IJSIR.2020100106-9 doi: 10.4018/IJAMC.2019070105 – ident: IJSIR.2020100106-10 – ident: IJSIR.2020100106-1 doi: 10.1016/j.enconman.2016.06.052 – ident: IJSIR.2020100106-33 doi: 10.1016/j.amc.2006.06.057 – ident: IJSIR.2020100106-26 doi: </ALIGNMENT>10.1109/ICEC.1998.699146 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: IJSIR.2020100106-29 publication-title: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE transactions on image processing, – ident: IJSIR.2020100106-28 doi: 10.1016/j.knosys.2011.02.013 – ident: IJSIR.2020100106-14 doi: 10.1117/1.1631316 – ident: IJSIR.2020100106-6 doi: 10.1016/0734-189X(85)90125-2 – ident: IJSIR.2020100106-27 doi: 10.1007/s10489-016-0832-9 – ident: IJSIR.2020100106-12 doi: 10.1016/S0167-8655(98)00057-9 – ident: IJSIR.2020100106-21 doi: 10.1007/978-81-322-2009-1 – ident: IJSIR.2020100106-11 doi: 10.1016/0031-3203(93)90115-D – ident: IJSIR.2020100106-16 doi: 10.1016/j.knosys.2015.07.006 – ident: IJSIR.2020100106-15 doi: 10.1016/j.asoc.2017.05.057 – ident: IJSIR.2020100106-23 doi: 10.1016/j.patrec.2014.11.009 – ident: IJSIR.2020100106-13 doi: 10.1007/s00500-014-1345-2 – ident: IJSIR.2020100106-24 doi: </ALIGNMENT>10.1109/ICETECT.2011.5760167 – ident: IJSIR.2020100106-31 doi: 10.1109/ICENCO.2015.7416360 – ident: IJSIR.2020100106-32 doi: 10.3139/120.111024 – ident: IJSIR.2020100106-0 doi: 10.1016/j.eswa.2017.04.023 – ident: IJSIR.2020100106-8 doi: 10.4018/IJAMC.2017100104 – ident: IJSIR.2020100106-18 doi: 10.1016/0031-3203(93)90135-J – ident: IJSIR.2020100106-4 doi: 10.11591/telkomnika.v11i9.3273 – ident: IJSIR.2020100106-7 doi: </ALIGNMENT>10.1109/ICNN.1995.488968 – ident: IJSIR.2020100106-25 doi: 10.1016/j.engappai.2010.12.001 – ident: IJSIR.2020100106-17 doi: 10.1016/j.advengsoft.2016.01.008 – ident: IJSIR.2020100106-20 – ident: IJSIR.2020100106-2 doi: 10.1007/s10489-011-0330-z – ident: IJSIR.2020100106-3 doi: 10.1016/j.eswa.2009.12.050 – ident: IJSIR.2020100106-22 doi: 10.1016/0734-189X(88)90022-9 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: IJSIR.2020100106-30 article-title: Individual Comparisons by Ranking Methods. publication-title: International Biometric Society |
| SSID | ssj0000547753 |
| Score | 2.2041318 |
| Snippet | Multilevel thresholding is a widely used image segmentation technique. However, multilevel thresholding becomes more and more computationally expensive as the... |
| SourceID | proquest crossref igi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 123 |
| SubjectTerms | Algorithms Entropy (Information theory) Image quality Image segmentation Multilevel Optimization Optimization techniques Thresholds |
| Title | Modified Moth-Flame Optimization Algorithm-Based Multilevel Minimum Cross Entropy Thresholding for Image Segmentation |
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2020100106 https://www.proquest.com/docview/2932420404 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1947-9271 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547753 issn: 1947-9263 databaseCode: ADMLS dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1947-9271 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0000547753 issn: 1947-9263 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Hb9swFH6InUsv3UXdDLBALz0QrkXNQ5AFu3EAu0UGkBtBcTgCLNlt7EP-fd-TKBtB0FxFihL58S3yDYBv4SAx1iSOB0YYHjoVcqUjg4AIFZkkdHlK8c6TaXxxG17eRXc7MG1jYcitsuWJNaM2C01n5H0USyhNcMuFx8s_nKpG0e1qW0JD-dIK5qhOMdaB3YAyY3Vh92w4_X21OXVBBSVpUlOi8Z7wLIhFc3eJZkbaH19ej6_QZqQbYrKVnsiqTjErnjHsWgqN3sJrrz6y0wbvd7Bjq_fwpi3NwDylfoD1ZGEKh-olmyAUfIS4W_YL2UPp4y7Z6XyG01vdl_wMBRn2I8_CObkQsUlRFeW6ZOf0V2xIvuzLR3aDqD_4yyqGqi4bl8iL2LWdlT5-qfoIt6PhzfkF9xUWuBZxuuI6QBpE21qjGmVSnWU48xjxslEehcLayOGD_IdFU1Mpp-MMwUyFCFWUG2HTQHyCbrWo7GdgiULFyOYmzygFoDXKZmaQOSRqrZyNbQ_67VpK7dOPUxWMuUQzhFZf1qsvt6vfg--bN5ZN6o0X-n5FeKSnv4dn7XJpXA9OnvQhECSBIGsQ5AaE_31kMOjBfov_dpztzvzycvMevKLBGlfAfeiu_q7tAao0q_wQOuno56Hfrf8AN2X02g |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9gAv3BGFsRkJHniwShLn4ocJdmnVbEtBWyftzXN8KZGatNBWaH-O37bjxGk1Textr4njOOc7Ppf4XBD6RL1YaRUb4qtAEWoEJUKGCgAJRKhiavLE5jtnw2hwQY8vw8sN9K_NhbFhla1MrAW1mkr7j7wLagm0CbAc_Tb7TWzXKHu62rbQEK61gtqrS4y5xI4Tff0XXLj5XnoEeH_2_X5vdDggrssAkUGULIj0gQ_Bv5RgSqhEMgYqMYI16zAPaaB1aOBC_lWDuyWEkRGDD0qCgIowV4FObOEDUAFbNKAMnL-tg97w59nqLw8YRHFTCtNjNCbMj4LmrBTcmqSbHp-nZ-Cj2hNp65vd0o2PinFxR0HUWq__HD115ireb_jrBdrQ1Uv0rG0FgZ1keIWW2VQVBsxZnAH0pA98pvEPEEely_PE-5MxkHPxqyQHoDhhnI1knNiQJZwVVVEuS3xoV4V7NnZ-do1HwGVzdziGwbTGaQmyD5_rcenyparX6OJBaP0GbVbTSr9FOBZgiOlc5cyWHNRKaKY8ZkCISGF0pDuo29KSS1fu3HbdmHBweyz1eU19vqZ-B31ZPTFrSn3cM_YjwMPdfp_fuc9nynTQ91tjLAjcgsBrEPgKhP-9xPM6aLvFfz3Peie8u__2Lno8GGWn_DQdnrxHT-zETRjiNtpc_FnqD2BOLfIdx7MYXT30NrkBirsxIw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+Moth-Flame+Optimization+Algorithm-Based+Multilevel+Minimum+Cross+Entropy+Thresholding+for+Image+Segmentation&rft.jtitle=International+journal+of+swarm+intelligence+research&rft.au=Khairuzzaman%2C+Abdul&rft.au=Chaudhury%2C+Saurabh&rft.date=2020-10-01&rft.pub=IGI+Global&rft.issn=1947-9263&rft.eissn=1947-9271&rft.volume=11&rft.issue=4&rft.spage=123&rft.epage=139&rft_id=info:doi/10.4018%2FIJSIR.2020100106 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-9263&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-9263&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-9263&client=summon |