Constructing regions of attainable sizes and achieving target size distribution in a batch cooling sonocrystallization process
•An improved model is developed for sonocrystallization to track temperature rise.•Population balance equation and Generic Model Control algorithm are integrated.•The regions of attainable crystal sizes were computed.•Dynamic optimization was used to achieve target crystal size distribution.•The exp...
Saved in:
| Published in | Ultrasonics sonochemistry Vol. 42; pp. 162 - 170 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.04.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1350-4177 1873-2828 1873-2828 |
| DOI | 10.1016/j.ultsonch.2017.11.017 |
Cover
| Abstract | •An improved model is developed for sonocrystallization to track temperature rise.•Population balance equation and Generic Model Control algorithm are integrated.•The regions of attainable crystal sizes were computed.•Dynamic optimization was used to achieve target crystal size distribution.•The experimental evidence demonstrates the efficiency of the proposed approach.
The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization. |
|---|---|
| AbstractList | The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization. The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization.The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization. •An improved model is developed for sonocrystallization to track temperature rise.•Population balance equation and Generic Model Control algorithm are integrated.•The regions of attainable crystal sizes were computed.•Dynamic optimization was used to achieve target crystal size distribution.•The experimental evidence demonstrates the efficiency of the proposed approach. The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization. |
| Author | Bhoi, Stutee Sarkar, Debasis |
| Author_xml | – sequence: 1 givenname: Stutee surname: Bhoi fullname: Bhoi, Stutee – sequence: 2 givenname: Debasis surname: Sarkar fullname: Sarkar, Debasis email: dsarkar@che.iitkgp.ernet.in |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29429657$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtvUzEQhS3Uij7gL1ResrkXv3IfEgtQRAGpEpuytsa-k8SRYxfbt1K74LfXSZoNm67G1nznjD3nipyFGJCQG85aznj3edvOvuQY7KYVjPct520t78glH3rZiEEMZ_UsF6xRvO8vyFXOW8aYHAV7Ty7EqMTYLfpL8m8ZQy5ptsWFNU24dvVO44pCKeACGI80u2fMFMJEwW4cPu7JAmmN5dCik6sOzsylaqkLFKiBYjfUxuj3bH1mtOkpF_DePcMBe0jRYs4fyPkKfMaPr_Wa_Ln9fr_82dz9_vFr-e2usbIbSjNMDBBhFEp2knFleDew1TROk-Ky9hZSjiPyzgoFApQyaNQglcCFMbIXg7wmn46-de7fGXPRO5cteg8B45y1YNWVSdXzit68orPZ4aQfkttBetKnnVXgyxGwKeaccKWtK4dflQTOa870PiK91aeI9D4izbmupcq7_-SnCW8Kvx6FWBf16DDpbB0Gi5NLaIueonvL4gVd0rK_ |
| CitedBy_id | crossref_primary_10_1016_j_ultsonch_2021_105634 crossref_primary_10_1016_j_cherd_2023_10_049 crossref_primary_10_1016_j_ces_2020_115511 crossref_primary_10_1021_acs_iecr_4c00630 crossref_primary_10_1016_j_cherd_2021_12_001 crossref_primary_10_1021_acs_iecr_3c00811 crossref_primary_10_1039_D2CE01566H crossref_primary_10_1016_j_powtec_2018_04_038 crossref_primary_10_1021_acs_cgd_4c00384 crossref_primary_10_1016_j_jcrysgro_2018_01_029 crossref_primary_10_1002_crat_202200156 crossref_primary_10_1016_j_jcrysgro_2018_08_031 crossref_primary_10_1016_j_ces_2020_115911 |
| Cites_doi | 10.1021/ie020346d 10.1021/ie402806n 10.1016/j.ultsonch.2010.06.016 10.1016/j.ces.2015.02.014 10.1021/acs.iecr.5b00693 10.1016/j.ces.2006.03.055 10.1016/j.cep.2012.04.005 10.1021/cg200677p 10.1016/j.compchemeng.2012.12.001 10.1016/j.ultsonch.2013.11.009 10.1016/j.ultsonch.2006.12.004 10.1021/acs.iecr.5b00173 10.1016/j.jcrysgro.2009.03.009 10.1016/j.ultsonch.2007.03.011 10.1016/j.compchemeng.2004.09.011 10.1016/j.cep.2007.02.020 10.1016/0098-1354(88)87006-6 10.1016/j.jprocont.2011.10.007 10.1016/j.cej.2007.08.010 10.1016/j.ultsonch.2014.02.005 10.1039/C6CE00937A 10.1021/acs.cgd.5b01470 10.1016/j.ultsonch.2016.09.018 10.1016/S1350-4177(96)00021-1 10.1016/S1385-8947(01)00164-4 10.1021/ie202220q 10.1016/j.jcrysgro.2014.09.027 10.1021/ie900248f 10.1016/j.ces.2003.09.025 10.1021/ie980585u 10.1016/j.compchemeng.2013.04.022 10.1016/j.ultsonch.2014.11.006 10.1016/j.jprocont.2008.06.002 10.1016/j.compchemeng.2006.02.012 10.1021/cg800131r 10.1021/ie060967x 10.1016/j.ces.2013.11.008 10.1016/j.jcrysgro.2013.11.029 10.1021/ie501800j 10.1016/j.jcrysgro.2008.08.002 10.1021/cg0504049 10.1016/j.ces.2008.12.030 10.1002/aic.11142 10.1016/j.compchemeng.2009.04.012 10.1021/ie402203k |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.ultsonch.2017.11.017 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1873-2828 |
| EndPage | 170 |
| ExternalDocumentID | 29429657 10_1016_j_ultsonch_2017_11_017 S1350417717305278 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPM RPZ SCB SDF SDG SES SEW SPC SPD SPG SSK SSQ SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c368t-8d0aeea924363014b1680fd9dd413d0a53399e16c24a2a44beb48342e5bb37283 |
| IEDL.DBID | .~1 |
| ISSN | 1350-4177 1873-2828 |
| IngestDate | Thu Oct 02 11:46:48 EDT 2025 Mon Jul 21 06:06:01 EDT 2025 Wed Oct 01 04:13:24 EDT 2025 Thu Apr 24 22:56:31 EDT 2025 Fri Feb 23 02:31:01 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Target crystal size distribution Ultrasound Generic Model Control algorithm Regions of attainable particle sizes Dynamic optimization |
| Language | English |
| License | Copyright © 2017 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-8d0aeea924363014b1680fd9dd413d0a53399e16c24a2a44beb48342e5bb37283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29429657 |
| PQID | 2001403471 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2001403471 pubmed_primary_29429657 crossref_citationtrail_10_1016_j_ultsonch_2017_11_017 crossref_primary_10_1016_j_ultsonch_2017_11_017 elsevier_sciencedirect_doi_10_1016_j_ultsonch_2017_11_017 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2018 2018-04-00 2018-Apr 20180401 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Ultrasonics sonochemistry |
| PublicationTitleAlternate | Ultrason Sonochem |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kordylla, Krawczyk, Tumakaka, Schembecker (b0180) 2009; 64 Kurotani, Hirasawa (b0045) 2008; 310 Power, Hou, Kamaraju, Morris, Zhao, Glennon (b0155) 2015; 133 Lee, Sullivan (b0225) 1988; 12 Ridder, Majumder, Nagy (b0145) 2014; 53 Horn (b0235) 1964 Kurotani, Miyasaka, Ebihara, Hirasawa (b0020) 2009; 311 Bari, Chawla, Pandit (b0030) 2017; 35 Hu, Rohani, Jutan (b0115) 2005; 29 Randoph, Larson (b0200) 1971 Choong, Smith (b0120) 2004; 59 Sarkar, Rohani, Jutan (b0135) 2006; 61 Nii, Takayanagi (b0050) 2014; 21 Devi, Raja, Srinivasan (b0035) 2015; 24 Lang, Cervantes, Biegler (b0125) 1999; 38 Bolanos-Reynoso, Sanchez-Sanchez, Urrea-Garcia, Ricardez-Sandoval (b0150) 2014; 53 Bhoi, Sarkar (b0190) 2016; 18 Qamar, Elsner, Angelov, Warnecke, Seidel-Morgenstern (b0210) 2006; 30 Nagy (b0085) 2009; 33 Noweea, Abbas, Romagnoli (b0130) 2007; 46 Dalvi, Dave (b0060) 2009; 48 Sheikh, Patel (b0015) 2014; 390 Vetter, Burcham, Doherty (b0090) 2015; 54 Gron, Borissova, Roberts (b0100) 2003; 42 Paengjuntuek, Arpornwichanop, Kittisupakorn (b0230) 2008; 139 Lyczko, Espitalier, Louisnard, Schwartzentruber (b0025) 2002; 86 Bhangu, Ashokkumar, Lee (b0040) 2016; 16 Acevedo, Tandy, Nagy (b0170) 2015; 54 Kimura, Sakamoto, Leveque, Sohmiya, Fujita, Ikeda, Ando (b0220) 1996; 3 Nagy, Fujiwara, Braatz (b0080) 2008; 18 Narducci, Jones (b0070) 2012; 12 Ramisetty, Pandit, Gogate (b0185) 2013; 52 Hatkar, Gogate (b0065) 2012; 57–58 Hojjati, Sheikhzadeh, Rohani (b0095) 2007; 46 Patil, Gore, Pandit (b0055) 2008; 15 Zhou, Fujiwara, Woo, Rusli, Tung, Starbuck, Davidson, Ge, Braatz (b0105) 2006; 6 Vreugdenhil, Koren (b0215) 1993 Vetter, Burcham, Doherty (b0240) 2014; 106 Ma, Wang (b0160) 2012; 22 Liu, Hu, Wang (b0165) 2013; 57 Wohlgemuth, Schembecker (b0175) 2013; 52 Sander, Zeiger, Suslick (b0010) 2014; 21 Lenka, Sarkar (b0195) 2014; 408 Nalajala, Moholkar (b0205) 2011; 18 Hatkar, Gogate (b0075) 2012; 51 Woo, Nagy, Tan, Braatz (b0110) 2009; 9 Sarkar, Rohani, Jutan (b0140) 2007; 53 de Castro, Priego-Capote (b0005) 2007; 14 de Castro (10.1016/j.ultsonch.2017.11.017_b0005) 2007; 14 Nagy (10.1016/j.ultsonch.2017.11.017_b0085) 2009; 33 Vreugdenhil (10.1016/j.ultsonch.2017.11.017_b0215) 1993 Kurotani (10.1016/j.ultsonch.2017.11.017_b0020) 2009; 311 Ma (10.1016/j.ultsonch.2017.11.017_b0160) 2012; 22 Wohlgemuth (10.1016/j.ultsonch.2017.11.017_b0175) 2013; 52 Nagy (10.1016/j.ultsonch.2017.11.017_b0080) 2008; 18 Liu (10.1016/j.ultsonch.2017.11.017_b0165) 2013; 57 Narducci (10.1016/j.ultsonch.2017.11.017_b0070) 2012; 12 Lenka (10.1016/j.ultsonch.2017.11.017_b0195) 2014; 408 Qamar (10.1016/j.ultsonch.2017.11.017_b0210) 2006; 30 Patil (10.1016/j.ultsonch.2017.11.017_b0055) 2008; 15 Vetter (10.1016/j.ultsonch.2017.11.017_b0240) 2014; 106 Nii (10.1016/j.ultsonch.2017.11.017_b0050) 2014; 21 Hu (10.1016/j.ultsonch.2017.11.017_b0115) 2005; 29 Paengjuntuek (10.1016/j.ultsonch.2017.11.017_b0230) 2008; 139 Sander (10.1016/j.ultsonch.2017.11.017_b0010) 2014; 21 Choong (10.1016/j.ultsonch.2017.11.017_b0120) 2004; 59 Ramisetty (10.1016/j.ultsonch.2017.11.017_b0185) 2013; 52 Sarkar (10.1016/j.ultsonch.2017.11.017_b0140) 2007; 53 Nalajala (10.1016/j.ultsonch.2017.11.017_b0205) 2011; 18 Hojjati (10.1016/j.ultsonch.2017.11.017_b0095) 2007; 46 Acevedo (10.1016/j.ultsonch.2017.11.017_b0170) 2015; 54 Zhou (10.1016/j.ultsonch.2017.11.017_b0105) 2006; 6 Bari (10.1016/j.ultsonch.2017.11.017_b0030) 2017; 35 Devi (10.1016/j.ultsonch.2017.11.017_b0035) 2015; 24 Randoph (10.1016/j.ultsonch.2017.11.017_b0200) 1971 Woo (10.1016/j.ultsonch.2017.11.017_b0110) 2009; 9 Sarkar (10.1016/j.ultsonch.2017.11.017_b0135) 2006; 61 Lee (10.1016/j.ultsonch.2017.11.017_b0225) 1988; 12 Gron (10.1016/j.ultsonch.2017.11.017_b0100) 2003; 42 Lang (10.1016/j.ultsonch.2017.11.017_b0125) 1999; 38 Sheikh (10.1016/j.ultsonch.2017.11.017_b0015) 2014; 390 Lyczko (10.1016/j.ultsonch.2017.11.017_b0025) 2002; 86 Kordylla (10.1016/j.ultsonch.2017.11.017_b0180) 2009; 64 Power (10.1016/j.ultsonch.2017.11.017_b0155) 2015; 133 Noweea (10.1016/j.ultsonch.2017.11.017_b0130) 2007; 46 Hatkar (10.1016/j.ultsonch.2017.11.017_b0065) 2012; 57–58 Ridder (10.1016/j.ultsonch.2017.11.017_b0145) 2014; 53 Bolanos-Reynoso (10.1016/j.ultsonch.2017.11.017_b0150) 2014; 53 Bhangu (10.1016/j.ultsonch.2017.11.017_b0040) 2016; 16 Kurotani (10.1016/j.ultsonch.2017.11.017_b0045) 2008; 310 Vetter (10.1016/j.ultsonch.2017.11.017_b0090) 2015; 54 Horn (10.1016/j.ultsonch.2017.11.017_b0235) 1964 Bhoi (10.1016/j.ultsonch.2017.11.017_b0190) 2016; 18 Kimura (10.1016/j.ultsonch.2017.11.017_b0220) 1996; 3 Dalvi (10.1016/j.ultsonch.2017.11.017_b0060) 2009; 48 Hatkar (10.1016/j.ultsonch.2017.11.017_b0075) 2012; 51 |
| References_xml | – volume: 18 start-page: 345 year: 2011 end-page: 355 ident: b0205 article-title: Investigations in the physical mechanism of sonocrystallization publication-title: Ultrason. Sonochem. – volume: 64 start-page: 1635 year: 2009 end-page: 1642 ident: b0180 article-title: Modeling ultrasound-induced nucleation during cooling crystallization publication-title: Chem. Eng. Sci. – volume: 24 start-page: 107 year: 2015 end-page: 113 ident: b0035 article-title: Ultrasound assisted nucleation and growth characteristics of glycine polymorphs a combined experimental and analytical approach publication-title: Ultrason. Sonochem. – volume: 15 start-page: 177 year: 2008 end-page: 187 ident: b0055 article-title: Ultrasonically controlled particle size distribution of explosives: a safe method publication-title: Ultrason. Sonochem. – volume: 133 start-page: 125 year: 2015 end-page: 139 ident: b0155 article-title: Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer publication-title: Chem. Eng. Sci. – volume: 29 start-page: 911 year: 2005 end-page: 918 ident: b0115 article-title: Modelling and optimization of seeded batch crystallizers publication-title: Comput. Chem. Eng. – volume: 54 start-page: 10350 year: 2015 end-page: 10363 ident: b0090 article-title: Designing robust crystallization processes in the presence of parameter uncertainty using attainable regions publication-title: Ind. Eng. Chem. Res. – volume: 42 start-page: 198 year: 2003 end-page: 206 ident: b0100 article-title: In-process ATR-FTIR spectroscopy for closed-loop supersaturation control of a batch crystallizer producing monosodium glutamate crystals of defined size publication-title: Ind. Eng. Chem. Res. – volume: 52 start-page: 17573 year: 2013 end-page: 17582 ident: b0185 article-title: Ultrasound-assisted antisolvent crystallization of benzoic acid: effect of process variables supported by theoretical simulations publication-title: Ind. Eng. Chem. Res. – volume: 12 start-page: 573 year: 1988 end-page: 580 ident: b0225 article-title: Generic model control (GMC) publication-title: Comput. Chem. Eng. – volume: 52 start-page: 216 year: 2013 end-page: 229 ident: b0175 article-title: Modeling induced nucleation processes during batch cooling crystallization: a sequential parameter determination procedure publication-title: Comput. Chem. Eng. – volume: 139 start-page: 344 year: 2008 end-page: 350 ident: b0230 article-title: Product quality improvement of batch crystallizers by a batch-to-batch optimization and nonlinear control approach publication-title: Chem. Eng. J. – volume: 21 start-page: 1182 year: 2014 end-page: 1186 ident: b0050 article-title: Growth and size control in anti-solvent crystallization of glycine with high frequency ultrasound publication-title: Ultrason. Sonochem. – volume: 46 start-page: 1232 year: 2007 end-page: 1240 ident: b0095 article-title: Control of supersaturation in a semibatch antisolvent crystallization process using a fuzzy logic controller publication-title: Ind. Eng. Chem. Res. – volume: 30 start-page: 1119 year: 2006 end-page: 1131 ident: b0210 article-title: A comparative study of high resolution schemes for solving population balances in crystallization publication-title: Comput. Chem. Eng. – volume: 310 start-page: 4576 year: 2008 end-page: 4580 ident: b0045 article-title: Polymorph control of sulfamerazine by ultrasonic irradiation publication-title: J. Cryst. Growth – volume: 46 start-page: 1096 year: 2007 end-page: 1106 ident: b0130 article-title: Optimization in seeded cooling crystallization: a parameter estimation and dynamic optimization study publication-title: Chem. Eng. Process. – volume: 14 start-page: 717 year: 2007 end-page: 724 ident: b0005 article-title: Ultrasound-assisted crystallization (sonocrystallization) publication-title: Ultrason. Sonochem. – volume: 311 start-page: 2714 year: 2009 end-page: 2721 ident: b0020 article-title: Effect of ultrasonic irradiation on the behavior of primary nucleation of amino acids in supersaturated solutions publication-title: J. Cryst. Growth – volume: 18 start-page: 4863 year: 2016 end-page: 4874 ident: b0190 article-title: Modelling and experimental validation of ultrasound assisted unseeded batch cooling crystallization of l-asparagine monohydrate publication-title: CrystEngComm – volume: 33 start-page: 1685 year: 2009 end-page: 1691 ident: b0085 article-title: Model based robust control approach for batch crystallization product design publication-title: Comput. Chem. Eng. – volume: 3 start-page: S157 year: 1996 end-page: S161 ident: b0220 article-title: Standardization of ultrasonic power for sonochemical reaction publication-title: Ultrason. Sonochem. – volume: 18 start-page: 856 year: 2008 end-page: 864 ident: b0080 article-title: Modelling and control of combined cooling and antisolvent crystallization processes publication-title: J. Process Control – year: 1971 ident: b0200 article-title: Theory of Particulate Processes – volume: 12 start-page: 1727 year: 2012 end-page: 1735 ident: b0070 article-title: Seeding in situ the cooling crystallization of adipic acid using ultrasound publication-title: Cryst. Growth Des. – volume: 6 start-page: 892 year: 2006 end-page: 898 ident: b0105 article-title: Direct design of pharmaceutical antisolvent crystallization through concentration control publication-title: Cryst. Growth Des. – volume: 86 start-page: 233 year: 2002 end-page: 241 ident: b0025 article-title: Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate publication-title: Chem. Eng. J. – volume: 59 start-page: 313 year: 2004 end-page: 327 ident: b0120 article-title: Optimization of batch cooling crystallization publication-title: Chem. Eng. Sci. – volume: 51 start-page: 12901 year: 2012 end-page: 12909 ident: b0075 article-title: Ultrasound assisted cooling crystallization of sodium acetate publication-title: Ind. Eng. Chem. Res. – volume: 22 start-page: 72 year: 2012 end-page: 81 ident: b0160 article-title: Closed-loop control of crystal shape in cooling crystallization of l-glutamic acid publication-title: J. Process Control – volume: 21 start-page: 1908 year: 2014 end-page: 1915 ident: b0010 article-title: Sonocrystallization and sonofragmentation publication-title: Ultrason. Sonochem. – volume: 106 start-page: 167 year: 2014 end-page: 180 ident: b0240 article-title: Regions of attainable particle sizes in continuous and batch crystallization processes publication-title: Chem. Eng. Sci. – volume: 9 start-page: 182 year: 2009 end-page: 191 ident: b0110 article-title: Adaptive concentration control of cooling and antisolvent crystallization with laser backscattering measurement publication-title: Cryst. Growth Des. – volume: 53 start-page: 4387 year: 2014 end-page: 4397 ident: b0145 article-title: Population balance model-based multiobjective optimization of a multisegment multiaddition (MSMA) continuous plug-flow antisolvent crystallizer publication-title: Ind. Eng. Chem. Res. – year: 1993 ident: b0215 article-title: Numerical Methods for Advection-Diffusion Problems: A Robust Upwind Discretization Method for Advection, Diffusion and Source Terms – volume: 35 start-page: 196 year: 2017 end-page: 203 ident: b0030 article-title: Sono-crystallization kinetics of K2SO4: estimation of nucleation, growth, breakage and agglomeration kinetics publication-title: Ultrason. Sonochem. – year: 1964 ident: b0235 article-title: Attainable and non-attainable regions in chemical reaction technique publication-title: Proceedings of the Third European Symposium on Chemical Reaction Engineering – volume: 408 start-page: 85 year: 2014 end-page: 90 ident: b0195 article-title: Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of l-asparaginenohydrate publication-title: J. Cryst. Growth – volume: 57–58 start-page: 16 year: 2012 end-page: 24 ident: b0065 article-title: Process intensification of anti-solvent crystallization of salicylic acid using ultrasonic irradiations publication-title: Chem. Eng. Process. – volume: 53 start-page: 1164 year: 2007 end-page: 1177 ident: b0140 article-title: Multiobjective optimization of semibatch reactive crystallization processes publication-title: AIChE J. – volume: 54 start-page: 2156 year: 2015 end-page: 2166 ident: b0170 article-title: Multiobjective optimization of an unseeded batch cooling crystallizer for shape and size manipulation publication-title: Ind. Eng. Chem. Res. – volume: 16 start-page: 1934 year: 2016 end-page: 1941 ident: b0040 article-title: Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control publication-title: Cryst. Growth Des. – volume: 53 start-page: 13180 year: 2014 end-page: 13194 ident: b0150 article-title: Dynamic modeling and optimization of batch crystallization of sugar cane under uncertainty publication-title: Ind. Eng. Chem. Res. – volume: 48 start-page: 7581 year: 2009 end-page: 7593 ident: b0060 article-title: Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation publication-title: Ind. Eng. Chem. Res. – volume: 61 start-page: 5282 year: 2006 end-page: 5295 ident: b0135 article-title: Multi-objective optimization of seeded batch crystallization processes publication-title: Chem. Eng. Sci. – volume: 390 start-page: 114 year: 2014 end-page: 119 ident: b0015 article-title: Ultrasound assisted reactive crystallization of strontium sulfate publication-title: J. Cryst. Growth – volume: 38 start-page: 1469 year: 1999 end-page: 1477 ident: b0125 article-title: Dynamic optimization of a batch cooling crystallization process publication-title: Ind. Eng. Chem. Res. – volume: 57 start-page: 133 year: 2013 end-page: 140 ident: b0165 article-title: Optimization and control of crystal shape and size in protein crystallization process publication-title: Comput. Chem. Eng. – volume: 42 start-page: 198 year: 2003 ident: 10.1016/j.ultsonch.2017.11.017_b0100 article-title: In-process ATR-FTIR spectroscopy for closed-loop supersaturation control of a batch crystallizer producing monosodium glutamate crystals of defined size publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020346d – volume: 53 start-page: 4387 year: 2014 ident: 10.1016/j.ultsonch.2017.11.017_b0145 article-title: Population balance model-based multiobjective optimization of a multisegment multiaddition (MSMA) continuous plug-flow antisolvent crystallizer publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie402806n – volume: 18 start-page: 345 year: 2011 ident: 10.1016/j.ultsonch.2017.11.017_b0205 article-title: Investigations in the physical mechanism of sonocrystallization publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2010.06.016 – volume: 133 start-page: 125 year: 2015 ident: 10.1016/j.ultsonch.2017.11.017_b0155 article-title: Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.02.014 – volume: 54 start-page: 10350 year: 2015 ident: 10.1016/j.ultsonch.2017.11.017_b0090 article-title: Designing robust crystallization processes in the presence of parameter uncertainty using attainable regions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b00693 – volume: 61 start-page: 5282 year: 2006 ident: 10.1016/j.ultsonch.2017.11.017_b0135 article-title: Multi-objective optimization of seeded batch crystallization processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.03.055 – volume: 57–58 start-page: 16 year: 2012 ident: 10.1016/j.ultsonch.2017.11.017_b0065 article-title: Process intensification of anti-solvent crystallization of salicylic acid using ultrasonic irradiations publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2012.04.005 – year: 1971 ident: 10.1016/j.ultsonch.2017.11.017_b0200 – volume: 12 start-page: 1727 year: 2012 ident: 10.1016/j.ultsonch.2017.11.017_b0070 article-title: Seeding in situ the cooling crystallization of adipic acid using ultrasound publication-title: Cryst. Growth Des. doi: 10.1021/cg200677p – volume: 52 start-page: 216 year: 2013 ident: 10.1016/j.ultsonch.2017.11.017_b0175 article-title: Modeling induced nucleation processes during batch cooling crystallization: a sequential parameter determination procedure publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.12.001 – volume: 21 start-page: 1182 year: 2014 ident: 10.1016/j.ultsonch.2017.11.017_b0050 article-title: Growth and size control in anti-solvent crystallization of glycine with high frequency ultrasound publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.11.009 – volume: 14 start-page: 717 year: 2007 ident: 10.1016/j.ultsonch.2017.11.017_b0005 article-title: Ultrasound-assisted crystallization (sonocrystallization) publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2006.12.004 – volume: 54 start-page: 2156 year: 2015 ident: 10.1016/j.ultsonch.2017.11.017_b0170 article-title: Multiobjective optimization of an unseeded batch cooling crystallizer for shape and size manipulation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b00173 – volume: 311 start-page: 2714 year: 2009 ident: 10.1016/j.ultsonch.2017.11.017_b0020 article-title: Effect of ultrasonic irradiation on the behavior of primary nucleation of amino acids in supersaturated solutions publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.03.009 – volume: 15 start-page: 177 year: 2008 ident: 10.1016/j.ultsonch.2017.11.017_b0055 article-title: Ultrasonically controlled particle size distribution of explosives: a safe method publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2007.03.011 – volume: 29 start-page: 911 year: 2005 ident: 10.1016/j.ultsonch.2017.11.017_b0115 article-title: Modelling and optimization of seeded batch crystallizers publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2004.09.011 – volume: 46 start-page: 1096 year: 2007 ident: 10.1016/j.ultsonch.2017.11.017_b0130 article-title: Optimization in seeded cooling crystallization: a parameter estimation and dynamic optimization study publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2007.02.020 – volume: 12 start-page: 573 year: 1988 ident: 10.1016/j.ultsonch.2017.11.017_b0225 article-title: Generic model control (GMC) publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(88)87006-6 – year: 1964 ident: 10.1016/j.ultsonch.2017.11.017_b0235 article-title: Attainable and non-attainable regions in chemical reaction technique – volume: 22 start-page: 72 year: 2012 ident: 10.1016/j.ultsonch.2017.11.017_b0160 article-title: Closed-loop control of crystal shape in cooling crystallization of l-glutamic acid publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.10.007 – volume: 139 start-page: 344 year: 2008 ident: 10.1016/j.ultsonch.2017.11.017_b0230 article-title: Product quality improvement of batch crystallizers by a batch-to-batch optimization and nonlinear control approach publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.08.010 – volume: 21 start-page: 1908 year: 2014 ident: 10.1016/j.ultsonch.2017.11.017_b0010 article-title: Sonocrystallization and sonofragmentation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.02.005 – volume: 18 start-page: 4863 year: 2016 ident: 10.1016/j.ultsonch.2017.11.017_b0190 article-title: Modelling and experimental validation of ultrasound assisted unseeded batch cooling crystallization of l-asparagine monohydrate publication-title: CrystEngComm doi: 10.1039/C6CE00937A – volume: 16 start-page: 1934 year: 2016 ident: 10.1016/j.ultsonch.2017.11.017_b0040 article-title: Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01470 – volume: 35 start-page: 196 year: 2017 ident: 10.1016/j.ultsonch.2017.11.017_b0030 article-title: Sono-crystallization kinetics of K2SO4: estimation of nucleation, growth, breakage and agglomeration kinetics publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.09.018 – volume: 3 start-page: S157 year: 1996 ident: 10.1016/j.ultsonch.2017.11.017_b0220 article-title: Standardization of ultrasonic power for sonochemical reaction publication-title: Ultrason. Sonochem. doi: 10.1016/S1350-4177(96)00021-1 – volume: 86 start-page: 233 year: 2002 ident: 10.1016/j.ultsonch.2017.11.017_b0025 article-title: Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(01)00164-4 – volume: 51 start-page: 12901 year: 2012 ident: 10.1016/j.ultsonch.2017.11.017_b0075 article-title: Ultrasound assisted cooling crystallization of sodium acetate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202220q – volume: 408 start-page: 85 year: 2014 ident: 10.1016/j.ultsonch.2017.11.017_b0195 article-title: Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of l-asparaginenohydrate publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.09.027 – volume: 48 start-page: 7581 year: 2009 ident: 10.1016/j.ultsonch.2017.11.017_b0060 article-title: Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900248f – volume: 59 start-page: 313 year: 2004 ident: 10.1016/j.ultsonch.2017.11.017_b0120 article-title: Optimization of batch cooling crystallization publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.09.025 – volume: 38 start-page: 1469 year: 1999 ident: 10.1016/j.ultsonch.2017.11.017_b0125 article-title: Dynamic optimization of a batch cooling crystallization process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie980585u – year: 1993 ident: 10.1016/j.ultsonch.2017.11.017_b0215 – volume: 57 start-page: 133 year: 2013 ident: 10.1016/j.ultsonch.2017.11.017_b0165 article-title: Optimization and control of crystal shape and size in protein crystallization process publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.04.022 – volume: 24 start-page: 107 year: 2015 ident: 10.1016/j.ultsonch.2017.11.017_b0035 article-title: Ultrasound assisted nucleation and growth characteristics of glycine polymorphs a combined experimental and analytical approach publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.11.006 – volume: 18 start-page: 856 year: 2008 ident: 10.1016/j.ultsonch.2017.11.017_b0080 article-title: Modelling and control of combined cooling and antisolvent crystallization processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2008.06.002 – volume: 30 start-page: 1119 year: 2006 ident: 10.1016/j.ultsonch.2017.11.017_b0210 article-title: A comparative study of high resolution schemes for solving population balances in crystallization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2006.02.012 – volume: 9 start-page: 182 year: 2009 ident: 10.1016/j.ultsonch.2017.11.017_b0110 article-title: Adaptive concentration control of cooling and antisolvent crystallization with laser backscattering measurement publication-title: Cryst. Growth Des. doi: 10.1021/cg800131r – volume: 46 start-page: 1232 year: 2007 ident: 10.1016/j.ultsonch.2017.11.017_b0095 article-title: Control of supersaturation in a semibatch antisolvent crystallization process using a fuzzy logic controller publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060967x – volume: 106 start-page: 167 year: 2014 ident: 10.1016/j.ultsonch.2017.11.017_b0240 article-title: Regions of attainable particle sizes in continuous and batch crystallization processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.11.008 – volume: 390 start-page: 114 year: 2014 ident: 10.1016/j.ultsonch.2017.11.017_b0015 article-title: Ultrasound assisted reactive crystallization of strontium sulfate publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2013.11.029 – volume: 53 start-page: 13180 year: 2014 ident: 10.1016/j.ultsonch.2017.11.017_b0150 article-title: Dynamic modeling and optimization of batch crystallization of sugar cane under uncertainty publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie501800j – volume: 310 start-page: 4576 year: 2008 ident: 10.1016/j.ultsonch.2017.11.017_b0045 article-title: Polymorph control of sulfamerazine by ultrasonic irradiation publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.08.002 – volume: 6 start-page: 892 year: 2006 ident: 10.1016/j.ultsonch.2017.11.017_b0105 article-title: Direct design of pharmaceutical antisolvent crystallization through concentration control publication-title: Cryst. Growth Des. doi: 10.1021/cg0504049 – volume: 64 start-page: 1635 year: 2009 ident: 10.1016/j.ultsonch.2017.11.017_b0180 article-title: Modeling ultrasound-induced nucleation during cooling crystallization publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.12.030 – volume: 53 start-page: 1164 year: 2007 ident: 10.1016/j.ultsonch.2017.11.017_b0140 article-title: Multiobjective optimization of semibatch reactive crystallization processes publication-title: AIChE J. doi: 10.1002/aic.11142 – volume: 33 start-page: 1685 year: 2009 ident: 10.1016/j.ultsonch.2017.11.017_b0085 article-title: Model based robust control approach for batch crystallization product design publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.04.012 – volume: 52 start-page: 17573 year: 2013 ident: 10.1016/j.ultsonch.2017.11.017_b0185 article-title: Ultrasound-assisted antisolvent crystallization of benzoic acid: effect of process variables supported by theoretical simulations publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie402203k |
| SSID | ssj0003920 |
| Score | 2.2926834 |
| Snippet | •An improved model is developed for sonocrystallization to track temperature rise.•Population balance equation and Generic Model Control algorithm are... The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 162 |
| SubjectTerms | Dynamic optimization Generic Model Control algorithm Regions of attainable particle sizes Target crystal size distribution Ultrasound |
| Title | Constructing regions of attainable sizes and achieving target size distribution in a batch cooling sonocrystallization process |
| URI | https://dx.doi.org/10.1016/j.ultsonch.2017.11.017 https://www.ncbi.nlm.nih.gov/pubmed/29429657 https://www.proquest.com/docview/2001403471 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2828 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2828 dateEnd: 20180531 omitProxy: true ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: ACRLP dateStart: 20180401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2828 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-2828 dateEnd: 20180531 omitProxy: true ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: AIKHN dateStart: 20180401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2828 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003920 issn: 1350-4177 databaseCode: AKRWK dateStart: 19940301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5EEX0RrVc9ygq-ps2xuR5LUeqBiAf0LWx2N7WlJMXWB33wtzuTTTxA6YNPYbPZZLMzzLE7Mx_AqVQS3QTpWUGUeRZXsbBiO5OW63hoP7sZ1XuhaIuboP_ILwf-YAl6dS4MhVVWst_I9FJaV3c61Wp2pqNR597xfJs7IR0j274bUsIv5yGhGLTfv8I8UP-bTGHftujpb1nC4_bLZI5WbXko4YRtquZZApf9qqD-MkBLRXS-CRuVBcm6ZpJbsKTzBqz1auC2BqyWUZ1ytg3vBMdpCsTmQ0YYDNhmRcbEvM6aYrPRm54xkStGYZWa9heYCQ8vu5iit1agWGyUM8FSlN5PTBYE9zNk-GeFfH5FI3MyqXI62dRkH-zA4_nZQ69vVYALlvSCaG5FyhZaC3TJvIBcrdQJIjtTsVKo6rAPTcM41k4gXS5cwXmqU9qLdLWfpl6IhsouLOdFrveBoZhQ5OtJ5FSuZRZHMtSporrmyAPSaYJfr3Iiq2rkBIoxSeqws3FSUych6qCrkuClCZ3PcVNTj2PhiLgmYvKDsxJUGgvHntRUT5CIdJYicl28zAi9kyodompvwp5hh8_5uDEq-cAPD_7x5UNYx1ZkYoSOYBl5RR-j-TNPWyV_t2Cl27u7vqXrxVX_5gNn7gmA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsNADLWgCMEFsVPWQeKaNvtyRBWorBdaqbfRZGYCRVVS0XKAQ78dO5OwSKAeOEXJZLLZsp8zth_AmVQSwwTpWWGceZavEmEldiYt1_EQP7sZ9XuhbIv7sNv3rwfBYAE6dS0MpVVWtt_Y9NJaV0fa1ddsj4fD9oPjBbbvRLSMbAduFC_Cko9bisBas688DwQAplQ4sC06_VuZ8HPrdTRFWFuuSjhRi9p5lsxlv3qovxBo6Yku12GtgpDs3DzlBizofBNWOjVz2yYsl2mdcrIFM-LjNB1i80dGJAy4z4qMiWldNsUmw3c9YSJXjPIqNf1gYCY_vBxiiq5asWKxYc4ES9F8PzFZEN_PI8M3K-TLG6LM0agq6mRjU36wDf3Li16na1WMC5b0wnhqxcoWWguMybyQYq3UCWM7U4lS6OtwDLFhkmgnlK4vXOH7qU7pZ6SrgzT1IkQqO9DIi1zvAUM7oSjYk6iqvpZZEstIp4oam6MSSKcJQf2VuazakRMrxojXeWfPvJYOJ-lgrMJx04T257yxacgxd0ZSC5H_UC2OXmPu3NNa6hyFSIspItfF64ToO6nVIfr2Juwadfh8HjdBLx8G0f4_7nwCK93e3S2_vbq_OYBVHIlNwtAhNFBv9BFioWl6XOr6ByP1CYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+regions+of+attainable+sizes+and+achieving+target+size+distribution+in+a+batch+cooling+sonocrystallization+process&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Bhoi%2C+Stutee&rft.au=Sarkar%2C+Debasis&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=1350-4177&rft.eissn=1873-2828&rft.volume=42&rft.spage=162&rft.epage=170&rft_id=info:doi/10.1016%2Fj.ultsonch.2017.11.017&rft.externalDocID=S1350417717305278 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon |