A 3D flexible microelectrode array for subretinal stimulation
Objective. Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we present a three-dimensional (3D) microelectrode array for a subretinal device that can effectively stimulate retinal cells. Approach. To...
Saved in:
| Published in | Journal of neural engineering Vol. 16; no. 5; pp. 56016 - 56030 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
21.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-2560 1741-2552 1741-2552 |
| DOI | 10.1088/1741-2552/ab36ab |
Cover
| Abstract | Objective. Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we present a three-dimensional (3D) microelectrode array for a subretinal device that can effectively stimulate retinal cells. Approach. To investigate the effect of electrode designs on the electric field distribution, we simulated various electrode shapes and sizes using finite element analysis. Based on the simulation results, the 3D microelectrode array was fabricated and evaluated in in vitro condition. Main results. Through the simulation, we verified that an electrode design of square frustum was effective to stimulate with high contrast. Also, the 3D flexible and transparent microelectrode array based on silicon and polydimethylsiloxane was fabricated using micro-electro-mechanical system technologies. In in vitro experiments, the subretinally positioned 3D microelectrodes properly evoked spikes in retinal ganglion cells. The mean threshold current was 7.4 µA and the threshold charge density was 33.64 µC·cm−2 per phase. Significance. The results demonstrate the feasibility of the fabricated 3D microelectrodes as the subretinal prosthesis. The developed microelectrode array would be integrated with the stimulation circuitry and implanted in animals for further in vivo experiments. |
|---|---|
| AbstractList | Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we present a three-dimensional (3D) microelectrode array for a subretinal device that can effectively stimulate retinal cells.
To investigate the effect of electrode designs on the electric field distribution, we simulated various electrode shapes and sizes using finite element analysis. Based on the simulation results, the 3D microelectrode array was fabricated and evaluated in in vitro condition.
Through the simulation, we verified that an electrode design of square frustum was effective to stimulate with high contrast. Also, the 3D flexible and transparent microelectrode array based on silicon and polydimethylsiloxane was fabricated using micro-electro-mechanical system technologies. In in vitro experiments, the subretinally positioned 3D microelectrodes properly evoked spikes in retinal ganglion cells. The mean threshold current was 7.4 µA and the threshold charge density was 33.64 µC·cm
per phase.
The results demonstrate the feasibility of the fabricated 3D microelectrodes as the subretinal prosthesis. The developed microelectrode array would be integrated with the stimulation circuitry and implanted in animals for further in vivo experiments. Objective. Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we present a three-dimensional (3D) microelectrode array for a subretinal device that can effectively stimulate retinal cells. Approach. To investigate the effect of electrode designs on the electric field distribution, we simulated various electrode shapes and sizes using finite element analysis. Based on the simulation results, the 3D microelectrode array was fabricated and evaluated in in vitro condition. Main results. Through the simulation, we verified that an electrode design of square frustum was effective to stimulate with high contrast. Also, the 3D flexible and transparent microelectrode array based on silicon and polydimethylsiloxane was fabricated using micro-electro-mechanical system technologies. In in vitro experiments, the subretinally positioned 3D microelectrodes properly evoked spikes in retinal ganglion cells. The mean threshold current was 7.4 µA and the threshold charge density was 33.64 µC·cm−2 per phase. Significance. The results demonstrate the feasibility of the fabricated 3D microelectrodes as the subretinal prosthesis. The developed microelectrode array would be integrated with the stimulation circuitry and implanted in animals for further in vivo experiments. Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we present a three-dimensional (3D) microelectrode array for a subretinal device that can effectively stimulate retinal cells.OBJECTIVEVarious retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we present a three-dimensional (3D) microelectrode array for a subretinal device that can effectively stimulate retinal cells.To investigate the effect of electrode designs on the electric field distribution, we simulated various electrode shapes and sizes using finite element analysis. Based on the simulation results, the 3D microelectrode array was fabricated and evaluated in in vitro condition.APPROACHTo investigate the effect of electrode designs on the electric field distribution, we simulated various electrode shapes and sizes using finite element analysis. Based on the simulation results, the 3D microelectrode array was fabricated and evaluated in in vitro condition.Through the simulation, we verified that an electrode design of square frustum was effective to stimulate with high contrast. Also, the 3D flexible and transparent microelectrode array based on silicon and polydimethylsiloxane was fabricated using micro-electro-mechanical system technologies. In in vitro experiments, the subretinally positioned 3D microelectrodes properly evoked spikes in retinal ganglion cells. The mean threshold current was 7.4 µA and the threshold charge density was 33.64 µC·cm-2 per phase.MAIN RESULTSThrough the simulation, we verified that an electrode design of square frustum was effective to stimulate with high contrast. Also, the 3D flexible and transparent microelectrode array based on silicon and polydimethylsiloxane was fabricated using micro-electro-mechanical system technologies. In in vitro experiments, the subretinally positioned 3D microelectrodes properly evoked spikes in retinal ganglion cells. The mean threshold current was 7.4 µA and the threshold charge density was 33.64 µC·cm-2 per phase.The results demonstrate the feasibility of the fabricated 3D microelectrodes as the subretinal prosthesis. The developed microelectrode array would be integrated with the stimulation circuitry and implanted in animals for further in vivo experiments.SIGNIFICANCEThe results demonstrate the feasibility of the fabricated 3D microelectrodes as the subretinal prosthesis. The developed microelectrode array would be integrated with the stimulation circuitry and implanted in animals for further in vivo experiments. |
| Author | Seo, Hee Won Cha, Seongkwang Goo, Yong Sook Kim, Sohee Kim, Namju Ahn, Jungryul |
| Author_xml | – sequence: 1 givenname: Hee Won surname: Seo fullname: Seo, Hee Won organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST) Department of Robotics Engineering, Daegu, Republic of Korea – sequence: 2 givenname: Namju surname: Kim fullname: Kim, Namju organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST) Department of Robotics Engineering, Daegu, Republic of Korea – sequence: 3 givenname: Jungryul surname: Ahn fullname: Ahn, Jungryul organization: Chungbuk National University School of Medicine Department of Physiology, Cheongju, Republic of Korea – sequence: 4 givenname: Seongkwang surname: Cha fullname: Cha, Seongkwang organization: Chungbuk National University School of Medicine Department of Physiology, Cheongju, Republic of Korea – sequence: 5 givenname: Yong Sook surname: Goo fullname: Goo, Yong Sook email: ysgoo@chungbuk.ac.kr organization: Chungbuk National University School of Medicine Department of Physiology, Cheongju, Republic of Korea – sequence: 6 givenname: Sohee orcidid: 0000-0002-4926-8978 surname: Kim fullname: Kim, Sohee email: soheekim@dgist.ac.kr organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST) Department of Robotics Engineering, Daegu, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31357188$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtPwzAURi0Eog_YmVA2GCi168RJBoaqPKVKLDBb1y_JlRMXO5HovyclbQeEOvnKOt-VvnNH6LT2tUboiuB7gotiSvKUTGZZNpuCoAzECRoevk4PM8MDNIpxhTEleYnP0YASmuWkKIboYZ7Qx8Q4_W2F00llZfDaadkEr3QCIcAmMT4ksRVBN7YGl8TGVq2Dxvr6Ap0ZcFFf7t4x-nx--li8TpbvL2-L-XIiKSuaCUAGuQCSKqZyomRaCsF0qkqAAkstpCmUzEuWpZgKpqjBkJmSYEMkpZIqOka3_d518F-tjg2vbJTaOai1byOfzViOu24069DrHdqKSiu-DraCsOH7yh3AeqBrGmPQhkvb_LZpAljHCeZbt3wrj29F8t5tF8R_gvvdRyJ3fcT6NV_5NnT-4jH85h98VWtOGM847i7ZDWtl6A8KCpdn |
| CODEN | JNEIEZ |
| CitedBy_id | crossref_primary_10_3390_mi11050467 crossref_primary_10_1016_j_snb_2023_134184 crossref_primary_10_3389_fncel_2022_926096 crossref_primary_10_1038_s41598_020_75579_4 crossref_primary_10_1039_D4AY01515K crossref_primary_10_1002_adma_202411112 crossref_primary_10_1016_j_mtchem_2022_101153 crossref_primary_10_1038_s41565_023_01587_w crossref_primary_10_1007_s13534_023_00342_3 crossref_primary_10_1002_admt_202302155 crossref_primary_10_3389_fbioe_2023_1245082 crossref_primary_10_3390_s23135782 crossref_primary_10_1007_s11801_024_3185_3 crossref_primary_10_3389_fnins_2022_1010445 crossref_primary_10_1016_j_sna_2025_116412 crossref_primary_10_1038_s41528_024_00378_0 crossref_primary_10_3389_fncel_2022_889663 |
| Cites_doi | 10.1088/1741-2560/2/1/012 10.1007/s00417-004-1060-2 10.1097/00006982-200208000-00012 10.1167/iovs.02-1268 10.1001/archopht.1992.01080230134038 10.1007/s00417-007-0563-z 10.1088/1741-2552/aaac39 10.1117/1.JMM.15.1.015002 10.1088/1741-2560/7/3/036008 10.1586/17434440.2014.862494 10.1088/1741-2560/6/3/035004 10.1126/science.1067996 10.1016/j.visres.2009.02.018 10.1016/j.exer.2006.01.012 10.1149/1.1747881 10.1002/jbm.b.31223 10.1016/j.visres.2014.09.007 10.1088/1741-2560/4/1/S09 10.1371/journal.pone.0115239 10.1109/TBME.2011.2165713 10.1016/j.ophtha.2011.09.028 10.1109/JMEMS.2014.2333733 10.1038/nphoton.2012.104 10.1001/archopht.122.4.564 10.1109/TBME.1982.324910 10.1159/000268026 10.1001/jama.291.15.1900 10.1038/nm.3851 10.1016/S0140-6736(06)69740-7 10.1167/iovs.14-14396 10.1088/0034-4885/79/9/096701 10.1098/rspb.2013.0077 10.1088/1748-6041/5/1/015007 10.1152/jn.00545.2009 10.1016/j.sna.2014.03.001 10.1001/archopht.1997.01100150513011 10.1088/1741-2560/13/2/021001 10.1088/0960-1317/22/9/095017 10.1167/iovs.13-12835 10.1152/jn.01168.2005 10.1111/j.1749-6632.1983.tb31628.x 10.1016/j.ophtha.2015.04.032 10.1109/10.81558 10.1007/978-3-319-41876-6 10.1016/S0042-6989(98)00312-5 10.1136/bjo.2010.179622 10.1088/1741-2552/aa6cbb 10.1088/1741-2552/aa7493 10.1016/j.preteyeres.2015.09.003 10.1098/rspb.2010.1747 10.1088/1741-2560/11/2/026008 10.5617/jeb.130 10.1088/1741-2560/5/1/006 10.1001/2013.jamaophthalmol.221 10.1007/BF00231126 10.1016/j.visres.2015.03.001 10.4196/kjpp.2015.19.2.167 10.1007/s00542-017-3287-y |
| ContentType | Journal Article |
| Copyright | 2019 IOP Publishing Ltd |
| Copyright_xml | – notice: 2019 IOP Publishing Ltd |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1088/1741-2552/ab36ab |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| DocumentTitleAlternate | A 3D flexible microelectrode array for subretinal stimulation |
| EISSN | 1741-2552 |
| ExternalDocumentID | 31357188 10_1088_1741_2552_ab36ab jneab36ab |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF-2017M3A9E2056460; NRF-2017M3A9E2056463 funderid: https://doi.org/10.13039/501100003725 |
| GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 W28 XPP AAYXX ADEQX AEINN CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c368t-aa5a7ba14d6d71dc49bb6e4d9aa80cebcf8dc7965403b6d3f0a5f910f1c33c3d3 |
| IEDL.DBID | IOP |
| ISSN | 1741-2560 1741-2552 |
| IngestDate | Fri Sep 05 07:43:55 EDT 2025 Mon Jul 21 06:03:15 EDT 2025 Wed Oct 01 02:41:30 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Wed Aug 21 03:33:55 EDT 2024 Fri Jan 08 09:41:24 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-aa5a7ba14d6d71dc49bb6e4d9aa80cebcf8dc7965403b6d3f0a5f910f1c33c3d3 |
| Notes | JNE-102966.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4926-8978 |
| PMID | 31357188 |
| PQID | 2267017935 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | iop_journals_10_1088_1741_2552_ab36ab proquest_miscellaneous_2267017935 crossref_primary_10_1088_1741_2552_ab36ab pubmed_primary_31357188 crossref_citationtrail_10_1088_1741_2552_ab36ab |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-21 |
| PublicationDateYYYYMMDD | 2019-08-21 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAbbrev | JNE |
| PublicationTitleAlternate | J. Neural Eng |
| PublicationYear | 2019 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 45 Cogan S F (65) 2016; 13 Shivdasani M N (31) 2010; 7 Wilke R G H (46) 2011; 8 50 Wang L (37) 2012; 9 52 53 10 Hamzah A A (48) 2012; 22 54 11 55 12 13 57 58 15 16 17 18 19 Cantrell D R (44) 2008; 5 Byun D (47) 2013; 23 1 2 Flores T (28) 2018; 15 3 4 Goo Y S (63) 2011; 8 5 6 7 8 9 60 62 Byun D (49) 2017; 14 64 22 23 24 25 26 Goetz G A (20) 2016; 79 Negi S (51) 2010; 5 29 Kelly S K (27) 2013 Palanker D (34) 2005; 2 Green R A (56) 2017; 24 30 Jensen R J (61) 2009; 6 32 33 35 36 38 39 Kamei M (14) 2006; 47 Boinagrov D (41) 2014; 11 Loudin J D (59) 2007; 4 Bareket L (21) 2017; 14 40 42 43 |
| References_xml | – volume: 2 start-page: S105 issn: 1741-2552 year: 2005 ident: 34 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/1/012 – ident: 30 doi: 10.1007/s00417-004-1060-2 – ident: 4 doi: 10.1097/00006982-200208000-00012 – ident: 29 doi: 10.1167/iovs.02-1268 – ident: 2 doi: 10.1001/archopht.1992.01080230134038 – ident: 15 doi: 10.1007/s00417-007-0563-z – volume: 15 issn: 1741-2552 year: 2018 ident: 28 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaac39 – ident: 58 doi: 10.1117/1.JMM.15.1.015002 – volume: 7 issn: 1741-2552 year: 2010 ident: 31 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/3/036008 – ident: 36 doi: 10.1586/17434440.2014.862494 – volume: 6 issn: 1741-2552 year: 2009 ident: 61 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/3/035004 – volume: 9 issn: 1741-2552 year: 2012 ident: 37 publication-title: J. Neural Eng. – ident: 23 doi: 10.1126/science.1067996 – ident: 32 doi: 10.1016/j.visres.2009.02.018 – volume: 23 issn: 0960-1317 year: 2013 ident: 47 publication-title: J. Micromech. Microeng. – ident: 60 doi: 10.1016/j.exer.2006.01.012 – start-page: 7 year: 2013 ident: 27 publication-title: Electron. Proc. 2013 IEEE Int. Conf. Multimed. Expo Work. ICMEW 2013 – ident: 50 doi: 10.1149/1.1747881 – ident: 57 doi: 10.1002/jbm.b.31223 – volume: 8 issn: 1741-2552 year: 2011 ident: 63 publication-title: J. Neural Eng. – volume: 47 start-page: 1537 issn: 0146-0404 year: 2006 ident: 14 publication-title: Investig. Ophthalmol. Vis. Sci. – ident: 38 doi: 10.1016/j.visres.2014.09.007 – volume: 4 start-page: S72 issn: 1741-2552 year: 2007 ident: 59 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/1/S09 – ident: 12 doi: 10.1371/journal.pone.0115239 – ident: 26 doi: 10.1109/TBME.2011.2165713 – ident: 19 doi: 10.1016/j.ophtha.2011.09.028 – ident: 55 doi: 10.1109/JMEMS.2014.2333733 – ident: 25 doi: 10.1038/nphoton.2012.104 – ident: 6 doi: 10.1001/archopht.122.4.564 – ident: 42 doi: 10.1109/TBME.1982.324910 – ident: 17 doi: 10.1159/000268026 – ident: 5 doi: 10.1001/jama.291.15.1900 – ident: 39 doi: 10.1038/nm.3851 – ident: 3 doi: 10.1016/S0140-6736(06)69740-7 – ident: 13 doi: 10.1167/iovs.14-14396 – volume: 79 start-page: 96701 issn: 0034-4885 year: 2016 ident: 20 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/79/9/096701 – ident: 35 doi: 10.1098/rspb.2013.0077 – volume: 5 issn: 0955-7717 year: 2010 ident: 51 publication-title: Biomed. Mater. doi: 10.1088/1748-6041/5/1/015007 – ident: 62 doi: 10.1152/jn.00545.2009 – ident: 33 doi: 10.1016/j.sna.2014.03.001 – volume: 24 start-page: 165 issn: 0914-4935 year: 2017 ident: 56 publication-title: Sens. Mater. – ident: 1 doi: 10.1001/archopht.1997.01100150513011 – volume: 13 issn: 1741-2552 year: 2016 ident: 65 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/2/021001 – volume: 22 issn: 0960-1317 year: 2012 ident: 48 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/9/095017 – ident: 24 doi: 10.1167/iovs.13-12835 – volume: 8 issn: 1741-2552 year: 2011 ident: 46 publication-title: J. Neural Eng. – ident: 64 doi: 10.1152/jn.01168.2005 – ident: 53 doi: 10.1111/j.1749-6632.1983.tb31628.x – ident: 8 doi: 10.1016/j.ophtha.2015.04.032 – ident: 43 doi: 10.1109/10.81558 – ident: 16 doi: 10.1007/978-3-319-41876-6 – ident: 22 doi: 10.1016/S0042-6989(98)00312-5 – ident: 18 doi: 10.1136/bjo.2010.179622 – volume: 14 issn: 1741-2552 year: 2017 ident: 21 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa6cbb – volume: 14 issn: 1741-2552 year: 2017 ident: 49 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa7493 – ident: 9 doi: 10.1016/j.preteyeres.2015.09.003 – ident: 10 doi: 10.1098/rspb.2010.1747 – volume: 11 issn: 1741-2552 year: 2014 ident: 41 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/2/026008 – ident: 40 doi: 10.5617/jeb.130 – volume: 5 start-page: 54 issn: 1741-2552 year: 2008 ident: 44 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/5/1/006 – ident: 7 doi: 10.1001/2013.jamaophthalmol.221 – ident: 45 doi: 10.1007/BF00231126 – ident: 11 doi: 10.1016/j.visres.2015.03.001 – ident: 52 doi: 10.4196/kjpp.2015.19.2.167 – ident: 54 doi: 10.1007/s00542-017-3287-y |
| SSID | ssj0031790 |
| Score | 2.3543851 |
| Snippet | Objective. Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this... Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we... |
| SourceID | proquest pubmed crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 56016 |
| SubjectTerms | 3D electrodes flexible microelectrode array neural electrodes retinal ganglion cells retinal prosthesis subretinal stimulation |
| Title | A 3D flexible microelectrode array for subretinal stimulation |
| URI | https://iopscience.iop.org/article/10.1088/1741-2552/ab36ab https://www.ncbi.nlm.nih.gov/pubmed/31357188 https://www.proquest.com/docview/2267017935 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics (IOP) - journals customDbUrl: eissn: 1741-2552 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031790 issn: 1741-2560 databaseCode: IOP dateStart: 20040101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEIBHPC5cKI-WLo_KSFCJQ3aTOLEdVT2sCggh8TgUiQOS5eehZbOrfRzg1zNOvCtRFVT1lsPEcSbjyWd7ZgxwlDJtjM-rhJsiDSk5PFFCsySgrUA-MJSFbOSra3ZxV1zel_dL8G2RCzMcRdffxcu2UHCrwhgQJ3rI0FmCJJz3lKZM6WVYpQLBOGTv3dzO3TANpafabMggzdK4R_m3Fl79k5bxuW_jZvPbOf8AD_MOt9Emv7uzqe6a5z9qOf7nG23AesRR0m9FN2HJ1Vuw3a9xKj54Il9JEyDarLxvw_c-oafEhwqa-tGRQQjli6foWEfUeKyeCCIwmcx0SI0M7aL_GMTzwT7C3fnZzx8XSTx9IcHvI6aJUqXiWmWFZZZn1hSV1swVtlJKpMZp44U1vGKIfFQzS32qSo_w4TNDqaGWfoKVeli7z0AQs3CehuYiSlOUudac-9xZVTlfaK54B3pz_UsTS5OHEzIeZbNFLoQMGpJBQ7LVUAdOFneM2rIc78geo-JlHJuTd-TIK7lftZMZk6VMw6yVyZH1HTic24XEYRj2VlTthrOJRIrljbMrO7DTGsyiYzSjJSKA2P3HjuzBGmJZFVau82wfVqbjmTtA9JnqL42JvwActPse |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKiEuLQVKty2tKwESh-wmcWI7Bw6r0hW05XEoEjfj54Gy2dU-DvDrO068SKAWVeKWw8RxxuPxZ3vmG4CdlGljfF4l3BRpSMnhiRKaJQHaCsQHhrKQjXxyyo4uiu-X5WWsc9rkwozG0fV38bElCm5VGAPiRA8xdJYgEs57SlOmdG9s_RK8bHhKQgbf2fnCFdNAP9VmRIY3WBrvKf_WyoN1aQm__W_I2Sw9g9dwteh0G3Hyuzuf6a65e8Tn-Iy_WoNXEZaSfiv-Bl64eh02-jVuyYe3ZI80gaLNCfwGHPQJPSQ-MGnqG0eGIaQvVtOxjqjJRN0ShMJkOtchRTK0i35kGOuEbcLF4Nuvr0dJrMKQ4DiJWaJUqbhWWWGZ5Zk1RaU1c4WtlBKpcdp4YQ2vGEI_qpmlPlWlRxDiM0OpoZa-heV6VLt3QBBu4X4NzUaUpihzrTn3ubOqcr7QXPEO9BZjIE2kKA-VMm5kc1UuhAxakkFLstVSB_bv3xi39BxPyO6i8mWco9Mn5MgDuevayYzJUqZh98okDkwHvixsQ-J0DHcsqnaj-VQimuWN0ys7sNUazX3HaEZLhALi_X925DOsnB8O5M_j0x8fYBWRWhUOs_PsIyzPJnO3jWhopj81Fv8HI4sAjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+flexible+microelectrode+array+for+subretinal+stimulation&rft.jtitle=Journal+of+neural+engineering&rft.au=Seo%2C+Hee+Won&rft.au=Kim%2C+Namju&rft.au=Ahn%2C+Jungryul&rft.au=Cha%2C+Seongkwang&rft.date=2019-08-21&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=16&rft.issue=5&rft.spage=056016&rft_id=info:doi/10.1088%2F1741-2552%2Fab36ab&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |