Multi-label Arabic text categorization: A benchmark and baseline comparison of multi-label learning algorithms

Multi-label text categorization refers to the problem of assigning each document to a subset of categories by means of multi-label learning algorithms. Unlike English and most other languages, the unavailability of Arabic benchmark datasets prevents evaluating multi-label learning algorithms for Ara...

Full description

Saved in:
Bibliographic Details
Published inInformation processing & management Vol. 56; no. 1; pp. 212 - 227
Main Authors Al-Salemi, Bassam, Ayob, Masri, Kendall, Graham, Noah, Shahrul Azman Mohd
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0306-4573
1873-5371
1873-5371
DOI10.1016/j.ipm.2018.09.008

Cover

Abstract Multi-label text categorization refers to the problem of assigning each document to a subset of categories by means of multi-label learning algorithms. Unlike English and most other languages, the unavailability of Arabic benchmark datasets prevents evaluating multi-label learning algorithms for Arabic text categorization. As a result, only a few recent studies have dealt with multi-label Arabic text categorization on non-benchmark and inaccessible datasets. Therefore, this work aims to promote multi-label Arabic text categorization through (a) introducing “RTAnews”, a new benchmark dataset of multi-label Arabic news articles for text categorization and other supervised learning tasks. The benchmark is publicly available in several formats compatible with the existing multi-label learning tools, such as MEKA and Mulan. (b) Conducting an extensive comparison of most of the well-known multi-label learning algorithms for Arabic text categorization in order to have baseline results and show the effectiveness of these algorithms for Arabic text categorization on RTAnews. The evaluation involves four multi-label transformation-based algorithms: Binary Relevance, Classifier Chains, Calibrated Ranking by Pairwise Comparison and Label Powerset, with three base learners (Support Vector Machine, k-Nearest-Neighbors and Random Forest); and four adaptation-based algorithms (Multi-label kNN, Instance-Based Learning by Logistic Regression Multi-label, Binary Relevance kNN and RFBoost). The reported baseline results show that both RFBoost and Label Powerset with Support Vector Machine as base learner outperformed other compared algorithms. Results also demonstrated that adaptation-based algorithms are faster than transformation-based algorithms.
AbstractList Multi-label text categorization refers to the problem of assigning each document to a subset of categories by means of multi-label learning algorithms. Unlike English and most other languages, the unavailability of Arabic benchmark datasets prevents evaluating multi-label learning algorithms for Arabic text categorization. As a result, only a few recent studies have dealt with multi-label Arabic text categorization on non-benchmark and inaccessible datasets. Therefore, this work aims to promote multi-label Arabic text categorization through (a) introducing "RTAnews", a new benchmark dataset of multi-label Arabic news articles for text categorization and other supervised learning tasks. The benchmark is publicly available in several formats compatible with the existing multi-label learning tools, such as MEKA and Mulan. (b) Conducting an extensive comparison of most of the well-known multi-label learning algorithms for Arabic text categorization in order to have baseline results and show the effectiveness of these algorithms for Arabic text categorization on RTAnews. The evaluation involves four multi-label transformation-based algorithms: Binary Relevance, Classifier Chains, Calibrated Ranking by Pairwise Comparison and Label Powerset, with three base learners (Support Vector Machine, k-Nearest-Neighbors and Random Forest); and four adaptation-based algorithms (Multi-label kNN, Instance-Based Learning by Logistic Regression Multi-label, Binary Relevance kNN and RFBoost). The reported baseline results show that both RFBoost and Label Powerset with Support Vector Machine as base learner outperformed other compared algorithms. Results also demonstrated that adaptation-based algorithms are faster than transformation-based algorithms.
Author Kendall, Graham
Ayob, Masri
Al-Salemi, Bassam
Noah, Shahrul Azman Mohd
Author_xml – sequence: 1
  givenname: Bassam
  orcidid: 0000-0002-2273-0579
  surname: Al-Salemi
  fullname: Al-Salemi, Bassam
  email: bassalemi@ukm.edu.my
  organization: Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia
– sequence: 2
  givenname: Masri
  surname: Ayob
  fullname: Ayob, Masri
  organization: Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia
– sequence: 3
  givenname: Graham
  orcidid: 0000-0003-2006-5103
  surname: Kendall
  fullname: Kendall, Graham
  organization: School of Computer Science, University of Nottingham, UK
– sequence: 4
  givenname: Shahrul Azman Mohd
  surname: Noah
  fullname: Noah, Shahrul Azman Mohd
  organization: Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia
BookMark eNqNkU1v1DAURS3USkw_fgA7S6wTnuPYTmA1qoAiFbGha8txXloPjh1sD6X8ejIdFohFxept7rm6Ou-MnIQYkJBXDGoGTL7Z1W6Z6wZYV0NfA3QvyIZ1ileCK3ZCNsBBVq1Q_CU5y3kHAK1gzYaEz3tfXOXNgJ5ukxmcpQV_FmpNwbuY3C9TXAxv6ZYOGOz9bNI3asJIB5PRu4DUxnkxyeUYaJzo_FedR5OCC3fU-ENTuZ_zBTmdjM94-eeek9sP779eXVc3Xz5-utreVJbLrlSqGYfOgprsYJtxAo4S24lJrmASoxQGedP2AoRVauotZ1y0coRWtlwOOAl-Tppj7z4s5vHBeK-X5Nbxj5qBPhjTO70a0wdjGnq9Gluh10doSfH7HnPRu7hPYd2pG9ZxoZTo5ZpSx5RNMeeEk7auPEkqyTj_bD_7h_yfTe-ODK62fjhMOlu3PgJHl9AWPUb3DP0bqbCmBQ
CitedBy_id crossref_primary_10_1016_j_is_2021_101785
crossref_primary_10_1109_ACCESS_2023_3247866
crossref_primary_10_1080_02664763_2024_2307535
crossref_primary_10_3390_info12120491
crossref_primary_10_1007_s00500_022_07771_9
crossref_primary_10_1007_s13042_024_02341_x
crossref_primary_10_1155_2020_8879054
crossref_primary_10_1109_ACCESS_2020_3014362
crossref_primary_10_1145_3616111
crossref_primary_10_1016_j_knosys_2023_110938
crossref_primary_10_1007_s10489_021_03086_8
crossref_primary_10_1016_j_procs_2024_09_202
crossref_primary_10_3233_JIFS_201070
crossref_primary_10_1007_s00521_021_06390_z
crossref_primary_10_1016_j_ipm_2019_102121
crossref_primary_10_7717_peerj_cs_2685
crossref_primary_10_1007_s12046_022_01975_3
crossref_primary_10_1016_j_eij_2020_08_004
crossref_primary_10_1145_3539607
crossref_primary_10_1016_j_ipm_2020_102210
crossref_primary_10_3390_app11156851
crossref_primary_10_1016_j_neucom_2019_10_118
crossref_primary_10_1016_j_compbiomed_2024_107921
crossref_primary_10_1016_j_engappai_2023_106837
crossref_primary_10_1016_j_ins_2022_02_024
crossref_primary_10_1007_s10639_024_12555_9
crossref_primary_10_1016_j_engappai_2023_107310
crossref_primary_10_1016_j_ins_2022_12_072
crossref_primary_10_1109_ACCESS_2022_3163292
crossref_primary_10_1007_s13042_023_01874_x
crossref_primary_10_1007_s11042_023_17622_w
crossref_primary_10_1016_j_jnlest_2024_100279
crossref_primary_10_3390_fi14070194
crossref_primary_10_1016_j_ins_2025_121965
crossref_primary_10_3390_app131810264
Cites_doi 10.1109/TKDE.2016.2563436
10.1016/j.ipm.2016.10.003
10.1016/j.ipm.2015.09.002
10.1016/j.ipm.2016.12.004
10.1006/jcss.1997.1504
10.1108/IJWIS-01-2016-0002
10.1177/0165551515590079
10.1007/s10994-008-5064-8
10.1016/j.artint.2008.08.002
10.1145/1656274.1656278
10.1016/j.eswa.2018.07.024
10.1016/j.patcog.2004.03.009
10.1016/j.knosys.2014.06.004
10.1016/j.neucom.2009.11.024
10.1007/s10994-011-5256-5
10.1016/j.knosys.2016.03.029
10.4018/jdwm.2007070101
10.1007/BF00058655
10.1007/s10994-009-5127-5
10.1023/A:1007649029923
10.1186/1755-8794-4-31
10.1177/0165551514551496
10.1016/j.eswa.2016.03.041
10.1023/A:1010933404324
10.1016/j.patcog.2006.12.019
10.1007/BF00153759
10.1016/j.ipm.2016.03.004
10.1023/A:1007614523901
10.1080/02286203.2003.11442267
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Pergamon Press Inc. Jan 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Jan 2019
DBID AAYXX
CITATION
E3H
F2A
ADTOC
UNPAY
DOI 10.1016/j.ipm.2018.09.008
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
EndPage 227
ExternalDocumentID oai:nottingham-repository.worktribe.com:1854608
10_1016_j_ipm_2018_09_008
S0306457318300736
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
E3H
F2A
SSH
ADTOC
UNPAY
ID FETCH-LOGICAL-c368t-72db8c07fcbc2df03e6e4f16370f5d65ae3249505c77f9c313546d046436bef53
IEDL.DBID .~1
ISSN 0306-4573
1873-5371
IngestDate Sun Oct 26 04:14:40 EDT 2025
Fri Jul 25 06:20:43 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Wed Oct 01 01:14:15 EDT 2025
Fri Feb 23 02:18:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-label learning
Arabic text categorization
Multi-label benchmark
RTAnews
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-72db8c07fcbc2df03e6e4f16370f5d65ae3249505c77f9c313546d046436bef53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2006-5103
0000-0002-2273-0579
OpenAccessLink https://proxy.k.utb.cz/login?url=https://nottingham-repository.worktribe.com/output/1854608
PQID 2183577596
PQPubID 46166
PageCount 16
ParticipantIDs unpaywall_primary_10_1016_j_ipm_2018_09_008
proquest_journals_2183577596
crossref_citationtrail_10_1016_j_ipm_2018_09_008
crossref_primary_10_1016_j_ipm_2018_09_008
elsevier_sciencedirect_doi_10_1016_j_ipm_2018_09_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information processing & management
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Aha, Kibler, Albert (bib0002) 1991; 6
Al-Salemi, Aziz, Noah (bib0006) 2015; 41
Rijsbergen (bib0037) 1979
Benbouzid, Busa-Fekete, Casagrande, Collin, Kégl (bib0008) 2012; 13
Tang, Kay, He (bib0044) 2016; 28
Fürnkranz, Hüllermeier, Mencía, Brinker (bib0021) 2008; 73
Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines. In Microsoft Research Technical Report.
Tsoumakas, Katakis, Vlahavas (bib0047) 2010
Tsoumakas, Katakis (bib0046) 2007; 3
Shehab, Badarneh, Al-Ayyoub, Jararweh (bib0041) 2016
Loza Mencía, Park, Fürnkranz (bib0029) 2010; 73
Hüllermeier, Fürnkranz, Cheng, Brinker (bib0025) 2008; 172
Zhang, Zhou (bib0053) 2007; 40
Al-Salemi, Ayob, Noah (bib0005) 2018; 113
Schapire, Singer (bib0040) 2000; 39
Forman (bib0019) 2003; 3
Romeo, Da San Martino, Belinkov, Barrón-Cedeño, Eldesouki, Darwish (bib0038) 2017
Tsoumakas, Vlahavas (bib0049) 2007
Read, Reutemann, Pfahringer, Holmes (bib0035) 2016; 17
Ahmed, Shehab, Al-Ayyoub, Hmeidi (bib0003) 2015
Esuli, Fagni, Sebastiani (bib0017) 2006
Karisani, Rahgozar, Oroumchian (bib0028) 2016; 52
Wu, Ye, Zhang, Ng, Ho (bib0052) 2014; 67
Read (bib0033) 2008
Abdul-Mageed (bib0001) 2017
Spyromitros, Tsoumakas, Vlahavas (bib0042) 2008
Breiman (bib0010) 1996; 24
Flores, Moreira (bib0018) 2016; 52
Al-Salemi, Ab Aziz, Noah (bib0004) 2015; 41
Demšar (bib0013) 2006; 7
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0023) 2009; 11
Cheng, Hüllermeier (bib0012) 2009; 76
Boutell, Luo, Shen, Brown (bib0009) 2004; 37
Wu, Gu, Gu (bib0051) 2017; 53
Dobbin, Simon (bib0014) 2011; 4
Freund, Schapire (bib0020) 1997; 55
Read, Pfahringer, Holmes, Frank (bib0034) 2011; 85
Breiman (bib0011) 2001; 45
Rehman, Javed, Babri (bib0036) 2017; 53
Al-Salemi, Noah, Ab Aziz (bib0007) 2016; 103
Vapnik (bib0050) 2013
Mubarak, Darwish (bib0031) 2014
Tsoumakas, Spyromitros-Xioufis, Vilcek, Vlahavas (bib0048) 2011; 12
Eldos (bib0015) 2003; 23
Hmeidi, Al-Ayyoub, Mahyoub, Shehab (bib0024) 2016; 12
Schapire, Singer (bib0039) 1999; 37
Mierswa, Wurst, Klinkenberg, Scholz, Euler (bib0030) 2006
Taha, Tiun (bib0043) 2016; 84
Joachims (bib0027) 1998
Jaccard (bib0026) 1908; 44
Elghazel, Aussem, Gharroudi, Saadaoui (bib0016) 2016; 57
Gantz, Reinsel (bib0022) 2012; 2007
Tong, Koller (bib0045) 2001; 2
Boutell (10.1016/j.ipm.2018.09.008_bib0009) 2004; 37
10.1016/j.ipm.2018.09.008_bib0032
Vapnik (10.1016/j.ipm.2018.09.008_bib0050) 2013
Tang (10.1016/j.ipm.2018.09.008_bib0044) 2016; 28
Jaccard (10.1016/j.ipm.2018.09.008_bib0026) 1908; 44
Al-Salemi (10.1016/j.ipm.2018.09.008_bib0006) 2015; 41
Mubarak (10.1016/j.ipm.2018.09.008_bib0031) 2014
Wu (10.1016/j.ipm.2018.09.008_bib0052) 2014; 67
Dobbin (10.1016/j.ipm.2018.09.008_bib0014) 2011; 4
Freund (10.1016/j.ipm.2018.09.008_bib0020) 1997; 55
Spyromitros (10.1016/j.ipm.2018.09.008_bib0042) 2008
Forman (10.1016/j.ipm.2018.09.008_bib0019) 2003; 3
Abdul-Mageed (10.1016/j.ipm.2018.09.008_bib0001) 2017
Tsoumakas (10.1016/j.ipm.2018.09.008_bib0046) 2007; 3
Esuli (10.1016/j.ipm.2018.09.008_bib0017) 2006
Read (10.1016/j.ipm.2018.09.008_bib0035) 2016; 17
Romeo (10.1016/j.ipm.2018.09.008_bib0038) 2017
Breiman (10.1016/j.ipm.2018.09.008_bib0011) 2001; 45
Elghazel (10.1016/j.ipm.2018.09.008_bib0016) 2016; 57
Read (10.1016/j.ipm.2018.09.008_bib0033) 2008
Zhang (10.1016/j.ipm.2018.09.008_bib0053) 2007; 40
Al-Salemi (10.1016/j.ipm.2018.09.008_bib0007) 2016; 103
Read (10.1016/j.ipm.2018.09.008_bib0034) 2011; 85
Loza Mencía (10.1016/j.ipm.2018.09.008_bib0029) 2010; 73
Tsoumakas (10.1016/j.ipm.2018.09.008_bib0049) 2007
Joachims (10.1016/j.ipm.2018.09.008_bib0027) 1998
Hüllermeier (10.1016/j.ipm.2018.09.008_bib0025) 2008; 172
Wu (10.1016/j.ipm.2018.09.008_bib0051) 2017; 53
Tsoumakas (10.1016/j.ipm.2018.09.008_bib0048) 2011; 12
Taha (10.1016/j.ipm.2018.09.008_bib0043) 2016; 84
Eldos (10.1016/j.ipm.2018.09.008_bib0015) 2003; 23
Tsoumakas (10.1016/j.ipm.2018.09.008_bib0047) 2010
Schapire (10.1016/j.ipm.2018.09.008_bib0039) 1999; 37
Tong (10.1016/j.ipm.2018.09.008_bib0045) 2001; 2
Demšar (10.1016/j.ipm.2018.09.008_bib0013) 2006; 7
Benbouzid (10.1016/j.ipm.2018.09.008_bib0008) 2012; 13
Al-Salemi (10.1016/j.ipm.2018.09.008_bib0004) 2015; 41
Schapire (10.1016/j.ipm.2018.09.008_bib0040) 2000; 39
Breiman (10.1016/j.ipm.2018.09.008_bib0010) 1996; 24
Rehman (10.1016/j.ipm.2018.09.008_bib0036) 2017; 53
Fürnkranz (10.1016/j.ipm.2018.09.008_bib0021) 2008; 73
Flores (10.1016/j.ipm.2018.09.008_bib0018) 2016; 52
Al-Salemi (10.1016/j.ipm.2018.09.008_bib0005) 2018; 113
Ahmed (10.1016/j.ipm.2018.09.008_bib0003) 2015
Cheng (10.1016/j.ipm.2018.09.008_bib0012) 2009; 76
Aha (10.1016/j.ipm.2018.09.008_bib0002) 1991; 6
Karisani (10.1016/j.ipm.2018.09.008_bib0028) 2016; 52
Mierswa (10.1016/j.ipm.2018.09.008_bib0030) 2006
Rijsbergen (10.1016/j.ipm.2018.09.008_bib0037) 1979
Shehab (10.1016/j.ipm.2018.09.008_bib0041) 2016
Gantz (10.1016/j.ipm.2018.09.008_bib0022) 2012; 2007
Hall (10.1016/j.ipm.2018.09.008_bib0023) 2009; 11
Hmeidi (10.1016/j.ipm.2018.09.008_bib0024) 2016; 12
References_xml – year: 2006
  ident: bib0017
  article-title: MP-Boost: A multiple-pivot boosting algorithm and its application to text categorization
  publication-title: Proceedings of the string processing and information retrieval
– volume: 28
  start-page: 2508
  year: 2016
  end-page: 2521
  ident: bib0044
  article-title: Toward optimal feature selection in naive Bayes for text categorization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 23
  start-page: 158
  year: 2003
  end-page: 166
  ident: bib0015
  article-title: Arabic text data mining: A root-based hierarchical indexing model
  publication-title: International Journal of Modelling and Simulation
– year: 2016
  ident: bib0041
  article-title: A supervised approach for multi-label classification of Arabic news articles
  publication-title: 7th international conference on computer science and information technology (CSIT)
– volume: 40
  start-page: 2038
  year: 2007
  end-page: 2048
  ident: bib0053
  article-title: ML-KNN: A lazy learning approach to multi-label learning
  publication-title: Pattern Recognition
– volume: 103
  start-page: 104
  year: 2016
  end-page: 117
  ident: bib0007
  article-title: RFBoost: An improved multi-label boosting algorithm and its application to text categorisation
  publication-title: Knowledge-Based Systems
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0011
  article-title: Random forests
  publication-title: Machine Learning
– year: 2006
  ident: bib0030
  article-title: Yale: Rapid prototyping for complex data mining tasks
  publication-title: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining
– volume: 57
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib0016
  article-title: Ensemble multi-label text categorization based on rotation forest and latent semantic indexing
  publication-title: Expert Systems with Applications
– volume: 41
  start-page: 27
  year: 2015
  end-page: 40
  ident: bib0006
  article-title: LDA-AdaBoost.MH: Accelerated AdaBoost.MH based on latent Dirichlet allocation for text categorization
  publication-title: Journal of Information Science
– start-page: 406
  year: 2007
  end-page: 417
  ident: bib0049
  article-title: Random k-labelsets: An ensemble method for multilabel classification
  publication-title: Proceedings of the ECML
– volume: 172
  start-page: 1897
  year: 2008
  end-page: 1916
  ident: bib0025
  article-title: Label ranking by learning pairwise preferences
  publication-title: Artificial Intelligence
– volume: 73
  start-page: 1164
  year: 2010
  end-page: 1176
  ident: bib0029
  article-title: Efficient voting prediction for pairwise multilabel classification
  publication-title: Neurocomputing
– start-page: 401
  year: 2008
  end-page: 406
  ident: bib0042
  article-title: An empirical study of lazy multilabel classification algorithms
  publication-title: Artificial intelligence: Theories, models and applications
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib0023
  article-title: The WEKA data mining software: An update
  publication-title: ACM SIGKDD Explorations Newsletter
– volume: 84
  start-page: 414
  year: 2016
  ident: bib0043
  article-title: Binary relevance (br) method classifier of multi-label classification for Arabic text
  publication-title: Journal of Theoretical and Applied Information Technology
– year: 1998
  ident: bib0027
  article-title: Making large-scale SVM learning practical
– year: 1979
  ident: bib0037
  article-title: Information retrieval
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib0020
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of Computer and System Sciences
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0010
  article-title: Bagging predictors
  publication-title: Machine Learning
– reference: Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines. In Microsoft Research Technical Report.
– volume: 2007
  start-page: 1
  year: 2012
  end-page: 16
  ident: bib0022
  article-title: The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east
  publication-title: IDC iView IDC Analyze the Future
– volume: 6
  start-page: 37
  year: 1991
  end-page: 66
  ident: bib0002
  article-title: Instance-based learning algorithms
  publication-title: Machine Learning
– volume: 113
  start-page: 531
  year: 2018
  end-page: 543
  ident: bib0005
  article-title: Feature ranking for enhancing boosting-based multi-label text categorization
  publication-title: Expert Systems with Applications
– volume: 41
  start-page: 732
  year: 2015
  end-page: 746
  ident: bib0004
  article-title: Boosting algorithms with topic modeling for multi-label text categorization: A comparative empirical study
  publication-title: Journal of Information Science
– year: 2008
  ident: bib0033
  article-title: A pruned problem transformation method for multi-label classification
  publication-title: Proceedings of the New Zealand computer science research student conference (NZCSRS 2008)
– volume: 13
  start-page: 549
  year: 2012
  end-page: 553
  ident: bib0008
  article-title: MultiBoost: A multi-purpose boosting package
  publication-title: Journal of Machine Learning Research
– volume: 39
  start-page: 135
  year: 2000
  end-page: 168
  ident: bib0040
  article-title: BoosTexter: A boosting-based system for text categorization
  publication-title: Machine Learning
– volume: 12
  start-page: 2411
  year: 2011
  end-page: 2414
  ident: bib0048
  article-title: Mulan: A java library for multi-label learning
  publication-title: Journal of Machine Learning Research
– volume: 76
  start-page: 211
  year: 2009
  end-page: 225
  ident: bib0012
  article-title: Combining instance-based learning and logistic regression for multilabel classification
  publication-title: Machine Learning
– volume: 85
  start-page: 333
  year: 2011
  end-page: 359
  ident: bib0034
  article-title: Classifier chains for multi-label classification
  publication-title: Machine Learning
– volume: 53
  start-page: 547
  year: 2017
  end-page: 557
  ident: bib0051
  article-title: Balancing between over-weighting and under-weighting in supervised term weighting
  publication-title: Information Processing and Management
– year: 2013
  ident: bib0050
  article-title: The nature of statistical learning theory
– volume: 52
  start-page: 840
  year: 2016
  end-page: 854
  ident: bib0018
  article-title: Assessing the impact of stemming accuracy on information retrieval – a multilingual perspective
  publication-title: Information Processing and Management
– volume: 4
  start-page: 31
  year: 2011
  ident: bib0014
  article-title: Optimally splitting cases for training and testing high dimensional classifiers
  publication-title: BMC Medical Genomics
– year: 2015
  ident: bib0003
  article-title: Scalable multi-label Arabic text classification
  publication-title: Proceedings of the 6th international conference on information and communication systems (ICICS)
– volume: 12
  start-page: 504
  year: 2016
  end-page: 532
  ident: bib0024
  article-title: A lexicon based approach for classifying Arabic multi-labeled text
  publication-title: International Journal of Web Information Systems
– volume: 67
  start-page: 105
  year: 2014
  end-page: 116
  ident: bib0052
  article-title: ForesTexter: An efficient random forest algorithm for imbalanced text categorization
  publication-title: Knowledge Based Systems
– volume: 73
  start-page: 133
  year: 2008
  end-page: 153
  ident: bib0021
  article-title: Multilabel classification via calibrated label ranking
  publication-title: Machine Learning
– year: 2017
  ident: bib0001
  article-title: Modeling Arabic subjectivity and sentiment in lexical space
  publication-title: Information Processing and Management
– volume: 3
  start-page: 1289
  year: 2003
  end-page: 1305
  ident: bib0019
  article-title: An extensive empirical study of feature selection metrics for text classification
  publication-title: Journal of machine learning research
– volume: 37
  start-page: 297
  year: 1999
  end-page: 336
  ident: bib0039
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Machine Learning
– year: 2017
  ident: bib0038
  article-title: Language processing and learning models for community question answering in Arabic
  publication-title: Information Processing and Management
– volume: 2
  start-page: 45
  year: 2001
  end-page: 66
  ident: bib0045
  article-title: Support vector machine active learning with applications to text classification
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 1
  year: 2007
  end-page: 13
  ident: bib0046
  article-title: Multi-label classification: An overview
  publication-title: International Journal of Data Warehousing and Mining (IJDWM)
– volume: 17
  start-page: 667
  year: 2016
  end-page: 671
  ident: bib0035
  article-title: Meka: A multi-label/multi-target extension to weka
  publication-title: The Journal of Machine Learning Research
– volume: 53
  start-page: 473
  year: 2017
  end-page: 489
  ident: bib0036
  article-title: Feature selection based on a normalized difference measure for text classification
  publication-title: Information Processing and Management
– volume: 37
  start-page: 1757
  year: 2004
  end-page: 1771
  ident: bib0009
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognition
– start-page: 667
  year: 2010
  end-page: 685
  ident: bib0047
  article-title: Mining multi-label data
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0013
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine Learning Research
– year: 2014
  ident: bib0031
  article-title: Using Twitter to collect a multi-dialectal corpus of Arabic
  publication-title: Proceedings of the EMNLP workshop on Arabic natural language processing (ANLP)
– volume: 44
  start-page: 223
  year: 1908
  end-page: 270
  ident: bib0026
  article-title: Nouvelles recherches sur la distribution florale
  publication-title: Bulletin de la Société Vaudoise des Sciences Naturelles
– volume: 52
  start-page: 478
  year: 2016
  end-page: 489
  ident: bib0028
  article-title: A query term re-weighting approach using document similarity
  publication-title: Information Processing and Management
– volume: 28
  start-page: 2508
  issue: 9
  year: 2016
  ident: 10.1016/j.ipm.2018.09.008_bib0044
  article-title: Toward optimal feature selection in naive Bayes for text categorization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2016.2563436
– volume: 53
  start-page: 547
  issue: 2
  year: 2017
  ident: 10.1016/j.ipm.2018.09.008_bib0051
  article-title: Balancing between over-weighting and under-weighting in supervised term weighting
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2016.10.003
– volume: 52
  start-page: 478
  issue: 3
  year: 2016
  ident: 10.1016/j.ipm.2018.09.008_bib0028
  article-title: A query term re-weighting approach using document similarity
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2015.09.002
– volume: 53
  start-page: 473
  issue: 2
  year: 2017
  ident: 10.1016/j.ipm.2018.09.008_bib0036
  article-title: Feature selection based on a normalized difference measure for text classification
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2016.12.004
– volume: 3
  start-page: 1289
  year: 2003
  ident: 10.1016/j.ipm.2018.09.008_bib0019
  article-title: An extensive empirical study of feature selection metrics for text classification
  publication-title: Journal of machine learning research
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.ipm.2018.09.008_bib0020
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1504
– volume: 12
  start-page: 504
  issue: 4
  year: 2016
  ident: 10.1016/j.ipm.2018.09.008_bib0024
  article-title: A lexicon based approach for classifying Arabic multi-labeled text
  publication-title: International Journal of Web Information Systems
  doi: 10.1108/IJWIS-01-2016-0002
– volume: 41
  start-page: 732
  issue: 5
  year: 2015
  ident: 10.1016/j.ipm.2018.09.008_bib0004
  article-title: Boosting algorithms with topic modeling for multi-label text categorization: A comparative empirical study
  publication-title: Journal of Information Science
  doi: 10.1177/0165551515590079
– year: 2006
  ident: 10.1016/j.ipm.2018.09.008_bib0030
  article-title: Yale: Rapid prototyping for complex data mining tasks
– volume: 84
  start-page: 414
  issue: 3
  year: 2016
  ident: 10.1016/j.ipm.2018.09.008_bib0043
  article-title: Binary relevance (br) method classifier of multi-label classification for Arabic text
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 73
  start-page: 133
  issue: 2
  year: 2008
  ident: 10.1016/j.ipm.2018.09.008_bib0021
  article-title: Multilabel classification via calibrated label ranking
  publication-title: Machine Learning
  doi: 10.1007/s10994-008-5064-8
– ident: 10.1016/j.ipm.2018.09.008_bib0032
– volume: 2
  start-page: 45
  year: 2001
  ident: 10.1016/j.ipm.2018.09.008_bib0045
  article-title: Support vector machine active learning with applications to text classification
  publication-title: Journal of Machine Learning Research
– volume: 172
  start-page: 1897
  issue: 16
  year: 2008
  ident: 10.1016/j.ipm.2018.09.008_bib0025
  article-title: Label ranking by learning pairwise preferences
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2008.08.002
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.ipm.2018.09.008_bib0023
  article-title: The WEKA data mining software: An update
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/1656274.1656278
– volume: 113
  start-page: 531
  year: 2018
  ident: 10.1016/j.ipm.2018.09.008_bib0005
  article-title: Feature ranking for enhancing boosting-based multi-label text categorization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.07.024
– year: 1979
  ident: 10.1016/j.ipm.2018.09.008_bib0037
– volume: 37
  start-page: 1757
  issue: 9
  year: 2004
  ident: 10.1016/j.ipm.2018.09.008_bib0009
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2004.03.009
– start-page: 401
  year: 2008
  ident: 10.1016/j.ipm.2018.09.008_bib0042
  article-title: An empirical study of lazy multilabel classification algorithms
– year: 2008
  ident: 10.1016/j.ipm.2018.09.008_bib0033
  article-title: A pruned problem transformation method for multi-label classification
– year: 2006
  ident: 10.1016/j.ipm.2018.09.008_bib0017
  article-title: MP-Boost: A multiple-pivot boosting algorithm and its application to text categorization
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.ipm.2018.09.008_bib0013
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine Learning Research
– volume: 2007
  start-page: 1
  issue: 2012
  year: 2012
  ident: 10.1016/j.ipm.2018.09.008_bib0022
  article-title: The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east
  publication-title: IDC iView IDC Analyze the Future
– volume: 67
  start-page: 105
  year: 2014
  ident: 10.1016/j.ipm.2018.09.008_bib0052
  article-title: ForesTexter: An efficient random forest algorithm for imbalanced text categorization
  publication-title: Knowledge Based Systems
  doi: 10.1016/j.knosys.2014.06.004
– volume: 73
  start-page: 1164
  issue: 7
  year: 2010
  ident: 10.1016/j.ipm.2018.09.008_bib0029
  article-title: Efficient voting prediction for pairwise multilabel classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.024
– year: 2014
  ident: 10.1016/j.ipm.2018.09.008_bib0031
  article-title: Using Twitter to collect a multi-dialectal corpus of Arabic
– volume: 17
  start-page: 667
  issue: 1
  year: 2016
  ident: 10.1016/j.ipm.2018.09.008_bib0035
  article-title: Meka: A multi-label/multi-target extension to weka
  publication-title: The Journal of Machine Learning Research
– year: 2017
  ident: 10.1016/j.ipm.2018.09.008_bib0038
  article-title: Language processing and learning models for community question answering in Arabic
  publication-title: Information Processing and Management
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  ident: 10.1016/j.ipm.2018.09.008_bib0034
  article-title: Classifier chains for multi-label classification
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5256-5
– volume: 103
  start-page: 104
  issue: Supplement C
  year: 2016
  ident: 10.1016/j.ipm.2018.09.008_bib0007
  article-title: RFBoost: An improved multi-label boosting algorithm and its application to text categorisation
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.03.029
– year: 1998
  ident: 10.1016/j.ipm.2018.09.008_bib0027
– volume: 3
  start-page: 1
  issue: 3
  year: 2007
  ident: 10.1016/j.ipm.2018.09.008_bib0046
  article-title: Multi-label classification: An overview
  publication-title: International Journal of Data Warehousing and Mining (IJDWM)
  doi: 10.4018/jdwm.2007070101
– start-page: 667
  year: 2010
  ident: 10.1016/j.ipm.2018.09.008_bib0047
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.ipm.2018.09.008_bib0010
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– volume: 76
  start-page: 211
  issue: 2-3
  year: 2009
  ident: 10.1016/j.ipm.2018.09.008_bib0012
  article-title: Combining instance-based learning and logistic regression for multilabel classification
  publication-title: Machine Learning
  doi: 10.1007/s10994-009-5127-5
– volume: 12
  start-page: 2411
  year: 2011
  ident: 10.1016/j.ipm.2018.09.008_bib0048
  article-title: Mulan: A java library for multi-label learning
  publication-title: Journal of Machine Learning Research
– volume: 39
  start-page: 135
  issue: 2
  year: 2000
  ident: 10.1016/j.ipm.2018.09.008_bib0040
  article-title: BoosTexter: A boosting-based system for text categorization
  publication-title: Machine Learning
  doi: 10.1023/A:1007649029923
– volume: 13
  start-page: 549
  issue: Mar
  year: 2012
  ident: 10.1016/j.ipm.2018.09.008_bib0008
  article-title: MultiBoost: A multi-purpose boosting package
  publication-title: Journal of Machine Learning Research
– volume: 4
  start-page: 31
  issue: 1
  year: 2011
  ident: 10.1016/j.ipm.2018.09.008_bib0014
  article-title: Optimally splitting cases for training and testing high dimensional classifiers
  publication-title: BMC Medical Genomics
  doi: 10.1186/1755-8794-4-31
– volume: 41
  start-page: 27
  issue: 1
  year: 2015
  ident: 10.1016/j.ipm.2018.09.008_bib0006
  article-title: LDA-AdaBoost.MH: Accelerated AdaBoost.MH based on latent Dirichlet allocation for text categorization
  publication-title: Journal of Information Science
  doi: 10.1177/0165551514551496
– volume: 44
  start-page: 223
  year: 1908
  ident: 10.1016/j.ipm.2018.09.008_bib0026
  article-title: Nouvelles recherches sur la distribution florale
  publication-title: Bulletin de la Société Vaudoise des Sciences Naturelles
– year: 2017
  ident: 10.1016/j.ipm.2018.09.008_bib0001
  article-title: Modeling Arabic subjectivity and sentiment in lexical space
  publication-title: Information Processing and Management
– volume: 57
  start-page: 1
  year: 2016
  ident: 10.1016/j.ipm.2018.09.008_bib0016
  article-title: Ensemble multi-label text categorization based on rotation forest and latent semantic indexing
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.041
– year: 2015
  ident: 10.1016/j.ipm.2018.09.008_bib0003
  article-title: Scalable multi-label Arabic text classification
– year: 2016
  ident: 10.1016/j.ipm.2018.09.008_bib0041
  article-title: A supervised approach for multi-label classification of Arabic news articles
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.ipm.2018.09.008_bib0011
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  ident: 10.1016/j.ipm.2018.09.008_bib0053
  article-title: ML-KNN: A lazy learning approach to multi-label learning
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.12.019
– volume: 6
  start-page: 37
  issue: 1
  year: 1991
  ident: 10.1016/j.ipm.2018.09.008_bib0002
  article-title: Instance-based learning algorithms
  publication-title: Machine Learning
  doi: 10.1007/BF00153759
– start-page: 406
  year: 2007
  ident: 10.1016/j.ipm.2018.09.008_bib0049
  article-title: Random k-labelsets: An ensemble method for multilabel classification
– volume: 52
  start-page: 840
  issue: 5
  year: 2016
  ident: 10.1016/j.ipm.2018.09.008_bib0018
  article-title: Assessing the impact of stemming accuracy on information retrieval – a multilingual perspective
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2016.03.004
– year: 2013
  ident: 10.1016/j.ipm.2018.09.008_bib0050
– volume: 37
  start-page: 297
  issue: 3
  year: 1999
  ident: 10.1016/j.ipm.2018.09.008_bib0039
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Machine Learning
  doi: 10.1023/A:1007614523901
– volume: 23
  start-page: 158
  issue: 3
  year: 2003
  ident: 10.1016/j.ipm.2018.09.008_bib0015
  article-title: Arabic text data mining: A root-based hierarchical indexing model
  publication-title: International Journal of Modelling and Simulation
  doi: 10.1080/02286203.2003.11442267
SSID ssj0004512
Score 2.4793959
Snippet Multi-label text categorization refers to the problem of assigning each document to a subset of categories by means of multi-label learning algorithms. Unlike...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 212
SubjectTerms Adaptation
Algorithms
Arabic language
Arabic text categorization
Benchmarks
Classification
Datasets
Learning
Machine learning
Multi-label benchmark
Multi-label learning
RTAnews
Support vector machines
Text categorization
Transformations
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBXFOfTUj7SlDknRofTQIldrraR1bqY0hEBDDzWk9CD0Gbuxd429S0l-fTS7WmNKSWnvmkViZjUPzXszCL11NHAXd0iMtJTk0hbETHJHZAE6RiEz17YU-nIpzmf5xRW_SqxK0MKUVUv3nesVgUfz7QJKzSPgKMEAqO59qWrqdVN_jJkmF6DzPRA84vABOphdfp1-78oGguS8LS9nhWSEM5n1Jc2W3LVYgwo9K9oepzBa8s9JaQ90Pm7Ktb79pZfLvfxz9hT96Hfe0U5uRk1tRvbut6aO_3e0Z-hJgqV42sXRc_TIl4foJIka8DucVEvgRZyugxeobNW7JMaRB1NtFhYDkQQDy-q62iSJ5ymeYhMt5iu9ucG6dBhSJ8BbbHdTEHEV8Grvc2maxTXWS_hSPV9tX6LZ2edvn85Jmt9ALBNFTeTYmcJSGayxYxco88LnIQJACQEiuPYMJl9TbqUME8syFk_toNbKhPGBs1doUFalf42wC5pZbQupzTg3zBvmGHOFHkthKQ16iGjvQGVTc3OYsbFUPYvtp4o-V-BzRScq-nyI3u9M1l1nj4cW531UqARNOsihYuZ5yOy4jyCV7oatAlDKpYwxO0QfdlH19z0c_dPqYzSoN40_iZCpNm_Sv3EPKkAcBQ
  priority: 102
  providerName: Unpaywall
Title Multi-label Arabic text categorization: A benchmark and baseline comparison of multi-label learning algorithms
URI https://dx.doi.org/10.1016/j.ipm.2018.09.008
https://www.proquest.com/docview/2183577596
https://nottingham-repository.worktribe.com/output/1854608
UnpaywallVersion submittedVersion
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5371
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004512
  issn: 0306-4573
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5371
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004512
  issn: 0306-4573
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5371
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004512
  issn: 0306-4573
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5371
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004512
  issn: 0306-4573
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5371
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004512
  issn: 0306-4573
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBehO2yXsXUbS5sWHcYOG2rk6MveLZSGbGNhsAbak9CH1aRNnJCkjF32t0_PkUMGpYOdjI2eeegn6f3s94XQO0-D8FFDYpWjhCuXE1twT1QOeYxSZb4uKfRtJIdj_uVKXLXQeZMLA2GV6ezfnun1aZ2edNNsdpfTafcHsF0uFCxK8DdB2W3OFXQxOPud7VUMz5InQRIY3Xg26xiv6RKS0bO8LnUKHSYftk173PPpfbU0v36a2WzPDA1eoOeJP-L-VsWXqFVWh-gkZR_g9zilF8F047RvX6GqTrMlEfASRI2dOgwRHxjCoW4Wq5SL-Qn3sY0Sk7lZ3WFTeQw2Dngodrt2hXgR8HzvdantxA02M3jTZjJfv0bjwcXl-ZCkRgvEMZlviOp5mzuqgrOu5wNlpSx5iExNAZJSmJJBi2oqnFKhcCxjgksPTlEmbRkEe4MOqkVVvkXYB8Occbkytscti5_qnjGfm56SjtJg2og2U6xdqkIOzTBmugk3u9URFQ2oaFroiEobfdiJLLclOB4bzBvc9F_rSEcT8ZhYp8FYp0281sAehVKikG30cYf7v3U4-j8djtGzeFds_-900MFmdV-eRMazsaf1kj5FT_qfvw5H8Toefe9f_wEn7gLB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcigXxFOEtuAD4gAy8a5fu9yqiipA2wut1Jvlx7oNJJsoTVVx4bfj2XijIKEicd3dsUb-bM_nnRfAm8CiDElD6rRnVGhfUVeLQHWFeYxKF6ErKXRyqkbn4suFvNiCwz4XBsMq89m_OtO70zo_GebZHM7H4-E3ZLtCalyU6G9S9-C-kKXGG9iHX8VGyfAiuxIUxc9712YX5DWeYzZ6UXW1TrHF5N-N0wb53Llp5_bnrZ1MNuzQ0SN4mAkkOVjp-Bi2mvYJ7Of0A_KW5PwinG-SN-5TaLs8W5oQb1DUurEnGPJBMB7qcrbIyZgfyQFxSeJqahc_iG0DQSOHRJT4db9CMotkujFc7jtxSewER1peTa-fwfnRp7PDEc2dFqjnqlpSXQZXeaajd74MkfFGNSImqqYRSiVtw7FHNZNe61h7XnApVECvKFeuiZI_h-121jYvgIRoube-0taVwvF0Vw-ch8qWWnnGoh0A66fY-FyGHLthTEwfb_bdJFQMomJYbRIqA3i3FpmvanDc9bHocTN_LCSTbMRdYns9xibv4muD9FFqLWs1gPdr3P-tw8v_0-E17IzOTo7N8efTr7vwIL2pVz979mB7ubhp9hP9WbpX3fL-DfylAqY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBXFOfTUj7SlDknRofTQIldrraR1bqY0hEBDDzWk9CD0Gbuxd429S0l-fTS7WmNKSWnvmkViZjUPzXszCL11NHAXd0iMtJTk0hbETHJHZAE6RiEz17YU-nIpzmf5xRW_SqxK0MKUVUv3nesVgUfz7QJKzSPgKMEAqO59qWrqdVN_jJkmF6DzPRA84vABOphdfp1-78oGguS8LS9nhWSEM5n1Jc2W3LVYgwo9K9oepzBa8s9JaQ90Pm7Ktb79pZfLvfxz9hT96Hfe0U5uRk1tRvbut6aO_3e0Z-hJgqV42sXRc_TIl4foJIka8DucVEvgRZyugxeobNW7JMaRB1NtFhYDkQQDy-q62iSJ5ymeYhMt5iu9ucG6dBhSJ8BbbHdTEHEV8Grvc2maxTXWS_hSPV9tX6LZ2edvn85Jmt9ALBNFTeTYmcJSGayxYxco88LnIQJACQEiuPYMJl9TbqUME8syFk_toNbKhPGBs1doUFalf42wC5pZbQupzTg3zBvmGHOFHkthKQ16iGjvQGVTc3OYsbFUPYvtp4o-V-BzRScq-nyI3u9M1l1nj4cW531UqARNOsihYuZ5yOy4jyCV7oatAlDKpYwxO0QfdlH19z0c_dPqYzSoN40_iZCpNm_Sv3EPKkAcBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+Arabic+text+categorization%3A+A+benchmark+and+baseline+comparison+of+multi-label+learning+algorithms&rft.jtitle=Information+processing+%26+management&rft.au=Al-Salemi%2C+Bassam&rft.au=Ayob%2C+Masri&rft.au=Kendall%2C+Graham&rft.au=Noah%2C+Shahrul+Azman+Mohd&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=56&rft.issue=1&rft.spage=212&rft.epage=227&rft_id=info:doi/10.1016%2Fj.ipm.2018.09.008&rft.externalDocID=S0306457318300736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon