Constructing regions of attainable sizes and achieving target size distribution in a batch cooling sonocrystallization process

•An improved model is developed for sonocrystallization to track temperature rise.•Population balance equation and Generic Model Control algorithm are integrated.•The regions of attainable crystal sizes were computed.•Dynamic optimization was used to achieve target crystal size distribution.•The exp...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics sonochemistry Vol. 42; pp. 162 - 170
Main Authors Bhoi, Stutee, Sarkar, Debasis
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2018
Subjects
Online AccessGet full text
ISSN1350-4177
1873-2828
1873-2828
DOI10.1016/j.ultsonch.2017.11.017

Cover

Abstract •An improved model is developed for sonocrystallization to track temperature rise.•Population balance equation and Generic Model Control algorithm are integrated.•The regions of attainable crystal sizes were computed.•Dynamic optimization was used to achieve target crystal size distribution.•The experimental evidence demonstrates the efficiency of the proposed approach. The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization.
AbstractList The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization.
The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization.The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization.
•An improved model is developed for sonocrystallization to track temperature rise.•Population balance equation and Generic Model Control algorithm are integrated.•The regions of attainable crystal sizes were computed.•Dynamic optimization was used to achieve target crystal size distribution.•The experimental evidence demonstrates the efficiency of the proposed approach. The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization.
Author Bhoi, Stutee
Sarkar, Debasis
Author_xml – sequence: 1
  givenname: Stutee
  surname: Bhoi
  fullname: Bhoi, Stutee
– sequence: 2
  givenname: Debasis
  surname: Sarkar
  fullname: Sarkar, Debasis
  email: dsarkar@che.iitkgp.ernet.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29429657$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvUzEQhS3Uij7gL1ResrkXv3IfEgtQRAGpEpuytsa-k8SRYxfbt1K74LfXSZoNm67G1nznjD3nipyFGJCQG85aznj3edvOvuQY7KYVjPct520t78glH3rZiEEMZ_UsF6xRvO8vyFXOW8aYHAV7Ty7EqMTYLfpL8m8ZQy5ptsWFNU24dvVO44pCKeACGI80u2fMFMJEwW4cPu7JAmmN5dCik6sOzsylaqkLFKiBYjfUxuj3bH1mtOkpF_DePcMBe0jRYs4fyPkKfMaPr_Wa_Ln9fr_82dz9_vFr-e2usbIbSjNMDBBhFEp2knFleDew1TROk-Ky9hZSjiPyzgoFApQyaNQglcCFMbIXg7wmn46-de7fGXPRO5cteg8B45y1YNWVSdXzit68orPZ4aQfkttBetKnnVXgyxGwKeaccKWtK4dflQTOa870PiK91aeI9D4izbmupcq7_-SnCW8Kvx6FWBf16DDpbB0Gi5NLaIueonvL4gVd0rK_
CitedBy_id crossref_primary_10_1016_j_ultsonch_2021_105634
crossref_primary_10_1016_j_cherd_2023_10_049
crossref_primary_10_1016_j_ces_2020_115511
crossref_primary_10_1021_acs_iecr_4c00630
crossref_primary_10_1016_j_cherd_2021_12_001
crossref_primary_10_1021_acs_iecr_3c00811
crossref_primary_10_1039_D2CE01566H
crossref_primary_10_1016_j_powtec_2018_04_038
crossref_primary_10_1021_acs_cgd_4c00384
crossref_primary_10_1016_j_jcrysgro_2018_01_029
crossref_primary_10_1002_crat_202200156
crossref_primary_10_1016_j_jcrysgro_2018_08_031
crossref_primary_10_1016_j_ces_2020_115911
Cites_doi 10.1021/ie020346d
10.1021/ie402806n
10.1016/j.ultsonch.2010.06.016
10.1016/j.ces.2015.02.014
10.1021/acs.iecr.5b00693
10.1016/j.ces.2006.03.055
10.1016/j.cep.2012.04.005
10.1021/cg200677p
10.1016/j.compchemeng.2012.12.001
10.1016/j.ultsonch.2013.11.009
10.1016/j.ultsonch.2006.12.004
10.1021/acs.iecr.5b00173
10.1016/j.jcrysgro.2009.03.009
10.1016/j.ultsonch.2007.03.011
10.1016/j.compchemeng.2004.09.011
10.1016/j.cep.2007.02.020
10.1016/0098-1354(88)87006-6
10.1016/j.jprocont.2011.10.007
10.1016/j.cej.2007.08.010
10.1016/j.ultsonch.2014.02.005
10.1039/C6CE00937A
10.1021/acs.cgd.5b01470
10.1016/j.ultsonch.2016.09.018
10.1016/S1350-4177(96)00021-1
10.1016/S1385-8947(01)00164-4
10.1021/ie202220q
10.1016/j.jcrysgro.2014.09.027
10.1021/ie900248f
10.1016/j.ces.2003.09.025
10.1021/ie980585u
10.1016/j.compchemeng.2013.04.022
10.1016/j.ultsonch.2014.11.006
10.1016/j.jprocont.2008.06.002
10.1016/j.compchemeng.2006.02.012
10.1021/cg800131r
10.1021/ie060967x
10.1016/j.ces.2013.11.008
10.1016/j.jcrysgro.2013.11.029
10.1021/ie501800j
10.1016/j.jcrysgro.2008.08.002
10.1021/cg0504049
10.1016/j.ces.2008.12.030
10.1002/aic.11142
10.1016/j.compchemeng.2009.04.012
10.1021/ie402203k
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ultsonch.2017.11.017
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-2828
EndPage 170
ExternalDocumentID 29429657
10_1016_j_ultsonch_2017_11_017
S1350417717305278
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPM
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPD
SPG
SSK
SSQ
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c368t-8d0aeea924363014b1680fd9dd413d0a53399e16c24a2a44beb48342e5bb37283
IEDL.DBID .~1
ISSN 1350-4177
1873-2828
IngestDate Thu Oct 02 11:46:48 EDT 2025
Mon Jul 21 06:06:01 EDT 2025
Wed Oct 01 04:13:24 EDT 2025
Thu Apr 24 22:56:31 EDT 2025
Fri Feb 23 02:31:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Target crystal size distribution
Ultrasound
Generic Model Control algorithm
Regions of attainable particle sizes
Dynamic optimization
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-8d0aeea924363014b1680fd9dd413d0a53399e16c24a2a44beb48342e5bb37283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29429657
PQID 2001403471
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2001403471
pubmed_primary_29429657
crossref_citationtrail_10_1016_j_ultsonch_2017_11_017
crossref_primary_10_1016_j_ultsonch_2017_11_017
elsevier_sciencedirect_doi_10_1016_j_ultsonch_2017_11_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
2018-Apr
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics sonochemistry
PublicationTitleAlternate Ultrason Sonochem
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kordylla, Krawczyk, Tumakaka, Schembecker (b0180) 2009; 64
Kurotani, Hirasawa (b0045) 2008; 310
Power, Hou, Kamaraju, Morris, Zhao, Glennon (b0155) 2015; 133
Lee, Sullivan (b0225) 1988; 12
Ridder, Majumder, Nagy (b0145) 2014; 53
Horn (b0235) 1964
Kurotani, Miyasaka, Ebihara, Hirasawa (b0020) 2009; 311
Bari, Chawla, Pandit (b0030) 2017; 35
Hu, Rohani, Jutan (b0115) 2005; 29
Randoph, Larson (b0200) 1971
Choong, Smith (b0120) 2004; 59
Sarkar, Rohani, Jutan (b0135) 2006; 61
Nii, Takayanagi (b0050) 2014; 21
Devi, Raja, Srinivasan (b0035) 2015; 24
Lang, Cervantes, Biegler (b0125) 1999; 38
Bolanos-Reynoso, Sanchez-Sanchez, Urrea-Garcia, Ricardez-Sandoval (b0150) 2014; 53
Bhoi, Sarkar (b0190) 2016; 18
Qamar, Elsner, Angelov, Warnecke, Seidel-Morgenstern (b0210) 2006; 30
Nagy (b0085) 2009; 33
Noweea, Abbas, Romagnoli (b0130) 2007; 46
Dalvi, Dave (b0060) 2009; 48
Sheikh, Patel (b0015) 2014; 390
Vetter, Burcham, Doherty (b0090) 2015; 54
Gron, Borissova, Roberts (b0100) 2003; 42
Paengjuntuek, Arpornwichanop, Kittisupakorn (b0230) 2008; 139
Lyczko, Espitalier, Louisnard, Schwartzentruber (b0025) 2002; 86
Bhangu, Ashokkumar, Lee (b0040) 2016; 16
Acevedo, Tandy, Nagy (b0170) 2015; 54
Kimura, Sakamoto, Leveque, Sohmiya, Fujita, Ikeda, Ando (b0220) 1996; 3
Nagy, Fujiwara, Braatz (b0080) 2008; 18
Narducci, Jones (b0070) 2012; 12
Ramisetty, Pandit, Gogate (b0185) 2013; 52
Hatkar, Gogate (b0065) 2012; 57–58
Hojjati, Sheikhzadeh, Rohani (b0095) 2007; 46
Patil, Gore, Pandit (b0055) 2008; 15
Zhou, Fujiwara, Woo, Rusli, Tung, Starbuck, Davidson, Ge, Braatz (b0105) 2006; 6
Vreugdenhil, Koren (b0215) 1993
Vetter, Burcham, Doherty (b0240) 2014; 106
Ma, Wang (b0160) 2012; 22
Liu, Hu, Wang (b0165) 2013; 57
Wohlgemuth, Schembecker (b0175) 2013; 52
Sander, Zeiger, Suslick (b0010) 2014; 21
Lenka, Sarkar (b0195) 2014; 408
Nalajala, Moholkar (b0205) 2011; 18
Hatkar, Gogate (b0075) 2012; 51
Woo, Nagy, Tan, Braatz (b0110) 2009; 9
Sarkar, Rohani, Jutan (b0140) 2007; 53
de Castro, Priego-Capote (b0005) 2007; 14
de Castro (10.1016/j.ultsonch.2017.11.017_b0005) 2007; 14
Nagy (10.1016/j.ultsonch.2017.11.017_b0085) 2009; 33
Vreugdenhil (10.1016/j.ultsonch.2017.11.017_b0215) 1993
Kurotani (10.1016/j.ultsonch.2017.11.017_b0020) 2009; 311
Ma (10.1016/j.ultsonch.2017.11.017_b0160) 2012; 22
Wohlgemuth (10.1016/j.ultsonch.2017.11.017_b0175) 2013; 52
Nagy (10.1016/j.ultsonch.2017.11.017_b0080) 2008; 18
Liu (10.1016/j.ultsonch.2017.11.017_b0165) 2013; 57
Narducci (10.1016/j.ultsonch.2017.11.017_b0070) 2012; 12
Lenka (10.1016/j.ultsonch.2017.11.017_b0195) 2014; 408
Qamar (10.1016/j.ultsonch.2017.11.017_b0210) 2006; 30
Patil (10.1016/j.ultsonch.2017.11.017_b0055) 2008; 15
Vetter (10.1016/j.ultsonch.2017.11.017_b0240) 2014; 106
Nii (10.1016/j.ultsonch.2017.11.017_b0050) 2014; 21
Hu (10.1016/j.ultsonch.2017.11.017_b0115) 2005; 29
Paengjuntuek (10.1016/j.ultsonch.2017.11.017_b0230) 2008; 139
Sander (10.1016/j.ultsonch.2017.11.017_b0010) 2014; 21
Choong (10.1016/j.ultsonch.2017.11.017_b0120) 2004; 59
Ramisetty (10.1016/j.ultsonch.2017.11.017_b0185) 2013; 52
Sarkar (10.1016/j.ultsonch.2017.11.017_b0140) 2007; 53
Nalajala (10.1016/j.ultsonch.2017.11.017_b0205) 2011; 18
Hojjati (10.1016/j.ultsonch.2017.11.017_b0095) 2007; 46
Acevedo (10.1016/j.ultsonch.2017.11.017_b0170) 2015; 54
Zhou (10.1016/j.ultsonch.2017.11.017_b0105) 2006; 6
Bari (10.1016/j.ultsonch.2017.11.017_b0030) 2017; 35
Devi (10.1016/j.ultsonch.2017.11.017_b0035) 2015; 24
Randoph (10.1016/j.ultsonch.2017.11.017_b0200) 1971
Woo (10.1016/j.ultsonch.2017.11.017_b0110) 2009; 9
Sarkar (10.1016/j.ultsonch.2017.11.017_b0135) 2006; 61
Lee (10.1016/j.ultsonch.2017.11.017_b0225) 1988; 12
Gron (10.1016/j.ultsonch.2017.11.017_b0100) 2003; 42
Lang (10.1016/j.ultsonch.2017.11.017_b0125) 1999; 38
Sheikh (10.1016/j.ultsonch.2017.11.017_b0015) 2014; 390
Lyczko (10.1016/j.ultsonch.2017.11.017_b0025) 2002; 86
Kordylla (10.1016/j.ultsonch.2017.11.017_b0180) 2009; 64
Power (10.1016/j.ultsonch.2017.11.017_b0155) 2015; 133
Noweea (10.1016/j.ultsonch.2017.11.017_b0130) 2007; 46
Hatkar (10.1016/j.ultsonch.2017.11.017_b0065) 2012; 57–58
Ridder (10.1016/j.ultsonch.2017.11.017_b0145) 2014; 53
Bolanos-Reynoso (10.1016/j.ultsonch.2017.11.017_b0150) 2014; 53
Bhangu (10.1016/j.ultsonch.2017.11.017_b0040) 2016; 16
Kurotani (10.1016/j.ultsonch.2017.11.017_b0045) 2008; 310
Vetter (10.1016/j.ultsonch.2017.11.017_b0090) 2015; 54
Horn (10.1016/j.ultsonch.2017.11.017_b0235) 1964
Bhoi (10.1016/j.ultsonch.2017.11.017_b0190) 2016; 18
Kimura (10.1016/j.ultsonch.2017.11.017_b0220) 1996; 3
Dalvi (10.1016/j.ultsonch.2017.11.017_b0060) 2009; 48
Hatkar (10.1016/j.ultsonch.2017.11.017_b0075) 2012; 51
References_xml – volume: 18
  start-page: 345
  year: 2011
  end-page: 355
  ident: b0205
  article-title: Investigations in the physical mechanism of sonocrystallization
  publication-title: Ultrason. Sonochem.
– volume: 64
  start-page: 1635
  year: 2009
  end-page: 1642
  ident: b0180
  article-title: Modeling ultrasound-induced nucleation during cooling crystallization
  publication-title: Chem. Eng. Sci.
– volume: 24
  start-page: 107
  year: 2015
  end-page: 113
  ident: b0035
  article-title: Ultrasound assisted nucleation and growth characteristics of glycine polymorphs a combined experimental and analytical approach
  publication-title: Ultrason. Sonochem.
– volume: 15
  start-page: 177
  year: 2008
  end-page: 187
  ident: b0055
  article-title: Ultrasonically controlled particle size distribution of explosives: a safe method
  publication-title: Ultrason. Sonochem.
– volume: 133
  start-page: 125
  year: 2015
  end-page: 139
  ident: b0155
  article-title: Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer
  publication-title: Chem. Eng. Sci.
– volume: 29
  start-page: 911
  year: 2005
  end-page: 918
  ident: b0115
  article-title: Modelling and optimization of seeded batch crystallizers
  publication-title: Comput. Chem. Eng.
– volume: 54
  start-page: 10350
  year: 2015
  end-page: 10363
  ident: b0090
  article-title: Designing robust crystallization processes in the presence of parameter uncertainty using attainable regions
  publication-title: Ind. Eng. Chem. Res.
– volume: 42
  start-page: 198
  year: 2003
  end-page: 206
  ident: b0100
  article-title: In-process ATR-FTIR spectroscopy for closed-loop supersaturation control of a batch crystallizer producing monosodium glutamate crystals of defined size
  publication-title: Ind. Eng. Chem. Res.
– volume: 52
  start-page: 17573
  year: 2013
  end-page: 17582
  ident: b0185
  article-title: Ultrasound-assisted antisolvent crystallization of benzoic acid: effect of process variables supported by theoretical simulations
  publication-title: Ind. Eng. Chem. Res.
– volume: 12
  start-page: 573
  year: 1988
  end-page: 580
  ident: b0225
  article-title: Generic model control (GMC)
  publication-title: Comput. Chem. Eng.
– volume: 52
  start-page: 216
  year: 2013
  end-page: 229
  ident: b0175
  article-title: Modeling induced nucleation processes during batch cooling crystallization: a sequential parameter determination procedure
  publication-title: Comput. Chem. Eng.
– volume: 139
  start-page: 344
  year: 2008
  end-page: 350
  ident: b0230
  article-title: Product quality improvement of batch crystallizers by a batch-to-batch optimization and nonlinear control approach
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 1182
  year: 2014
  end-page: 1186
  ident: b0050
  article-title: Growth and size control in anti-solvent crystallization of glycine with high frequency ultrasound
  publication-title: Ultrason. Sonochem.
– volume: 46
  start-page: 1232
  year: 2007
  end-page: 1240
  ident: b0095
  article-title: Control of supersaturation in a semibatch antisolvent crystallization process using a fuzzy logic controller
  publication-title: Ind. Eng. Chem. Res.
– volume: 30
  start-page: 1119
  year: 2006
  end-page: 1131
  ident: b0210
  article-title: A comparative study of high resolution schemes for solving population balances in crystallization
  publication-title: Comput. Chem. Eng.
– volume: 310
  start-page: 4576
  year: 2008
  end-page: 4580
  ident: b0045
  article-title: Polymorph control of sulfamerazine by ultrasonic irradiation
  publication-title: J. Cryst. Growth
– volume: 46
  start-page: 1096
  year: 2007
  end-page: 1106
  ident: b0130
  article-title: Optimization in seeded cooling crystallization: a parameter estimation and dynamic optimization study
  publication-title: Chem. Eng. Process.
– volume: 14
  start-page: 717
  year: 2007
  end-page: 724
  ident: b0005
  article-title: Ultrasound-assisted crystallization (sonocrystallization)
  publication-title: Ultrason. Sonochem.
– volume: 311
  start-page: 2714
  year: 2009
  end-page: 2721
  ident: b0020
  article-title: Effect of ultrasonic irradiation on the behavior of primary nucleation of amino acids in supersaturated solutions
  publication-title: J. Cryst. Growth
– volume: 18
  start-page: 4863
  year: 2016
  end-page: 4874
  ident: b0190
  article-title: Modelling and experimental validation of ultrasound assisted unseeded batch cooling crystallization of l-asparagine monohydrate
  publication-title: CrystEngComm
– volume: 33
  start-page: 1685
  year: 2009
  end-page: 1691
  ident: b0085
  article-title: Model based robust control approach for batch crystallization product design
  publication-title: Comput. Chem. Eng.
– volume: 3
  start-page: S157
  year: 1996
  end-page: S161
  ident: b0220
  article-title: Standardization of ultrasonic power for sonochemical reaction
  publication-title: Ultrason. Sonochem.
– volume: 18
  start-page: 856
  year: 2008
  end-page: 864
  ident: b0080
  article-title: Modelling and control of combined cooling and antisolvent crystallization processes
  publication-title: J. Process Control
– year: 1971
  ident: b0200
  article-title: Theory of Particulate Processes
– volume: 12
  start-page: 1727
  year: 2012
  end-page: 1735
  ident: b0070
  article-title: Seeding in situ the cooling crystallization of adipic acid using ultrasound
  publication-title: Cryst. Growth Des.
– volume: 6
  start-page: 892
  year: 2006
  end-page: 898
  ident: b0105
  article-title: Direct design of pharmaceutical antisolvent crystallization through concentration control
  publication-title: Cryst. Growth Des.
– volume: 86
  start-page: 233
  year: 2002
  end-page: 241
  ident: b0025
  article-title: Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate
  publication-title: Chem. Eng. J.
– volume: 59
  start-page: 313
  year: 2004
  end-page: 327
  ident: b0120
  article-title: Optimization of batch cooling crystallization
  publication-title: Chem. Eng. Sci.
– volume: 51
  start-page: 12901
  year: 2012
  end-page: 12909
  ident: b0075
  article-title: Ultrasound assisted cooling crystallization of sodium acetate
  publication-title: Ind. Eng. Chem. Res.
– volume: 22
  start-page: 72
  year: 2012
  end-page: 81
  ident: b0160
  article-title: Closed-loop control of crystal shape in cooling crystallization of l-glutamic acid
  publication-title: J. Process Control
– volume: 21
  start-page: 1908
  year: 2014
  end-page: 1915
  ident: b0010
  article-title: Sonocrystallization and sonofragmentation
  publication-title: Ultrason. Sonochem.
– volume: 106
  start-page: 167
  year: 2014
  end-page: 180
  ident: b0240
  article-title: Regions of attainable particle sizes in continuous and batch crystallization processes
  publication-title: Chem. Eng. Sci.
– volume: 9
  start-page: 182
  year: 2009
  end-page: 191
  ident: b0110
  article-title: Adaptive concentration control of cooling and antisolvent crystallization with laser backscattering measurement
  publication-title: Cryst. Growth Des.
– volume: 53
  start-page: 4387
  year: 2014
  end-page: 4397
  ident: b0145
  article-title: Population balance model-based multiobjective optimization of a multisegment multiaddition (MSMA) continuous plug-flow antisolvent crystallizer
  publication-title: Ind. Eng. Chem. Res.
– year: 1993
  ident: b0215
  article-title: Numerical Methods for Advection-Diffusion Problems: A Robust Upwind Discretization Method for Advection, Diffusion and Source Terms
– volume: 35
  start-page: 196
  year: 2017
  end-page: 203
  ident: b0030
  article-title: Sono-crystallization kinetics of K2SO4: estimation of nucleation, growth, breakage and agglomeration kinetics
  publication-title: Ultrason. Sonochem.
– year: 1964
  ident: b0235
  article-title: Attainable and non-attainable regions in chemical reaction technique
  publication-title: Proceedings of the Third European Symposium on Chemical Reaction Engineering
– volume: 408
  start-page: 85
  year: 2014
  end-page: 90
  ident: b0195
  article-title: Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of l-asparaginenohydrate
  publication-title: J. Cryst. Growth
– volume: 57–58
  start-page: 16
  year: 2012
  end-page: 24
  ident: b0065
  article-title: Process intensification of anti-solvent crystallization of salicylic acid using ultrasonic irradiations
  publication-title: Chem. Eng. Process.
– volume: 53
  start-page: 1164
  year: 2007
  end-page: 1177
  ident: b0140
  article-title: Multiobjective optimization of semibatch reactive crystallization processes
  publication-title: AIChE J.
– volume: 54
  start-page: 2156
  year: 2015
  end-page: 2166
  ident: b0170
  article-title: Multiobjective optimization of an unseeded batch cooling crystallizer for shape and size manipulation
  publication-title: Ind. Eng. Chem. Res.
– volume: 16
  start-page: 1934
  year: 2016
  end-page: 1941
  ident: b0040
  article-title: Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control
  publication-title: Cryst. Growth Des.
– volume: 53
  start-page: 13180
  year: 2014
  end-page: 13194
  ident: b0150
  article-title: Dynamic modeling and optimization of batch crystallization of sugar cane under uncertainty
  publication-title: Ind. Eng. Chem. Res.
– volume: 48
  start-page: 7581
  year: 2009
  end-page: 7593
  ident: b0060
  article-title: Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation
  publication-title: Ind. Eng. Chem. Res.
– volume: 61
  start-page: 5282
  year: 2006
  end-page: 5295
  ident: b0135
  article-title: Multi-objective optimization of seeded batch crystallization processes
  publication-title: Chem. Eng. Sci.
– volume: 390
  start-page: 114
  year: 2014
  end-page: 119
  ident: b0015
  article-title: Ultrasound assisted reactive crystallization of strontium sulfate
  publication-title: J. Cryst. Growth
– volume: 38
  start-page: 1469
  year: 1999
  end-page: 1477
  ident: b0125
  article-title: Dynamic optimization of a batch cooling crystallization process
  publication-title: Ind. Eng. Chem. Res.
– volume: 57
  start-page: 133
  year: 2013
  end-page: 140
  ident: b0165
  article-title: Optimization and control of crystal shape and size in protein crystallization process
  publication-title: Comput. Chem. Eng.
– volume: 42
  start-page: 198
  year: 2003
  ident: 10.1016/j.ultsonch.2017.11.017_b0100
  article-title: In-process ATR-FTIR spectroscopy for closed-loop supersaturation control of a batch crystallizer producing monosodium glutamate crystals of defined size
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020346d
– volume: 53
  start-page: 4387
  year: 2014
  ident: 10.1016/j.ultsonch.2017.11.017_b0145
  article-title: Population balance model-based multiobjective optimization of a multisegment multiaddition (MSMA) continuous plug-flow antisolvent crystallizer
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402806n
– volume: 18
  start-page: 345
  year: 2011
  ident: 10.1016/j.ultsonch.2017.11.017_b0205
  article-title: Investigations in the physical mechanism of sonocrystallization
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2010.06.016
– volume: 133
  start-page: 125
  year: 2015
  ident: 10.1016/j.ultsonch.2017.11.017_b0155
  article-title: Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.02.014
– volume: 54
  start-page: 10350
  year: 2015
  ident: 10.1016/j.ultsonch.2017.11.017_b0090
  article-title: Designing robust crystallization processes in the presence of parameter uncertainty using attainable regions
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b00693
– volume: 61
  start-page: 5282
  year: 2006
  ident: 10.1016/j.ultsonch.2017.11.017_b0135
  article-title: Multi-objective optimization of seeded batch crystallization processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.03.055
– volume: 57–58
  start-page: 16
  year: 2012
  ident: 10.1016/j.ultsonch.2017.11.017_b0065
  article-title: Process intensification of anti-solvent crystallization of salicylic acid using ultrasonic irradiations
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2012.04.005
– year: 1971
  ident: 10.1016/j.ultsonch.2017.11.017_b0200
– volume: 12
  start-page: 1727
  year: 2012
  ident: 10.1016/j.ultsonch.2017.11.017_b0070
  article-title: Seeding in situ the cooling crystallization of adipic acid using ultrasound
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg200677p
– volume: 52
  start-page: 216
  year: 2013
  ident: 10.1016/j.ultsonch.2017.11.017_b0175
  article-title: Modeling induced nucleation processes during batch cooling crystallization: a sequential parameter determination procedure
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.12.001
– volume: 21
  start-page: 1182
  year: 2014
  ident: 10.1016/j.ultsonch.2017.11.017_b0050
  article-title: Growth and size control in anti-solvent crystallization of glycine with high frequency ultrasound
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.11.009
– volume: 14
  start-page: 717
  year: 2007
  ident: 10.1016/j.ultsonch.2017.11.017_b0005
  article-title: Ultrasound-assisted crystallization (sonocrystallization)
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2006.12.004
– volume: 54
  start-page: 2156
  year: 2015
  ident: 10.1016/j.ultsonch.2017.11.017_b0170
  article-title: Multiobjective optimization of an unseeded batch cooling crystallizer for shape and size manipulation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b00173
– volume: 311
  start-page: 2714
  year: 2009
  ident: 10.1016/j.ultsonch.2017.11.017_b0020
  article-title: Effect of ultrasonic irradiation on the behavior of primary nucleation of amino acids in supersaturated solutions
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.03.009
– volume: 15
  start-page: 177
  year: 2008
  ident: 10.1016/j.ultsonch.2017.11.017_b0055
  article-title: Ultrasonically controlled particle size distribution of explosives: a safe method
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2007.03.011
– volume: 29
  start-page: 911
  year: 2005
  ident: 10.1016/j.ultsonch.2017.11.017_b0115
  article-title: Modelling and optimization of seeded batch crystallizers
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2004.09.011
– volume: 46
  start-page: 1096
  year: 2007
  ident: 10.1016/j.ultsonch.2017.11.017_b0130
  article-title: Optimization in seeded cooling crystallization: a parameter estimation and dynamic optimization study
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2007.02.020
– volume: 12
  start-page: 573
  year: 1988
  ident: 10.1016/j.ultsonch.2017.11.017_b0225
  article-title: Generic model control (GMC)
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(88)87006-6
– year: 1964
  ident: 10.1016/j.ultsonch.2017.11.017_b0235
  article-title: Attainable and non-attainable regions in chemical reaction technique
– volume: 22
  start-page: 72
  year: 2012
  ident: 10.1016/j.ultsonch.2017.11.017_b0160
  article-title: Closed-loop control of crystal shape in cooling crystallization of l-glutamic acid
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.10.007
– volume: 139
  start-page: 344
  year: 2008
  ident: 10.1016/j.ultsonch.2017.11.017_b0230
  article-title: Product quality improvement of batch crystallizers by a batch-to-batch optimization and nonlinear control approach
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.08.010
– volume: 21
  start-page: 1908
  year: 2014
  ident: 10.1016/j.ultsonch.2017.11.017_b0010
  article-title: Sonocrystallization and sonofragmentation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.02.005
– volume: 18
  start-page: 4863
  year: 2016
  ident: 10.1016/j.ultsonch.2017.11.017_b0190
  article-title: Modelling and experimental validation of ultrasound assisted unseeded batch cooling crystallization of l-asparagine monohydrate
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00937A
– volume: 16
  start-page: 1934
  year: 2016
  ident: 10.1016/j.ultsonch.2017.11.017_b0040
  article-title: Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b01470
– volume: 35
  start-page: 196
  year: 2017
  ident: 10.1016/j.ultsonch.2017.11.017_b0030
  article-title: Sono-crystallization kinetics of K2SO4: estimation of nucleation, growth, breakage and agglomeration kinetics
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.09.018
– volume: 3
  start-page: S157
  year: 1996
  ident: 10.1016/j.ultsonch.2017.11.017_b0220
  article-title: Standardization of ultrasonic power for sonochemical reaction
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(96)00021-1
– volume: 86
  start-page: 233
  year: 2002
  ident: 10.1016/j.ultsonch.2017.11.017_b0025
  article-title: Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(01)00164-4
– volume: 51
  start-page: 12901
  year: 2012
  ident: 10.1016/j.ultsonch.2017.11.017_b0075
  article-title: Ultrasound assisted cooling crystallization of sodium acetate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie202220q
– volume: 408
  start-page: 85
  year: 2014
  ident: 10.1016/j.ultsonch.2017.11.017_b0195
  article-title: Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of l-asparaginenohydrate
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.09.027
– volume: 48
  start-page: 7581
  year: 2009
  ident: 10.1016/j.ultsonch.2017.11.017_b0060
  article-title: Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie900248f
– volume: 59
  start-page: 313
  year: 2004
  ident: 10.1016/j.ultsonch.2017.11.017_b0120
  article-title: Optimization of batch cooling crystallization
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.09.025
– volume: 38
  start-page: 1469
  year: 1999
  ident: 10.1016/j.ultsonch.2017.11.017_b0125
  article-title: Dynamic optimization of a batch cooling crystallization process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie980585u
– year: 1993
  ident: 10.1016/j.ultsonch.2017.11.017_b0215
– volume: 57
  start-page: 133
  year: 2013
  ident: 10.1016/j.ultsonch.2017.11.017_b0165
  article-title: Optimization and control of crystal shape and size in protein crystallization process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.04.022
– volume: 24
  start-page: 107
  year: 2015
  ident: 10.1016/j.ultsonch.2017.11.017_b0035
  article-title: Ultrasound assisted nucleation and growth characteristics of glycine polymorphs a combined experimental and analytical approach
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.11.006
– volume: 18
  start-page: 856
  year: 2008
  ident: 10.1016/j.ultsonch.2017.11.017_b0080
  article-title: Modelling and control of combined cooling and antisolvent crystallization processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2008.06.002
– volume: 30
  start-page: 1119
  year: 2006
  ident: 10.1016/j.ultsonch.2017.11.017_b0210
  article-title: A comparative study of high resolution schemes for solving population balances in crystallization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.02.012
– volume: 9
  start-page: 182
  year: 2009
  ident: 10.1016/j.ultsonch.2017.11.017_b0110
  article-title: Adaptive concentration control of cooling and antisolvent crystallization with laser backscattering measurement
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg800131r
– volume: 46
  start-page: 1232
  year: 2007
  ident: 10.1016/j.ultsonch.2017.11.017_b0095
  article-title: Control of supersaturation in a semibatch antisolvent crystallization process using a fuzzy logic controller
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060967x
– volume: 106
  start-page: 167
  year: 2014
  ident: 10.1016/j.ultsonch.2017.11.017_b0240
  article-title: Regions of attainable particle sizes in continuous and batch crystallization processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.11.008
– volume: 390
  start-page: 114
  year: 2014
  ident: 10.1016/j.ultsonch.2017.11.017_b0015
  article-title: Ultrasound assisted reactive crystallization of strontium sulfate
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2013.11.029
– volume: 53
  start-page: 13180
  year: 2014
  ident: 10.1016/j.ultsonch.2017.11.017_b0150
  article-title: Dynamic modeling and optimization of batch crystallization of sugar cane under uncertainty
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie501800j
– volume: 310
  start-page: 4576
  year: 2008
  ident: 10.1016/j.ultsonch.2017.11.017_b0045
  article-title: Polymorph control of sulfamerazine by ultrasonic irradiation
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.08.002
– volume: 6
  start-page: 892
  year: 2006
  ident: 10.1016/j.ultsonch.2017.11.017_b0105
  article-title: Direct design of pharmaceutical antisolvent crystallization through concentration control
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg0504049
– volume: 64
  start-page: 1635
  year: 2009
  ident: 10.1016/j.ultsonch.2017.11.017_b0180
  article-title: Modeling ultrasound-induced nucleation during cooling crystallization
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.12.030
– volume: 53
  start-page: 1164
  year: 2007
  ident: 10.1016/j.ultsonch.2017.11.017_b0140
  article-title: Multiobjective optimization of semibatch reactive crystallization processes
  publication-title: AIChE J.
  doi: 10.1002/aic.11142
– volume: 33
  start-page: 1685
  year: 2009
  ident: 10.1016/j.ultsonch.2017.11.017_b0085
  article-title: Model based robust control approach for batch crystallization product design
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.04.012
– volume: 52
  start-page: 17573
  year: 2013
  ident: 10.1016/j.ultsonch.2017.11.017_b0185
  article-title: Ultrasound-assisted antisolvent crystallization of benzoic acid: effect of process variables supported by theoretical simulations
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402203k
SSID ssj0003920
Score 2.2926834
Snippet •An improved model is developed for sonocrystallization to track temperature rise.•Population balance equation and Generic Model Control algorithm are...
The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 162
SubjectTerms Dynamic optimization
Generic Model Control algorithm
Regions of attainable particle sizes
Target crystal size distribution
Ultrasound
Title Constructing regions of attainable sizes and achieving target size distribution in a batch cooling sonocrystallization process
URI https://dx.doi.org/10.1016/j.ultsonch.2017.11.017
https://www.ncbi.nlm.nih.gov/pubmed/29429657
https://www.proquest.com/docview/2001403471
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2828
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2828
  dateEnd: 20180531
  omitProxy: true
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: ACRLP
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2828
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-2828
  dateEnd: 20180531
  omitProxy: true
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: AIKHN
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2828
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003920
  issn: 1350-4177
  databaseCode: AKRWK
  dateStart: 19940301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5EEX0RrVc9ygq-ps2xuR5LUeqBiAf0LWx2N7WlJMXWB33wtzuTTTxA6YNPYbPZZLMzzLE7Mx_AqVQS3QTpWUGUeRZXsbBiO5OW63hoP7sZ1XuhaIuboP_ILwf-YAl6dS4MhVVWst_I9FJaV3c61Wp2pqNR597xfJs7IR0j274bUsIv5yGhGLTfv8I8UP-bTGHftujpb1nC4_bLZI5WbXko4YRtquZZApf9qqD-MkBLRXS-CRuVBcm6ZpJbsKTzBqz1auC2BqyWUZ1ytg3vBMdpCsTmQ0YYDNhmRcbEvM6aYrPRm54xkStGYZWa9heYCQ8vu5iit1agWGyUM8FSlN5PTBYE9zNk-GeFfH5FI3MyqXI62dRkH-zA4_nZQ69vVYALlvSCaG5FyhZaC3TJvIBcrdQJIjtTsVKo6rAPTcM41k4gXS5cwXmqU9qLdLWfpl6IhsouLOdFrveBoZhQ5OtJ5FSuZRZHMtSporrmyAPSaYJfr3Iiq2rkBIoxSeqws3FSUych6qCrkuClCZ3PcVNTj2PhiLgmYvKDsxJUGgvHntRUT5CIdJYicl28zAi9kyodompvwp5hh8_5uDEq-cAPD_7x5UNYx1ZkYoSOYBl5RR-j-TNPWyV_t2Cl27u7vqXrxVX_5gNn7gmA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsNADLWgCMEFsVPWQeKaNvtyRBWorBdaqbfRZGYCRVVS0XKAQ78dO5OwSKAeOEXJZLLZsp8zth_AmVQSwwTpWWGceZavEmEldiYt1_EQP7sZ9XuhbIv7sNv3rwfBYAE6dS0MpVVWtt_Y9NJaV0fa1ddsj4fD9oPjBbbvRLSMbAduFC_Cko9bisBas688DwQAplQ4sC06_VuZ8HPrdTRFWFuuSjhRi9p5lsxlv3qovxBo6Yku12GtgpDs3DzlBizofBNWOjVz2yYsl2mdcrIFM-LjNB1i80dGJAy4z4qMiWldNsUmw3c9YSJXjPIqNf1gYCY_vBxiiq5asWKxYc4ES9F8PzFZEN_PI8M3K-TLG6LM0agq6mRjU36wDf3Li16na1WMC5b0wnhqxcoWWguMybyQYq3UCWM7U4lS6OtwDLFhkmgnlK4vXOH7qU7pZ6SrgzT1IkQqO9DIi1zvAUM7oSjYk6iqvpZZEstIp4oam6MSSKcJQf2VuazakRMrxojXeWfPvJYOJ-lgrMJx04T257yxacgxd0ZSC5H_UC2OXmPu3NNa6hyFSIspItfF64ToO6nVIfr2Juwadfh8HjdBLx8G0f4_7nwCK93e3S2_vbq_OYBVHIlNwtAhNFBv9BFioWl6XOr6ByP1CYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+regions+of+attainable+sizes+and+achieving+target+size+distribution+in+a+batch+cooling+sonocrystallization+process&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Bhoi%2C+Stutee&rft.au=Sarkar%2C+Debasis&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=1350-4177&rft.eissn=1873-2828&rft.volume=42&rft.spage=162&rft.epage=170&rft_id=info:doi/10.1016%2Fj.ultsonch.2017.11.017&rft.externalDocID=S1350417717305278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon