Generating data from improper distributions: application to Cox proportional hazards models with cure
Cure rate models are survival models characterized by improper survivor distributions which occur when the cumulative distribution function, say F, of the survival times does not sum up to 1 (i.e. F(+∞)<1). The first objective of this paper is to provide a general approach to generate data from a...
Saved in:
| Published in | Journal of statistical computation and simulation Vol. 84; no. 1; pp. 204 - 214 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
02.01.2014
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-9655 1563-5163 |
| DOI | 10.1080/00949655.2012.700714 |
Cover
| Summary: | Cure rate models are survival models characterized by improper survivor distributions which occur when the cumulative distribution function, say F, of the survival times does not sum up to 1 (i.e. F(+∞)<1). The first objective of this paper is to provide a general approach to generate data from any improper distribution. An application to times to event data randomly drawn from improper distributions with proportional hazards is investigated using the semi-parametric proportional hazards model with cure obtained as a special case of the nonlinear transformation models in [Tsodikov, Semiparametric models: A generalized self-consistency approach, J. R. Stat. Soc. Ser. B 65 (2003), pp. 759-774]. The second objective of this paper is to show by simulations that the bias, the standard error and the mean square error of the maximum partial likelihood (PL) estimator of the hazard ratio as well as the statistical power based on the PL estimator strongly depend on the proportion of subjects in the whole population who will never experience the event of interest. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0094-9655 1563-5163 |
| DOI: | 10.1080/00949655.2012.700714 |