Multi-label Arabic text categorization: A benchmark and baseline comparison of multi-label learning algorithms
Multi-label text categorization refers to the problem of assigning each document to a subset of categories by means of multi-label learning algorithms. Unlike English and most other languages, the unavailability of Arabic benchmark datasets prevents evaluating multi-label learning algorithms for Ara...
Saved in:
| Published in | Information processing & management Vol. 56; no. 1; pp. 212 - 227 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.01.2019
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-4573 1873-5371 1873-5371 |
| DOI | 10.1016/j.ipm.2018.09.008 |
Cover
| Abstract | Multi-label text categorization refers to the problem of assigning each document to a subset of categories by means of multi-label learning algorithms. Unlike English and most other languages, the unavailability of Arabic benchmark datasets prevents evaluating multi-label learning algorithms for Arabic text categorization. As a result, only a few recent studies have dealt with multi-label Arabic text categorization on non-benchmark and inaccessible datasets. Therefore, this work aims to promote multi-label Arabic text categorization through (a) introducing “RTAnews”, a new benchmark dataset of multi-label Arabic news articles for text categorization and other supervised learning tasks. The benchmark is publicly available in several formats compatible with the existing multi-label learning tools, such as MEKA and Mulan. (b) Conducting an extensive comparison of most of the well-known multi-label learning algorithms for Arabic text categorization in order to have baseline results and show the effectiveness of these algorithms for Arabic text categorization on RTAnews. The evaluation involves four multi-label transformation-based algorithms: Binary Relevance, Classifier Chains, Calibrated Ranking by Pairwise Comparison and Label Powerset, with three base learners (Support Vector Machine, k-Nearest-Neighbors and Random Forest); and four adaptation-based algorithms (Multi-label kNN, Instance-Based Learning by Logistic Regression Multi-label, Binary Relevance kNN and RFBoost). The reported baseline results show that both RFBoost and Label Powerset with Support Vector Machine as base learner outperformed other compared algorithms. Results also demonstrated that adaptation-based algorithms are faster than transformation-based algorithms. |
|---|---|
| AbstractList | Multi-label text categorization refers to the problem of assigning each document to a subset of categories by means of multi-label learning algorithms. Unlike English and most other languages, the unavailability of Arabic benchmark datasets prevents evaluating multi-label learning algorithms for Arabic text categorization. As a result, only a few recent studies have dealt with multi-label Arabic text categorization on non-benchmark and inaccessible datasets. Therefore, this work aims to promote multi-label Arabic text categorization through (a) introducing "RTAnews", a new benchmark dataset of multi-label Arabic news articles for text categorization and other supervised learning tasks. The benchmark is publicly available in several formats compatible with the existing multi-label learning tools, such as MEKA and Mulan. (b) Conducting an extensive comparison of most of the well-known multi-label learning algorithms for Arabic text categorization in order to have baseline results and show the effectiveness of these algorithms for Arabic text categorization on RTAnews. The evaluation involves four multi-label transformation-based algorithms: Binary Relevance, Classifier Chains, Calibrated Ranking by Pairwise Comparison and Label Powerset, with three base learners (Support Vector Machine, k-Nearest-Neighbors and Random Forest); and four adaptation-based algorithms (Multi-label kNN, Instance-Based Learning by Logistic Regression Multi-label, Binary Relevance kNN and RFBoost). The reported baseline results show that both RFBoost and Label Powerset with Support Vector Machine as base learner outperformed other compared algorithms. Results also demonstrated that adaptation-based algorithms are faster than transformation-based algorithms. |
| Author | Kendall, Graham Ayob, Masri Al-Salemi, Bassam Noah, Shahrul Azman Mohd |
| Author_xml | – sequence: 1 givenname: Bassam orcidid: 0000-0002-2273-0579 surname: Al-Salemi fullname: Al-Salemi, Bassam email: bassalemi@ukm.edu.my organization: Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia – sequence: 2 givenname: Masri surname: Ayob fullname: Ayob, Masri organization: Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia – sequence: 3 givenname: Graham orcidid: 0000-0003-2006-5103 surname: Kendall fullname: Kendall, Graham organization: School of Computer Science, University of Nottingham, UK – sequence: 4 givenname: Shahrul Azman Mohd surname: Noah fullname: Noah, Shahrul Azman Mohd organization: Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia |
| BookMark | eNqNkU1v1DAURS3USkw_fgA7S6wTnuPYTmA1qoAiFbGha8txXloPjh1sD6X8ejIdFohFxept7rm6Ou-MnIQYkJBXDGoGTL7Z1W6Z6wZYV0NfA3QvyIZ1ileCK3ZCNsBBVq1Q_CU5y3kHAK1gzYaEz3tfXOXNgJ5ukxmcpQV_FmpNwbuY3C9TXAxv6ZYOGOz9bNI3asJIB5PRu4DUxnkxyeUYaJzo_FedR5OCC3fU-ENTuZ_zBTmdjM94-eeek9sP779eXVc3Xz5-utreVJbLrlSqGYfOgprsYJtxAo4S24lJrmASoxQGedP2AoRVauotZ1y0coRWtlwOOAl-Tppj7z4s5vHBeK-X5Nbxj5qBPhjTO70a0wdjGnq9Gluh10doSfH7HnPRu7hPYd2pG9ZxoZTo5ZpSx5RNMeeEk7auPEkqyTj_bD_7h_yfTe-ODK62fjhMOlu3PgJHl9AWPUb3DP0bqbCmBQ |
| CitedBy_id | crossref_primary_10_1016_j_is_2021_101785 crossref_primary_10_1109_ACCESS_2023_3247866 crossref_primary_10_1080_02664763_2024_2307535 crossref_primary_10_3390_info12120491 crossref_primary_10_1007_s00500_022_07771_9 crossref_primary_10_1007_s13042_024_02341_x crossref_primary_10_1155_2020_8879054 crossref_primary_10_1109_ACCESS_2020_3014362 crossref_primary_10_1145_3616111 crossref_primary_10_1016_j_knosys_2023_110938 crossref_primary_10_1007_s10489_021_03086_8 crossref_primary_10_1016_j_procs_2024_09_202 crossref_primary_10_3233_JIFS_201070 crossref_primary_10_1007_s00521_021_06390_z crossref_primary_10_1016_j_ipm_2019_102121 crossref_primary_10_7717_peerj_cs_2685 crossref_primary_10_1007_s12046_022_01975_3 crossref_primary_10_1016_j_eij_2020_08_004 crossref_primary_10_1145_3539607 crossref_primary_10_1016_j_ipm_2020_102210 crossref_primary_10_3390_app11156851 crossref_primary_10_1016_j_neucom_2019_10_118 crossref_primary_10_1016_j_compbiomed_2024_107921 crossref_primary_10_1016_j_engappai_2023_106837 crossref_primary_10_1016_j_ins_2022_02_024 crossref_primary_10_1007_s10639_024_12555_9 crossref_primary_10_1016_j_engappai_2023_107310 crossref_primary_10_1016_j_ins_2022_12_072 crossref_primary_10_1109_ACCESS_2022_3163292 crossref_primary_10_1007_s13042_023_01874_x crossref_primary_10_1007_s11042_023_17622_w crossref_primary_10_1016_j_jnlest_2024_100279 crossref_primary_10_3390_fi14070194 crossref_primary_10_1016_j_ins_2025_121965 crossref_primary_10_3390_app131810264 |
| Cites_doi | 10.1109/TKDE.2016.2563436 10.1016/j.ipm.2016.10.003 10.1016/j.ipm.2015.09.002 10.1016/j.ipm.2016.12.004 10.1006/jcss.1997.1504 10.1108/IJWIS-01-2016-0002 10.1177/0165551515590079 10.1007/s10994-008-5064-8 10.1016/j.artint.2008.08.002 10.1145/1656274.1656278 10.1016/j.eswa.2018.07.024 10.1016/j.patcog.2004.03.009 10.1016/j.knosys.2014.06.004 10.1016/j.neucom.2009.11.024 10.1007/s10994-011-5256-5 10.1016/j.knosys.2016.03.029 10.4018/jdwm.2007070101 10.1007/BF00058655 10.1007/s10994-009-5127-5 10.1023/A:1007649029923 10.1186/1755-8794-4-31 10.1177/0165551514551496 10.1016/j.eswa.2016.03.041 10.1023/A:1010933404324 10.1016/j.patcog.2006.12.019 10.1007/BF00153759 10.1016/j.ipm.2016.03.004 10.1023/A:1007614523901 10.1080/02286203.2003.11442267 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Pergamon Press Inc. Jan 2019 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Jan 2019 |
| DBID | AAYXX CITATION E3H F2A ADTOC UNPAY |
| DOI | 10.1016/j.ipm.2018.09.008 |
| DatabaseName | CrossRef Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) |
| DatabaseTitleList | Library and Information Science Abstracts (LISA) |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science |
| EISSN | 1873-5371 |
| EndPage | 227 |
| ExternalDocumentID | oai:nottingham-repository.worktribe.com:1854608 10_1016_j_ipm_2018_09_008 S0306457318300736 |
| GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS E3H F2A SSH ADTOC UNPAY |
| ID | FETCH-LOGICAL-c368t-72db8c07fcbc2df03e6e4f16370f5d65ae3249505c77f9c313546d046436bef53 |
| IEDL.DBID | .~1 |
| ISSN | 0306-4573 1873-5371 |
| IngestDate | Sun Oct 26 04:14:40 EDT 2025 Fri Jul 25 06:20:43 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Wed Oct 01 01:14:15 EDT 2025 Fri Feb 23 02:18:40 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Multi-label learning Arabic text categorization Multi-label benchmark RTAnews |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-72db8c07fcbc2df03e6e4f16370f5d65ae3249505c77f9c313546d046436bef53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2006-5103 0000-0002-2273-0579 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://nottingham-repository.worktribe.com/output/1854608 |
| PQID | 2183577596 |
| PQPubID | 46166 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ipm_2018_09_008 proquest_journals_2183577596 crossref_citationtrail_10_1016_j_ipm_2018_09_008 crossref_primary_10_1016_j_ipm_2018_09_008 elsevier_sciencedirect_doi_10_1016_j_ipm_2018_09_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Information processing & management |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Aha, Kibler, Albert (bib0002) 1991; 6 Al-Salemi, Aziz, Noah (bib0006) 2015; 41 Rijsbergen (bib0037) 1979 Benbouzid, Busa-Fekete, Casagrande, Collin, Kégl (bib0008) 2012; 13 Tang, Kay, He (bib0044) 2016; 28 Fürnkranz, Hüllermeier, Mencía, Brinker (bib0021) 2008; 73 Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines. In Microsoft Research Technical Report. Tsoumakas, Katakis, Vlahavas (bib0047) 2010 Tsoumakas, Katakis (bib0046) 2007; 3 Shehab, Badarneh, Al-Ayyoub, Jararweh (bib0041) 2016 Loza Mencía, Park, Fürnkranz (bib0029) 2010; 73 Hüllermeier, Fürnkranz, Cheng, Brinker (bib0025) 2008; 172 Zhang, Zhou (bib0053) 2007; 40 Al-Salemi, Ayob, Noah (bib0005) 2018; 113 Schapire, Singer (bib0040) 2000; 39 Forman (bib0019) 2003; 3 Romeo, Da San Martino, Belinkov, Barrón-Cedeño, Eldesouki, Darwish (bib0038) 2017 Tsoumakas, Vlahavas (bib0049) 2007 Read, Reutemann, Pfahringer, Holmes (bib0035) 2016; 17 Ahmed, Shehab, Al-Ayyoub, Hmeidi (bib0003) 2015 Esuli, Fagni, Sebastiani (bib0017) 2006 Karisani, Rahgozar, Oroumchian (bib0028) 2016; 52 Wu, Ye, Zhang, Ng, Ho (bib0052) 2014; 67 Read (bib0033) 2008 Abdul-Mageed (bib0001) 2017 Spyromitros, Tsoumakas, Vlahavas (bib0042) 2008 Breiman (bib0010) 1996; 24 Flores, Moreira (bib0018) 2016; 52 Al-Salemi, Ab Aziz, Noah (bib0004) 2015; 41 Demšar (bib0013) 2006; 7 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0023) 2009; 11 Cheng, Hüllermeier (bib0012) 2009; 76 Boutell, Luo, Shen, Brown (bib0009) 2004; 37 Wu, Gu, Gu (bib0051) 2017; 53 Dobbin, Simon (bib0014) 2011; 4 Freund, Schapire (bib0020) 1997; 55 Read, Pfahringer, Holmes, Frank (bib0034) 2011; 85 Breiman (bib0011) 2001; 45 Rehman, Javed, Babri (bib0036) 2017; 53 Al-Salemi, Noah, Ab Aziz (bib0007) 2016; 103 Vapnik (bib0050) 2013 Mubarak, Darwish (bib0031) 2014 Tsoumakas, Spyromitros-Xioufis, Vilcek, Vlahavas (bib0048) 2011; 12 Eldos (bib0015) 2003; 23 Hmeidi, Al-Ayyoub, Mahyoub, Shehab (bib0024) 2016; 12 Schapire, Singer (bib0039) 1999; 37 Mierswa, Wurst, Klinkenberg, Scholz, Euler (bib0030) 2006 Taha, Tiun (bib0043) 2016; 84 Joachims (bib0027) 1998 Jaccard (bib0026) 1908; 44 Elghazel, Aussem, Gharroudi, Saadaoui (bib0016) 2016; 57 Gantz, Reinsel (bib0022) 2012; 2007 Tong, Koller (bib0045) 2001; 2 Boutell (10.1016/j.ipm.2018.09.008_bib0009) 2004; 37 10.1016/j.ipm.2018.09.008_bib0032 Vapnik (10.1016/j.ipm.2018.09.008_bib0050) 2013 Tang (10.1016/j.ipm.2018.09.008_bib0044) 2016; 28 Jaccard (10.1016/j.ipm.2018.09.008_bib0026) 1908; 44 Al-Salemi (10.1016/j.ipm.2018.09.008_bib0006) 2015; 41 Mubarak (10.1016/j.ipm.2018.09.008_bib0031) 2014 Wu (10.1016/j.ipm.2018.09.008_bib0052) 2014; 67 Dobbin (10.1016/j.ipm.2018.09.008_bib0014) 2011; 4 Freund (10.1016/j.ipm.2018.09.008_bib0020) 1997; 55 Spyromitros (10.1016/j.ipm.2018.09.008_bib0042) 2008 Forman (10.1016/j.ipm.2018.09.008_bib0019) 2003; 3 Abdul-Mageed (10.1016/j.ipm.2018.09.008_bib0001) 2017 Tsoumakas (10.1016/j.ipm.2018.09.008_bib0046) 2007; 3 Esuli (10.1016/j.ipm.2018.09.008_bib0017) 2006 Read (10.1016/j.ipm.2018.09.008_bib0035) 2016; 17 Romeo (10.1016/j.ipm.2018.09.008_bib0038) 2017 Breiman (10.1016/j.ipm.2018.09.008_bib0011) 2001; 45 Elghazel (10.1016/j.ipm.2018.09.008_bib0016) 2016; 57 Read (10.1016/j.ipm.2018.09.008_bib0033) 2008 Zhang (10.1016/j.ipm.2018.09.008_bib0053) 2007; 40 Al-Salemi (10.1016/j.ipm.2018.09.008_bib0007) 2016; 103 Read (10.1016/j.ipm.2018.09.008_bib0034) 2011; 85 Loza Mencía (10.1016/j.ipm.2018.09.008_bib0029) 2010; 73 Tsoumakas (10.1016/j.ipm.2018.09.008_bib0049) 2007 Joachims (10.1016/j.ipm.2018.09.008_bib0027) 1998 Hüllermeier (10.1016/j.ipm.2018.09.008_bib0025) 2008; 172 Wu (10.1016/j.ipm.2018.09.008_bib0051) 2017; 53 Tsoumakas (10.1016/j.ipm.2018.09.008_bib0048) 2011; 12 Taha (10.1016/j.ipm.2018.09.008_bib0043) 2016; 84 Eldos (10.1016/j.ipm.2018.09.008_bib0015) 2003; 23 Tsoumakas (10.1016/j.ipm.2018.09.008_bib0047) 2010 Schapire (10.1016/j.ipm.2018.09.008_bib0039) 1999; 37 Tong (10.1016/j.ipm.2018.09.008_bib0045) 2001; 2 Demšar (10.1016/j.ipm.2018.09.008_bib0013) 2006; 7 Benbouzid (10.1016/j.ipm.2018.09.008_bib0008) 2012; 13 Al-Salemi (10.1016/j.ipm.2018.09.008_bib0004) 2015; 41 Schapire (10.1016/j.ipm.2018.09.008_bib0040) 2000; 39 Breiman (10.1016/j.ipm.2018.09.008_bib0010) 1996; 24 Rehman (10.1016/j.ipm.2018.09.008_bib0036) 2017; 53 Fürnkranz (10.1016/j.ipm.2018.09.008_bib0021) 2008; 73 Flores (10.1016/j.ipm.2018.09.008_bib0018) 2016; 52 Al-Salemi (10.1016/j.ipm.2018.09.008_bib0005) 2018; 113 Ahmed (10.1016/j.ipm.2018.09.008_bib0003) 2015 Cheng (10.1016/j.ipm.2018.09.008_bib0012) 2009; 76 Aha (10.1016/j.ipm.2018.09.008_bib0002) 1991; 6 Karisani (10.1016/j.ipm.2018.09.008_bib0028) 2016; 52 Mierswa (10.1016/j.ipm.2018.09.008_bib0030) 2006 Rijsbergen (10.1016/j.ipm.2018.09.008_bib0037) 1979 Shehab (10.1016/j.ipm.2018.09.008_bib0041) 2016 Gantz (10.1016/j.ipm.2018.09.008_bib0022) 2012; 2007 Hall (10.1016/j.ipm.2018.09.008_bib0023) 2009; 11 Hmeidi (10.1016/j.ipm.2018.09.008_bib0024) 2016; 12 |
| References_xml | – year: 2006 ident: bib0017 article-title: MP-Boost: A multiple-pivot boosting algorithm and its application to text categorization publication-title: Proceedings of the string processing and information retrieval – volume: 28 start-page: 2508 year: 2016 end-page: 2521 ident: bib0044 article-title: Toward optimal feature selection in naive Bayes for text categorization publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 23 start-page: 158 year: 2003 end-page: 166 ident: bib0015 article-title: Arabic text data mining: A root-based hierarchical indexing model publication-title: International Journal of Modelling and Simulation – year: 2016 ident: bib0041 article-title: A supervised approach for multi-label classification of Arabic news articles publication-title: 7th international conference on computer science and information technology (CSIT) – volume: 40 start-page: 2038 year: 2007 end-page: 2048 ident: bib0053 article-title: ML-KNN: A lazy learning approach to multi-label learning publication-title: Pattern Recognition – volume: 103 start-page: 104 year: 2016 end-page: 117 ident: bib0007 article-title: RFBoost: An improved multi-label boosting algorithm and its application to text categorisation publication-title: Knowledge-Based Systems – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0011 article-title: Random forests publication-title: Machine Learning – year: 2006 ident: bib0030 article-title: Yale: Rapid prototyping for complex data mining tasks publication-title: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining – volume: 57 start-page: 1 year: 2016 end-page: 11 ident: bib0016 article-title: Ensemble multi-label text categorization based on rotation forest and latent semantic indexing publication-title: Expert Systems with Applications – volume: 41 start-page: 27 year: 2015 end-page: 40 ident: bib0006 article-title: LDA-AdaBoost.MH: Accelerated AdaBoost.MH based on latent Dirichlet allocation for text categorization publication-title: Journal of Information Science – start-page: 406 year: 2007 end-page: 417 ident: bib0049 article-title: Random k-labelsets: An ensemble method for multilabel classification publication-title: Proceedings of the ECML – volume: 172 start-page: 1897 year: 2008 end-page: 1916 ident: bib0025 article-title: Label ranking by learning pairwise preferences publication-title: Artificial Intelligence – volume: 73 start-page: 1164 year: 2010 end-page: 1176 ident: bib0029 article-title: Efficient voting prediction for pairwise multilabel classification publication-title: Neurocomputing – start-page: 401 year: 2008 end-page: 406 ident: bib0042 article-title: An empirical study of lazy multilabel classification algorithms publication-title: Artificial intelligence: Theories, models and applications – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib0023 article-title: The WEKA data mining software: An update publication-title: ACM SIGKDD Explorations Newsletter – volume: 84 start-page: 414 year: 2016 ident: bib0043 article-title: Binary relevance (br) method classifier of multi-label classification for Arabic text publication-title: Journal of Theoretical and Applied Information Technology – year: 1998 ident: bib0027 article-title: Making large-scale SVM learning practical – year: 1979 ident: bib0037 article-title: Information retrieval – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bib0020 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: Journal of Computer and System Sciences – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib0010 article-title: Bagging predictors publication-title: Machine Learning – reference: Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines. In Microsoft Research Technical Report. – volume: 2007 start-page: 1 year: 2012 end-page: 16 ident: bib0022 article-title: The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east publication-title: IDC iView IDC Analyze the Future – volume: 6 start-page: 37 year: 1991 end-page: 66 ident: bib0002 article-title: Instance-based learning algorithms publication-title: Machine Learning – volume: 113 start-page: 531 year: 2018 end-page: 543 ident: bib0005 article-title: Feature ranking for enhancing boosting-based multi-label text categorization publication-title: Expert Systems with Applications – volume: 41 start-page: 732 year: 2015 end-page: 746 ident: bib0004 article-title: Boosting algorithms with topic modeling for multi-label text categorization: A comparative empirical study publication-title: Journal of Information Science – year: 2008 ident: bib0033 article-title: A pruned problem transformation method for multi-label classification publication-title: Proceedings of the New Zealand computer science research student conference (NZCSRS 2008) – volume: 13 start-page: 549 year: 2012 end-page: 553 ident: bib0008 article-title: MultiBoost: A multi-purpose boosting package publication-title: Journal of Machine Learning Research – volume: 39 start-page: 135 year: 2000 end-page: 168 ident: bib0040 article-title: BoosTexter: A boosting-based system for text categorization publication-title: Machine Learning – volume: 12 start-page: 2411 year: 2011 end-page: 2414 ident: bib0048 article-title: Mulan: A java library for multi-label learning publication-title: Journal of Machine Learning Research – volume: 76 start-page: 211 year: 2009 end-page: 225 ident: bib0012 article-title: Combining instance-based learning and logistic regression for multilabel classification publication-title: Machine Learning – volume: 85 start-page: 333 year: 2011 end-page: 359 ident: bib0034 article-title: Classifier chains for multi-label classification publication-title: Machine Learning – volume: 53 start-page: 547 year: 2017 end-page: 557 ident: bib0051 article-title: Balancing between over-weighting and under-weighting in supervised term weighting publication-title: Information Processing and Management – year: 2013 ident: bib0050 article-title: The nature of statistical learning theory – volume: 52 start-page: 840 year: 2016 end-page: 854 ident: bib0018 article-title: Assessing the impact of stemming accuracy on information retrieval – a multilingual perspective publication-title: Information Processing and Management – volume: 4 start-page: 31 year: 2011 ident: bib0014 article-title: Optimally splitting cases for training and testing high dimensional classifiers publication-title: BMC Medical Genomics – year: 2015 ident: bib0003 article-title: Scalable multi-label Arabic text classification publication-title: Proceedings of the 6th international conference on information and communication systems (ICICS) – volume: 12 start-page: 504 year: 2016 end-page: 532 ident: bib0024 article-title: A lexicon based approach for classifying Arabic multi-labeled text publication-title: International Journal of Web Information Systems – volume: 67 start-page: 105 year: 2014 end-page: 116 ident: bib0052 article-title: ForesTexter: An efficient random forest algorithm for imbalanced text categorization publication-title: Knowledge Based Systems – volume: 73 start-page: 133 year: 2008 end-page: 153 ident: bib0021 article-title: Multilabel classification via calibrated label ranking publication-title: Machine Learning – year: 2017 ident: bib0001 article-title: Modeling Arabic subjectivity and sentiment in lexical space publication-title: Information Processing and Management – volume: 3 start-page: 1289 year: 2003 end-page: 1305 ident: bib0019 article-title: An extensive empirical study of feature selection metrics for text classification publication-title: Journal of machine learning research – volume: 37 start-page: 297 year: 1999 end-page: 336 ident: bib0039 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Machine Learning – year: 2017 ident: bib0038 article-title: Language processing and learning models for community question answering in Arabic publication-title: Information Processing and Management – volume: 2 start-page: 45 year: 2001 end-page: 66 ident: bib0045 article-title: Support vector machine active learning with applications to text classification publication-title: Journal of Machine Learning Research – volume: 3 start-page: 1 year: 2007 end-page: 13 ident: bib0046 article-title: Multi-label classification: An overview publication-title: International Journal of Data Warehousing and Mining (IJDWM) – volume: 17 start-page: 667 year: 2016 end-page: 671 ident: bib0035 article-title: Meka: A multi-label/multi-target extension to weka publication-title: The Journal of Machine Learning Research – volume: 53 start-page: 473 year: 2017 end-page: 489 ident: bib0036 article-title: Feature selection based on a normalized difference measure for text classification publication-title: Information Processing and Management – volume: 37 start-page: 1757 year: 2004 end-page: 1771 ident: bib0009 article-title: Learning multi-label scene classification publication-title: Pattern Recognition – start-page: 667 year: 2010 end-page: 685 ident: bib0047 article-title: Mining multi-label data – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0013 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: The Journal of Machine Learning Research – year: 2014 ident: bib0031 article-title: Using Twitter to collect a multi-dialectal corpus of Arabic publication-title: Proceedings of the EMNLP workshop on Arabic natural language processing (ANLP) – volume: 44 start-page: 223 year: 1908 end-page: 270 ident: bib0026 article-title: Nouvelles recherches sur la distribution florale publication-title: Bulletin de la Société Vaudoise des Sciences Naturelles – volume: 52 start-page: 478 year: 2016 end-page: 489 ident: bib0028 article-title: A query term re-weighting approach using document similarity publication-title: Information Processing and Management – volume: 28 start-page: 2508 issue: 9 year: 2016 ident: 10.1016/j.ipm.2018.09.008_bib0044 article-title: Toward optimal feature selection in naive Bayes for text categorization publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2016.2563436 – volume: 53 start-page: 547 issue: 2 year: 2017 ident: 10.1016/j.ipm.2018.09.008_bib0051 article-title: Balancing between over-weighting and under-weighting in supervised term weighting publication-title: Information Processing and Management doi: 10.1016/j.ipm.2016.10.003 – volume: 52 start-page: 478 issue: 3 year: 2016 ident: 10.1016/j.ipm.2018.09.008_bib0028 article-title: A query term re-weighting approach using document similarity publication-title: Information Processing and Management doi: 10.1016/j.ipm.2015.09.002 – volume: 53 start-page: 473 issue: 2 year: 2017 ident: 10.1016/j.ipm.2018.09.008_bib0036 article-title: Feature selection based on a normalized difference measure for text classification publication-title: Information Processing and Management doi: 10.1016/j.ipm.2016.12.004 – volume: 3 start-page: 1289 year: 2003 ident: 10.1016/j.ipm.2018.09.008_bib0019 article-title: An extensive empirical study of feature selection metrics for text classification publication-title: Journal of machine learning research – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.ipm.2018.09.008_bib0020 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: Journal of Computer and System Sciences doi: 10.1006/jcss.1997.1504 – volume: 12 start-page: 504 issue: 4 year: 2016 ident: 10.1016/j.ipm.2018.09.008_bib0024 article-title: A lexicon based approach for classifying Arabic multi-labeled text publication-title: International Journal of Web Information Systems doi: 10.1108/IJWIS-01-2016-0002 – volume: 41 start-page: 732 issue: 5 year: 2015 ident: 10.1016/j.ipm.2018.09.008_bib0004 article-title: Boosting algorithms with topic modeling for multi-label text categorization: A comparative empirical study publication-title: Journal of Information Science doi: 10.1177/0165551515590079 – year: 2006 ident: 10.1016/j.ipm.2018.09.008_bib0030 article-title: Yale: Rapid prototyping for complex data mining tasks – volume: 84 start-page: 414 issue: 3 year: 2016 ident: 10.1016/j.ipm.2018.09.008_bib0043 article-title: Binary relevance (br) method classifier of multi-label classification for Arabic text publication-title: Journal of Theoretical and Applied Information Technology – volume: 73 start-page: 133 issue: 2 year: 2008 ident: 10.1016/j.ipm.2018.09.008_bib0021 article-title: Multilabel classification via calibrated label ranking publication-title: Machine Learning doi: 10.1007/s10994-008-5064-8 – ident: 10.1016/j.ipm.2018.09.008_bib0032 – volume: 2 start-page: 45 year: 2001 ident: 10.1016/j.ipm.2018.09.008_bib0045 article-title: Support vector machine active learning with applications to text classification publication-title: Journal of Machine Learning Research – volume: 172 start-page: 1897 issue: 16 year: 2008 ident: 10.1016/j.ipm.2018.09.008_bib0025 article-title: Label ranking by learning pairwise preferences publication-title: Artificial Intelligence doi: 10.1016/j.artint.2008.08.002 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.ipm.2018.09.008_bib0023 article-title: The WEKA data mining software: An update publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/1656274.1656278 – volume: 113 start-page: 531 year: 2018 ident: 10.1016/j.ipm.2018.09.008_bib0005 article-title: Feature ranking for enhancing boosting-based multi-label text categorization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.07.024 – year: 1979 ident: 10.1016/j.ipm.2018.09.008_bib0037 – volume: 37 start-page: 1757 issue: 9 year: 2004 ident: 10.1016/j.ipm.2018.09.008_bib0009 article-title: Learning multi-label scene classification publication-title: Pattern Recognition doi: 10.1016/j.patcog.2004.03.009 – start-page: 401 year: 2008 ident: 10.1016/j.ipm.2018.09.008_bib0042 article-title: An empirical study of lazy multilabel classification algorithms – year: 2008 ident: 10.1016/j.ipm.2018.09.008_bib0033 article-title: A pruned problem transformation method for multi-label classification – year: 2006 ident: 10.1016/j.ipm.2018.09.008_bib0017 article-title: MP-Boost: A multiple-pivot boosting algorithm and its application to text categorization – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.ipm.2018.09.008_bib0013 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: The Journal of Machine Learning Research – volume: 2007 start-page: 1 issue: 2012 year: 2012 ident: 10.1016/j.ipm.2018.09.008_bib0022 article-title: The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east publication-title: IDC iView IDC Analyze the Future – volume: 67 start-page: 105 year: 2014 ident: 10.1016/j.ipm.2018.09.008_bib0052 article-title: ForesTexter: An efficient random forest algorithm for imbalanced text categorization publication-title: Knowledge Based Systems doi: 10.1016/j.knosys.2014.06.004 – volume: 73 start-page: 1164 issue: 7 year: 2010 ident: 10.1016/j.ipm.2018.09.008_bib0029 article-title: Efficient voting prediction for pairwise multilabel classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.024 – year: 2014 ident: 10.1016/j.ipm.2018.09.008_bib0031 article-title: Using Twitter to collect a multi-dialectal corpus of Arabic – volume: 17 start-page: 667 issue: 1 year: 2016 ident: 10.1016/j.ipm.2018.09.008_bib0035 article-title: Meka: A multi-label/multi-target extension to weka publication-title: The Journal of Machine Learning Research – year: 2017 ident: 10.1016/j.ipm.2018.09.008_bib0038 article-title: Language processing and learning models for community question answering in Arabic publication-title: Information Processing and Management – volume: 85 start-page: 333 issue: 3 year: 2011 ident: 10.1016/j.ipm.2018.09.008_bib0034 article-title: Classifier chains for multi-label classification publication-title: Machine Learning doi: 10.1007/s10994-011-5256-5 – volume: 103 start-page: 104 issue: Supplement C year: 2016 ident: 10.1016/j.ipm.2018.09.008_bib0007 article-title: RFBoost: An improved multi-label boosting algorithm and its application to text categorisation publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2016.03.029 – year: 1998 ident: 10.1016/j.ipm.2018.09.008_bib0027 – volume: 3 start-page: 1 issue: 3 year: 2007 ident: 10.1016/j.ipm.2018.09.008_bib0046 article-title: Multi-label classification: An overview publication-title: International Journal of Data Warehousing and Mining (IJDWM) doi: 10.4018/jdwm.2007070101 – start-page: 667 year: 2010 ident: 10.1016/j.ipm.2018.09.008_bib0047 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.ipm.2018.09.008_bib0010 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – volume: 76 start-page: 211 issue: 2-3 year: 2009 ident: 10.1016/j.ipm.2018.09.008_bib0012 article-title: Combining instance-based learning and logistic regression for multilabel classification publication-title: Machine Learning doi: 10.1007/s10994-009-5127-5 – volume: 12 start-page: 2411 year: 2011 ident: 10.1016/j.ipm.2018.09.008_bib0048 article-title: Mulan: A java library for multi-label learning publication-title: Journal of Machine Learning Research – volume: 39 start-page: 135 issue: 2 year: 2000 ident: 10.1016/j.ipm.2018.09.008_bib0040 article-title: BoosTexter: A boosting-based system for text categorization publication-title: Machine Learning doi: 10.1023/A:1007649029923 – volume: 13 start-page: 549 issue: Mar year: 2012 ident: 10.1016/j.ipm.2018.09.008_bib0008 article-title: MultiBoost: A multi-purpose boosting package publication-title: Journal of Machine Learning Research – volume: 4 start-page: 31 issue: 1 year: 2011 ident: 10.1016/j.ipm.2018.09.008_bib0014 article-title: Optimally splitting cases for training and testing high dimensional classifiers publication-title: BMC Medical Genomics doi: 10.1186/1755-8794-4-31 – volume: 41 start-page: 27 issue: 1 year: 2015 ident: 10.1016/j.ipm.2018.09.008_bib0006 article-title: LDA-AdaBoost.MH: Accelerated AdaBoost.MH based on latent Dirichlet allocation for text categorization publication-title: Journal of Information Science doi: 10.1177/0165551514551496 – volume: 44 start-page: 223 year: 1908 ident: 10.1016/j.ipm.2018.09.008_bib0026 article-title: Nouvelles recherches sur la distribution florale publication-title: Bulletin de la Société Vaudoise des Sciences Naturelles – year: 2017 ident: 10.1016/j.ipm.2018.09.008_bib0001 article-title: Modeling Arabic subjectivity and sentiment in lexical space publication-title: Information Processing and Management – volume: 57 start-page: 1 year: 2016 ident: 10.1016/j.ipm.2018.09.008_bib0016 article-title: Ensemble multi-label text categorization based on rotation forest and latent semantic indexing publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.041 – year: 2015 ident: 10.1016/j.ipm.2018.09.008_bib0003 article-title: Scalable multi-label Arabic text classification – year: 2016 ident: 10.1016/j.ipm.2018.09.008_bib0041 article-title: A supervised approach for multi-label classification of Arabic news articles – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.ipm.2018.09.008_bib0011 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 40 start-page: 2038 issue: 7 year: 2007 ident: 10.1016/j.ipm.2018.09.008_bib0053 article-title: ML-KNN: A lazy learning approach to multi-label learning publication-title: Pattern Recognition doi: 10.1016/j.patcog.2006.12.019 – volume: 6 start-page: 37 issue: 1 year: 1991 ident: 10.1016/j.ipm.2018.09.008_bib0002 article-title: Instance-based learning algorithms publication-title: Machine Learning doi: 10.1007/BF00153759 – start-page: 406 year: 2007 ident: 10.1016/j.ipm.2018.09.008_bib0049 article-title: Random k-labelsets: An ensemble method for multilabel classification – volume: 52 start-page: 840 issue: 5 year: 2016 ident: 10.1016/j.ipm.2018.09.008_bib0018 article-title: Assessing the impact of stemming accuracy on information retrieval – a multilingual perspective publication-title: Information Processing and Management doi: 10.1016/j.ipm.2016.03.004 – year: 2013 ident: 10.1016/j.ipm.2018.09.008_bib0050 – volume: 37 start-page: 297 issue: 3 year: 1999 ident: 10.1016/j.ipm.2018.09.008_bib0039 article-title: Improved boosting algorithms using confidence-rated predictions publication-title: Machine Learning doi: 10.1023/A:1007614523901 – volume: 23 start-page: 158 issue: 3 year: 2003 ident: 10.1016/j.ipm.2018.09.008_bib0015 article-title: Arabic text data mining: A root-based hierarchical indexing model publication-title: International Journal of Modelling and Simulation doi: 10.1080/02286203.2003.11442267 |
| SSID | ssj0004512 |
| Score | 2.4793959 |
| Snippet | Multi-label text categorization refers to the problem of assigning each document to a subset of categories by means of multi-label learning algorithms. Unlike... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 212 |
| SubjectTerms | Adaptation Algorithms Arabic language Arabic text categorization Benchmarks Classification Datasets Learning Machine learning Multi-label benchmark Multi-label learning RTAnews Support vector machines Text categorization Transformations |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBXFOfTUj7SlDknRofTQIldrraR1bqY0hEBDDzWk9CD0Gbuxd429S0l-fTS7WmNKSWnvmkViZjUPzXszCL11NHAXd0iMtJTk0hbETHJHZAE6RiEz17YU-nIpzmf5xRW_SqxK0MKUVUv3nesVgUfz7QJKzSPgKMEAqO59qWrqdVN_jJkmF6DzPRA84vABOphdfp1-78oGguS8LS9nhWSEM5n1Jc2W3LVYgwo9K9oepzBa8s9JaQ90Pm7Ktb79pZfLvfxz9hT96Hfe0U5uRk1tRvbut6aO_3e0Z-hJgqV42sXRc_TIl4foJIka8DucVEvgRZyugxeobNW7JMaRB1NtFhYDkQQDy-q62iSJ5ymeYhMt5iu9ucG6dBhSJ8BbbHdTEHEV8Grvc2maxTXWS_hSPV9tX6LZ2edvn85Jmt9ALBNFTeTYmcJSGayxYxco88LnIQJACQEiuPYMJl9TbqUME8syFk_toNbKhPGBs1doUFalf42wC5pZbQupzTg3zBvmGHOFHkthKQ16iGjvQGVTc3OYsbFUPYvtp4o-V-BzRScq-nyI3u9M1l1nj4cW531UqARNOsihYuZ5yOy4jyCV7oatAlDKpYwxO0QfdlH19z0c_dPqYzSoN40_iZCpNm_Sv3EPKkAcBQ priority: 102 providerName: Unpaywall |
| Title | Multi-label Arabic text categorization: A benchmark and baseline comparison of multi-label learning algorithms |
| URI | https://dx.doi.org/10.1016/j.ipm.2018.09.008 https://www.proquest.com/docview/2183577596 https://nottingham-repository.worktribe.com/output/1854608 |
| UnpaywallVersion | submittedVersion |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5371 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004512 issn: 0306-4573 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5371 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004512 issn: 0306-4573 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5371 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004512 issn: 0306-4573 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5371 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004512 issn: 0306-4573 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5371 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004512 issn: 0306-4573 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBehO2yXsXUbS5sWHcYOG2rk6MveLZSGbGNhsAbak9CH1aRNnJCkjF32t0_PkUMGpYOdjI2eeegn6f3s94XQO0-D8FFDYpWjhCuXE1twT1QOeYxSZb4uKfRtJIdj_uVKXLXQeZMLA2GV6ezfnun1aZ2edNNsdpfTafcHsF0uFCxK8DdB2W3OFXQxOPud7VUMz5InQRIY3Xg26xiv6RKS0bO8LnUKHSYftk173PPpfbU0v36a2WzPDA1eoOeJP-L-VsWXqFVWh-gkZR_g9zilF8F047RvX6GqTrMlEfASRI2dOgwRHxjCoW4Wq5SL-Qn3sY0Sk7lZ3WFTeQw2Dngodrt2hXgR8HzvdantxA02M3jTZjJfv0bjwcXl-ZCkRgvEMZlviOp5mzuqgrOu5wNlpSx5iExNAZJSmJJBi2oqnFKhcCxjgksPTlEmbRkEe4MOqkVVvkXYB8Occbkytscti5_qnjGfm56SjtJg2og2U6xdqkIOzTBmugk3u9URFQ2oaFroiEobfdiJLLclOB4bzBvc9F_rSEcT8ZhYp8FYp0281sAehVKikG30cYf7v3U4-j8djtGzeFds_-900MFmdV-eRMazsaf1kj5FT_qfvw5H8Toefe9f_wEn7gLB |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcigXxFOEtuAD4gAy8a5fu9yqiipA2wut1Jvlx7oNJJsoTVVx4bfj2XijIKEicd3dsUb-bM_nnRfAm8CiDElD6rRnVGhfUVeLQHWFeYxKF6ErKXRyqkbn4suFvNiCwz4XBsMq89m_OtO70zo_GebZHM7H4-E3ZLtCalyU6G9S9-C-kKXGG9iHX8VGyfAiuxIUxc9712YX5DWeYzZ6UXW1TrHF5N-N0wb53Llp5_bnrZ1MNuzQ0SN4mAkkOVjp-Bi2mvYJ7Of0A_KW5PwinG-SN-5TaLs8W5oQb1DUurEnGPJBMB7qcrbIyZgfyQFxSeJqahc_iG0DQSOHRJT4db9CMotkujFc7jtxSewER1peTa-fwfnRp7PDEc2dFqjnqlpSXQZXeaajd74MkfFGNSImqqYRSiVtw7FHNZNe61h7XnApVECvKFeuiZI_h-121jYvgIRoube-0taVwvF0Vw-ch8qWWnnGoh0A66fY-FyGHLthTEwfb_bdJFQMomJYbRIqA3i3FpmvanDc9bHocTN_LCSTbMRdYns9xibv4muD9FFqLWs1gPdr3P-tw8v_0-E17IzOTo7N8efTr7vwIL2pVz979mB7ubhp9hP9WbpX3fL-DfylAqY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBXFOfTUj7SlDknRofTQIldrraR1bqY0hEBDDzWk9CD0Gbuxd429S0l-fTS7WmNKSWnvmkViZjUPzXszCL11NHAXd0iMtJTk0hbETHJHZAE6RiEz17YU-nIpzmf5xRW_SqxK0MKUVUv3nesVgUfz7QJKzSPgKMEAqO59qWrqdVN_jJkmF6DzPRA84vABOphdfp1-78oGguS8LS9nhWSEM5n1Jc2W3LVYgwo9K9oepzBa8s9JaQ90Pm7Ktb79pZfLvfxz9hT96Hfe0U5uRk1tRvbut6aO_3e0Z-hJgqV42sXRc_TIl4foJIka8DucVEvgRZyugxeobNW7JMaRB1NtFhYDkQQDy-q62iSJ5ymeYhMt5iu9ucG6dBhSJ8BbbHdTEHEV8Grvc2maxTXWS_hSPV9tX6LZ2edvn85Jmt9ALBNFTeTYmcJSGayxYxco88LnIQJACQEiuPYMJl9TbqUME8syFk_toNbKhPGBs1doUFalf42wC5pZbQupzTg3zBvmGHOFHkthKQ16iGjvQGVTc3OYsbFUPYvtp4o-V-BzRScq-nyI3u9M1l1nj4cW531UqARNOsihYuZ5yOy4jyCV7oatAlDKpYwxO0QfdlH19z0c_dPqYzSoN40_iZCpNm_Sv3EPKkAcBQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+Arabic+text+categorization%3A+A+benchmark+and+baseline+comparison+of+multi-label+learning+algorithms&rft.jtitle=Information+processing+%26+management&rft.au=Al-Salemi%2C+Bassam&rft.au=Ayob%2C+Masri&rft.au=Kendall%2C+Graham&rft.au=Noah%2C+Shahrul+Azman+Mohd&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=56&rft.issue=1&rft.spage=212&rft.epage=227&rft_id=info:doi/10.1016%2Fj.ipm.2018.09.008&rft.externalDocID=S0306457318300736 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |