A dynamic and self-adaptive classification algorithm for motor imagery EEG signals
•A high accuracy motor imagery based BCI algorithm is proposed.•Spatial and spectral features of EEG signals related to left and right hand movements are extracted and classified using many algorithms.•A novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed t...
Saved in:
| Published in | Journal of neuroscience methods Vol. 327; p. 108346 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.11.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-0270 1872-678X 1872-678X |
| DOI | 10.1016/j.jneumeth.2019.108346 |
Cover
| Abstract | •A high accuracy motor imagery based BCI algorithm is proposed.•Spatial and spectral features of EEG signals related to left and right hand movements are extracted and classified using many algorithms.•A novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the appropriate couple of feature extraction and classification algorithms.•The proposed system is allowed to increases the recognition rate of trials despite the unavailability of reference trial labels of 17 subjects.
Brain–computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance.
In this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy.
Extensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods.
The results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels.
Performing dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy. |
|---|---|
| AbstractList | Brain-computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance.
In this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy.
Extensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods.
The results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels.
Performing dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy. Brain-computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance.BACKGROUNDBrain-computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance.In this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy.NEW METHODIn this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy.Extensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods.RESULTSExtensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods.The results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels.COMPARISON WITH EXISTING METHODSThe results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels.Performing dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy.CONCLUSIONSPerforming dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy. •A high accuracy motor imagery based BCI algorithm is proposed.•Spatial and spectral features of EEG signals related to left and right hand movements are extracted and classified using many algorithms.•A novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the appropriate couple of feature extraction and classification algorithms.•The proposed system is allowed to increases the recognition rate of trials despite the unavailability of reference trial labels of 17 subjects. Brain–computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance. In this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy. Extensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods. The results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels. Performing dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy. |
| ArticleNumber | 108346 |
| Author | Gannouni, Sofien Aboalsamh, Hatim Belghith, Abdelfattah Belwafi, Kais Mathkour, Hassan |
| Author_xml | – sequence: 1 givenname: Kais orcidid: 0000-0003-1455-439X surname: Belwafi fullname: Belwafi, Kais email: kbelwafi@ksu.edu.sa – sequence: 2 givenname: Sofien orcidid: 0000-0002-6026-4257 surname: Gannouni fullname: Gannouni, Sofien – sequence: 3 givenname: Hatim surname: Aboalsamh fullname: Aboalsamh, Hatim – sequence: 4 givenname: Hassan surname: Mathkour fullname: Mathkour, Hassan – sequence: 5 givenname: Abdelfattah surname: Belghith fullname: Belghith, Abdelfattah |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31421162$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMFqGzEQhkVISOwkrxB07GVdSbuS1tBDTXDdQKBQEshNaKVZR2ZXciU54LePUseXXHyZAfH9o5lvis598IDQHSUzSqj4vpltPOxGyK8zRui8PLZ1I87QhLaSVUK2L-doUkBeESbJFZqmtCGENHMiLtFVTRtGqWAT9HeB7d7r0RmsvcUJhr7SVm-zewNsBp2S653R2QWP9bAO0eXXEfch4jHkUt2o1xD3eLlc4eTWXg_pBl30pcHtZ79Gz7-WT_e_q8c_q4f7xWNlatHmqmOaNIJ3Ukve11CqZYJbYEA4kZw2pmt4V7ZvSNe2YGveEqvFXM5FK0XX19fo22HuNoZ_O0hZjS4ZGAbtIeySYkxyJkQtZUHvPtFdN4JV21j2jnt19FCAHwfAxJBShF4Zl_9fnaN2g6JEfWhXG3XUrj60q4P2Ehdf4scfTgZ_HoJQRL05iCoZB96AdRFMVja4UyPeAeA6n_A |
| CitedBy_id | crossref_primary_10_3390_electronics9020203 crossref_primary_10_1109_TNSRE_2023_3339179 crossref_primary_10_1016_j_jneumeth_2020_108833 crossref_primary_10_1016_j_jneumeth_2020_108776 crossref_primary_10_1109_JSEN_2020_3016402 crossref_primary_10_1007_s13246_022_01132_4 crossref_primary_10_1016_j_jneumeth_2020_108690 crossref_primary_10_1016_j_measen_2023_100823 crossref_primary_10_3390_brainsci12070926 crossref_primary_10_1016_j_bspc_2022_104317 crossref_primary_10_1016_j_bspc_2022_103825 crossref_primary_10_1109_ACCESS_2020_3016481 crossref_primary_10_1109_TNSRE_2022_3217298 crossref_primary_10_7717_peerj_cs_374 crossref_primary_10_1007_s11042_025_20605_8 crossref_primary_10_1007_s11517_023_02840_z crossref_primary_10_3390_ijerph18147567 crossref_primary_10_1109_ACCESS_2020_3017888 crossref_primary_10_1109_JSEN_2023_3299086 |
| Cites_doi | 10.1109/TBME.2010.2082539 10.1016/j.neucom.2012.12.002 10.24200/sci.2018.4978.1022 10.1155/2014/369328 10.1088/1741-2560/4/2/R01 10.1006/jmca.1993.1030 10.1006/nimg.2000.0599 10.1007/s10115-012-0586-6 10.1016/j.jneumeth.2018.04.013 10.1016/j.clinph.2003.10.019 10.1109/12.88491 10.1109/TBME.2011.2172210 10.1109/ICSMB.2010.5735358 10.3390/s19020379 10.1109/CCMB.2014.7020704 10.1109/TPAMI.2008.79 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.jneumeth.2019.108346 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1872-678X |
| ExternalDocumentID | 31421162 10_1016_j_jneumeth_2019_108346 S0165027019302043 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- SEW SNS WUQ X7M ZGI ~HD AGCQF AGRNS NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c368t-b2a0465b7a75f3ea75d265de2e0507514cb45b02740b88ed3580da69796876bf3 |
| IEDL.DBID | .~1 |
| ISSN | 0165-0270 1872-678X |
| IngestDate | Sun Sep 28 03:27:33 EDT 2025 Mon Jul 21 06:02:44 EDT 2025 Thu Apr 24 23:16:04 EDT 2025 Thu Oct 02 04:27:39 EDT 2025 Fri Feb 23 02:33:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | motor imagery Electroencephalography (EEG) voting technique dynamic classification Brain–computer interface (BCI) |
| Language | English |
| License | Copyright © 2019 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-b2a0465b7a75f3ea75d265de2e0507514cb45b02740b88ed3580da69796876bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1455-439X 0000-0002-6026-4257 |
| PMID | 31421162 |
| PQID | 2275266377 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2275266377 pubmed_primary_31421162 crossref_citationtrail_10_1016_j_jneumeth_2019_108346 crossref_primary_10_1016_j_jneumeth_2019_108346 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2019_108346 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of neuroscience methods |
| PublicationTitleAlternate | J Neurosci Methods |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kam, Suk, Lee (bib0065) 2013; 108 Bhattacharya, Bhimraj, Haddad, Ahad (bib0030) 2017 Kuncheva, Rodríguez (bib0075) 2014; 38 Theodoridis (bib0120) 2003 Aurlien, Gjerde, Aarseth, Eldøen, Karlsen, Skeidsvoll, Gilhus (bib0010) 2004; 115 Yang, Zhang, Feng, Zhang (bib0140) 2011 Belwafi, Djemal, Ghaffari, Romain (bib0020) 2014 Duin, Juszczak, Paclik, Pekalska, De Ridder, Tax, Verzakov (bib0045) 2000; 3 Ramirez, Sprechmann, Sapiro (bib0105) 2010 Pfurtscheller, Flotzinger, Kalcher (bib0095) 1993; 16 Barachant, Bonnet, Congedo, Jutten (bib0015) 2012; 59 Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (bib0085) 2007; 4 Graimann, Allison, Pfurtscheller (bib0050) 2010 Zhang, Zhang, Cai, Yang (bib0145) 2014; 2014 Kong, Wang (bib0070) 2012; 2012 Singh, Lal, Guesgen (bib0115) 2019; 19 Chriskos, Kaitalidou, Karakasis, Frantzidis, Gkivogkli, Bamidis, Kourtidou-Papadeli (bib0040) 2017 Jiang, Lin, Davis (bib0060) 2011 Schomer, Da Silva (bib0110) 2012 Allen, Josephs, Turner (bib0005) 2000; 12 Rakotomamonjy, Guigue, Mallet, Alvarado (bib0100) 2005 Tong, Kain (bib0125) 1991; 40 Wright, Yang, Ganesh, Sastry, Ma (bib0135) 2009; 31 Malekmohammadi, Mohammadzade, Chamanzar, Shabany, Ghojogh (bib0090) 2018 Vapnik (bib0130) 2000; Vol. 2 Bhattacharyya, Khasnobish, Chatterjee, Konar, Tibarewala (bib0035) 2010 Lotte, Guan (bib0080) 2011; 58 Belwafi, Romain, Gannouni, Ghaffari, Djemal, Ouni (bib0025) 2018; 305 Gu, Zhang, Zuo, Feng (bib0055) 2014 Belwafi (10.1016/j.jneumeth.2019.108346_bib0025) 2018; 305 Gu (10.1016/j.jneumeth.2019.108346_bib0055) 2014 Pfurtscheller (10.1016/j.jneumeth.2019.108346_bib0095) 1993; 16 Ramirez (10.1016/j.jneumeth.2019.108346_bib0105) 2010 Vapnik (10.1016/j.jneumeth.2019.108346_bib0130) 2000; Vol. 2 Lotte (10.1016/j.jneumeth.2019.108346_bib0080) 2011; 58 Kam (10.1016/j.jneumeth.2019.108346_bib0065) 2013; 108 Rakotomamonjy (10.1016/j.jneumeth.2019.108346_bib0100) 2005 Singh (10.1016/j.jneumeth.2019.108346_bib0115) 2019; 19 Wright (10.1016/j.jneumeth.2019.108346_bib0135) 2009; 31 Bhattacharyya (10.1016/j.jneumeth.2019.108346_bib0035) 2010 Yang (10.1016/j.jneumeth.2019.108346_bib0140) 2011 Aurlien (10.1016/j.jneumeth.2019.108346_bib0010) 2004; 115 Malekmohammadi (10.1016/j.jneumeth.2019.108346_bib0090) 2018 Graimann (10.1016/j.jneumeth.2019.108346_bib0050) 2010 Jiang (10.1016/j.jneumeth.2019.108346_bib0060) 2011 Kuncheva (10.1016/j.jneumeth.2019.108346_bib0075) 2014; 38 Chriskos (10.1016/j.jneumeth.2019.108346_bib0040) 2017 Allen (10.1016/j.jneumeth.2019.108346_bib0005) 2000; 12 Duin (10.1016/j.jneumeth.2019.108346_bib0045) 2000; 3 Theodoridis (10.1016/j.jneumeth.2019.108346_bib0120) 2003 Lotte (10.1016/j.jneumeth.2019.108346_bib0085) 2007; 4 Bhattacharya (10.1016/j.jneumeth.2019.108346_bib0030) 2017 Tong (10.1016/j.jneumeth.2019.108346_bib0125) 1991; 40 Kong (10.1016/j.jneumeth.2019.108346_bib0070) 2012; 2012 Barachant (10.1016/j.jneumeth.2019.108346_bib0015) 2012; 59 Zhang (10.1016/j.jneumeth.2019.108346_bib0145) 2014; 2014 Schomer (10.1016/j.jneumeth.2019.108346_bib0110) 2012 Belwafi (10.1016/j.jneumeth.2019.108346_bib0020) 2014 |
| References_xml | – year: 2012 ident: bib0110 article-title: Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields – start-page: 126 year: 2010 end-page: 131 ident: bib0035 article-title: Performance analysis of LDA, qda and knn algorithms in left-right limb movement classification from EEG data publication-title: Systems in Medicine and Biology (ICSMB), 2010 International Conference on – year: 2017 ident: bib0030 article-title: Optimization of EEG-based imaginary motion classification using majority-voting publication-title: SoutheastCon 2017 – start-page: 543 year: 2011 end-page: 550 ident: bib0140 article-title: Fisher discrimination dictionary learning for sparse representation publication-title: Computer Vision (ICCV), 2011 IEEE International Conference on – volume: 58 start-page: 355 year: 2011 end-page: 362 ident: bib0080 article-title: Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. – volume: 16 start-page: 293 year: 1993 end-page: 299 ident: bib0095 article-title: Brain–computer interface–a new communication device for handicapped persons publication-title: J. Microcomput. Appl. – start-page: 793 year: 2014 end-page: 801 ident: bib0055 article-title: Projective dictionary pair learning for pattern classification publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 230 year: 2000 end-page: 239 ident: bib0005 article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI publication-title: NeuroImage – start-page: 1697 year: 2011 end-page: 1704 ident: bib0060 article-title: Learning a discriminative dictionary for sparse coding via label consistent k-svd publication-title: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on – volume: 19 start-page: 379 year: 2019 ident: bib0115 article-title: Reduce calibration time in motor imagery using spatially regularized symmetric positives-definite matrices based classification publication-title: Sensors – volume: 305 start-page: 1 year: 2018 end-page: 16 ident: bib0025 article-title: An embedded implementation based on adaptive filter bank for brain–computer interface systems publication-title: J. Neurosci. Methods – start-page: 435 year: 2017 end-page: 439 ident: bib0040 article-title: Automatic sleep stage classification applying machine learning algorithms on eeg recordings publication-title: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS) – year: 2010 ident: bib0050 article-title: Brain Computer Interfaces: A Gentle Introduction – volume: 108 start-page: 58 year: 2013 end-page: 68 ident: bib0065 article-title: Non-homogeneous spatial filter optimization for electroencephalogram EEG-based motor imagery classification publication-title: Neurocomputing – volume: 4 start-page: R1 year: 2007 ident: bib0085 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. – volume: 3 year: 2000 ident: bib0045 article-title: A matlab toolbox for pattern recognition publication-title: PRTools version – volume: 2014 start-page: 1 year: 2014 end-page: 6 ident: bib0145 article-title: A weighted voting classifier based on differential evolution publication-title: Abstract Appl. Anal. – volume: Vol. 2 start-page: 749 year: 2000 end-page: 752 ident: bib0130 article-title: SVM method of estimating density, conditional probability, and conditional density publication-title: Circuits and Systems, 2000, Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: bib0135 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intel. – volume: 115 start-page: 665 year: 2004 end-page: 673 ident: bib0010 article-title: EEG background activity described by a large computerized database publication-title: Clin. Neurophysiol. – year: 2003 ident: bib0120 article-title: Pattern Recognition – volume: 59 start-page: 920 year: 2012 end-page: 928 ident: bib0015 article-title: Multiclass brain–computer interface classification by riemannian geometry publication-title: IEEE Trans. Biomed. Eng. – volume: 40 start-page: 664 year: 1991 end-page: 667 ident: bib0125 article-title: Vote assignments in weighted voting mechanisms publication-title: IEEE Trans. Comput. – start-page: 45 year: 2005 end-page: 50 ident: bib0100 article-title: Ensemble of svms for improving brain computer interface p300 speller performances publication-title: Artificial Neural Networks: Biological Inspirations - ICANN 2005 – start-page: 3501 year: 2010 end-page: 3508 ident: bib0105 article-title: Classification and clustering via dictionary learning with structured incoherence and shared features publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – year: 2018 ident: bib0090 article-title: An efficient hardware implementation for a motor imagery brain computer interface system publication-title: Scientia Iranica – volume: 38 start-page: 259 year: 2014 end-page: 275 ident: bib0075 article-title: A weighted voting framework for classifiers ensembles publication-title: Knowledge Inform. Syst. – start-page: 121 year: 2014 end-page: 126 ident: bib0020 article-title: An adaptive EEG filtering approach to maximize the classification accuracy in motor imagery publication-title: Computational Intelligence, Cognitive Algorithms, Mind and Brain (CCMB), 2014 IEEE Symposium on – volume: 2012 start-page: 186 year: 2012 end-page: 199 ident: bib0070 article-title: A dictionary learning approach for classification: Separating the particularity and the commonality publication-title: Comput. Vision-ECCV – volume: 58 start-page: 355 issue: 2 year: 2011 ident: 10.1016/j.jneumeth.2019.108346_bib0080 article-title: Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – volume: 108 start-page: 58 year: 2013 ident: 10.1016/j.jneumeth.2019.108346_bib0065 article-title: Non-homogeneous spatial filter optimization for electroencephalogram EEG-based motor imagery classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.002 – year: 2003 ident: 10.1016/j.jneumeth.2019.108346_bib0120 – start-page: 793 year: 2014 ident: 10.1016/j.jneumeth.2019.108346_bib0055 article-title: Projective dictionary pair learning for pattern classification publication-title: Advances in Neural Information Processing Systems – year: 2018 ident: 10.1016/j.jneumeth.2019.108346_bib0090 article-title: An efficient hardware implementation for a motor imagery brain computer interface system publication-title: Scientia Iranica doi: 10.24200/sci.2018.4978.1022 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.jneumeth.2019.108346_bib0145 article-title: A weighted voting classifier based on differential evolution publication-title: Abstract Appl. Anal. doi: 10.1155/2014/369328 – volume: 2012 start-page: 186 year: 2012 ident: 10.1016/j.jneumeth.2019.108346_bib0070 article-title: A dictionary learning approach for classification: Separating the particularity and the commonality publication-title: Comput. Vision-ECCV – volume: 4 start-page: R1 issue: 2 year: 2007 ident: 10.1016/j.jneumeth.2019.108346_bib0085 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – start-page: 3501 year: 2010 ident: 10.1016/j.jneumeth.2019.108346_bib0105 article-title: Classification and clustering via dictionary learning with structured incoherence and shared features publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 16 start-page: 293 issue: 3 year: 1993 ident: 10.1016/j.jneumeth.2019.108346_bib0095 article-title: Brain–computer interface–a new communication device for handicapped persons publication-title: J. Microcomput. Appl. doi: 10.1006/jmca.1993.1030 – volume: 12 start-page: 230 issue: 2 year: 2000 ident: 10.1016/j.jneumeth.2019.108346_bib0005 article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI publication-title: NeuroImage doi: 10.1006/nimg.2000.0599 – volume: 38 start-page: 259 issue: 2 year: 2014 ident: 10.1016/j.jneumeth.2019.108346_bib0075 article-title: A weighted voting framework for classifiers ensembles publication-title: Knowledge Inform. Syst. doi: 10.1007/s10115-012-0586-6 – volume: 3 year: 2000 ident: 10.1016/j.jneumeth.2019.108346_bib0045 article-title: A matlab toolbox for pattern recognition publication-title: PRTools version – volume: 305 start-page: 1 year: 2018 ident: 10.1016/j.jneumeth.2019.108346_bib0025 article-title: An embedded implementation based on adaptive filter bank for brain–computer interface systems publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.04.013 – volume: 115 start-page: 665 issue: 3 year: 2004 ident: 10.1016/j.jneumeth.2019.108346_bib0010 article-title: EEG background activity described by a large computerized database publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.10.019 – volume: 40 start-page: 664 issue: 5 year: 1991 ident: 10.1016/j.jneumeth.2019.108346_bib0125 article-title: Vote assignments in weighted voting mechanisms publication-title: IEEE Trans. Comput. doi: 10.1109/12.88491 – volume: 59 start-page: 920 issue: 4 year: 2012 ident: 10.1016/j.jneumeth.2019.108346_bib0015 article-title: Multiclass brain–computer interface classification by riemannian geometry publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2172210 – start-page: 543 year: 2011 ident: 10.1016/j.jneumeth.2019.108346_bib0140 article-title: Fisher discrimination dictionary learning for sparse representation – start-page: 126 year: 2010 ident: 10.1016/j.jneumeth.2019.108346_bib0035 article-title: Performance analysis of LDA, qda and knn algorithms in left-right limb movement classification from EEG data publication-title: Systems in Medicine and Biology (ICSMB), 2010 International Conference on doi: 10.1109/ICSMB.2010.5735358 – start-page: 435 year: 2017 ident: 10.1016/j.jneumeth.2019.108346_bib0040 article-title: Automatic sleep stage classification applying machine learning algorithms on eeg recordings publication-title: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS) – start-page: 45 year: 2005 ident: 10.1016/j.jneumeth.2019.108346_bib0100 article-title: Ensemble of svms for improving brain computer interface p300 speller performances – start-page: 1697 year: 2011 ident: 10.1016/j.jneumeth.2019.108346_bib0060 article-title: Learning a discriminative dictionary for sparse coding via label consistent k-svd – year: 2012 ident: 10.1016/j.jneumeth.2019.108346_bib0110 – year: 2017 ident: 10.1016/j.jneumeth.2019.108346_bib0030 article-title: Optimization of EEG-based imaginary motion classification using majority-voting – year: 2010 ident: 10.1016/j.jneumeth.2019.108346_bib0050 – volume: 19 start-page: 379 issue: 2 year: 2019 ident: 10.1016/j.jneumeth.2019.108346_bib0115 article-title: Reduce calibration time in motor imagery using spatially regularized symmetric positives-definite matrices based classification publication-title: Sensors doi: 10.3390/s19020379 – start-page: 121 year: 2014 ident: 10.1016/j.jneumeth.2019.108346_bib0020 article-title: An adaptive EEG filtering approach to maximize the classification accuracy in motor imagery publication-title: Computational Intelligence, Cognitive Algorithms, Mind and Brain (CCMB), 2014 IEEE Symposium on doi: 10.1109/CCMB.2014.7020704 – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.jneumeth.2019.108346_bib0135 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intel. doi: 10.1109/TPAMI.2008.79 – volume: Vol. 2 start-page: 749 year: 2000 ident: 10.1016/j.jneumeth.2019.108346_bib0130 article-title: SVM method of estimating density, conditional probability, and conditional density publication-title: Circuits and Systems, 2000, Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on |
| SSID | ssj0004906 |
| Score | 2.430381 |
| Snippet | •A high accuracy motor imagery based BCI algorithm is proposed.•Spatial and spectral features of EEG signals related to left and right hand movements are... Brain-computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 108346 |
| SubjectTerms | Brain–computer interface (BCI) dynamic classification Electroencephalography (EEG) motor imagery voting technique |
| Title | A dynamic and self-adaptive classification algorithm for motor imagery EEG signals |
| URI | https://dx.doi.org/10.1016/j.jneumeth.2019.108346 https://www.ncbi.nlm.nih.gov/pubmed/31421162 https://www.proquest.com/docview/2275266377 |
| Volume | 327 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hkFAvqLxKWoqMhLgtSdZre32MotAUBAceEjfLXnvbRMkmguTApb-dmX2kIFFx6MXSrmytd8Y7_mbnGw_AiQipll77KLg0j9BKysjJxEfK8lzHQXUDp3znq2s5vE8uHsTDGvSbXBiiVda2v7LppbWu77Rrabbno1H7lhJx0KlCjMLLDE_KYE8UVTE4-_OX5pHosr4mdaZ4ZedVlvD4bFyEJVVqJoqXJrodJyD8_gb1LwBabkTnn2GrRpCsV01yG9ZCsQO7vQK95-kzO2Ulp7P8Wb4Dm1d16HwXbnrMV9XnmS08ewqTPLLezsncsYwwNJGGSj0xO_k1exwtfk8ZQlqGysR2NKXTLp7ZYPCDEekDl-0e3J8P7vrDqC6oEGVcpovIxRbdYeGUVSLnAVsfS-FDHDoICxE6ZS4RjhzVjkvT4ClE6q3USks0mi7n-7BezIpwAIwL7CStl0qiiLPEKdWxXudpN0vQCMYtEI0UTVafNk5FLyamoZWNTSN9Q9I3lfRb0F6Nm1fnbXw4QjdKMm9WjsFN4cOxx41WDX5WFCuxRZgtn0wcK4HYhSvVgi-Vulfz4V18xa6Mv_7Hk7_BJ7qqshoPYX3xuAzfEd4s3FG5fo9go_fzcnj9AiQ2-FI |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RKtFeqhb6SKGtkareliT22l4fIxRIC-HQgsTNstdemijZRJAcuPS3d2YftJWoOHDxYdfWeme84292vvEAfJYxMyqYkESfFQlaSZV4lYZEO1EYHnU_Csp3Hp-p0UX67VJebsBhmwtDtMrG9tc2vbLWzZVuI83ucjLp_qBEHHSqEKOIKsPzCTxNJdfkgR38-sPzSE1VYJN6U8Cy91ea8PRgWsY1lWomjpchvp0gJHz_DvU_BFrtREcv4UUDIdmgnuUr2IjlNuwMSnSf57fsC6tIndXf8m3YGjex8x34PmChLj_PXBnYTZwViQtuSfaO5QSiiTVUKYq52dXierL6OWeIaRlqE9vJnI67uGXD4TEj1geu29dwcTQ8PxwlTUWFJBcqWyWeO_SHpddOy0JEbANXMkQee4gLETvlPpWePNWez7IYKEYanDLaKLSavhBvYLNclPEdMCGxk3JBaYUizlOvdc8FU2T9PEUryDsgWynavDlunKpezGzLK5vaVvqWpG9r6XegezduWR-48eAI0yrJ_rN0LO4KD47db7Vq8buiYIkr42J9YznXEsGL0LoDb2t1381H9PEV-4q_f8STP8Gz0fn41J5-PTvZhed0p05x3IPN1fU6fkCss_Ifq7X8G-BS-ec |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+and+self-adaptive+classification+algorithm+for+motor+imagery+EEG+signals&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Belwafi%2C+Kais&rft.au=Gannouni%2C+Sofien&rft.au=Aboalsamh%2C+Hatim&rft.au=Mathkour%2C+Hassan&rft.date=2019-11-01&rft.issn=0165-0270&rft.volume=327&rft.spage=108346&rft_id=info:doi/10.1016%2Fj.jneumeth.2019.108346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2019_108346 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |