Reconstruction of Surface Seawater pH in the North Pacific
In the recent significant rise in atmospheric CO2, seawater’s continuous acidification is altering the marine environment’s chemical structure at an unprecedented rate. Due to its potential socioeconomic impact, this subject attracted significant research interest. This study used traditional linear...
Saved in:
| Published in | Sustainability Vol. 15; no. 7; p. 5796 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.04.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2071-1050 2071-1050 |
| DOI | 10.3390/su15075796 |
Cover
| Abstract | In the recent significant rise in atmospheric CO2, seawater’s continuous acidification is altering the marine environment’s chemical structure at an unprecedented rate. Due to its potential socioeconomic impact, this subject attracted significant research interest. This study used traditional linear regression, nonlinear regression random forest, and the BP neural network algorithm to establish a prediction model for surface seawater pH based on data of North Pacific sea surface temperature (SST), salinity (SSS), chlorophyll-a concentration (Chl-a), and pressure of carbon dioxide on the sea surface (pCO2) from 1993 to 2018. According to existing research, three approaches were found to be highly accurate in reconstructing the surface seawater pH of the North Pacific. The highest-performing models were the linear regression model using SSS, Chl-a, and pCO2, the random forest model using SST and pCO2, and the BP neural network model using SST, SSS, Chl-a, and pCO2. The BP neural network model outperformed the linear regression and random forest model when comparing the root mean square error and fitting coefficient of the three best models. In addition, the best BP neural network model had substantially higher seasonal applicability than the best linear regression and the best random forest model, with good fitting effects in all four seasons—spring, summer, autumn, and winter. The process of CO2 exchange at the sea–air interface was the key factor affecting the pH of the surface seawater, which was found to be negatively correlated with pCO2 and SST, and positively correlated with SSS and Chl-a. Using the best BP neural network model to reconstruct the surface seawater pH over the North Pacific, it was found that the pH exhibited significant temporal and spatiotemporal variation characteristics. The surface seawater pH value was greater in the winter than the summer, and the pH decline rate over the past 26 years averaged 0.0013 yr−1, with a general decreasing tendency from the northwest to the southeast. The highest value was observed in the tropical western Pacific, while the lowest value was observed in the eastern equatorial region with upwelling, which is consistent with the findings of previous studies. |
|---|---|
| AbstractList | In the recent significant rise in atmospheric CO2, seawater’s continuous acidification is altering the marine environment’s chemical structure at an unprecedented rate. Due to its potential socioeconomic impact, this subject attracted significant research interest. This study used traditional linear regression, nonlinear regression random forest, and the BP neural network algorithm to establish a prediction model for surface seawater pH based on data of North Pacific sea surface temperature (SST), salinity (SSS), chlorophyll-a concentration (Chl-a), and pressure of carbon dioxide on the sea surface (pCO2) from 1993 to 2018. According to existing research, three approaches were found to be highly accurate in reconstructing the surface seawater pH of the North Pacific. The highest-performing models were the linear regression model using SSS, Chl-a, and pCO2, the random forest model using SST and pCO2, and the BP neural network model using SST, SSS, Chl-a, and pCO2. The BP neural network model outperformed the linear regression and random forest model when comparing the root mean square error and fitting coefficient of the three best models. In addition, the best BP neural network model had substantially higher seasonal applicability than the best linear regression and the best random forest model, with good fitting effects in all four seasons—spring, summer, autumn, and winter. The process of CO2 exchange at the sea–air interface was the key factor affecting the pH of the surface seawater, which was found to be negatively correlated with pCO2 and SST, and positively correlated with SSS and Chl-a. Using the best BP neural network model to reconstruct the surface seawater pH over the North Pacific, it was found that the pH exhibited significant temporal and spatiotemporal variation characteristics. The surface seawater pH value was greater in the winter than the summer, and the pH decline rate over the past 26 years averaged 0.0013 yr−1, with a general decreasing tendency from the northwest to the southeast. The highest value was observed in the tropical western Pacific, while the lowest value was observed in the eastern equatorial region with upwelling, which is consistent with the findings of previous studies. In the recent significant rise in atmospheric CO[sub.2] , seawater’s continuous acidification is altering the marine environment’s chemical structure at an unprecedented rate. Due to its potential socioeconomic impact, this subject attracted significant research interest. This study used traditional linear regression, nonlinear regression random forest, and the BP neural network algorithm to establish a prediction model for surface seawater pH based on data of North Pacific sea surface temperature (SST), salinity (SSS), chlorophyll-a concentration (Chl-a), and pressure of carbon dioxide on the sea surface (pCO[sub.2] ) from 1993 to 2018. According to existing research, three approaches were found to be highly accurate in reconstructing the surface seawater pH of the North Pacific. The highest-performing models were the linear regression model using SSS, Chl-a, and pCO[sub.2] , the random forest model using SST and pCO[sub.2] , and the BP neural network model using SST, SSS, Chl-a, and pCO[sub.2] . The BP neural network model outperformed the linear regression and random forest model when comparing the root mean square error and fitting coefficient of the three best models. In addition, the best BP neural network model had substantially higher seasonal applicability than the best linear regression and the best random forest model, with good fitting effects in all four seasons—spring, summer, autumn, and winter. The process of CO[sub.2] exchange at the sea–air interface was the key factor affecting the pH of the surface seawater, which was found to be negatively correlated with pCO[sub.2] and SST, and positively correlated with SSS and Chl-a. Using the best BP neural network model to reconstruct the surface seawater pH over the North Pacific, it was found that the pH exhibited significant temporal and spatiotemporal variation characteristics. The surface seawater pH value was greater in the winter than the summer, and the pH decline rate over the past 26 years averaged 0.0013 yr[sup.−1] , with a general decreasing tendency from the northwest to the southeast. The highest value was observed in the tropical western Pacific, while the lowest value was observed in the eastern equatorial region with upwelling, which is consistent with the findings of previous studies. |
| Audience | Academic |
| Author | Mao, Jingjing Wang, Xun Xu, Jiayuan Liu, Jiaming Yao, Peiling Wang, Jiarui Wang, Jie |
| Author_xml | – sequence: 1 givenname: Jie surname: Wang fullname: Wang, Jie – sequence: 2 givenname: Peiling surname: Yao fullname: Yao, Peiling – sequence: 3 givenname: Jiaming surname: Liu fullname: Liu, Jiaming – sequence: 4 givenname: Xun surname: Wang fullname: Wang, Xun – sequence: 5 givenname: Jingjing surname: Mao fullname: Mao, Jingjing – sequence: 6 givenname: Jiayuan surname: Xu fullname: Xu, Jiayuan – sequence: 7 givenname: Jiarui surname: Wang fullname: Wang, Jiarui |
| BookMark | eNp9kV9LwzAUxYMoqNMXP0HBJ5XOpGnSxjcZ6gZDZdPncpcmW6Q2M0lRv70ZFfyDmPuQcPmdcM69-2i7ta1C6IjgIaUCn_uOMFywQvAttJfhgqQEM7z97b2LDr1_wvFQSgThe-hipqRtfXCdDMa2idXJvHMapErmCl4hKJesx4lpk7BSya11YZXcgzTayAO0o6Hx6vDzHqDH66uH0Tid3t1MRpfTVFJehpQvRCH0goNkGde5LphmRIAUJYOspjSrueKC1qAlYwzXWglZEgBOGFvkitMBOuv_7do1vL9C01RrZ57BvVcEV5vk1VfySB_39NrZl075UD3ZzrXRYJUVQhSYZbmI1LCnltCoyrTaBgcyVq2eTRyI0ib2L4uci7ws6UZw8kMQmaDewhI676vJfPaTPe1Z6az3Tun__eJfsDQBNruIjkzzl-QDdgKT5A |
| CitedBy_id | crossref_primary_10_1016_j_colsurfa_2024_135339 crossref_primary_10_1016_j_cej_2025_160220 crossref_primary_10_1016_j_ecoinf_2025_103094 crossref_primary_10_1016_j_microc_2024_110847 |
| Cites_doi | 10.1029/2009GL040999 10.1038/425365a 10.1073/pnas.0906044106 10.5194/bg-14-4545-2017 10.1029/2018JG004992 10.1038/ngeo1297 10.1073/pnas.0810079105 10.1016/0196-8904(95)00292-8 10.3390/su15053933 10.1016/j.jmarsys.2012.09.002 10.1146/annurev.marine.010908.163834 10.1080/16000889.2021.1971924 10.5194/essd-11-421-2019 10.1016/j.dsr2.2021.104936 10.1126/science.1113692 10.1016/j.dsr.2011.12.003 10.5194/bg-10-4319-2013 10.5670/oceanog.2014.16 10.5194/bg-11-57-2014 10.1016/0304-4203(93)90198-W 10.1146/annurev-earth-042711-105521 10.1007/s10872-019-00532-7 10.1038/nature04095 10.1038/s41598-019-55039-4 10.1007/s12237-013-9594-3 10.5670/oceanog.2009.95 10.1002/2015JC011615 10.1029/2011JC007511 10.4194/1303-2712-v12_2_27 10.5194/bg-10-6199-2013 10.1126/science.1097329 10.1016/j.marchem.2014.06.004 10.1007/s10872-005-0075-6 10.1029/2007JC004646 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/su15075796 |
| DatabaseName | CrossRef Gale in Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | 10.3390/su15075796 A746948839 10_3390_su15075796 |
| GeographicLocations | Pacific Ocean Hawaii United States--US |
| GeographicLocations_xml | – name: Pacific Ocean – name: Hawaii – name: United States--US |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c368t-6b979fb6ac526f4f75f519ac985a2d332d6e693dafc5550dfe9c81aa6155b4e63 |
| IEDL.DBID | BENPR |
| ISSN | 2071-1050 |
| IngestDate | Sun Oct 26 03:59:24 EDT 2025 Mon Jun 30 07:46:32 EDT 2025 Mon Oct 20 16:56:24 EDT 2025 Thu Oct 16 15:46:39 EDT 2025 Thu Oct 16 04:34:01 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-6b979fb6ac526f4f75f519ac985a2d332d6e693dafc5550dfe9c81aa6155b4e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2799705249?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2799705249 |
| PQPubID | 2032327 |
| ParticipantIDs | unpaywall_primary_10_3390_su15075796 proquest_journals_2799705249 gale_infotracacademiconefile_A746948839 gale_incontextgauss_ISR_A746948839 crossref_primary_10_3390_su15075796 crossref_citationtrail_10_3390_su15075796 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Richard (ref_3) 2009; 22 ref_50 Polonsky (ref_12) 2012; 12 Liu (ref_44) 2017; 48 Zeebe (ref_45) 2012; 40 Cai (ref_15) 2011; 4 ref_51 Friedrich (ref_24) 2009; 114 Duarte (ref_38) 2013; 36 Takahashi (ref_53) 2014; 164 Zhang (ref_37) 2009; 30 Orr (ref_2) 2005; 437 Rueda (ref_42) 2003; 17 Shi (ref_49) 2005; 5 Zhang (ref_36) 2013; 6 Chen (ref_31) 1998; 5 ref_21 Monaco (ref_35) 2021; 1 Doney (ref_9) 2009; 1 He (ref_4) 2014; 38 Byrne (ref_14) 2010; 37 Li (ref_18) 1998; 4 Bates (ref_8) 2014; 27 Nakano (ref_19) 2005; 61 Bostock (ref_26) 2013; 10 Yu (ref_1) 2016; 2016 Midorikawa (ref_11) 2012; 61 ref_33 Zhang (ref_41) 2008; 6 ref_32 Feely (ref_17) 2004; 305 ref_30 Alin (ref_20) 2012; 117 Dickson (ref_16) 1993; 44 Laruelle (ref_25) 2017; 14 Haugan (ref_7) 1996; 37 Chen (ref_55) 2016; 36 Pelejero (ref_57) 2005; 309 Guo (ref_23) 2002; 2 Fransson (ref_47) 2014; 11 Chen (ref_29) 2009; 27 ref_46 Sasse (ref_27) 2013; 10 Velo (ref_28) 2013; 111 Bofeng (ref_22) 2016; 121 ref_43 Omar (ref_39) 2019; 124 Sun (ref_48) 2003; 3 Watanabe (ref_5) 2020; 76 Sridevi (ref_34) 2021; 73 Qu (ref_54) 2020; 39 Wootton (ref_13) 2008; 105 Sutton (ref_40) 2019; 11 Feely (ref_10) 2008; 16 Jiang (ref_52) 2019; 9 Caldeira (ref_6) 2003; 425 Dore (ref_56) 2009; 106 |
| References_xml | – volume: 17 start-page: GB001993 year: 2003 ident: ref_42 article-title: Seasonal and interannual variability of sea-surface carbon dioxide species at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000 publication-title: Glob. Biogeochem. Cycles – volume: 37 start-page: L02601 year: 2010 ident: ref_14 article-title: Direct observations of basin-wide acidification of the North Pacific Ocean publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL040999 – ident: ref_32 – volume: 425 start-page: 365 year: 2003 ident: ref_6 article-title: Oceanography: Anthropogenic carbon ocean pH publication-title: Nature doi: 10.1038/425365a – ident: ref_51 – volume: 106 start-page: 30 year: 2009 ident: ref_56 article-title: Physical and biogeochemical modulation of ocean acidification in the central North Pacific publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0906044106 – volume: 14 start-page: 4545 year: 2017 ident: ref_25 article-title: Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation publication-title: Biogeosciences doi: 10.5194/bg-14-4545-2017 – volume: 124 start-page: 3088 year: 2019 ident: ref_39 article-title: Trends of Ocean Acidification and pCO2 in the Northern North Sea, 2003–2015 publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2018JG004992 – volume: 4 start-page: 766 year: 2011 ident: ref_15 article-title: Acidification of subsurface coastal waters enhanced by eutrophication publication-title: Nat. Geosci. doi: 10.1038/ngeo1297 – volume: 2 start-page: 127 year: 2002 ident: ref_23 article-title: Temporal and spatial characteristics of interannual and interdecadal variations in the global ocean-atmosphere system publication-title: Sci. Meteorol. Sin. – volume: 105 start-page: 18848 year: 2008 ident: ref_13 article-title: Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810079105 – volume: 37 start-page: 1019 year: 1996 ident: ref_7 article-title: Effects of CO2 on the ocean environment publication-title: Energy Convers. Manag. doi: 10.1016/0196-8904(95)00292-8 – volume: 16 start-page: 22 year: 2008 ident: ref_10 article-title: Ocean acidification of the North Pacific Ocean publication-title: PICES Press – volume: 2016 start-page: 296 year: 2016 ident: ref_1 article-title: Global ocean acidification research trend and latest progress analysis publication-title: Mar. Sci. J. – ident: ref_50 doi: 10.3390/su15053933 – volume: 111 start-page: 11 year: 2013 ident: ref_28 article-title: Total alkalinity estimation using MLR and neural network techniques publication-title: J. Mar. Syst. doi: 10.1016/j.jmarsys.2012.09.002 – volume: 1 start-page: 169 year: 2009 ident: ref_9 article-title: Ocean acidification: The other CO2 problem publication-title: Annu. Rev. Mar. Sci. doi: 10.1146/annurev.marine.010908.163834 – volume: 73 start-page: 1 year: 2021 ident: ref_34 article-title: Role of river discharge and warming on ocean acidification and pCO2 levels in the Bay of Bengal publication-title: Tellus B Chem. Phys. Meteorol. doi: 10.1080/16000889.2021.1971924 – volume: 30 start-page: 1321 year: 2009 ident: ref_37 article-title: Quantitative remote sensing study of chlorophyll a in Taihu Lake based on machine learning method publication-title: Environ. Sci. – volume: 11 start-page: 421 year: 2019 ident: ref_40 article-title: Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-11-421-2019 – volume: 1 start-page: 104936 year: 2021 ident: ref_35 article-title: Distribution and long-term change of the sea surface carbonate system in the Mozambique Channel (1963–2019) publication-title: Deep Sea Res. Part II Top. Stud. Oceanogr. doi: 10.1016/j.dsr2.2021.104936 – volume: 39 start-page: 281 year: 2020 ident: ref_54 article-title: Research progress on time series of ocean acidification publication-title: Mar. Notif. – volume: 48 start-page: 398 year: 2017 ident: ref_44 article-title: Research on the trend and influencing factors of surface seawater acidification in the coastal waters of the East China Sea publication-title: Ocean. Lakes – volume: 36 start-page: 41 year: 2016 ident: ref_55 article-title: Coral reef seawater pH change and its significance for ocean acidification publication-title: Trop. Geogr. – volume: 309 start-page: 2204 year: 2005 ident: ref_57 article-title: Preindustrial to modern interdecadal variability in coral reef pH publication-title: Science doi: 10.1126/science.1113692 – volume: 61 start-page: 131 year: 2012 ident: ref_11 article-title: Decreasing pH trend estimated from 35-year time series of carbonate parameters in the Pacific sector of the Southern Ocean in summer publication-title: Deep Sea Res. Part I Oceanogr. Res. Pap. doi: 10.1016/j.dsr.2011.12.003 – volume: 10 start-page: 4319 year: 2013 ident: ref_27 article-title: A novel method for diagnosing seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural networks publication-title: Biogeosciences doi: 10.5194/bg-10-4319-2013 – volume: 27 start-page: 126 year: 2014 ident: ref_8 article-title: A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification publication-title: Oceanography. doi: 10.5670/oceanog.2014.16 – volume: 5 start-page: 404 year: 2005 ident: ref_49 article-title: Distribution characteristics and influencing factors of dissolved oxygen and pH in spring in red tide high-incidence area of East China Sea publication-title: Ocean Lake – ident: ref_30 – volume: 11 start-page: 57 year: 2014 ident: ref_47 article-title: Ocean acidification state in western Antarctic surface waters: Controls and interannual variability publication-title: Biogeosciences doi: 10.5194/bg-11-57-2014 – volume: 3 start-page: 517 year: 2003 ident: ref_48 article-title: Estimate of chlorophyll a concentration and primary productivity in central Bohai and its adjacent waters in spring and autumn 1998–1999 publication-title: Ecology – volume: 44 start-page: 131 year: 1993 ident: ref_16 article-title: The measurement of sea water pH publication-title: Mar. Chem. doi: 10.1016/0304-4203(93)90198-W – volume: 4 start-page: 35 year: 1998 ident: ref_18 article-title: Distribution characteristics and influencing factors of seawater pH in the adjacent sea area of the Yellow River estuary in August 1985 publication-title: Mar. Lake Marsh Notif. – volume: 40 start-page: 141 year: 2012 ident: ref_45 article-title: History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-042711-105521 – volume: 76 start-page: 155 year: 2020 ident: ref_5 article-title: Spatiotemporal changes of ocean carbon species in the western North Pacific using parameterization technique publication-title: J. Oceanogr. doi: 10.1007/s10872-019-00532-7 – volume: 437 start-page: 681 year: 2005 ident: ref_2 article-title: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms publication-title: Nature doi: 10.1038/nature04095 – volume: 9 start-page: 18624 year: 2019 ident: ref_52 article-title: Surface ocean pH and buffer capacity: Past, present and future publication-title: Sci. Rep. doi: 10.1038/s41598-019-55039-4 – volume: 27 start-page: 108 year: 2009 ident: ref_29 article-title: Research progress on ecological hazards of ocean acidification publication-title: Sci. Technol. Rep. – volume: 36 start-page: 221 year: 2013 ident: ref_38 article-title: Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH publication-title: Estuaries Coasts doi: 10.1007/s12237-013-9594-3 – volume: 22 start-page: 36 year: 2009 ident: ref_3 article-title: Ocean Acidification: Present Conditions and Future Changes in a High-CO2 World publication-title: Oceanography doi: 10.5670/oceanog.2009.95 – ident: ref_21 – volume: 121 start-page: 3435 year: 2016 ident: ref_22 article-title: Spatiotemporal distribution of seawater pH in the North Pacific subpolar region by using the parameterization technique publication-title: J. Geophys. Res. Oceans. JGR doi: 10.1002/2015JC011615 – volume: 117 start-page: C05033-1 year: 2012 ident: ref_20 article-title: Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011) publication-title: J. Geophys. Res. doi: 10.1029/2011JC007511 – ident: ref_33 – volume: 6 start-page: 61 year: 2013 ident: ref_36 article-title: Multiple linear regression and BP neural network prediction model comparison and application research publication-title: J. Kunming Univ. Technol. Nat. Sci. Ed. – volume: 38 start-page: 85 year: 2014 ident: ref_4 article-title: Marine acidification research progress publication-title: Mar. Sci. – ident: ref_46 – volume: 12 start-page: 391 year: 2012 ident: ref_12 article-title: Had been observing the acidification of the black sea upper layer in XX Century publication-title: Turk. J. Fish. Aquat. Sci. doi: 10.4194/1303-2712-v12_2_27 – volume: 10 start-page: 6199 year: 2013 ident: ref_26 article-title: Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans publication-title: Biogeosciences doi: 10.5194/bg-10-6199-2013 – volume: 305 start-page: 362 year: 2004 ident: ref_17 article-title: Impact of anthropogenic CO2 on the CaCO3 system in the oceans publication-title: Science doi: 10.1126/science.1097329 – volume: 164 start-page: 95 year: 2014 ident: ref_53 article-title: Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations publication-title: Mar. Chem. doi: 10.1016/j.marchem.2014.06.004 – volume: 5 start-page: 43 year: 1998 ident: ref_31 article-title: The combined effects of SST anomalies in the Pacific on the summer rainband types in eastern China publication-title: Atmos. Sci. – volume: 61 start-page: 673 year: 2005 ident: ref_19 article-title: Reconstruction of pH in the surface seawater over the North Pacific basin for all seasons using temperature and chlorophyll-a publication-title: J. Oceanogr. doi: 10.1007/s10872-005-0075-6 – ident: ref_43 – volume: 114 start-page: JC004646 year: 2009 ident: ref_24 article-title: Neural network-based estimates of north atlantic surface pCO2 from satellite data: A methodological study publication-title: J. Geophys. Res. doi: 10.1029/2007JC004646 – volume: 6 start-page: 955 year: 2008 ident: ref_41 article-title: Distribution and influencing factors of pCO2 in surface seawater of the North Yellow Sea in winter publication-title: J. Ocean Univ. China Nat. Sci. Ed. |
| SSID | ssj0000331916 |
| Score | 2.3359869 |
| Snippet | In the recent significant rise in atmospheric CO2, seawater’s continuous acidification is altering the marine environment’s chemical structure at an... In the recent significant rise in atmospheric CO[sub.2] , seawater’s continuous acidification is altering the marine environment’s chemical structure at an... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5796 |
| SubjectTerms | Acidification Algorithms Alkalinity Analysis Biodiversity Carbon cycle Carbon dioxide Climate change Neural networks Ocean acidity Regression analysis Salinity Seawater Variables |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB8kPtg-tGorpn6wtELpw5nN7e1eti8liBL7IKVpwD5d91PEcAleotS_3tncnqlSSsH3ubs9Znbm99udD4CDlGrhvZJJqHsMRze4pfKcJxmCgS7VWlO7yPI9E4NR9vWcn8c5p1VMq0Qqfrlw0inGP_QTnHa6vIPEPZeiM7X-y008SgpXCJKmMnD2VcERjLdgdXT2rf8zjJRrHq6bkjIk96jcgH_Cex6FoafO-CWszcup-n2rxuM_os3Ja_jVrLNOMrk6nM_0obl70sLxGT-yDq8iEiX92nQ2YMWVm7DWFCpXm7B1vCyCQ8HoBao38Dlw1mXnWTLxZDi_9so4MnTqFtHrNZkOyGVJEF2Sxc0Qicl_b2F0cvzjaJDEGQyJYaI3S4SWufRaKMNT4TOfc4-YTxnZ4yq1jKVWOCGZVd5wJDvWO2l6XaXCdafOnGBb0ConpdsGwlRKZY9aZg26DSuVlcg3ZSaYc95ltA2fGpUUJjYoD3MyxgUSlaC-Yqm-Nnx4kJ3WbTn-KvU-aLYIfS7KkEhzoeZVVZwOvxf9PBMSnReTbfgYhfwEP2dUrEvARYfWWI8kdxsLKeJOr4oUNZdTjiy2DQcPVvOPRb37P7EdeBEm29dJQrvQQp26PcQ_M70fbfweQ679Og priority: 102 providerName: Unpaywall |
| Title | Reconstruction of Surface Seawater pH in the North Pacific |
| URI | https://www.proquest.com/docview/2799705249 https://www.mdpi.com/2071-1050/15/7/5796/pdf?version=1679902950 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: A8Z dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-NAEB-0Png-HH5yvVNZVJB7CJdmk01XEKlSrT4UsVeoT2GzH4dQ0p6xiP-9M-2mVREfA0MSZnZmf7M78xuAoyjMhXNKBtT3SEc36FJpmgQxgoFGmOd5aKZVvl3R6cc3g2SwBN2qF4bKKquYOA3UZqTpjPxPlEqZhglmC2fj_wFNjaLb1WqEhvKjFczplGJsGVYiYsaqwcp5u3t7Nz91CTkuuYaY8ZRyzPfR3gSJqCPz3c70MT6vweqkGKuXZzUcvtmALtfhu0eOrDUz9QYs2WITVqvG4nITdtqLpjUU9F5bbsEJ5ZgLplg2cqw3eXRKW9az6hnR5iMbd9hDwRANsulNDvPFetvQv2z_vegEfmZCoLloPgUil6l0uVA6iYSLXZo4xGhKy2aiIsN5ZIQVkhvldILJiXFW6mZDKbqezGMr-A7UilFhfwDjKgplMzTcaHRzI5WRqFIZC26ts3FYh9-VvjLtCcVprsUww8SCdJstdFuHw7nseEaj8anUAak9I16Kggpf_qlJWWbXvbuslWIej8GGyzoceyE3ws9p5fsI8KeJyuqd5G5lvsx7Zpkt1lEdjuYm_eKnfn79ll_wjSbQz4p5dqGGtrR7iFOe8n2_-PZh-WrQwKd-97Z1_wpuv-jH |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxNBEJ4gPFQfjKLEIspGMcaHC9fdvb0uCTGgJa1gYygkvK17-8OQNNfK0TT8c_5tzLZ7rRjDG--Tvc3M3Ow3uzPfAOzQtBDea5mEvsdwdYO_VJ5nCUcw0EqLokjtrMq3L7rn_NtFdrECf-pemFBWWcfEWaC2IxPuyHdpLmWeZpgtfB7_TsLUqPC6Wo_Q0HG0gt2fUYzFxo5jdzPFFK7a731Fe3-g9Khz9qWbxCkDiWGifZ2IQubSF0KbjArPfZ55RDXayHamqWWMWuGEZFZ7kyGct95J025pHR70Cu4Ew3UfwRpnXGLyt3bY6f84XdzypAxdvCXmvKiMyRT9K0Cw0AF65yT89zx4Ao1JOdY3Uz0c_nXgHT2DpxGpkoO5az2HFVeuQ6NuZK7WYaOzbJJDwRglqhewF3LaJTMtGXkymFx5bRwZOD1FdHtFxl1yWRJEn2T2ckRiceBLOH8Q7W3Aajkq3SsgTNNUtlPLrMGwYqW2EvNRyQVzzjueNuFTrS9lIoF5mKMxVJjIBN2qpW6b8H4hO57TdvxX6l1Quwo8GGUotPmlJ1WleoNTdZBzITG4MdmEj1HIj_BzRse-Bdx0oM66I7lVm0_FSFCppd82YWdh0ns2tXn_KtvQ6J59P1Envf7xa3hMEXPNC4m2YBXt6t4gRrou3kZHJPDzoX3_FuX4I_M |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ8gJIIPRlFiFXSjGOPDhe3u3V6XhBiUNq2YhlBJeFv39oOQNNfC0TT8i_5VzrZ7rRjDG--T3c3M7Oxvdr4AdhkthPdaJqHuMXzd4JXK8yxJEQw0aVEU1M6yfPuie5Z-P8_OV-B3XQsT0iprmzgz1HZkwh_5HsulzGmG3sKej2kRJ0edL-OrJEyQCpHWepyGjmMW7MGs3Vgs8jh2t1N056qD3hHK_iNjnfbPb90kThxIDBetm0QUMpe-ENpkTPjU55lHhKONbGWaWc6ZFU5IbrU3GUJ76500rabWIbhXpE5wXPcRrIXgFxqJta_t_snp4seHclT3ppj3SOVcUtS1AMdCNeidV_Hft-EJrE_Ksb6d6uHwr8ev8wyeRtRKDudq9hxWXLkJ63VRc7UJW-1lwRwSRotRvYD94N8uu9SSkSeDybXXxpGB01NEutdk3CWXJUEkSmZRJBITBV_C2YNwbwtWy1HpXgHhmlHZopZbgybGSm0l-qYyFdw571LagM81v5SJzczDTI2hQqcm8FYteduADwva8byFx3-p3ge2q9ATowzadaEnVaV6g1N1mKdCoqHjsgGfIpEf4XZGxxoGPHRoo3WHcrsWn4pWoVJLHW7A7kKk9xzq9f2rvIPHeAfUj17_-A1sMIRf85yibVhFsbodhEs3xduohwR-PbTq_wFCdCgi |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB8kPtg-tGorpn6wtELpw5nN7e1eti8liBL7IKVpwD5d91PEcAleotS_3tncnqlSSsH3ubs9Znbm99udD4CDlGrhvZJJqHsMRze4pfKcJxmCgS7VWlO7yPI9E4NR9vWcn8c5p1VMq0Qqfrlw0inGP_QTnHa6vIPEPZeiM7X-y008SgpXCJKmMnD2VcERjLdgdXT2rf8zjJRrHq6bkjIk96jcgH_Cex6FoafO-CWszcup-n2rxuM_os3Ja_jVrLNOMrk6nM_0obl70sLxGT-yDq8iEiX92nQ2YMWVm7DWFCpXm7B1vCyCQ8HoBao38Dlw1mXnWTLxZDi_9so4MnTqFtHrNZkOyGVJEF2Sxc0Qicl_b2F0cvzjaJDEGQyJYaI3S4SWufRaKMNT4TOfc4-YTxnZ4yq1jKVWOCGZVd5wJDvWO2l6XaXCdafOnGBb0ConpdsGwlRKZY9aZg26DSuVlcg3ZSaYc95ltA2fGpUUJjYoD3MyxgUSlaC-Yqm-Nnx4kJ3WbTn-KvU-aLYIfS7KkEhzoeZVVZwOvxf9PBMSnReTbfgYhfwEP2dUrEvARYfWWI8kdxsLKeJOr4oUNZdTjiy2DQcPVvOPRb37P7EdeBEm29dJQrvQQp26PcQ_M70fbfweQ679Og |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Surface+Seawater+pH+in+the+North+Pacific&rft.jtitle=Sustainability&rft.au=Wang%2C+Jie&rft.au=Yao%2C+Peiling&rft.au=Liu%2C+Jiaming&rft.au=Wang%2C+Xun&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=7&rft_id=info:doi/10.3390%2Fsu15075796&rft.externalDocID=A746948839 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |