External noise removed from magnetoencephalographic signal using independent component analyses of reference channels

•Many MEG systems contain reference channels that assist in noise removal. We argue they are underutilised.•.ICA of reference channels provide guidance for removing the intermittent noise that is often missed by other methods.•Two algorithms are proposed for identifying and removing ICA components w...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 335; p. 108592
Main Authors Hanna, Jeff, Kim, Cora, Müller-Voggel, Nadia
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2020.108592

Cover

Abstract •Many MEG systems contain reference channels that assist in noise removal. We argue they are underutilised.•.ICA of reference channels provide guidance for removing the intermittent noise that is often missed by other methods.•Two algorithms are proposed for identifying and removing ICA components which reflect external noise.•We verify the efficacy of the algorithms on simulated data, and also show a representative example. Many magnetoencephalographs (MEG) contain, in addition to data channels, a set of reference channels positioned relatively far from the head that provide information on magnetic fields not originating from the brain. This information is used to subtract sources of non-neural origin, with either geometrical or least mean squares (LMS) methods. LMS methods in particular tend to be biased toward more constant noise sources and are often unable to remove intermittent noise. To better identify and eliminate external magnetic noise, we propose performing ICA directly on the MEG reference channels. This in most cases produces several components which are clear summaries of external noise sources with distinct spatio-temporal patterns. We present two algorithms for identifying and removing such noise components from the data which can in many cases significantly improve data quality. We performed simulations using forward models that contained both brain sources and external noise sources. First, traditional LMS-based methods were applied. While this removed a large amount of noise, a significant portion still remained. In many cases, this portion could be removed using the proposed technique, with little to no false positives. The proposed method removes significant amounts of noise to which existing LMS-based methods tend to be insensitive. The proposed method complements and extends traditional reference based noise correction with little extra computational cost and low chances of false positives. Any MEG system with reference channels could profit from its use, particularly in labs with intermittent noise sources.
AbstractList Many magnetoencephalographs (MEG) contain, in addition to data channels, a set of reference channels positioned relatively far from the head that provide information on magnetic fields not originating from the brain. This information is used to subtract sources of non-neural origin, with either geometrical or least mean squares (LMS) methods. LMS methods in particular tend to be biased toward more constant noise sources and are often unable to remove intermittent noise.BACKGROUNDMany magnetoencephalographs (MEG) contain, in addition to data channels, a set of reference channels positioned relatively far from the head that provide information on magnetic fields not originating from the brain. This information is used to subtract sources of non-neural origin, with either geometrical or least mean squares (LMS) methods. LMS methods in particular tend to be biased toward more constant noise sources and are often unable to remove intermittent noise.To better identify and eliminate external magnetic noise, we propose performing ICA directly on the MEG reference channels. This in most cases produces several components which are clear summaries of external noise sources with distinct spatio-temporal patterns. We present two algorithms for identifying and removing such noise components from the data which can in many cases significantly improve data quality.NEW METHODTo better identify and eliminate external magnetic noise, we propose performing ICA directly on the MEG reference channels. This in most cases produces several components which are clear summaries of external noise sources with distinct spatio-temporal patterns. We present two algorithms for identifying and removing such noise components from the data which can in many cases significantly improve data quality.We performed simulations using forward models that contained both brain sources and external noise sources. First, traditional LMS-based methods were applied. While this removed a large amount of noise, a significant portion still remained. In many cases, this portion could be removed using the proposed technique, with little to no false positives.RESULTSWe performed simulations using forward models that contained both brain sources and external noise sources. First, traditional LMS-based methods were applied. While this removed a large amount of noise, a significant portion still remained. In many cases, this portion could be removed using the proposed technique, with little to no false positives.The proposed method removes significant amounts of noise to which existing LMS-based methods tend to be insensitive.COMPARISON WITH EXISTING METHOD(S)The proposed method removes significant amounts of noise to which existing LMS-based methods tend to be insensitive.The proposed method complements and extends traditional reference based noise correction with little extra computational cost and low chances of false positives. Any MEG system with reference channels could profit from its use, particularly in labs with intermittent noise sources.CONCLUSIONSThe proposed method complements and extends traditional reference based noise correction with little extra computational cost and low chances of false positives. Any MEG system with reference channels could profit from its use, particularly in labs with intermittent noise sources.
Many magnetoencephalographs (MEG) contain, in addition to data channels, a set of reference channels positioned relatively far from the head that provide information on magnetic fields not originating from the brain. This information is used to subtract sources of non-neural origin, with either geometrical or least mean squares (LMS) methods. LMS methods in particular tend to be biased toward more constant noise sources and are often unable to remove intermittent noise. To better identify and eliminate external magnetic noise, we propose performing ICA directly on the MEG reference channels. This in most cases produces several components which are clear summaries of external noise sources with distinct spatio-temporal patterns. We present two algorithms for identifying and removing such noise components from the data which can in many cases significantly improve data quality. We performed simulations using forward models that contained both brain sources and external noise sources. First, traditional LMS-based methods were applied. While this removed a large amount of noise, a significant portion still remained. In many cases, this portion could be removed using the proposed technique, with little to no false positives. The proposed method removes significant amounts of noise to which existing LMS-based methods tend to be insensitive. The proposed method complements and extends traditional reference based noise correction with little extra computational cost and low chances of false positives. Any MEG system with reference channels could profit from its use, particularly in labs with intermittent noise sources.
•Many MEG systems contain reference channels that assist in noise removal. We argue they are underutilised.•.ICA of reference channels provide guidance for removing the intermittent noise that is often missed by other methods.•Two algorithms are proposed for identifying and removing ICA components which reflect external noise.•We verify the efficacy of the algorithms on simulated data, and also show a representative example. Many magnetoencephalographs (MEG) contain, in addition to data channels, a set of reference channels positioned relatively far from the head that provide information on magnetic fields not originating from the brain. This information is used to subtract sources of non-neural origin, with either geometrical or least mean squares (LMS) methods. LMS methods in particular tend to be biased toward more constant noise sources and are often unable to remove intermittent noise. To better identify and eliminate external magnetic noise, we propose performing ICA directly on the MEG reference channels. This in most cases produces several components which are clear summaries of external noise sources with distinct spatio-temporal patterns. We present two algorithms for identifying and removing such noise components from the data which can in many cases significantly improve data quality. We performed simulations using forward models that contained both brain sources and external noise sources. First, traditional LMS-based methods were applied. While this removed a large amount of noise, a significant portion still remained. In many cases, this portion could be removed using the proposed technique, with little to no false positives. The proposed method removes significant amounts of noise to which existing LMS-based methods tend to be insensitive. The proposed method complements and extends traditional reference based noise correction with little extra computational cost and low chances of false positives. Any MEG system with reference channels could profit from its use, particularly in labs with intermittent noise sources.
ArticleNumber 108592
Author Hanna, Jeff
Kim, Cora
Müller-Voggel, Nadia
Author_xml – sequence: 1
  givenname: Jeff
  orcidid: 0000-0002-7309-3936
  surname: Hanna
  fullname: Hanna, Jeff
  email: jeff.hanna@gmail.com
– sequence: 2
  givenname: Cora
  surname: Kim
  fullname: Kim, Cora
– sequence: 3
  givenname: Nadia
  surname: Müller-Voggel
  fullname: Müller-Voggel, Nadia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32017976$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv3CAQhVGVqNmk_QsRx168GWCNsdRDqyhtI0XKJZV6Qywe77KywQUcJf--WJv0kEsugEbfezO8OScnPngk5JLBmgGTV4f1weM8Yt6vOfClqOqWfyArphpeyUb9OSGrAtYV8AbOyHlKBwDYtCA_kjPBgTVtI1dkvnnKGL0ZqA8uIY04hkfsaB_DSEez85gDeovT3gxhF820d5Ymt1sUc3J-R53vcMJy-ExtGKcyZ3mZAjwnTDT0xbPHuJhQuzfe45A-kdPeDAk_v9wX5PePm4frX9Xd_c_b6-93lRVS5UpZwI2trRKWlwKYMrdUatu0qodGddDWdS9Z12y5sG2LUoASG8Aloe1GCXFBvhx9pxj-zpiyHl2yOAzGY5iT5qJmNXClWEEvX9B5O2Knp-hGE5_1a1QFkEfAxpBS-dN_hIFeOuqDft2JXnaijzspwq9vhNZlk13wORo3vC__dpSX3PDRYdTJuiXNzkW0WXfBvWfxDyshreI
CitedBy_id crossref_primary_10_1016_j_neuroimage_2021_118834
crossref_primary_10_3389_fnhum_2022_996989
crossref_primary_10_1162_imag_a_00117
crossref_primary_10_1109_TBME_2020_3040373
crossref_primary_10_3390_bioengineering11050428
crossref_primary_10_1016_j_cognition_2023_105635
crossref_primary_10_1016_j_bspc_2024_106236
Cites_doi 10.1109/77.919433
10.1109/MCSE.2011.35
10.1109/TSP.2018.2844203
10.3389/fnins.2013.00267
10.1109/42.906426
10.1006/nimg.1998.0396
10.1016/S0893-6080(00)00026-5
10.1162/089976699300016728
10.1016/j.neuroimage.2013.10.027
10.1006/nimg.1998.0395
10.1109/ACCESS.2018.2842082
10.1111/j.1469-8986.2003.00141.x
10.1016/S0896-6273(02)00569-X
10.1088/1741-2560/12/3/031001
10.1109/PROC.1975.10036
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jneumeth.2020.108592
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 32017976
10_1016_j_jneumeth_2020_108592
S0165027020300145
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
SEW
SNS
WUQ
X7M
ZGI
~HD
NPM
7X8
ID FETCH-LOGICAL-c368t-8c0e4c5c83c23680a320688b798f078d0955f61d7b23c99e6308340e1016b4833
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Sun Sep 28 07:58:05 EDT 2025
Thu Apr 03 07:09:50 EDT 2025
Thu Oct 02 04:27:13 EDT 2025
Thu Apr 24 22:56:05 EDT 2025
Sun Apr 06 06:54:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Simulation
Magnetoencephalography
ICA
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-8c0e4c5c83c23680a320688b798f078d0955f61d7b23c99e6308340e1016b4833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7309-3936
PMID 32017976
PQID 2351502881
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2351502881
pubmed_primary_32017976
crossref_primary_10_1016_j_jneumeth_2020_108592
crossref_citationtrail_10_1016_j_jneumeth_2020_108592
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2020_108592
PublicationCentury 2000
PublicationDate 2020-04-01
2020-04-00
2020-Apr-01
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ablin, Cardoso, Gramfort (bib0005) 2018; 66
Hyvärinen, Oja (bib0050) 2000; 13
Mannan, Kamran, Jeong (bib0060) 2018; 6
Fischl, Sereno, Dale (bib0025) 1999; 9
Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Hämäläinen (bib0045) 2014; 86
Joyce, Gorodnitsky, Kutas (bib0055) 2004; 41
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib0040) 2002; 33
Tipping, Bishop (bib0070) 1999; 11
Adachi, Shimogawara, Higuchi, Haruta, Ochiai (bib0010) 2001; 11
Dale, Fischl, Sereno (bib0020) 1999; 9
Vrba (bib0080) 1996
Fischl, Liu, Dale (bib0030) 2001; 20
Widrow, Glover, McCool, Kaunitz, Williams, Hearn (bib0085) 1975; 63
Ramachandran, Varoquaux (bib0065) 2011; 13
Urigüen, Garcia-Zapirain (bib0075) 2015; 12
Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Hämäläinen (bib0035) 2013; 7
Ahmar, Simon (bib0015) 2005
Tipping (10.1016/j.jneumeth.2020.108592_bib0070) 1999; 11
Urigüen (10.1016/j.jneumeth.2020.108592_bib0075) 2015; 12
Adachi (10.1016/j.jneumeth.2020.108592_bib0010) 2001; 11
Ramachandran (10.1016/j.jneumeth.2020.108592_bib0065) 2011; 13
Joyce (10.1016/j.jneumeth.2020.108592_bib0055) 2004; 41
Fischl (10.1016/j.jneumeth.2020.108592_bib0040) 2002; 33
Ahmar (10.1016/j.jneumeth.2020.108592_bib0015) 2005
Gramfort (10.1016/j.jneumeth.2020.108592_bib0045) 2014; 86
Widrow (10.1016/j.jneumeth.2020.108592_bib0085) 1975; 63
Fischl (10.1016/j.jneumeth.2020.108592_bib0030) 2001; 20
Ablin (10.1016/j.jneumeth.2020.108592_bib0005) 2018; 66
Hyvärinen (10.1016/j.jneumeth.2020.108592_bib0050) 2000; 13
Vrba (10.1016/j.jneumeth.2020.108592_bib0080) 1996
Fischl (10.1016/j.jneumeth.2020.108592_bib0025) 1999; 9
Mannan (10.1016/j.jneumeth.2020.108592_bib0060) 2018; 6
Dale (10.1016/j.jneumeth.2020.108592_bib0020) 1999; 9
Gramfort (10.1016/j.jneumeth.2020.108592_bib0035) 2013; 7
References_xml – volume: 11
  start-page: 669
  year: 2001
  end-page: 672
  ident: bib0010
  article-title: Reduction of non-periodic environmental magnetic noise in MEG measurement by continuously adjusted leastsquares method
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib0050
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
– start-page: 29
  year: 2005
  end-page: 32
  ident: bib0015
  article-title: MEG adaptive noise suppression using fast LMS
  publication-title: Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering
– volume: 41
  start-page: 313
  year: 2004
  end-page: 325
  ident: bib0055
  article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
  publication-title: Psychophysiology
– volume: 66
  start-page: 4040
  year: 2018
  end-page: 4049
  ident: bib0005
  article-title: Faster independent component analysis by preconditioning with Hessian approximations
  publication-title: IEEE Trans. Signal Process.
– start-page: 117
  year: 1996
  end-page: 123
  ident: bib0080
  article-title: SQUID Sensors: Fundamentals, Fabrication and Applications
– volume: 7
  start-page: 267
  year: 2013
  ident: bib0035
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 443
  year: 1999
  end-page: 482
  ident: bib0070
  article-title: Mixtures of probabilistic principal component analyzers
  publication-title: Neural Comput.
– volume: 6
  start-page: 30630
  year: 2018
  end-page: 30652
  ident: bib0060
  article-title: Identification and removal of physiological artifacts from electroencephalogram signals: a review
  publication-title: IEEE Access
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bib0020
  article-title: Cortical surface-based analysis: I. Segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 13
  start-page: 40
  year: 2011
  end-page: 51
  ident: bib0065
  article-title: Mayavi: 3D visualization of scientific data
  publication-title: IEEE Comput. Sci. Eng.
– volume: 86
  start-page: 446
  year: 2014
  end-page: 460
  ident: bib0045
  article-title: MNE software for processing MEG and EEG data
  publication-title: Neuroimage
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bib0025
  article-title: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
– volume: 20
  start-page: 70
  year: 2001
  end-page: 80
  ident: bib0030
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans. Med. Imaging
– volume: 12
  year: 2015
  ident: bib0075
  article-title: EEG artifact removal—state-of-the-art and guidelines
  publication-title: J. Neural Eng.
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bib0040
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 63
  start-page: 1692
  year: 1975
  end-page: 1716
  ident: bib0085
  article-title: Adaptive noise cancelling: principles and applications
  publication-title: Proc. IEEE
– volume: 11
  start-page: 669
  issue: 1
  year: 2001
  ident: 10.1016/j.jneumeth.2020.108592_bib0010
  article-title: Reduction of non-periodic environmental magnetic noise in MEG measurement by continuously adjusted leastsquares method
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.919433
– volume: 13
  start-page: 40
  issue: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108592_bib0065
  article-title: Mayavi: 3D visualization of scientific data
  publication-title: IEEE Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.35
– volume: 66
  start-page: 4040
  issue: 15
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108592_bib0005
  article-title: Faster independent component analysis by preconditioning with Hessian approximations
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2844203
– volume: 7
  start-page: 267
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108592_bib0035
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00267
– start-page: 29
  year: 2005
  ident: 10.1016/j.jneumeth.2020.108592_bib0015
  article-title: MEG adaptive noise suppression using fast LMS
– volume: 20
  start-page: 70
  year: 2001
  ident: 10.1016/j.jneumeth.2020.108592_bib0030
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906426
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 10.1016/j.jneumeth.2020.108592_bib0025
  article-title: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– volume: 13
  start-page: 411
  issue: 4–5
  year: 2000
  ident: 10.1016/j.jneumeth.2020.108592_bib0050
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 11
  start-page: 443
  issue: 2
  year: 1999
  ident: 10.1016/j.jneumeth.2020.108592_bib0070
  article-title: Mixtures of probabilistic principal component analyzers
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016728
– volume: 86
  start-page: 446
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108592_bib0045
  article-title: MNE software for processing MEG and EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.027
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 10.1016/j.jneumeth.2020.108592_bib0020
  article-title: Cortical surface-based analysis: I. Segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– start-page: 117
  year: 1996
  ident: 10.1016/j.jneumeth.2020.108592_bib0080
– volume: 6
  start-page: 30630
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108592_bib0060
  article-title: Identification and removal of physiological artifacts from electroencephalogram signals: a review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2842082
– volume: 41
  start-page: 313
  issue: 2
  year: 2004
  ident: 10.1016/j.jneumeth.2020.108592_bib0055
  article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2003.00141.x
– volume: 33
  start-page: 341
  year: 2002
  ident: 10.1016/j.jneumeth.2020.108592_bib0040
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 12
  issue: 3
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108592_bib0075
  article-title: EEG artifact removal—state-of-the-art and guidelines
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/031001
– volume: 63
  start-page: 1692
  issue: 12
  year: 1975
  ident: 10.1016/j.jneumeth.2020.108592_bib0085
  article-title: Adaptive noise cancelling: principles and applications
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1975.10036
SSID ssj0004906
Score 2.359248
Snippet •Many MEG systems contain reference channels that assist in noise removal. We argue they are underutilised.•.ICA of reference channels provide guidance for...
Many magnetoencephalographs (MEG) contain, in addition to data channels, a set of reference channels positioned relatively far from the head that provide...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108592
SubjectTerms ICA
Magnetoencephalography
Simulation
Title External noise removed from magnetoencephalographic signal using independent component analyses of reference channels
URI https://dx.doi.org/10.1016/j.jneumeth.2020.108592
https://www.ncbi.nlm.nih.gov/pubmed/32017976
https://www.proquest.com/docview/2351502881
Volume 335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQSKiXquWj3VKQkarewnpjJ2sfVwi0BcGlReJmOY5Ns-o6KzZbiQu_nZnEWegBcegtsWI5nnHsmcybeYR885KVZaZM4lXpEiGYTZTJWWJtAQ6RMcxaTHC-us6nN-LiNrvdIKd9LgzCKuPe3-3p7W4dW4ZRmsNFVQ1_YiIOw3QqWKcYHMMMdjFGFoOTx2eYh1AtvyY-jPFK9iJLeHYyC26FTM3gJ6Yt3C5T6WsH1GsGaHsQnX8g76MFSSfdS34kGy7skN1JAO95_kC_0xbT2f4s3yHbVzF0vktWZ7HeMw11tXT03s3rv66kmF9C5-YuuKbG2S9-m1jGurIU0R3QA8Hxd7RaM-Y2FJHodcAr01Y1cUtae7rmLKGYTxxgVnvk5vzs1-k0iZwLieW5bBJpmRM2s5LbFBqY4SnS0hRjJT1YEyVWrPP5qBwXKbdKuZyDDSeYQ4EWQnK-TzYDjP-Z0NzDWSet93JkhE8LxcGVdOCM89KCX5wPSNYLWttYkBx5Mf7oHnk2072CNCpIdwoakOG636IryfFmD9XrUf-zuDScG2_2Pe4Vr-HLw3CKCa5eLXXKwRYE80yOBuRTtyLW7wNSg51unH_5j5EPyDu862BCX8lmc79yh2ABNcVRu8SPyNbkx-X0-gmXRgdD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXBC2P5WkkxC1db-xk42NVtVqg2wut1JvlOHabFeusulkkLvx2ZhJngUPVA7fIycjxzMSeyXwzA_DRF7yqMmUSryqXSMltokzOE2tLdIiM4dZSgvP8LJ9dyC-X2eUOHA25MASrjHt_v6d3u3UcGUdujld1Pf5GiTic0qlQTyk4dg_uyyydkgd28OsPzkOqrsEmPU0BS_5XmvDiYBHchlo1o6OYdni7TKW3nVC3WaDdSXTyBB5HE5Id9m_5FHZc2IP9w4Du8_In-8Q6UGf3t3wPHsxj7HwfNsex4DMLTb127MYtmx-uYpRgwpbmKri2oeWvrk2sY11bRvAOpCB0_BWrty1zW0ZQ9CbQlenKmrg1azzbNi1hlFAccFXP4OLk-PxolsSmC4kVedEmheVO2swWwqY4wI1IqS9NOVWFR3OiopJ1Pp9U0zIVVimXCzTiJHfE0FIWQjyH3YDzvwSWezzsCut9MTHSp6US6Es69MZFZdExzkeQDYzWNlYkp8YY3_UAPVvoQUCaBKR7AY1gvKVb9TU57qRQgxz1P9ql8eC4k_bDIHiNnx7FU0xwzWatU4HGINpnxWQEL3qN2L4Pcg23umn-6j9mfg8PZ-fzU336-ezra3hEd3rM0BvYbW827i2aQ235rlP335enCNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=External+noise+removed+from+magnetoencephalographic+signal+using+independent+component+analyses+of+reference+channels&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Hanna%2C+Jeff&rft.au=Kim%2C+Cora&rft.au=M%C3%BCller-Voggel%2C+Nadia&rft.date=2020-04-01&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=335&rft.spage=108592&rft_id=info:doi/10.1016%2Fj.jneumeth.2020.108592&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon