Neural network iterative diagonalization method to solve eigenvalue problems in quantum mechanics

We propose a multi-layer feed-forward neural network iterative diagonalization method (NNiDM) to compute some eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian matrices. The NNiDM algorithm is developed by using the complex (or real) guided spectral transform Lanczos (cGSTL...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 17; no. 21; pp. 1471 - 1482
Main Author Yu, Hua-Gen
Format Journal Article
LanguageEnglish
Published England 07.06.2015
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/c5cp01438g

Cover

Abstract We propose a multi-layer feed-forward neural network iterative diagonalization method (NNiDM) to compute some eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian matrices. The NNiDM algorithm is developed by using the complex (or real) guided spectral transform Lanczos (cGSTL) method, thick restart technique, and multi-layered basis contraction scheme. Artificial neurons (or nodes) are defined by a set of formally orthogonal Lanczos polynomials, where the biases and weights are dynamically determined through a series of cGSTL iterations and small matrix diagonalizations. The algorithm starts with one random vector. The last output layer produces wanted eigenvalues and eigenvectors near a given reference value via a linear transform diagonalization approach. Since the algorithm uses the spectral transform technique, it is capable of computing interior eigenstates in dense spectrum regions. The general NNiDM algorithm is applied for calculating energies, widths, and wavefunctions of two typical molecules HO 2 and CH 4 as examples. The neural network iterative diagonalization structure for computing the eigenstates of complex symmetric or Hermitian matrices.
AbstractList We propose a multi-layer feed-forward neural network iterative diagonalization method (NNiDM) to compute some eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian matrices. The NNiDM algorithm is developed by using the complex (or real) guided spectral transform Lanczos (cGSTL) method, thick restart technique, and multi-layered basis contraction scheme. Artificial neurons (or nodes) are defined by a set of formally orthogonal Lanczos polynomials, where the biases and weights are dynamically determined through a series of cGSTL iterations and small matrix diagonalizations. The algorithm starts with one random vector. The last output layer produces wanted eigenvalues and eigenvectors near a given reference value via a linear transform diagonalization approach. Since the algorithm uses the spectral transform technique, it is capable of computing interior eigenstates in dense spectrum regions. The general NNiDM algorithm is applied for calculating energies, widths, and wavefunctions of two typical molecules HO 2 and CH 4 as examples. The neural network iterative diagonalization structure for computing the eigenstates of complex symmetric or Hermitian matrices.
We propose a multi-layer feed-forward neural network iterative diagonalization method (NNiDM) to compute some eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian matrices. The NNiDM algorithm is developed by using the complex (or real) guided spectral transform Lanczos (cGSTL) method, thick restart technique, and multi-layered basis contraction scheme. Artificial neurons (or nodes) are defined by a set of formally orthogonal Lanczos polynomials, where the biases and weights are dynamically determined through a series of cGSTL iterations and small matrix diagonalizations. The algorithm starts with one random vector. The last output layer produces wanted eigenvalues and eigenvectors near a given reference value via a linear transform diagonalization approach. Since the algorithm uses the spectral transform technique, it is capable of computing interior eigenstates in dense spectrum regions. The general NNiDM algorithm is applied for calculating energies, widths, and wavefunctions of two typical molecules HO2 and CH4 as examples.We propose a multi-layer feed-forward neural network iterative diagonalization method (NNiDM) to compute some eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian matrices. The NNiDM algorithm is developed by using the complex (or real) guided spectral transform Lanczos (cGSTL) method, thick restart technique, and multi-layered basis contraction scheme. Artificial neurons (or nodes) are defined by a set of formally orthogonal Lanczos polynomials, where the biases and weights are dynamically determined through a series of cGSTL iterations and small matrix diagonalizations. The algorithm starts with one random vector. The last output layer produces wanted eigenvalues and eigenvectors near a given reference value via a linear transform diagonalization approach. Since the algorithm uses the spectral transform technique, it is capable of computing interior eigenstates in dense spectrum regions. The general NNiDM algorithm is applied for calculating energies, widths, and wavefunctions of two typical molecules HO2 and CH4 as examples.
We propose a multi-layer feed-forward neural network iterative diagonalization method (NNiDM) to compute some eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian matrices. The NNiDM algorithm is developed by using the complex (or real) guided spectral transform Lanczos (cGSTL) method, thick restart technique, and multi-layered basis contraction scheme. Artificial neurons (or nodes) are defined by a set of formally orthogonal Lanczos polynomials, where the biases and weights are dynamically determined through a series of cGSTL iterations and small matrix diagonalizations. The algorithm starts with one random vector. The last output layer produces wanted eigenvalues and eigenvectors near a given reference value via a linear transform diagonalization approach. Since the algorithm uses the spectral transform technique, it is capable of computing interior eigenstates in dense spectrum regions. The general NNiDM algorithm is applied for calculating energies, widths, and wavefunctions of two typical molecules HO sub(2) and CH sub(4) as examples.
We propose a multi-layer feed-forward neural network iterative diagonalization method (NNiDM) to compute some eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian matrices. The NNiDM algorithm is developed by using the complex (or real) guided spectral transform Lanczos (cGSTL) method, thick restart technique, and multi-layered basis contraction scheme. Artificial neurons (or nodes) are defined by a set of formally orthogonal Lanczos polynomials, where the biases and weights are dynamically determined through a series of cGSTL iterations and small matrix diagonalizations. The algorithm starts with one random vector. The last output layer produces wanted eigenvalues and eigenvectors near a given reference value via a linear transform diagonalization approach. Since the algorithm uses the spectral transform technique, it is capable of computing interior eigenstates in dense spectrum regions. The general NNiDM algorithm is applied for calculating energies, widths, and wavefunctions of two typical molecules HO 2 and CH 4 as examples.
We propose a multi-layer feed-forward neural network iterative diagonalization method (NNiDM) to compute some eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian matrices. The NNiDM algorithm is developed by using the complex (or real) guided spectral transform Lanczos (cGSTL) method, thick restart technique, and multi-layered basis contraction scheme. Artificial neurons (or nodes) are defined by a set of formally orthogonal Lanczos polynomials, where the biases and weights are dynamically determined through a series of cGSTL iterations and small matrix diagonalizations. The algorithm starts with one random vector. The last output layer produces wanted eigenvalues and eigenvectors near a given reference value via a linear transform diagonalization approach. Since the algorithm uses the spectral transform technique, it is capable of computing interior eigenstates in dense spectrum regions. The general NNiDM algorithm is applied for calculating energies, widths, and wavefunctions of two typical molecules HO2 and CH4 as examples.
Author Yu, Hua-Gen
AuthorAffiliation Department of Chemistry
Brookhaven National Laboratory
AuthorAffiliation_xml – name: Brookhaven National Laboratory
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Hua-Gen
  surname: Yu
  fullname: Yu, Hua-Gen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25959361$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1PGzEQxS0E4qtcuLdybwgp1F6vHe-xiviSopZDe1557dng4rWD7aUqfz2GhCBVFT3NjN5vnkbzDtC2Dx4QOqbkjBLWfNFcLwmtmVxsoX1aCzZpiKy3N_1U7KGDlH4RQiinbBftVbzhDRN0H6lvMEblsIf8O8Q7bDNEle0DYGPVInjl7GOZg8cD5NtgcA44BVd0sAvwD8qNgJcxdA6GhK3H96PyeRwKrm-Vtzp9QDu9cgmO1vUQ_bw4_zG7msy_X17Pvs4nmgmZJ0KX06ioO0p0Z7qqn6peAOOaQiM7YipWcW0UkVzAtJNUS1ETAFDGUABp2CE6WfmWa-5HSLkdbNLgnPIQxtTSKaFEMknl_1EhK1n8eV3QT2t07AYw7TLaQcU_7esHC3C6AnQMKUXoNwgl7XM87YzPbl7iuSww-QvWNr-8N0dl3b9XPq5WYtIb67fEi_75Pb1dmp49AVYMqK0
CitedBy_id crossref_primary_10_1021_acs_jpca_9b02295
crossref_primary_10_1063_1_4921411
crossref_primary_10_1016_j_cherd_2017_12_029
crossref_primary_10_1063_1_4961642
crossref_primary_10_1007_s11467_023_1325_z
Cites_doi 10.1063/1.464764
10.1063/1.3681166
10.1063/1.4913520
10.1063/1.451237
10.1137/1.9781611971163
10.1063/1.475126
10.1063/1.468837
10.1016/j.jms.2013.05.014
10.1007/BF02478259
10.1063/1.4906492
10.1063/1.468999
10.1002/bbpc.19971010312
10.1016/0009-2614(92)85370-P
10.1063/1.469910
10.1063/1.478635
10.1063/1.1400785
10.1088/0953-4075/42/12/125205
10.1080/00268970802258609
10.1063/1.1789133
10.1063/1.454269
10.1016/S0009-2614(98)01192-0
10.1063/1.4896569
10.1016/S0010-4655(97)00054-4
10.1016/S0009-2614(97)01253-0
10.1063/1.471997
10.1039/C3CP53413H
10.1063/1.478627
10.1016/0025-5564(74)90031-5
10.1016/j.cplett.2009.04.031
10.1063/1.3027825
10.1137/S0895479898334605
10.1080/0144235X.2012.735863
10.1016/0009-2614(86)80442-0
10.1063/1.2336223
10.1007/BF00201437
10.1063/1.1428752
10.1002/qua.24661
10.1063/1.469597
10.1063/1.3069655
10.1016/S0010-4655(99)00517-2
10.1063/1.1884116
10.1137/1.9781611970739
10.1016/S1386-1425(00)00451-0
10.1063/1.2787596
10.1063/1.1511721
10.1063/1.471461
10.1090/S0025-5718-1984-0725988-X
10.1016/0009-2614(93)90072-9
10.1039/C1CP21830A
10.1006/jmsp.2001.8364
10.1063/1.468455
10.1063/1.475495
10.1137/0712047
10.1006/jmsp.2002.8569
10.1006/jcph.1997.5777
10.1063/1.469051
10.1063/1.455357
10.1103/PhysRevE.51.3643
10.1137/0613037
10.1080/01442350903234923
10.1063/1.4905083
10.1063/1.4902553
10.1063/1.470157
10.1016/S0898-1221(04)90110-1
10.1002/qua.20728
10.1063/1.458900
10.1037/h0042519
10.1016/0010-4655(91)90272-M
10.1142/S021963361000602X
10.1063/1.4817187
10.1080/002689797171607
10.1063/1.473554
10.1063/1.1767093
10.1063/1.481096
10.1017/CBO9780511976186
10.1063/1.478001
10.1006/jmsp.1997.7462
10.1016/j.jms.2009.06.001
10.1006/jcph.1994.1130
10.1063/1.1636456
10.1016/j.saa.2013.05.068
10.6028/jres.045.026
10.1063/1.3600343
10.1016/S0009-2614(97)01318-3
10.1016/0009-2614(96)00754-3
10.1016/j.chemphys.2008.10.019
10.1007/BF00206218
10.1063/1.4871981
10.1063/1.1506911
10.1021/j100384a019
10.1063/1.444055
10.1021/jp055253z
10.1006/jmsp.2001.8380
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1039/c5cp01438g
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 1482
ExternalDocumentID 25959361
10_1039_C5CP01438G
c5cp01438g
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
NPM
7X8
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-6c513164b10cbdb2f7af6e35c1e98b0d2325cda0856e7b81c8640eeeadd1ee8d3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 08:23:04 EDT 2025
Fri Jul 11 14:39:07 EDT 2025
Thu Apr 03 07:10:31 EDT 2025
Wed Oct 01 03:26:19 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
Thu May 19 04:23:17 EDT 2016
Thu May 30 17:48:18 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-6c513164b10cbdb2f7af6e35c1e98b0d2325cda0856e7b81c8640eeeadd1ee8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25959361
PQID 1682886454
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1682886454
crossref_primary_10_1039_C5CP01438G
proquest_miscellaneous_1701083818
pubmed_primary_25959361
rsc_primary_c5cp01438g
crossref_citationtrail_10_1039_C5CP01438G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-07
PublicationDateYYYYMMDD 2015-06-07
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2015
References Bacić (C5CP01438G-(cit81)/*[position()=1]) 2000; 128
Wang (C5CP01438G-(cit13)/*[position()=1]) 2008; 129
Bishop (C5CP01438G-(cit66)/*[position()=1]) 1996
Little (C5CP01438G-(cit52)/*[position()=1]) 1974; 19
Poirier (C5CP01438G-(cit43)/*[position()=1]) 2002; 116
Edmonds (C5CP01438G-(cit89)/*[position()=1]) 1960
Vendrell (C5CP01438G-(cit12)/*[position()=1]) 2007; 127
Yu (C5CP01438G-(cit14)/*[position()=1]) 2004; 120
Lanczos (C5CP01438G-(cit27)/*[position()=1]) 1950; 45
Dallwig (C5CP01438G-(cit69)/*[position()=1]) 1992; 191
Yu (C5CP01438G-(cit24)/*[position()=1]) 2002; 117
Karlsson (C5CP01438G-(cit9)/*[position()=1]) 2009; 42
Hammer (C5CP01438G-(cit10)/*[position()=1]) 2012; 136
Jolicard (C5CP01438G-(cit7)/*[position()=1]) 1988; 88
Minsky (C5CP01438G-(cit49)/*[position()=1]) 1969
Varandas (C5CP01438G-(cit59)/*[position()=1]) 1997; 91
Wall (C5CP01438G-(cit35)/*[position()=1]) 1995; 102
Cichocki (C5CP01438G-(cit61)/*[position()=1]) 1992; 68
Albert (C5CP01438G-(cit99)/*[position()=1]) 2009; 356
Bowman (C5CP01438G-(cit6)/*[position()=1]) 2008; 106
Yu (C5CP01438G-(cit32)/*[position()=1]) 1998; 283
Manzhos (C5CP01438G-(cit54)/*[position()=1]) 2006; 110
Iung (C5CP01438G-(cit80)/*[position()=1]) 2006; 106
Yu (C5CP01438G-(cit88)/*[position()=1]) 1997; 281
Manthe (C5CP01438G-(cit65)/*[position()=1]) 2009; 130
Jiang (C5CP01438G-(cit56)/*[position()=1]) 2013; 139
Lagaris (C5CP01438G-(cit63)/*[position()=1]) 1997; 104
Yu (C5CP01438G-(cit71)/*[position()=1]) 1999; 110
Martinez (C5CP01438G-(cit105)/*[position()=1]) 1997; 107
Gray (C5CP01438G-(cit33)/*[position()=1]) 1998; 108
Chen (C5CP01438G-(cit30)/*[position()=1]) 1997; 136
Wang (C5CP01438G-(cit97)/*[position()=1]) 2014; 141
Iung (C5CP01438G-(cit19)/*[position()=1]) 1995; 102
Leforestier (C5CP01438G-(cit42)/*[position()=1]) 1995; 103
Webster (C5CP01438G-(cit39)/*[position()=1]) 1991; 63
Venuti (C5CP01438G-(cit104)/*[position()=1]) 1999; 110
Nikitin (C5CP01438G-(cit101)/*[position()=1]) 2011; 268
Kono (C5CP01438G-(cit40)/*[position()=1]) 1993; 214
Mandelshtam (C5CP01438G-(cit22)/*[position()=1]) 1997; 106
Yurchenko (C5CP01438G-(cit96)/*[position()=1]) 2013; 291
Nikitin (C5CP01438G-(cit98)/*[position()=1]) 2015; 142
Gutknecht (C5CP01438G-(cit67)/*[position()=1]) 1992; 13
Varandas (C5CP01438G-(cit84)/*[position()=1]) 1996; 259
Manzhos (C5CP01438G-(cit64)/*[position()=1]) 2009; 474
Csazar (C5CP01438G-(cit3)/*[position()=1]) 2012; 14
Simon (C5CP01438G-(cit73)/*[position()=1]) 1984; 42
Pastrana (C5CP01438G-(cit94)/*[position()=1]) 1990; 94
Yu (C5CP01438G-(cit45)/*[position()=1]) 2015; 142
Leclerc (C5CP01438G-(cit77)/*[position()=1]) 2014; 140
Chen (C5CP01438G-(cit17)/*[position()=1]) 2010; 9
Yu (C5CP01438G-(cit82)/*[position()=1]) 2002; 214
Köppel (C5CP01438G-(cit18)/*[position()=1]) 1982; 77
Schröder (C5CP01438G-(cit11)/*[position()=1]) 2011; 134
Pendergast (C5CP01438G-(cit23)/*[position()=1]) 1994; 113
Xie (C5CP01438G-(cit28)/*[position()=1]) 2000; 112
Corey (C5CP01438G-(cit90)/*[position()=1])
(C5CP01438G-(cit5)/*[position()=1]) 2009
Moiseyev (C5CP01438G-(cit4)/*[position()=1]) 2011
Shimshovitz (C5CP01438G-(cit79)/*[position()=1]) 2014; 141
Paige (C5CP01438G-(cit72)/*[position()=1]) 1975; 12
Samardzija (C5CP01438G-(cit60)/*[position()=1]) 1991; 65
McCulloch (C5CP01438G-(cit47)/*[position()=1]) 1943; 5
Neuhauser (C5CP01438G-(cit34)/*[position()=1]) 1990; 93
Blank (C5CP01438G-(cit53)/*[position()=1]) 1995; 103
Barone (C5CP01438G-(cit1)/*[position()=1]) 2014; 16
Wang (C5CP01438G-(cit25)/*[position()=1]) 2004; 121
Haykin (C5CP01438G-(cit50)/*[position()=1]) 2009
Yu (C5CP01438G-(cit74)/*[position()=1]) 1998; 298
Wang (C5CP01438G-(cit76)/*[position()=1]) 2002; 117
Friesner (C5CP01438G-(cit86)/*[position()=1]) 1986; 85
Leforestier (C5CP01438G-(cit87)/*[position()=1]) 1994; 101
Milfeld (C5CP01438G-(cit8)/*[position()=1]) 1986; 130
Georges (C5CP01438G-(cit103)/*[position()=1]) 1998; 187
Saad (C5CP01438G-(cit16)/*[position()=1]) 2011
Hilico (C5CP01438G-(cit102)/*[position()=1]) 2001; 208
Rosenblatt (C5CP01438G-(cit48)/*[position()=1]) 1958; 65
Ericsson (C5CP01438G-(cit38)/*[position()=1]) 1980; 35
Nyman (C5CP01438G-(cit75)/*[position()=1]) 2014; 114
Nyman (C5CP01438G-(cit2)/*[position()=1]) 2013; 32
Chen (C5CP01438G-(cit29)/*[position()=1]) 1996; 105
Manzhos (C5CP01438G-(cit55)/*[position()=1]) 2006; 125
Calvetti (C5CP01438G-(cit36)/*[position()=1]) 1994; 2
Mandelshtam (C5CP01438G-(cit21)/*[position()=1]) 1995; 102
Yu (C5CP01438G-(cit31)/*[position()=1]) 1997; 101
Wyatt (C5CP01438G-(cit44)/*[position()=1]) 1995; 51
Schwenke (C5CP01438G-(cit95)/*[position()=1]) 2001; 57
Yu (C5CP01438G-(cit83)/*[position()=1]) 2009; 256
Robert (C5CP01438G-(cit100)/*[position()=1]) 2001; 209
Yu (C5CP01438G-(cit41)/*[position()=1]) 1999; 110
Murrell (C5CP01438G-(cit58)/*[position()=1]) 1984
Zhang (C5CP01438G-(cit93)/*[position()=1]) 2001; 115
Parlett (C5CP01438G-(cit15)/*[position()=1]) 1998
Kolin (C5CP01438G-(cit68)/*[position()=1]) 1988; 89
Yu (C5CP01438G-(cit46)/*[position()=1]) 2014; 141
Behler (C5CP01438G-(cit51)/*[position()=1]) 2014; 26
Yu (C5CP01438G-(cit85)/*[position()=1]) 2004; 121
Lauvergnat (C5CP01438G-(cit78)/*[position()=1]) 2014; 119
Yu (C5CP01438G-(cit70)/*[position()=1]) 2005; 122
Mandelshtam (C5CP01438G-(cit92)/*[position()=1]) 1995; 103
Iung (C5CP01438G-(cit20)/*[position()=1]) 1993; 98
Wyatt (C5CP01438G-(cit26)/*[position()=1]) 1989; 73
Kendrick (C5CP01438G-(cit91)/*[position()=1]) 1996; 104
Wu (C5CP01438G-(cit37)/*[position()=1]) 2001; 22
Yi (C5CP01438G-(cit62)/*[position()=1]) 2004; 47
Braams (C5CP01438G-(cit57)/*[position()=1]) 2009; 28
References_xml – issn: 2011
  publication-title: Non-Hermitian Quantum Mechanics
  doi: Moiseyev
– issn: 2009
  publication-title: Multidimensional Quantum Dynamics: MCTDH Theory and Applications
– doi: Corey Tromp Lemoine
– issn: 1960
  publication-title: Angular Momentum in Quantum Mechanics
  doi: Edmonds
– issn: 1996
  publication-title: Neural Networks for Pattern Recognition
  doi: Bishop
– issn: 1984
  publication-title: Molecular Potential Energy Functions
  doi: Murrell Carter Farantos Huxley Varandas
– issn: 2011
  publication-title: Numerical Methods for Large Eigenvalue Problems
  doi: Saad
– issn: 1969
  publication-title: Perceptrons
  doi: Minsky Papert
– issn: 2009
  publication-title: Neural Networks and Learning Machines
  doi: Haykin
– issn: 1998
  publication-title: The Symmetric Eigenvalue Problem
  doi: Parlett
– volume: 98
  start-page: 6722
  year: 1993
  ident: C5CP01438G-(cit20)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464764
– volume: 136
  start-page: 054105
  year: 2012
  ident: C5CP01438G-(cit10)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3681166
– volume: 142
  start-page: 094118
  year: 2015
  ident: C5CP01438G-(cit98)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4913520
– volume: 85
  start-page: 1462
  year: 1986
  ident: C5CP01438G-(cit86)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451237
– volume-title: The Symmetric Eigenvalue Problem
  year: 1998
  ident: C5CP01438G-(cit15)/*[position()=1]
  doi: 10.1137/1.9781611971163
– volume: 107
  start-page: 4864
  year: 1997
  ident: C5CP01438G-(cit105)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475126
– volume: 102
  start-page: 8453
  year: 1995
  ident: C5CP01438G-(cit19)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468837
– volume: 291
  start-page: 69
  year: 2013
  ident: C5CP01438G-(cit96)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2013.05.014
– volume: 5
  start-page: 115
  year: 1943
  ident: C5CP01438G-(cit47)/*[position()=1]
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 142
  start-page: 044106
  year: 2015
  ident: C5CP01438G-(cit45)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4906492
– volume: 102
  start-page: 8011
  year: 1995
  ident: C5CP01438G-(cit35)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468999
– volume: 101
  start-page: 400
  year: 1997
  ident: C5CP01438G-(cit31)/*[position()=1]
  publication-title: Bunsen-Ges. Phys. Chem., Ber.
  doi: 10.1002/bbpc.19971010312
– volume: 191
  start-page: 69
  year: 1992
  ident: C5CP01438G-(cit69)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(92)85370-P
– volume: 103
  start-page: 10074
  year: 1995
  ident: C5CP01438G-(cit92)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469910
– volume: 110
  start-page: 7339
  year: 1999
  ident: C5CP01438G-(cit104)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478635
– volume: 26
  start-page: 183001
  year: 2014
  ident: C5CP01438G-(cit51)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 115
  start-page: 5751
  year: 2001
  ident: C5CP01438G-(cit93)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1400785
– volume: 73
  start-page: 231
  year: 1989
  ident: C5CP01438G-(cit26)/*[position()=1]
  publication-title: Adv. Chem. Phys.
– volume: 2
  start-page: 1
  year: 1994
  ident: C5CP01438G-(cit36)/*[position()=1]
  publication-title: Electr. Transact. Numer. Anal.
– volume: 42
  start-page: 125205
  year: 2009
  ident: C5CP01438G-(cit9)/*[position()=1]
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/42/12/125205
– volume: 106
  start-page: 2145
  year: 2008
  ident: C5CP01438G-(cit6)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970802258609
– volume: 121
  start-page: 6334
  year: 2004
  ident: C5CP01438G-(cit85)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1789133
– volume: 88
  start-page: 1026
  year: 1988
  ident: C5CP01438G-(cit7)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.454269
– volume: 298
  start-page: 27
  year: 1998
  ident: C5CP01438G-(cit74)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)01192-0
– volume: 141
  start-page: 154106
  year: 2014
  ident: C5CP01438G-(cit97)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4896569
– volume: 104
  start-page: 1
  year: 1997
  ident: C5CP01438G-(cit63)/*[position()=1]
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/S0010-4655(97)00054-4
– volume: 281
  start-page: 312
  year: 1997
  ident: C5CP01438G-(cit88)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(97)01253-0
– volume: 105
  start-page: 1311
  year: 1996
  ident: C5CP01438G-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471997
– volume: 16
  start-page: 1759
  year: 2014
  ident: C5CP01438G-(cit1)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP53413H
– volume: 110
  start-page: 7233
  year: 1999
  ident: C5CP01438G-(cit41)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478627
– volume: 19
  start-page: 101
  year: 1974
  ident: C5CP01438G-(cit52)/*[position()=1]
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(74)90031-5
– volume: 474
  start-page: 217
  year: 2009
  ident: C5CP01438G-(cit64)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2009.04.031
– volume: 129
  start-page: 234102
  year: 2008
  ident: C5CP01438G-(cit13)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3027825
– volume: 22
  start-page: 602
  year: 2001
  ident: C5CP01438G-(cit37)/*[position()=1]
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479898334605
– volume: 32
  start-page: 39
  year: 2013
  ident: C5CP01438G-(cit2)/*[position()=1]
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2012.735863
– volume: 130
  start-page: 145
  year: 1986
  ident: C5CP01438G-(cit8)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(86)80442-0
– volume: 125
  start-page: 084109
  year: 2006
  ident: C5CP01438G-(cit55)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2336223
– volume: 68
  start-page: 155
  year: 1992
  ident: C5CP01438G-(cit61)/*[position()=1]
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00201437
– volume: 116
  start-page: 1215
  year: 2002
  ident: C5CP01438G-(cit43)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1428752
– volume: 114
  start-page: 1183
  year: 2014
  ident: C5CP01438G-(cit75)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24661
– volume: 103
  start-page: 4129
  year: 1995
  ident: C5CP01438G-(cit53)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469597
– volume: 130
  start-page: 054109
  year: 2009
  ident: C5CP01438G-(cit65)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3069655
– volume: 128
  start-page: 46
  year: 2000
  ident: C5CP01438G-(cit81)/*[position()=1]
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/S0010-4655(99)00517-2
– volume: 122
  start-page: 164107
  year: 2005
  ident: C5CP01438G-(cit70)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1884116
– volume-title: Numerical Methods for Large Eigenvalue Problems
  year: 2011
  ident: C5CP01438G-(cit16)/*[position()=1]
  doi: 10.1137/1.9781611970739
– volume: 57
  start-page: 887
  year: 2001
  ident: C5CP01438G-(cit95)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/S1386-1425(00)00451-0
– volume: 127
  start-page: 184303
  year: 2007
  ident: C5CP01438G-(cit12)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2787596
– volume: 268
  start-page: 93
  year: 2011
  ident: C5CP01438G-(cit101)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
– volume: 117
  start-page: 8190
  year: 2002
  ident: C5CP01438G-(cit24)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1511721
– volume: 104
  start-page: 7502
  year: 1996
  ident: C5CP01438G-(cit91)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471461
– volume: 35
  start-page: 1251
  year: 1980
  ident: C5CP01438G-(cit38)/*[position()=1]
  publication-title: Math. Comput.
– volume: 42
  start-page: 115
  year: 1984
  ident: C5CP01438G-(cit73)/*[position()=1]
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1984-0725988-X
– volume: 214
  start-page: 137
  year: 1993
  ident: C5CP01438G-(cit40)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)90072-9
– volume: 14
  start-page: 1085
  year: 2012
  ident: C5CP01438G-(cit3)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP21830A
– volume: 208
  start-page: 1
  year: 2001
  ident: C5CP01438G-(cit102)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.2001.8364
– volume: 101
  start-page: 7357
  year: 1994
  ident: C5CP01438G-(cit87)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468455
– volume: 108
  start-page: 950
  year: 1998
  ident: C5CP01438G-(cit33)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475495
– volume: 12
  start-page: 617
  year: 1975
  ident: C5CP01438G-(cit72)/*[position()=1]
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0712047
– volume: 214
  start-page: 11
  year: 2002
  ident: C5CP01438G-(cit82)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.2002.8569
– volume-title: Multidimensional Quantum Dynamics: MCTDH Theory and Applications
  year: 2009
  ident: C5CP01438G-(cit5)/*[position()=1]
– volume-title: Angular Momentum in Quantum Mechanics
  year: 1960
  ident: C5CP01438G-(cit89)/*[position()=1]
– volume: 136
  start-page: 494
  year: 1997
  ident: C5CP01438G-(cit30)/*[position()=1]
  publication-title: J. Compt. Phys.
  doi: 10.1006/jcph.1997.5777
– volume: 102
  start-page: 7390
  year: 1995
  ident: C5CP01438G-(cit21)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469051
– volume: 89
  start-page: 6836
  year: 1988
  ident: C5CP01438G-(cit68)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.455357
– volume: 51
  start-page: 3643
  year: 1995
  ident: C5CP01438G-(cit44)/*[position()=1]
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
  doi: 10.1103/PhysRevE.51.3643
– volume: 13
  start-page: 594
  year: 1992
  ident: C5CP01438G-(cit67)/*[position()=1]
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0613037
– volume: 28
  start-page: 577
  year: 2009
  ident: C5CP01438G-(cit57)/*[position()=1]
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442350903234923
– volume: 141
  start-page: 244114
  year: 2014
  ident: C5CP01438G-(cit46)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4905083
– volume: 141
  start-page: 234106
  year: 2014
  ident: C5CP01438G-(cit79)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4902553
– volume: 103
  start-page: 8468
  year: 1995
  ident: C5CP01438G-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470157
– ident: C5CP01438G-(cit90)/*[position()=1]
– volume: 47
  start-page: 1155
  year: 2004
  ident: C5CP01438G-(cit62)/*[position()=1]
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(04)90110-1
– volume: 106
  start-page: 130
  year: 2006
  ident: C5CP01438G-(cit80)/*[position()=1]
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20728
– volume-title: Neural Networks and Learning Machines
  year: 2009
  ident: C5CP01438G-(cit50)/*[position()=1]
– volume: 93
  start-page: 2611
  year: 1990
  ident: C5CP01438G-(cit34)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458900
– volume: 65
  start-page: 386
  year: 1958
  ident: C5CP01438G-(cit48)/*[position()=1]
  publication-title: Psych. Rev.
  doi: 10.1037/h0042519
– volume: 63
  start-page: 494
  year: 1991
  ident: C5CP01438G-(cit39)/*[position()=1]
  publication-title: Comp. Phys. Comm.
  doi: 10.1016/0010-4655(91)90272-M
– volume: 9
  start-page: 825
  year: 2010
  ident: C5CP01438G-(cit17)/*[position()=1]
  publication-title: J. Theor. Comput. Chem.
  doi: 10.1142/S021963361000602X
– volume: 139
  start-page: 054112
  year: 2013
  ident: C5CP01438G-(cit56)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4817187
– volume: 91
  start-page: 301
  year: 1997
  ident: C5CP01438G-(cit59)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/002689797171607
– volume: 106
  start-page: 5085
  year: 1997
  ident: C5CP01438G-(cit22)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473554
– volume: 121
  start-page: 2937
  year: 2004
  ident: C5CP01438G-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1767093
– volume: 112
  start-page: 5263
  year: 2000
  ident: C5CP01438G-(cit28)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481096
– volume-title: Non-Hermitian Quantum Mechanics
  year: 2011
  ident: C5CP01438G-(cit4)/*[position()=1]
  doi: 10.1017/CBO9780511976186
– volume: 110
  start-page: 11133
  year: 1999
  ident: C5CP01438G-(cit71)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478001
– volume: 187
  start-page: 13
  year: 1998
  ident: C5CP01438G-(cit103)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1997.7462
– volume: 256
  start-page: 287
  year: 2009
  ident: C5CP01438G-(cit83)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2009.06.001
– volume: 113
  start-page: 201
  year: 1994
  ident: C5CP01438G-(cit23)/*[position()=1]
  publication-title: J. Compt. Phys.
  doi: 10.1006/jcph.1994.1130
– volume-title: Perceptrons
  year: 1969
  ident: C5CP01438G-(cit49)/*[position()=1]
– volume: 120
  start-page: 2270
  year: 2004
  ident: C5CP01438G-(cit14)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1636456
– volume: 119
  start-page: 18
  year: 2014
  ident: C5CP01438G-(cit78)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2013.05.068
– volume: 45
  start-page: 255
  year: 1950
  ident: C5CP01438G-(cit27)/*[position()=1]
  publication-title: J. Res. Nat. Bur. Stand.
  doi: 10.6028/jres.045.026
– volume: 134
  start-page: 234307
  year: 2011
  ident: C5CP01438G-(cit11)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3600343
– volume: 283
  start-page: 69
  year: 1998
  ident: C5CP01438G-(cit32)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(97)01318-3
– volume: 259
  start-page: 336
  year: 1996
  ident: C5CP01438G-(cit84)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00754-3
– volume: 356
  start-page: 131
  year: 2009
  ident: C5CP01438G-(cit99)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2008.10.019
– volume: 65
  start-page: 211
  year: 1991
  ident: C5CP01438G-(cit60)/*[position()=1]
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00206218
– volume: 140
  start-page: 174111
  year: 2014
  ident: C5CP01438G-(cit77)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4871981
– volume: 117
  start-page: 6923
  year: 2002
  ident: C5CP01438G-(cit76)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1506911
– volume: 94
  start-page: 8073
  year: 1990
  ident: C5CP01438G-(cit94)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100384a019
– volume: 77
  start-page: 2014
  year: 1982
  ident: C5CP01438G-(cit18)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444055
– volume-title: Neural Networks for Pattern Recognition
  year: 1996
  ident: C5CP01438G-(cit66)/*[position()=1]
– volume-title: Molecular Potential Energy Functions
  year: 1984
  ident: C5CP01438G-(cit58)/*[position()=1]
– volume: 110
  start-page: 5295
  year: 2006
  ident: C5CP01438G-(cit54)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp055253z
– volume: 209
  start-page: 14
  year: 2001
  ident: C5CP01438G-(cit100)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.2001.8380
SSID ssj0001513
Score 2.1836429
Snippet We propose a multi-layer feed-forward neural network iterative diagonalization method (NNiDM) to compute some eigenvalues and eigenvectors of large sparse...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1471
SubjectTerms Algorithms
Eigenvalues
Eigenvectors
Iterative methods
Mathematical analysis
Neural networks
Spectra
Transforms
Title Neural network iterative diagonalization method to solve eigenvalue problems in quantum mechanics
URI https://www.ncbi.nlm.nih.gov/pubmed/25959361
https://www.proquest.com/docview/1682886454
https://www.proquest.com/docview/1701083818
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customers
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4BLxauQ8pARCAmhtM7bOVbRtgUtZQ9ZaTlF8SMVEmS3bXLpr2f8SgpEqHCJIsfaeOdzxjP2zHwIvWU1CXkS5j7Nae3HDWE-E1niZ0xmpI7AyNesJZ_P0tNV_GmdrEeiS51d0rEDfj2ZV_I_qEIb4KqyZP8B2eFHoQHuAV-4AsJwvRXGqrIGiLg1odwfTIVkFQoEoJ9rE9skWVqeaGVnwoDguVQ1OFWdb5UmpRlldFjsRQ9y7n9Ad5UP7OLgrem6dIhyxxFn7lST2R-50vsLy6IYcsa-9npp62v_xKac2Q2GINGBUNkNnRinkZ8Tw-R2ICfanCLNbkwYk_ds1WKg3MZJhU0iVe-UJ3yrCg3S83FZckfxZ1-q49ViUZXzdflue-ErwjB1sG7ZU-6inRAUOpmhnaN5-XExLMNgykQmtcyM1NWmjfLD8XW_WiN_uBhgcFw6IhhtcJQP0K71FPCRgf0huiPbR-he4YT_GNUGfmzhxwP8-Df4sYEfdxus4ccj_NjBj7-12MKPB_ifoNXxvCxOfcuY4fMopZ2fcvjT4ACzgHAmWNhkdZPKKOGBzCkjAsznhIsazOxUZowGnKYxkRK0iQikpCLaQ7N208pnCKs6iAK-XxoKFvM8rMFxFmmeZDERTVRLD713kqu4LSevWE2-VzqsIcqrIimWWsonHnoz9N2aIiqTvV47ACqQpDq4qlu56a-qIKUhpar23F_6ZCQAdwLsTw89NegN7wIXXxFXBh7aAziH5nEaeGh_-kG1Fc3-Lcb1HN0fP50XaNZd9vIlWKsde2Xn5U-0AJrR
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+iterative+diagonalization+method+to+solve+eigenvalue+problems+in+quantum+mechanics&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Yu%2C+Hua-Gen&rft.date=2015-06-07&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=17&rft.issue=21&rft.spage=14071&rft_id=info:doi/10.1039%2Fc5cp01438g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon