A dynamic and self-adaptive classification algorithm for motor imagery EEG signals

•A high accuracy motor imagery based BCI algorithm is proposed.•Spatial and spectral features of EEG signals related to left and right hand movements are extracted and classified using many algorithms.•A novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed t...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 327; p. 108346
Main Authors Belwafi, Kais, Gannouni, Sofien, Aboalsamh, Hatim, Mathkour, Hassan, Belghith, Abdelfattah
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2019.108346

Cover

Abstract •A high accuracy motor imagery based BCI algorithm is proposed.•Spatial and spectral features of EEG signals related to left and right hand movements are extracted and classified using many algorithms.•A novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the appropriate couple of feature extraction and classification algorithms.•The proposed system is allowed to increases the recognition rate of trials despite the unavailability of reference trial labels of 17 subjects. Brain–computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance. In this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy. Extensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods. The results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels. Performing dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy.
AbstractList Brain-computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance. In this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy. Extensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods. The results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels. Performing dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy.
Brain-computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance.BACKGROUNDBrain-computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance.In this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy.NEW METHODIn this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy.Extensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods.RESULTSExtensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods.The results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels.COMPARISON WITH EXISTING METHODSThe results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels.Performing dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy.CONCLUSIONSPerforming dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy.
•A high accuracy motor imagery based BCI algorithm is proposed.•Spatial and spectral features of EEG signals related to left and right hand movements are extracted and classified using many algorithms.•A novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the appropriate couple of feature extraction and classification algorithms.•The proposed system is allowed to increases the recognition rate of trials despite the unavailability of reference trial labels of 17 subjects. Brain–computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution enables the recognition of a subject's intention to control devices such as prosthesis and wheelchairs. Discrimination of electroencephalography (EEG) trials related to left- and right-hand movements requires complex EEG signal processing to achieve good system performance. In this study, a novel dynamic and self-adaptive algorithm (DSAA) based on the least-squares method is proposed to select the most appropriate feature extraction and classification algorithms couple for each subject. Specifically, the best couple identified during the training of the system is updated during online testing in order to check the stability of the selected couple and maintain high system accuracy. Extensive and systematic experiments were conducted on public datasets of 17 subjects in the BCI-competition and the results show an improved performance for DSAA over other selected state-of-the-art methods. The results show that the proposed system enhanced the classification accuracy for the three chosen public datasets by 8% compared to other approaches. Moreover, the proposed system was successful in selecting the best path despite the unavailability of reference labels. Performing dynamic and self-adaptive selection for the best feature extraction and classification algorithm couple increases the recognition rate of trials despite the unavailability of reference trial labels. This approach allows the development of a complete BCI system with excellent accuracy.
ArticleNumber 108346
Author Gannouni, Sofien
Aboalsamh, Hatim
Belghith, Abdelfattah
Belwafi, Kais
Mathkour, Hassan
Author_xml – sequence: 1
  givenname: Kais
  orcidid: 0000-0003-1455-439X
  surname: Belwafi
  fullname: Belwafi, Kais
  email: kbelwafi@ksu.edu.sa
– sequence: 2
  givenname: Sofien
  orcidid: 0000-0002-6026-4257
  surname: Gannouni
  fullname: Gannouni, Sofien
– sequence: 3
  givenname: Hatim
  surname: Aboalsamh
  fullname: Aboalsamh, Hatim
– sequence: 4
  givenname: Hassan
  surname: Mathkour
  fullname: Mathkour, Hassan
– sequence: 5
  givenname: Abdelfattah
  surname: Belghith
  fullname: Belghith, Abdelfattah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31421162$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFqGzEQhkVISOwkrxB07GVdSbuS1tBDTXDdQKBQEshNaKVZR2ZXciU54LePUseXXHyZAfH9o5lvis598IDQHSUzSqj4vpltPOxGyK8zRui8PLZ1I87QhLaSVUK2L-doUkBeESbJFZqmtCGENHMiLtFVTRtGqWAT9HeB7d7r0RmsvcUJhr7SVm-zewNsBp2S653R2QWP9bAO0eXXEfch4jHkUt2o1xD3eLlc4eTWXg_pBl30pcHtZ79Gz7-WT_e_q8c_q4f7xWNlatHmqmOaNIJ3Ukve11CqZYJbYEA4kZw2pmt4V7ZvSNe2YGveEqvFXM5FK0XX19fo22HuNoZ_O0hZjS4ZGAbtIeySYkxyJkQtZUHvPtFdN4JV21j2jnt19FCAHwfAxJBShF4Zl_9fnaN2g6JEfWhXG3XUrj60q4P2Ehdf4scfTgZ_HoJQRL05iCoZB96AdRFMVja4UyPeAeA6n_A
CitedBy_id crossref_primary_10_3390_electronics9020203
crossref_primary_10_1109_TNSRE_2023_3339179
crossref_primary_10_1016_j_jneumeth_2020_108833
crossref_primary_10_1016_j_jneumeth_2020_108776
crossref_primary_10_1109_JSEN_2020_3016402
crossref_primary_10_1007_s13246_022_01132_4
crossref_primary_10_1016_j_jneumeth_2020_108690
crossref_primary_10_1016_j_measen_2023_100823
crossref_primary_10_3390_brainsci12070926
crossref_primary_10_1016_j_bspc_2022_104317
crossref_primary_10_1016_j_bspc_2022_103825
crossref_primary_10_1109_ACCESS_2020_3016481
crossref_primary_10_1109_TNSRE_2022_3217298
crossref_primary_10_7717_peerj_cs_374
crossref_primary_10_1007_s11042_025_20605_8
crossref_primary_10_1007_s11517_023_02840_z
crossref_primary_10_3390_ijerph18147567
crossref_primary_10_1109_ACCESS_2020_3017888
crossref_primary_10_1109_JSEN_2023_3299086
Cites_doi 10.1109/TBME.2010.2082539
10.1016/j.neucom.2012.12.002
10.24200/sci.2018.4978.1022
10.1155/2014/369328
10.1088/1741-2560/4/2/R01
10.1006/jmca.1993.1030
10.1006/nimg.2000.0599
10.1007/s10115-012-0586-6
10.1016/j.jneumeth.2018.04.013
10.1016/j.clinph.2003.10.019
10.1109/12.88491
10.1109/TBME.2011.2172210
10.1109/ICSMB.2010.5735358
10.3390/s19020379
10.1109/CCMB.2014.7020704
10.1109/TPAMI.2008.79
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jneumeth.2019.108346
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 31421162
10_1016_j_jneumeth_2019_108346
S0165027019302043
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
SEW
SNS
WUQ
X7M
ZGI
~HD
AGCQF
AGRNS
NPM
SSH
7X8
ID FETCH-LOGICAL-c368t-b2a0465b7a75f3ea75d265de2e0507514cb45b02740b88ed3580da69796876bf3
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Sun Sep 28 03:27:33 EDT 2025
Mon Jul 21 06:02:44 EDT 2025
Thu Apr 24 23:16:04 EDT 2025
Thu Oct 02 04:27:39 EDT 2025
Fri Feb 23 02:33:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords motor imagery
Electroencephalography (EEG)
voting technique
dynamic classification
Brain–computer interface (BCI)
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-b2a0465b7a75f3ea75d265de2e0507514cb45b02740b88ed3580da69796876bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1455-439X
0000-0002-6026-4257
PMID 31421162
PQID 2275266377
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2275266377
pubmed_primary_31421162
crossref_citationtrail_10_1016_j_jneumeth_2019_108346
crossref_primary_10_1016_j_jneumeth_2019_108346
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2019_108346
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kam, Suk, Lee (bib0065) 2013; 108
Bhattacharya, Bhimraj, Haddad, Ahad (bib0030) 2017
Kuncheva, Rodríguez (bib0075) 2014; 38
Theodoridis (bib0120) 2003
Aurlien, Gjerde, Aarseth, Eldøen, Karlsen, Skeidsvoll, Gilhus (bib0010) 2004; 115
Yang, Zhang, Feng, Zhang (bib0140) 2011
Belwafi, Djemal, Ghaffari, Romain (bib0020) 2014
Duin, Juszczak, Paclik, Pekalska, De Ridder, Tax, Verzakov (bib0045) 2000; 3
Ramirez, Sprechmann, Sapiro (bib0105) 2010
Pfurtscheller, Flotzinger, Kalcher (bib0095) 1993; 16
Barachant, Bonnet, Congedo, Jutten (bib0015) 2012; 59
Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (bib0085) 2007; 4
Graimann, Allison, Pfurtscheller (bib0050) 2010
Zhang, Zhang, Cai, Yang (bib0145) 2014; 2014
Kong, Wang (bib0070) 2012; 2012
Singh, Lal, Guesgen (bib0115) 2019; 19
Chriskos, Kaitalidou, Karakasis, Frantzidis, Gkivogkli, Bamidis, Kourtidou-Papadeli (bib0040) 2017
Jiang, Lin, Davis (bib0060) 2011
Schomer, Da Silva (bib0110) 2012
Allen, Josephs, Turner (bib0005) 2000; 12
Rakotomamonjy, Guigue, Mallet, Alvarado (bib0100) 2005
Tong, Kain (bib0125) 1991; 40
Wright, Yang, Ganesh, Sastry, Ma (bib0135) 2009; 31
Malekmohammadi, Mohammadzade, Chamanzar, Shabany, Ghojogh (bib0090) 2018
Vapnik (bib0130) 2000; Vol. 2
Bhattacharyya, Khasnobish, Chatterjee, Konar, Tibarewala (bib0035) 2010
Lotte, Guan (bib0080) 2011; 58
Belwafi, Romain, Gannouni, Ghaffari, Djemal, Ouni (bib0025) 2018; 305
Gu, Zhang, Zuo, Feng (bib0055) 2014
Belwafi (10.1016/j.jneumeth.2019.108346_bib0025) 2018; 305
Gu (10.1016/j.jneumeth.2019.108346_bib0055) 2014
Pfurtscheller (10.1016/j.jneumeth.2019.108346_bib0095) 1993; 16
Ramirez (10.1016/j.jneumeth.2019.108346_bib0105) 2010
Vapnik (10.1016/j.jneumeth.2019.108346_bib0130) 2000; Vol. 2
Lotte (10.1016/j.jneumeth.2019.108346_bib0080) 2011; 58
Kam (10.1016/j.jneumeth.2019.108346_bib0065) 2013; 108
Rakotomamonjy (10.1016/j.jneumeth.2019.108346_bib0100) 2005
Singh (10.1016/j.jneumeth.2019.108346_bib0115) 2019; 19
Wright (10.1016/j.jneumeth.2019.108346_bib0135) 2009; 31
Bhattacharyya (10.1016/j.jneumeth.2019.108346_bib0035) 2010
Yang (10.1016/j.jneumeth.2019.108346_bib0140) 2011
Aurlien (10.1016/j.jneumeth.2019.108346_bib0010) 2004; 115
Malekmohammadi (10.1016/j.jneumeth.2019.108346_bib0090) 2018
Graimann (10.1016/j.jneumeth.2019.108346_bib0050) 2010
Jiang (10.1016/j.jneumeth.2019.108346_bib0060) 2011
Kuncheva (10.1016/j.jneumeth.2019.108346_bib0075) 2014; 38
Chriskos (10.1016/j.jneumeth.2019.108346_bib0040) 2017
Allen (10.1016/j.jneumeth.2019.108346_bib0005) 2000; 12
Duin (10.1016/j.jneumeth.2019.108346_bib0045) 2000; 3
Theodoridis (10.1016/j.jneumeth.2019.108346_bib0120) 2003
Lotte (10.1016/j.jneumeth.2019.108346_bib0085) 2007; 4
Bhattacharya (10.1016/j.jneumeth.2019.108346_bib0030) 2017
Tong (10.1016/j.jneumeth.2019.108346_bib0125) 1991; 40
Kong (10.1016/j.jneumeth.2019.108346_bib0070) 2012; 2012
Barachant (10.1016/j.jneumeth.2019.108346_bib0015) 2012; 59
Zhang (10.1016/j.jneumeth.2019.108346_bib0145) 2014; 2014
Schomer (10.1016/j.jneumeth.2019.108346_bib0110) 2012
Belwafi (10.1016/j.jneumeth.2019.108346_bib0020) 2014
References_xml – year: 2012
  ident: bib0110
  article-title: Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields
– start-page: 126
  year: 2010
  end-page: 131
  ident: bib0035
  article-title: Performance analysis of LDA, qda and knn algorithms in left-right limb movement classification from EEG data
  publication-title: Systems in Medicine and Biology (ICSMB), 2010 International Conference on
– year: 2017
  ident: bib0030
  article-title: Optimization of EEG-based imaginary motion classification using majority-voting
  publication-title: SoutheastCon 2017
– start-page: 543
  year: 2011
  end-page: 550
  ident: bib0140
  article-title: Fisher discrimination dictionary learning for sparse representation
  publication-title: Computer Vision (ICCV), 2011 IEEE International Conference on
– volume: 58
  start-page: 355
  year: 2011
  end-page: 362
  ident: bib0080
  article-title: Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 16
  start-page: 293
  year: 1993
  end-page: 299
  ident: bib0095
  article-title: Brain–computer interface–a new communication device for handicapped persons
  publication-title: J. Microcomput. Appl.
– start-page: 793
  year: 2014
  end-page: 801
  ident: bib0055
  article-title: Projective dictionary pair learning for pattern classification
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 230
  year: 2000
  end-page: 239
  ident: bib0005
  article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI
  publication-title: NeuroImage
– start-page: 1697
  year: 2011
  end-page: 1704
  ident: bib0060
  article-title: Learning a discriminative dictionary for sparse coding via label consistent k-svd
  publication-title: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
– volume: 19
  start-page: 379
  year: 2019
  ident: bib0115
  article-title: Reduce calibration time in motor imagery using spatially regularized symmetric positives-definite matrices based classification
  publication-title: Sensors
– volume: 305
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib0025
  article-title: An embedded implementation based on adaptive filter bank for brain–computer interface systems
  publication-title: J. Neurosci. Methods
– start-page: 435
  year: 2017
  end-page: 439
  ident: bib0040
  article-title: Automatic sleep stage classification applying machine learning algorithms on eeg recordings
  publication-title: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)
– year: 2010
  ident: bib0050
  article-title: Brain Computer Interfaces: A Gentle Introduction
– volume: 108
  start-page: 58
  year: 2013
  end-page: 68
  ident: bib0065
  article-title: Non-homogeneous spatial filter optimization for electroencephalogram EEG-based motor imagery classification
  publication-title: Neurocomputing
– volume: 4
  start-page: R1
  year: 2007
  ident: bib0085
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– volume: 3
  year: 2000
  ident: bib0045
  article-title: A matlab toolbox for pattern recognition
  publication-title: PRTools version
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib0145
  article-title: A weighted voting classifier based on differential evolution
  publication-title: Abstract Appl. Anal.
– volume: Vol. 2
  start-page: 749
  year: 2000
  end-page: 752
  ident: bib0130
  article-title: SVM method of estimating density, conditional probability, and conditional density
  publication-title: Circuits and Systems, 2000, Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bib0135
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
– volume: 115
  start-page: 665
  year: 2004
  end-page: 673
  ident: bib0010
  article-title: EEG background activity described by a large computerized database
  publication-title: Clin. Neurophysiol.
– year: 2003
  ident: bib0120
  article-title: Pattern Recognition
– volume: 59
  start-page: 920
  year: 2012
  end-page: 928
  ident: bib0015
  article-title: Multiclass brain–computer interface classification by riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 40
  start-page: 664
  year: 1991
  end-page: 667
  ident: bib0125
  article-title: Vote assignments in weighted voting mechanisms
  publication-title: IEEE Trans. Comput.
– start-page: 45
  year: 2005
  end-page: 50
  ident: bib0100
  article-title: Ensemble of svms for improving brain computer interface p300 speller performances
  publication-title: Artificial Neural Networks: Biological Inspirations - ICANN 2005
– start-page: 3501
  year: 2010
  end-page: 3508
  ident: bib0105
  article-title: Classification and clustering via dictionary learning with structured incoherence and shared features
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: bib0090
  article-title: An efficient hardware implementation for a motor imagery brain computer interface system
  publication-title: Scientia Iranica
– volume: 38
  start-page: 259
  year: 2014
  end-page: 275
  ident: bib0075
  article-title: A weighted voting framework for classifiers ensembles
  publication-title: Knowledge Inform. Syst.
– start-page: 121
  year: 2014
  end-page: 126
  ident: bib0020
  article-title: An adaptive EEG filtering approach to maximize the classification accuracy in motor imagery
  publication-title: Computational Intelligence, Cognitive Algorithms, Mind and Brain (CCMB), 2014 IEEE Symposium on
– volume: 2012
  start-page: 186
  year: 2012
  end-page: 199
  ident: bib0070
  article-title: A dictionary learning approach for classification: Separating the particularity and the commonality
  publication-title: Comput. Vision-ECCV
– volume: 58
  start-page: 355
  issue: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2019.108346_bib0080
  article-title: Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– volume: 108
  start-page: 58
  year: 2013
  ident: 10.1016/j.jneumeth.2019.108346_bib0065
  article-title: Non-homogeneous spatial filter optimization for electroencephalogram EEG-based motor imagery classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.002
– year: 2003
  ident: 10.1016/j.jneumeth.2019.108346_bib0120
– start-page: 793
  year: 2014
  ident: 10.1016/j.jneumeth.2019.108346_bib0055
  article-title: Projective dictionary pair learning for pattern classification
  publication-title: Advances in Neural Information Processing Systems
– year: 2018
  ident: 10.1016/j.jneumeth.2019.108346_bib0090
  article-title: An efficient hardware implementation for a motor imagery brain computer interface system
  publication-title: Scientia Iranica
  doi: 10.24200/sci.2018.4978.1022
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.jneumeth.2019.108346_bib0145
  article-title: A weighted voting classifier based on differential evolution
  publication-title: Abstract Appl. Anal.
  doi: 10.1155/2014/369328
– volume: 2012
  start-page: 186
  year: 2012
  ident: 10.1016/j.jneumeth.2019.108346_bib0070
  article-title: A dictionary learning approach for classification: Separating the particularity and the commonality
  publication-title: Comput. Vision-ECCV
– volume: 4
  start-page: R1
  issue: 2
  year: 2007
  ident: 10.1016/j.jneumeth.2019.108346_bib0085
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– start-page: 3501
  year: 2010
  ident: 10.1016/j.jneumeth.2019.108346_bib0105
  article-title: Classification and clustering via dictionary learning with structured incoherence and shared features
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 293
  issue: 3
  year: 1993
  ident: 10.1016/j.jneumeth.2019.108346_bib0095
  article-title: Brain–computer interface–a new communication device for handicapped persons
  publication-title: J. Microcomput. Appl.
  doi: 10.1006/jmca.1993.1030
– volume: 12
  start-page: 230
  issue: 2
  year: 2000
  ident: 10.1016/j.jneumeth.2019.108346_bib0005
  article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0599
– volume: 38
  start-page: 259
  issue: 2
  year: 2014
  ident: 10.1016/j.jneumeth.2019.108346_bib0075
  article-title: A weighted voting framework for classifiers ensembles
  publication-title: Knowledge Inform. Syst.
  doi: 10.1007/s10115-012-0586-6
– volume: 3
  year: 2000
  ident: 10.1016/j.jneumeth.2019.108346_bib0045
  article-title: A matlab toolbox for pattern recognition
  publication-title: PRTools version
– volume: 305
  start-page: 1
  year: 2018
  ident: 10.1016/j.jneumeth.2019.108346_bib0025
  article-title: An embedded implementation based on adaptive filter bank for brain–computer interface systems
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.04.013
– volume: 115
  start-page: 665
  issue: 3
  year: 2004
  ident: 10.1016/j.jneumeth.2019.108346_bib0010
  article-title: EEG background activity described by a large computerized database
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.10.019
– volume: 40
  start-page: 664
  issue: 5
  year: 1991
  ident: 10.1016/j.jneumeth.2019.108346_bib0125
  article-title: Vote assignments in weighted voting mechanisms
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.88491
– volume: 59
  start-page: 920
  issue: 4
  year: 2012
  ident: 10.1016/j.jneumeth.2019.108346_bib0015
  article-title: Multiclass brain–computer interface classification by riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2172210
– start-page: 543
  year: 2011
  ident: 10.1016/j.jneumeth.2019.108346_bib0140
  article-title: Fisher discrimination dictionary learning for sparse representation
– start-page: 126
  year: 2010
  ident: 10.1016/j.jneumeth.2019.108346_bib0035
  article-title: Performance analysis of LDA, qda and knn algorithms in left-right limb movement classification from EEG data
  publication-title: Systems in Medicine and Biology (ICSMB), 2010 International Conference on
  doi: 10.1109/ICSMB.2010.5735358
– start-page: 435
  year: 2017
  ident: 10.1016/j.jneumeth.2019.108346_bib0040
  article-title: Automatic sleep stage classification applying machine learning algorithms on eeg recordings
  publication-title: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)
– start-page: 45
  year: 2005
  ident: 10.1016/j.jneumeth.2019.108346_bib0100
  article-title: Ensemble of svms for improving brain computer interface p300 speller performances
– start-page: 1697
  year: 2011
  ident: 10.1016/j.jneumeth.2019.108346_bib0060
  article-title: Learning a discriminative dictionary for sparse coding via label consistent k-svd
– year: 2012
  ident: 10.1016/j.jneumeth.2019.108346_bib0110
– year: 2017
  ident: 10.1016/j.jneumeth.2019.108346_bib0030
  article-title: Optimization of EEG-based imaginary motion classification using majority-voting
– year: 2010
  ident: 10.1016/j.jneumeth.2019.108346_bib0050
– volume: 19
  start-page: 379
  issue: 2
  year: 2019
  ident: 10.1016/j.jneumeth.2019.108346_bib0115
  article-title: Reduce calibration time in motor imagery using spatially regularized symmetric positives-definite matrices based classification
  publication-title: Sensors
  doi: 10.3390/s19020379
– start-page: 121
  year: 2014
  ident: 10.1016/j.jneumeth.2019.108346_bib0020
  article-title: An adaptive EEG filtering approach to maximize the classification accuracy in motor imagery
  publication-title: Computational Intelligence, Cognitive Algorithms, Mind and Brain (CCMB), 2014 IEEE Symposium on
  doi: 10.1109/CCMB.2014.7020704
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.jneumeth.2019.108346_bib0135
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
  doi: 10.1109/TPAMI.2008.79
– volume: Vol. 2
  start-page: 749
  year: 2000
  ident: 10.1016/j.jneumeth.2019.108346_bib0130
  article-title: SVM method of estimating density, conditional probability, and conditional density
  publication-title: Circuits and Systems, 2000, Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on
SSID ssj0004906
Score 2.430381
Snippet •A high accuracy motor imagery based BCI algorithm is proposed.•Spatial and spectral features of EEG signals related to left and right hand movements are...
Brain-computer interface (BCI) is a communication pathway applied for pathological analysis or functional substitution. BCI based on functional substitution...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108346
SubjectTerms Brain–computer interface (BCI)
dynamic classification
Electroencephalography (EEG)
motor imagery
voting technique
Title A dynamic and self-adaptive classification algorithm for motor imagery EEG signals
URI https://dx.doi.org/10.1016/j.jneumeth.2019.108346
https://www.ncbi.nlm.nih.gov/pubmed/31421162
https://www.proquest.com/docview/2275266377
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hkFAvqLxKWoqMhLgtSdZre32MotAUBAceEjfLXnvbRMkmguTApb-dmX2kIFFx6MXSrmytd8Y7_mbnGw_AiQipll77KLg0j9BKysjJxEfK8lzHQXUDp3znq2s5vE8uHsTDGvSbXBiiVda2v7LppbWu77Rrabbno1H7lhJx0KlCjMLLDE_KYE8UVTE4-_OX5pHosr4mdaZ4ZedVlvD4bFyEJVVqJoqXJrodJyD8_gb1LwBabkTnn2GrRpCsV01yG9ZCsQO7vQK95-kzO2Ulp7P8Wb4Dm1d16HwXbnrMV9XnmS08ewqTPLLezsncsYwwNJGGSj0xO_k1exwtfk8ZQlqGysR2NKXTLp7ZYPCDEekDl-0e3J8P7vrDqC6oEGVcpovIxRbdYeGUVSLnAVsfS-FDHDoICxE6ZS4RjhzVjkvT4ClE6q3USks0mi7n-7BezIpwAIwL7CStl0qiiLPEKdWxXudpN0vQCMYtEI0UTVafNk5FLyamoZWNTSN9Q9I3lfRb0F6Nm1fnbXw4QjdKMm9WjsFN4cOxx41WDX5WFCuxRZgtn0wcK4HYhSvVgi-Vulfz4V18xa6Mv_7Hk7_BJ7qqshoPYX3xuAzfEd4s3FG5fo9go_fzcnj9AiQ2-FI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RKtFeqhb6SKGtkareliT22l4fIxRIC-HQgsTNstdemijZRJAcuPS3d2YftJWoOHDxYdfWeme84292vvEAfJYxMyqYkESfFQlaSZV4lYZEO1EYHnU_Csp3Hp-p0UX67VJebsBhmwtDtMrG9tc2vbLWzZVuI83ucjLp_qBEHHSqEKOIKsPzCTxNJdfkgR38-sPzSE1VYJN6U8Cy91ea8PRgWsY1lWomjpchvp0gJHz_DvU_BFrtREcv4UUDIdmgnuUr2IjlNuwMSnSf57fsC6tIndXf8m3YGjex8x34PmChLj_PXBnYTZwViQtuSfaO5QSiiTVUKYq52dXierL6OWeIaRlqE9vJnI67uGXD4TEj1geu29dwcTQ8PxwlTUWFJBcqWyWeO_SHpddOy0JEbANXMkQee4gLETvlPpWePNWez7IYKEYanDLaKLSavhBvYLNclPEdMCGxk3JBaYUizlOvdc8FU2T9PEUryDsgWynavDlunKpezGzLK5vaVvqWpG9r6XegezduWR-48eAI0yrJ_rN0LO4KD47db7Vq8buiYIkr42J9YznXEsGL0LoDb2t1381H9PEV-4q_f8STP8Gz0fn41J5-PTvZhed0p05x3IPN1fU6fkCss_Ifq7X8G-BS-ec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+and+self-adaptive+classification+algorithm+for+motor+imagery+EEG+signals&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Belwafi%2C+Kais&rft.au=Gannouni%2C+Sofien&rft.au=Aboalsamh%2C+Hatim&rft.au=Mathkour%2C+Hassan&rft.date=2019-11-01&rft.issn=0165-0270&rft.volume=327&rft.spage=108346&rft_id=info:doi/10.1016%2Fj.jneumeth.2019.108346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2019_108346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon