Learning directed acyclic graphs for ligands and receptors based on spatially resolved transcriptomic data of ovarian cancer

To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell–cell communication between tumor and immune/stromal cells in the tumor microenvironment. Central to this communication are interactions between secreted...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 26; no. 2
Main Authors Chowdhury, Shrabanti, Ferri-Borgogno, Sammy, Yang, Peng, Wang, Wenyi, Peng, Jie, C Mok, Samuel, Wang, Pei
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 04.03.2025
Oxford University Press
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbaf085

Cover

Abstract To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell–cell communication between tumor and immune/stromal cells in the tumor microenvironment. Central to this communication are interactions between secreted ligands and cell-surface receptors, creating a highly connected signaling network among cells. Recent advancements in in situ-omics profiling, particularly spatial transcriptomic (ST) technology, provide unique opportunities to directly characterize ligand–receptor signaling networks that power cell–cell communication. In this paper, we propose a novel statistical method, LRnetST, to characterize the ligand–receptor interaction networks between adjacent tumor and immune/stroma cells based on ST data. LRnetST utilizes a directed acyclic graph model with a novel approach to handle the zero-inflated distributions of ST data. It also leverages existing ligand–receptor regulation databases as prior information, and employs a bootstrap aggregation strategy to achieve robust network estimation. Application of LRnetST to ST data of high-grade serous ovarian tumor samples revealed both common and distinct ligand–receptor regulations across different tumors. Some of these interactions were validated through both a MERFISH dataset and a CosMx SMI dataset of independent ovarian tumor samples. These results cast light on biological processes relating to the communication between tumor and immune/stromal cells in ovarian tumors. An open-source R package of LRnetST is available on GitHub at https://github.com/jie108/LRnetST.
AbstractList To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell-cell communication between tumor and immune/stromal cells in the tumor microenvironment. Central to this communication are interactions between secreted ligands and cell-surface receptors, creating a highly connected signaling network among cells. Recent advancements in in situ-omics profiling, particularly spatial transcriptomic (ST) technology, provide unique opportunities to directly characterize ligand-receptor signaling networks that power cell-cell communication. In this paper, we propose a novel statistical method, LRnetST, to characterize the ligand-receptor interaction networks between adjacent tumor and immune/stroma cells based on ST data. LRnetST utilizes a directed acyclic graph model with a novel approach to handle the zero-inflated distributions of ST data. It also leverages existing ligand-receptor regulation databases as prior information, and employs a bootstrap aggregation strategy to achieve robust network estimation. Application of LRnetST to ST data of high-grade serous ovarian tumor samples revealed both common and distinct ligand-receptor regulations across different tumors. Some of these interactions were validated through both a MERFISH dataset and a CosMx SMI dataset of independent ovarian tumor samples. These results cast light on biological processes relating to the communication between tumor and immune/stromal cells in ovarian tumors. An open-source R package of LRnetST is available on GitHub at https://github.com/jie108/LRnetST.To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell-cell communication between tumor and immune/stromal cells in the tumor microenvironment. Central to this communication are interactions between secreted ligands and cell-surface receptors, creating a highly connected signaling network among cells. Recent advancements in in situ-omics profiling, particularly spatial transcriptomic (ST) technology, provide unique opportunities to directly characterize ligand-receptor signaling networks that power cell-cell communication. In this paper, we propose a novel statistical method, LRnetST, to characterize the ligand-receptor interaction networks between adjacent tumor and immune/stroma cells based on ST data. LRnetST utilizes a directed acyclic graph model with a novel approach to handle the zero-inflated distributions of ST data. It also leverages existing ligand-receptor regulation databases as prior information, and employs a bootstrap aggregation strategy to achieve robust network estimation. Application of LRnetST to ST data of high-grade serous ovarian tumor samples revealed both common and distinct ligand-receptor regulations across different tumors. Some of these interactions were validated through both a MERFISH dataset and a CosMx SMI dataset of independent ovarian tumor samples. These results cast light on biological processes relating to the communication between tumor and immune/stromal cells in ovarian tumors. An open-source R package of LRnetST is available on GitHub at https://github.com/jie108/LRnetST.
To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell-cell communication between tumor and immune/stromal cells in the tumor microenvironment. Central to this communication are interactions between secreted ligands and cell-surface receptors, creating a highly connected signaling network among cells. Recent advancements in in situ-omics profiling, particularly spatial transcriptomic (ST) technology, provide unique opportunities to directly characterize ligand-receptor signaling networks that power cell-cell communication. In this paper, we propose a novel statistical method, LRnetST, to characterize the ligand-receptor interaction networks between adjacent tumor and immune/stroma cells based on ST data. LRnetST utilizes a directed acyclic graph model with a novel approach to handle the zero-inflated distributions of ST data. It also leverages existing ligand-receptor regulation databases as prior information, and employs a bootstrap aggregation strategy to achieve robust network estimation. Application of LRnetST to ST data of high-grade serous ovarian tumor samples revealed both common and distinct ligand-receptor regulations across different tumors. Some of these interactions were validated through both a MERFISH dataset and a CosMx SMI dataset of independent ovarian tumor samples. These results cast light on biological processes relating to the communication between tumor and immune/stromal cells in ovarian tumors. An open-source R package of LRnetST is available on GitHub at https://github.com/jie108/LRnetST.
To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell–cell communication between tumor and immune/stromal cells in the tumor microenvironment. Central to this communication are interactions between secreted ligands and cell-surface receptors, creating a highly connected signaling network among cells. Recent advancements in in situ -omics profiling, particularly spatial transcriptomic (ST) technology, provide unique opportunities to directly characterize ligand–receptor signaling networks that power cell–cell communication. In this paper, we propose a novel statistical method, LRnetST , to characterize the ligand–receptor interaction networks between adjacent tumor and immune/stroma cells based on ST data. LRnetST utilizes a directed acyclic graph model with a novel approach to handle the zero-inflated distributions of ST data. It also leverages existing ligand–receptor regulation databases as prior information, and employs a bootstrap aggregation strategy to achieve robust network estimation. Application of LRnetST to ST data of high-grade serous ovarian tumor samples revealed both common and distinct ligand–receptor regulations across different tumors. Some of these interactions were validated through both a MERFISH dataset and a CosMx SMI dataset of independent ovarian tumor samples. These results cast light on biological processes relating to the communication between tumor and immune/stromal cells in ovarian tumors. An open-source R package of LRnetST is available on GitHub at https://github.com/jie108/LRnetST .
Author Peng, Jie
Yang, Peng
Ferri-Borgogno, Sammy
Chowdhury, Shrabanti
Wang, Wenyi
Wang, Pei
C Mok, Samuel
Author_xml – sequence: 1
  givenname: Shrabanti
  surname: Chowdhury
  fullname: Chowdhury, Shrabanti
– sequence: 2
  givenname: Sammy
  surname: Ferri-Borgogno
  fullname: Ferri-Borgogno, Sammy
– sequence: 3
  givenname: Peng
  surname: Yang
  fullname: Yang, Peng
– sequence: 4
  givenname: Wenyi
  surname: Wang
  fullname: Wang, Wenyi
– sequence: 5
  givenname: Jie
  surname: Peng
  fullname: Peng, Jie
– sequence: 6
  givenname: Samuel
  surname: C Mok
  fullname: C Mok, Samuel
– sequence: 7
  givenname: Pei
  surname: Wang
  fullname: Wang, Pei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40062614$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtrFTEYhoNU7EVX7iXgRpCxyeQyyUpKsVo40E1dh1y-OU2Zk4zJnAMH_PGm7bFoF7mQ7-HhDe8pOko5AULvKflCiWbnLrpz5-xIlHiFTigfho4TwY8e7nLoBJfsGJ3Wek9ITwZF36BjTojsJeUn6PcKbEkxrXGIBfwCAVu_91P0eF3sfFfxmAue4tqmUHHbcKNgXnKp2Nna8Jxwne0S7TTt27Dmaddel2JT9SU2ctNcwS4W5xHnnS3RJuxt8lDeotejnSq8O5xn6OfVt9vLH93q5vv15cWq80yqpVNcSuEdyKAV6OCZGLQWEAL32ks9ahYGBkxzp7XyRIBzvZahB63asoSdoa9P3nnrNhA8pBZvMnOJG1v2Jtto_p-keGfWeWcoVZpKoZvh08FQ8q8t1MVsYvUwTTZB3lbD6CCk4j0TDf34Ar3P25La_wzruVKC0Efhh38jPWf520wDPj8BvuRaC4zPCCXmoXfTejeH3tkfuBqj5A
Cites_doi 10.1016/j.patcog.2021.108216
10.1126/science.1105809
10.1101/2022.07.14.500096
10.1016/j.mcpro.2023.100520
10.1038/nature10166
10.1038/s41592-019-0667-5
10.1080/01621459.2016.1142880
10.1007/s13238-017-0466-7
10.1093/bib/bbac563
10.1093/bioinformatics/17.suppl_1.S215
10.1038/s41467-021-21246-9
10.1152/physrev.00033.2007
10.1158/0008-5472.CAN-22-1821
10.1186/s12979-022-00289-6
10.1093/bib/bbaa327
10.1126/sciadv.abf1356
10.1093/bioinformatics/btab370
10.1038/ncomms8866
10.1371/journal.pbio.1001301
10.1186/s12859-022-04864-y
10.1093/nar/gkaa183
10.1038/s41596-020-0292-x
10.1002/bies.201900221
10.1186/s40880-015-0064-0
10.1016/j.physa.2017.12.092
10.1016/j.cell.2016.05.069
10.1158/1078-0432.CCR-08-0196
10.1038/s41592-020-01033-y
10.1126/science.aaf2403
10.1016/j.cell.2023.07.004
10.1186/s13059-021-02286-2
10.18632/oncotarget.22347
10.18637/jss.v035.i03
10.1371/journal.pgen.0020088
10.1038/s41467-021-21244-x
10.1089/106652700750050961
10.1038/nature14410
10.1016/B978-0-12-386471-0.00002-X
10.1111/cas.14591
10.1038/ng.167
10.1038/s41467-024-47271-y
10.1161/HYPERTENSIONAHA.121.18105
10.3389/fcvm.2019.00051
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press.
The Author(s) 2025. Published by Oxford University Press. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press.
– notice: The Author(s) 2025. Published by Oxford University Press. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbaf085
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Genetics Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC11891659
40062614
10_1093_bib_bbaf085
Genre Journal Article
Report
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA268380
– fundername: National Institute of Health and National Science Foundation
  grantid: U24CA271114
– fundername: ;
  grantid: U24CA271114; U01CA271407; U24CA210993; U01CA214172; U01CA294459; R01CA268380; 1915894
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
E3Z
EAP
EAS
EBR
EBS
EBU
EE~
EMB
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KOP
KSI
KSN
M-Z
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
ACUHS
CGR
CUY
CVF
ECM
EIF
H13
NPM
77I
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
TUS
7X8
5PM
ID FETCH-LOGICAL-c368t-84665cbe6d98e9dc357995edd4c9c69f93d73e394b998c05ebb296d2e982e9a03
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 18:34:49 EDT 2025
Thu Sep 04 22:54:28 EDT 2025
Thu Sep 11 21:17:13 EDT 2025
Mon Jul 21 02:03:45 EDT 2025
Tue Jul 01 05:26:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hill climbing
bootstrap aggregation
spatial transcriptomics data
prior domain knowledge
ligand–receptor network
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-84665cbe6d98e9dc357995edd4c9c69f93d73e394b998c05ebb296d2e982e9a03
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Shrabanti Chowdhury and Sammy Ferri-Borgogno Co-first author.
OpenAccessLink http://dx.doi.org/10.1093/bib/bbaf085
PMID 40062614
PQID 3248850159
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11891659
proquest_miscellaneous_3175684235
proquest_journals_3248850159
pubmed_primary_40062614
crossref_primary_10_1093_bib_bbaf085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Mar-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-Mar-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2025
Publisher Oxford Publishing Limited (England)
Oxford University Press
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press
References Ferri-Borgogno (2025031010540829600_ref31) 2023; 83
He (2025031010540829600_ref35) 2006; 2
Cancer Genome Atlas Research Network (2025031010540829600_ref1) 2011; 474
Ma (2025031010540829600_ref46) 2018; 496
Zhang (2025031010540829600_ref6) 2018; 9
Nagai (2025031010540829600_ref12) 2021; 37
Zhang (2025031010540829600_ref4) 2016; 166
Browaeys (2025031010540829600_ref13) 2020; 17
Dries (2025031010540829600_ref19) 2021; 22
Potere (2025031010540829600_ref42) 2019; 6
Noel (2025031010540829600_ref11) 2021; 12
Sachs (2025031010540829600_ref28) 2005; 308
Marx (2025031010540829600_ref17) 2021; 18
Jin (2025031010540829600_ref10) 2021; 12
Asp (2025031010540829600_ref16) 2020; 42
Scutari (2025031010540829600_ref30) 2010; 35
Tsujikawa (2025031010540829600_ref7) 2020; 111
Zhang (2025031010540829600_ref44) 2022; 19
Cabello-Aguilar (2025031010540829600_ref9) 2020; 48
Pham (2025031010540829600_ref20); 14
Denisenko (2025031010540829600_ref33) 2024; 15
Cheng (2025031010540829600_ref15) 2021; 7
(2025031010540829600_ref32) 2022
Ma (2025031010540829600_ref45) 2022; 121
PeÕer (2025031010540829600_ref27) 2001; 17
Zhou (2025031010540829600_ref36) 2023; 22
Efremova (2025031010540829600_ref8) 2020; 15
Sung (2025031010540829600_ref25) 2016; 111
Kinny-Köster (2025031010540829600_ref43) 2022
Tang (2025031010540829600_ref21) 2023; 24
Friedman (2025031010540829600_ref26) 2000; 7
Zhu (2025031010540829600_ref24) 2012; 10
Patch (2025031010540829600_ref2) 2015; 521
Chowdhury (2025031010540829600_ref5) 2023; 186
Ramilowski (2025031010540829600_ref34) 2015; 6
Xing (2025031010540829600_ref41) 2016; 35
Zhu (2025031010540829600_ref23) 2008; 40
Cheng (2025031010540829600_ref14) 2021; 22
Tothill (2025031010540829600_ref3) 2008; 14
Miao (2025031010540829600_ref38) 2022; 79
Ståhl (2025031010540829600_ref18) 2016; 353
Wu (2025031010540829600_ref39) 2017; 8
Strickland (2025031010540829600_ref37) 2011; 499
Pearl (2025031010540829600_ref22) 2000
Chowdhury (2025031010540829600_ref29) 2022; 23
Lillis (2025031010540829600_ref40) 2008; 88
References_xml – volume: 121
  start-page: 108216
  year: 2022
  ident: 2025031010540829600_ref45
  article-title: Joint multi-label learning and feature extraction for temporal link prediction
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.108216
– volume-title: Causality: Models, Reasoning and Inference
  year: 2000
  ident: 2025031010540829600_ref22
– volume: 308
  start-page: 523
  year: 2005
  ident: 2025031010540829600_ref28
  article-title: Causal protein-signaling networks derived from multiparameter single-cell data
  publication-title: Science Signalling
  doi: 10.1126/science.1105809
– year: 2022
  ident: 2025031010540829600_ref43
  article-title: Inflammatory signaling in pancreatic cancer transfers between a single-cell RNA sequencing atlas and co-culture
  doi: 10.1101/2022.07.14.500096
– volume: 22
  start-page: 100520
  year: 2023
  ident: 2025031010540829600_ref36
  article-title: Serum exosomes from epithelial ovarian cancer patients contain lrp1, which promotes the migration of epithelial ovarian cancer cell
  publication-title: Mol Cell Proteomics
  doi: 10.1016/j.mcpro.2023.100520
– volume: 474
  start-page: 609
  year: 2011
  ident: 2025031010540829600_ref1
  article-title: Integrated genomic analyses of ovarian carcinoma
  publication-title: Nature
  doi: 10.1038/nature10166
– volume: 17
  start-page: 159
  year: 2020
  ident: 2025031010540829600_ref13
  article-title: Nichenet: Modeling intercellular communication by linking ligands to target genes
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0667-5
– volume: 111
  start-page: 1004
  year: 2016
  ident: 2025031010540829600_ref25
  article-title: Estimation of directed acyclic graphs through two-stage adaptive lasso for gene network inference
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2016.1142880
– volume: 9
  start-page: 674
  year: 2018
  ident: 2025031010540829600_ref6
  article-title: Revisiting ovarian cancer microenvironment: A friend or a foe?
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0466-7
– volume: 24
  year: 2023
  ident: 2025031010540829600_ref21
  article-title: Spaci: Deciphering spatial cellular communications through adaptive graph model
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac563
– volume: 17
  start-page: S215
  year: 2001
  ident: 2025031010540829600_ref27
  article-title: Inferring subnetworks from perturbed expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.suppl_1.S215
– volume: 12
  start-page: 1
  year: 2021
  ident: 2025031010540829600_ref10
  article-title: Inference and analysis of cell-cell communication using cellchat
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21246-9
– volume: 88
  start-page: 887
  year: 2008
  ident: 2025031010540829600_ref40
  article-title: Ldl receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00033.2007
– volume: 83
  start-page: 1503
  year: 2023
  ident: 2025031010540829600_ref31
  article-title: Spatial transcriptomics depict ligand–receptor cross-talk heterogeneity at the tumor-stroma interface in long-term ovarian cancer survivors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-22-1821
– volume: 19
  start-page: 34
  year: 2022
  ident: 2025031010540829600_ref44
  article-title: Aged microglia promote peripheral t cell infiltration by reprogramming the microenvironment of neurogenic niches
  publication-title: Immun Ageing
  doi: 10.1186/s12979-022-00289-6
– volume: 22
  start-page: 988
  year: 2021
  ident: 2025031010540829600_ref14
  article-title: Inferring microenvironmental regulation of gene expression from single-cell rna sequencing data using scmlnet with an application to covid-19
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa327
– volume: 7
  start-page: eabf1356
  year: 2021
  ident: 2025031010540829600_ref15
  article-title: Cytotalk: De novo construction of signal transduction networks using single-cell transcriptomic data.
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abf1356
– volume: 14
  ident: 2025031010540829600_ref20
  article-title: Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues
  publication-title: Nat Commun
– volume: 37
  start-page: 4263
  year: 2021
  ident: 2025031010540829600_ref12
  article-title: Crosstalker: Analysis and visualization of ligand–receptor networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab370
– volume: 6
  start-page: 755
  year: 2015
  ident: 2025031010540829600_ref34
  article-title: A draft network of ligand–receptor-mediated multicellular signalling in human
  publication-title: Nat Commun
  doi: 10.1038/ncomms8866
– volume: 10
  start-page: e1001301
  year: 2012
  ident: 2025031010540829600_ref24
  article-title: Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001301
– volume: 23
  start-page: 321
  year: 2022
  ident: 2025031010540829600_ref29
  article-title: Dagbagm: Learning directed acyclic graphs of mixed variables with an application to identify protein biomarkers for treatment response in ovarian cancer
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-022-04864-y
– volume: 48
  start-page: e55
  year: 2020
  ident: 2025031010540829600_ref9
  article-title: Singlecellsignalr: Inference of intercellular networks from single-cell transcriptomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa183
– volume: 15
  start-page: 1484
  year: 2020
  ident: 2025031010540829600_ref8
  article-title: Cellphonedb: Inferring cell-cell communication from combined expression of multi-subunit ligand–receptor complexes
  publication-title: Nat Protoc
  doi: 10.1038/s41596-020-0292-x
– volume: 42
  year: 2020
  ident: 2025031010540829600_ref16
  article-title: Spatially resolved transcriptomes—Next generation tools for tissue exploration
  publication-title: Bioessays
  doi: 10.1002/bies.201900221
– volume: 35
  start-page: 1
  year: 2016
  ident: 2025031010540829600_ref41
  article-title: Roles of low-density lipoprotein receptor-related protein 1 in tumors
  publication-title: Chin J Cancer
  doi: 10.1186/s40880-015-0064-0
– volume: 496
  start-page: 121
  year: 2018
  ident: 2025031010540829600_ref46
  article-title: Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.12.092
– volume: 166
  start-page: 755
  year: 2016
  ident: 2025031010540829600_ref4
  article-title: Integrated proteogenomic characterization of human high-grade serous ovarian cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.069
– volume: 14
  start-page: 5198
  year: 2008
  ident: 2025031010540829600_ref3
  article-title: Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0196
– volume: 18
  start-page: 9
  year: 2021
  ident: 2025031010540829600_ref17
  article-title: Method of the year: Spatially resolved transcriptomics
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01033-y
– volume: 353
  start-page: 78
  year: 2016
  ident: 2025031010540829600_ref18
  article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.aaf2403
– volume: 186
  start-page: 3476
  year: 2023
  ident: 2025031010540829600_ref5
  article-title: Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2023.07.004
– volume: 22
  start-page: 1
  year: 2021
  ident: 2025031010540829600_ref19
  article-title: Giotto: A toolbox for integrative analysis and visualization of spatial expression data
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02286-2
– volume: 8
  start-page: 111064
  year: 2017
  ident: 2025031010540829600_ref39
  article-title: Systemic bioinformatics analysis of recurrent aphthous stomatitis gene expression profiles
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22347
– volume: 35
  year: 2010
  ident: 2025031010540829600_ref30
  article-title: Learning Bayesian networks with the bnlearn r package
  publication-title: J Stat Softw
  doi: 10.18637/jss.v035.i03
– volume: 2
  year: 2006
  ident: 2025031010540829600_ref35
  article-title: Why do hubs tend to be essential in protein networks?
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020088
– volume: 12
  start-page: 1089
  year: 2021
  ident: 2025031010540829600_ref11
  article-title: Dissection of intercellular communication using the transcriptome-based framework icellnet
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21244-x
– volume: 7
  start-page: 601
  year: 2000
  ident: 2025031010540829600_ref26
  article-title: Using Bayesian networks to analyze expression data
  publication-title: J Comput Biol
  doi: 10.1089/106652700750050961
– volume: 521
  start-page: 489
  year: 2015
  ident: 2025031010540829600_ref2
  article-title: Whole-genome characterization of chemo-resistant ovarian cancer
  publication-title: Nature
  doi: 10.1038/nature14410
– volume: 499
  start-page: 17
  year: 2011
  ident: 2025031010540829600_ref37
  article-title: Serpin–enzyme receptors: Ldl receptor-related protein 1
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-386471-0.00002-X
– volume: 111
  start-page: 3426
  year: 2020
  ident: 2025031010540829600_ref7
  article-title: Prognostic significance of spatial immune profiles in human solid cancers
  publication-title: Cancer Sci
  doi: 10.1111/cas.14591
– volume: 40
  start-page: 854
  year: 2008
  ident: 2025031010540829600_ref23
  article-title: Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
  publication-title: Nat Genet
  doi: 10.1038/ng.167
– volume-title: Vizgen Merfish Ffpe Human Immuno-Oncology Data Set
  year: 2022
  ident: 2025031010540829600_ref32
– volume: 15
  start-page: 2860
  year: 2024
  ident: 2025031010540829600_ref33
  article-title: Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-47271-y
– volume: 79
  start-page: 562
  year: 2022
  ident: 2025031010540829600_ref38
  article-title: Examining the development of chronic thromboembolic pulmonary hypertension at the single-cell level
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.121.18105
– volume: 6
  year: 2019
  ident: 2025031010540829600_ref42
  article-title: Low density lipoprotein receptor-related protein-1 in cardiac inflammation and infarct healing
  publication-title: Frontiers Cardiovasc Med
  doi: 10.3389/fcvm.2019.00051
SSID ssj0020781
Score 2.4258034
Snippet To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell–cell...
To unravel the mechanism of immune activation and suppression within tumors, a critical step is to identify transcriptional signals governing cell-cell...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Biological activity
Case Study
Cell interactions
Communication
Computational Biology - methods
Datasets
Female
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Graph theory
Humans
Immune response
Ligands
Ovarian cancer
Ovarian Neoplasms - genetics
Ovarian Neoplasms - metabolism
Ovarian Neoplasms - pathology
Receptors
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Signal Transduction
Statistical methods
Stromal cells
Transcriptome
Transcriptomics
Tumor Microenvironment
Tumors
Title Learning directed acyclic graphs for ligands and receptors based on spatially resolved transcriptomic data of ovarian cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/40062614
https://www.proquest.com/docview/3248850159
https://www.proquest.com/docview/3175684235
https://pubmed.ncbi.nlm.nih.gov/PMC11891659
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCIkXxO8VxmSkvVXZuvxq_AjTpgmVDWmtKE9RnDhtpJKgLhsq4o_nO9tJG-jD4KFW5SROlPtyvvPdfWbsIImIo9yNnEgGiQOFlzsC8wR8HszXKoeJIKga-dNFeD7xP06D6XpVSVeX1PIw_bm1ruR_pIo-yJWqZP9Bsu2g6MB_yBctJIz2TjIeNesaZmKC7Zikq5RoqzUPtaZa6C-KGZXzmkRyRVkstL8OzV4ZRQquKaU6WSxWOIinvUVvTfOX1iZUstynJFKyKatb-NVQBykBZdmJBsPfzvX-n0XZl0Vl2VjrjUz6k3n1I5vboP3VnDIJyrrYWM1eFs6HajmrZnov8P5V8m1da_HVLmp_Vnae1REA0_dFlatic-3CDXTylr-hbv3hEB6soZE-VFv6rI42VfUWi-5W1W9osWQhqZVJPjBbAXUpti8u47PJaBSPT6fj--yBO4TBBSU4vpy2XjqxH-mSNPsYtqgTwx9h8CM7dNeM-cs3-TPFdsNmGT9hj62zwd8b5Dxl91T5jD0024-unrNfDX54gx9u8cMNfjjEyC1-OBre4odr_PCq5C1-eIMf3sUPJ_zwKucWP9zg5wWbnJ2OT84duxuHk3phVDswVMMglSrMRKRElnoBcQmqLPNTkYYiF1429JQnfAkPPh0ESkpXhJmrRIRfMvBesp2yKtUu4xR8DjO47jL3fOmlMglxiQyPj_OBzP2gxw6alxt_N6QrsUmW8GLIILYy6LG95sXH9qu8juEgRFEAI1f02Lv2MHQmBcKSUlU3OAc2M8WfPQzxysipvY9PVcWwWXss6kiwPYH42LtHymKuednhq8PZCsTrO9z4DXu0_iD22E69vFFvYd7Wcl8vC-1rUP4G49GyDA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+directed+acyclic+graphs+for+ligands+and+receptors+based+on+spatially+resolved+transcriptomic+data+of+ovarian+cancer&rft.jtitle=Briefings+in+bioinformatics&rft.au=Chowdhury%2C+Shrabanti&rft.au=Ferri-Borgogno%2C+Sammy&rft.au=Yang%2C+Peng&rft.au=Wang%2C+Wenyi&rft.date=2025-03-04&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=26&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbaf085&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon