Modified Moth-Flame Optimization Algorithm-Based Multilevel Minimum Cross Entropy Thresholding for Image Segmentation

Multilevel thresholding is a widely used image segmentation technique. However, multilevel thresholding becomes more and more computationally expensive as the number of thresholds increase. Therefore, it is essential to incorporate some suitable optimization technique to make it practical. In this a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of swarm intelligence research Vol. 11; no. 4; pp. 123 - 139
Main Authors Khairuzzaman, Abdul Kayom Md, Chaudhury, Saurabh
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.10.2020
Subjects
Online AccessGet full text
ISSN1947-9263
1947-9271
DOI10.4018/IJSIR.2020100106

Cover

Abstract Multilevel thresholding is a widely used image segmentation technique. However, multilevel thresholding becomes more and more computationally expensive as the number of thresholds increase. Therefore, it is essential to incorporate some suitable optimization technique to make it practical. In this article, a modification is proposed to the Moth-Flame Optimization (MFO) algorithm and then it is applied to multilevel thresholding for image segmentation. Cross entropy is used as the objective function to select the optimal thresholds. A set of benchmark test images are used to evaluate the proposed technique. The Mean Structural SIMilarity (MSSIM) index is used to measure the quality of the segmented images. The results of the proposed technique are compared with the original MFO, PSO, BFO, and WOA. Experimental results and analysis suggest that the proposed technique outperforms other techniques in terms of segmentation quality images and stability. Moreover, computation time required for multilevel thresholding is also reduced to a manageable level.
AbstractList Multilevel thresholding is a widely used image segmentation technique. However, multilevel thresholding becomes more and more computationally expensive as the number of thresholds increase. Therefore, it is essential to incorporate some suitable optimization technique to make it practical. In this article, a modification is proposed to the Moth-Flame Optimization (MFO) algorithm and then it is applied to multilevel thresholding for image segmentation. Cross entropy is used as the objective function to select the optimal thresholds. A set of benchmark test images are used to evaluate the proposed technique. The Mean Structural SIMilarity (MSSIM) index is used to measure the quality of the segmented images. The results of the proposed technique are compared with the original MFO, PSO, BFO, and WOA. Experimental results and analysis suggest that the proposed technique outperforms other techniques in terms of segmentation quality images and stability. Moreover, computation time required for multilevel thresholding is also reduced to a manageable level.
Author Khairuzzaman, Abdul Kayom Md
Chaudhury, Saurabh
AuthorAffiliation National Institute of Technology, Silchar, India
AuthorAffiliation_xml – name: National Institute of Technology, Silchar, India
Author_xml – sequence: 1
  givenname: Abdul
  surname: Khairuzzaman
  middlename: Kayom Md
  fullname: Khairuzzaman, Abdul Kayom Md
  organization: National Institute of Technology, Silchar, India
– sequence: 2
  givenname: Saurabh
  surname: Chaudhury
  fullname: Chaudhury, Saurabh
  organization: National Institute of Technology, Silchar, India
BookMark eNp9UV1LwzAUDTLBqXv3MeCLL9U0Sb8edUydbAhuPoesvekibVPTVJi_3naTDUQNFxIu55zce84pGlSmAoQufHLNiR_fTJ8W05drSijxSVfhERr6CY-8hEb-YP8O2QkaNc0b6U7AoyhgQ9TOTaaVhgzPjVt794UsAT_XTpf6UzptKnxb5MZqty69O9n0uLZwuoAPKPBcV7psSzy2pmnwpHLW1Bu8XFto1qbIdJVjZSyeljIHvIC8hMptRc_RsZJFA6Pv-wy93k-W40dv9vwwHd_OvJSFsfNSSgIGK5ryIMziNEm6_UIlOQSrgDOAQHWNFYEkiqVUaZhwJWPGuAxWGYOYsjN0udOtrXlvoXHizbS26r4UNGGUU8IJ71DhDpX2e1hQItW7OZ2VuhA-Eb3LYuuyOLjcEckPYm11Ke3mP8rDjqJzfRimD0D0AYhtAGIfwF86vt8pXf2i9BMo6kyxL9WzpqQ
CitedBy_id crossref_primary_10_1016_j_eswa_2022_119095
crossref_primary_10_1007_s42235_022_00207_y
crossref_primary_10_1007_s42835_022_01118_y
crossref_primary_10_1007_s10462_022_10218_0
crossref_primary_10_1007_s11227_021_04150_3
crossref_primary_10_1007_s11831_022_09801_z
crossref_primary_10_1007_s41870_024_01831_z
crossref_primary_10_1007_s11042_022_13073_x
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_3390_fractalfract8020087
crossref_primary_10_1007_s13198_024_02696_y
Cites_doi 10.1016/j.eswa.2011.05.069
10.1109/TSMC.1979.4310076
10.4018/IJAMC.2019070105
10.1016/j.enconman.2016.06.052
10.1016/j.amc.2006.06.057
</ALIGNMENT>10.1109/ICEC.1998.699146
10.1016/j.knosys.2011.02.013
10.1117/1.1631316
10.1016/0734-189X(85)90125-2
10.1007/s10489-016-0832-9
10.1016/S0167-8655(98)00057-9
10.1007/978-81-322-2009-1
10.1016/0031-3203(93)90115-D
10.1016/j.knosys.2015.07.006
10.1016/j.asoc.2017.05.057
10.1016/j.patrec.2014.11.009
10.1007/s00500-014-1345-2
</ALIGNMENT>10.1109/ICETECT.2011.5760167
10.1109/ICENCO.2015.7416360
10.3139/120.111024
10.1016/j.eswa.2017.04.023
10.4018/IJAMC.2017100104
10.1016/0031-3203(93)90135-J
10.11591/telkomnika.v11i9.3273
</ALIGNMENT>10.1109/ICNN.1995.488968
10.1016/j.engappai.2010.12.001
10.1016/j.advengsoft.2016.01.008
10.1007/s10489-011-0330-z
10.1016/j.eswa.2009.12.050
10.1016/0734-189X(88)90022-9
ContentType Journal Article
Copyright Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.4018/IJSIR.2020100106
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1947-9271
EndPage 139
ExternalDocumentID 10_4018_IJSIR_2020100106
fied_Moth_Flame_Optimizat10_4018_IJSIR_202010010611
GroupedDBID 0R
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
4.4
AAYVP
AAYXX
ABJCF
ABPHS
ACOJC
ADMLS
AFKRA
ARAPS
BAAKF
BENPR
BGLVJ
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CKMBR
CNQXE
CTSEY
EJD
H13
HCIFZ
HZ~
IAO
ICD
IMI
ITC
K7-
M7S
N95
PHGZM
PHGZT
PQGLB
PTHSS
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c368t-c2053eb2c456d8c992016fa4e5b543ee5f201b0e978aafc694fa8334a5bd3e823
IEDL.DBID BENPR
ISSN 1947-9263
IngestDate Fri Jul 25 10:14:56 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Wed Oct 15 13:10:22 EDT 2025
Fri Jan 15 00:04:30 EST 2021
Tue Jan 05 23:29:30 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-c2053eb2c456d8c992016fa4e5b543ee5f201b0e978aafc694fa8334a5bd3e823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5191-5743
PQID 2932420404
PQPubID 2045809
PageCount 17
ParticipantIDs proquest_journals_2932420404
igi_journals_fied_Moth_Flame_Optimizat10_4018_IJSIR_202010010611
crossref_primary_10_4018_IJSIR_2020100106
crossref_citationtrail_10_4018_IJSIR_2020100106
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of swarm intelligence research
PublicationYear 2020
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJSIR.2020100106-4
IJSIR.2020100106-16
IJSIR.2020100106-5
IJSIR.2020100106-15
IJSIR.2020100106-6
IJSIR.2020100106-18
IJSIR.2020100106-7
IJSIR.2020100106-17
IJSIR.2020100106-0
IJSIR.2020100106-12
IJSIR.2020100106-1
IJSIR.2020100106-11
IJSIR.2020100106-33
IJSIR.2020100106-2
IJSIR.2020100106-14
IJSIR.2020100106-3
IJSIR.2020100106-13
IJSIR.2020100106-10
IJSIR.2020100106-32
IJSIR.2020100106-31
Z.Wang (IJSIR.2020100106-29) 2004; 13
F.Wilcoxon (IJSIR.2020100106-30) 1945; 1
IJSIR.2020100106-27
IJSIR.2020100106-26
IJSIR.2020100106-28
IJSIR.2020100106-23
IJSIR.2020100106-22
IJSIR.2020100106-25
IJSIR.2020100106-24
IJSIR.2020100106-21
IJSIR.2020100106-20
IJSIR.2020100106-8
IJSIR.2020100106-9
IJSIR.2020100106-19
References_xml – ident: IJSIR.2020100106-5
  doi: 10.1016/j.eswa.2011.05.069
– ident: IJSIR.2020100106-19
  doi: 10.1109/TSMC.1979.4310076
– ident: IJSIR.2020100106-9
  doi: 10.4018/IJAMC.2019070105
– ident: IJSIR.2020100106-10
– ident: IJSIR.2020100106-1
  doi: 10.1016/j.enconman.2016.06.052
– ident: IJSIR.2020100106-33
  doi: 10.1016/j.amc.2006.06.057
– ident: IJSIR.2020100106-26
  doi: </ALIGNMENT>10.1109/ICEC.1998.699146
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: IJSIR.2020100106-29
  publication-title: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE transactions on image processing,
– ident: IJSIR.2020100106-28
  doi: 10.1016/j.knosys.2011.02.013
– ident: IJSIR.2020100106-14
  doi: 10.1117/1.1631316
– ident: IJSIR.2020100106-6
  doi: 10.1016/0734-189X(85)90125-2
– ident: IJSIR.2020100106-27
  doi: 10.1007/s10489-016-0832-9
– ident: IJSIR.2020100106-12
  doi: 10.1016/S0167-8655(98)00057-9
– ident: IJSIR.2020100106-21
  doi: 10.1007/978-81-322-2009-1
– ident: IJSIR.2020100106-11
  doi: 10.1016/0031-3203(93)90115-D
– ident: IJSIR.2020100106-16
  doi: 10.1016/j.knosys.2015.07.006
– ident: IJSIR.2020100106-15
  doi: 10.1016/j.asoc.2017.05.057
– ident: IJSIR.2020100106-23
  doi: 10.1016/j.patrec.2014.11.009
– ident: IJSIR.2020100106-13
  doi: 10.1007/s00500-014-1345-2
– ident: IJSIR.2020100106-24
  doi: </ALIGNMENT>10.1109/ICETECT.2011.5760167
– ident: IJSIR.2020100106-31
  doi: 10.1109/ICENCO.2015.7416360
– ident: IJSIR.2020100106-32
  doi: 10.3139/120.111024
– ident: IJSIR.2020100106-0
  doi: 10.1016/j.eswa.2017.04.023
– ident: IJSIR.2020100106-8
  doi: 10.4018/IJAMC.2017100104
– ident: IJSIR.2020100106-18
  doi: 10.1016/0031-3203(93)90135-J
– ident: IJSIR.2020100106-4
  doi: 10.11591/telkomnika.v11i9.3273
– ident: IJSIR.2020100106-7
  doi: </ALIGNMENT>10.1109/ICNN.1995.488968
– ident: IJSIR.2020100106-25
  doi: 10.1016/j.engappai.2010.12.001
– ident: IJSIR.2020100106-17
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: IJSIR.2020100106-20
– ident: IJSIR.2020100106-2
  doi: 10.1007/s10489-011-0330-z
– ident: IJSIR.2020100106-3
  doi: 10.1016/j.eswa.2009.12.050
– ident: IJSIR.2020100106-22
  doi: 10.1016/0734-189X(88)90022-9
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: IJSIR.2020100106-30
  article-title: Individual Comparisons by Ranking Methods.
  publication-title: International Biometric Society
SSID ssj0000547753
Score 2.2041318
Snippet Multilevel thresholding is a widely used image segmentation technique. However, multilevel thresholding becomes more and more computationally expensive as the...
SourceID proquest
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123
SubjectTerms Algorithms
Entropy (Information theory)
Image quality
Image segmentation
Multilevel
Optimization
Optimization techniques
Thresholds
Title Modified Moth-Flame Optimization Algorithm-Based Multilevel Minimum Cross Entropy Thresholding for Image Segmentation
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2020100106
https://www.proquest.com/docview/2932420404
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1947-9271
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547753
  issn: 1947-9263
  databaseCode: ADMLS
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1947-9271
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0000547753
  issn: 1947-9263
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Hb9swFH6InUsv3UXdDLBALz0QrkXNQ5AFu3EAu0UGkBtBcTgCLNlt7EP-fd-TKBtB0FxFihL58S3yDYBv4SAx1iSOB0YYHjoVcqUjg4AIFZkkdHlK8c6TaXxxG17eRXc7MG1jYcitsuWJNaM2C01n5H0USyhNcMuFx8s_nKpG0e1qW0JD-dIK5qhOMdaB3YAyY3Vh92w4_X21OXVBBSVpUlOi8Z7wLIhFc3eJZkbaH19ej6_QZqQbYrKVnsiqTjErnjHsWgqN3sJrrz6y0wbvd7Bjq_fwpi3NwDylfoD1ZGEKh-olmyAUfIS4W_YL2UPp4y7Z6XyG01vdl_wMBRn2I8_CObkQsUlRFeW6ZOf0V2xIvuzLR3aDqD_4yyqGqi4bl8iL2LWdlT5-qfoIt6PhzfkF9xUWuBZxuuI6QBpE21qjGmVSnWU48xjxslEehcLayOGD_IdFU1Mpp-MMwUyFCFWUG2HTQHyCbrWo7GdgiULFyOYmzygFoDXKZmaQOSRqrZyNbQ_67VpK7dOPUxWMuUQzhFZf1qsvt6vfg--bN5ZN6o0X-n5FeKSnv4dn7XJpXA9OnvQhECSBIGsQ5AaE_31kMOjBfov_dpztzvzycvMevKLBGlfAfeiu_q7tAao0q_wQOuno56Hfrf8AN2X02g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9gAv3BGFsRkJHniwShLn4ocJdmnVbEtBWyftzXN8KZGatNBWaH-O37bjxGk1Textr4njOOc7Ppf4XBD6RL1YaRUb4qtAEWoEJUKGCgAJRKhiavLE5jtnw2hwQY8vw8sN9K_NhbFhla1MrAW1mkr7j7wLagm0CbAc_Tb7TWzXKHu62rbQEK61gtqrS4y5xI4Tff0XXLj5XnoEeH_2_X5vdDggrssAkUGULIj0gQ_Bv5RgSqhEMgYqMYI16zAPaaB1aOBC_lWDuyWEkRGDD0qCgIowV4FObOEDUAFbNKAMnL-tg97w59nqLw8YRHFTCtNjNCbMj4LmrBTcmqSbHp-nZ-Cj2hNp65vd0o2PinFxR0HUWq__HD115ireb_jrBdrQ1Uv0rG0FgZ1keIWW2VQVBsxZnAH0pA98pvEPEEely_PE-5MxkHPxqyQHoDhhnI1knNiQJZwVVVEuS3xoV4V7NnZ-do1HwGVzdziGwbTGaQmyD5_rcenyparX6OJBaP0GbVbTSr9FOBZgiOlc5cyWHNRKaKY8ZkCISGF0pDuo29KSS1fu3HbdmHBweyz1eU19vqZ-B31ZPTFrSn3cM_YjwMPdfp_fuc9nynTQ91tjLAjcgsBrEPgKhP-9xPM6aLvFfz3Peie8u__2Lno8GGWn_DQdnrxHT-zETRjiNtpc_FnqD2BOLfIdx7MYXT30NrkBirsxIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+Moth-Flame+Optimization+Algorithm-Based+Multilevel+Minimum+Cross+Entropy+Thresholding+for+Image+Segmentation&rft.jtitle=International+journal+of+swarm+intelligence+research&rft.au=Khairuzzaman%2C+Abdul&rft.au=Chaudhury%2C+Saurabh&rft.date=2020-10-01&rft.pub=IGI+Global&rft.issn=1947-9263&rft.eissn=1947-9271&rft.volume=11&rft.issue=4&rft.spage=123&rft.epage=139&rft_id=info:doi/10.4018%2FIJSIR.2020100106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-9263&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-9263&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-9263&client=summon