Reconstruction of Surface Seawater pH in the North Pacific

In the recent significant rise in atmospheric CO2, seawater’s continuous acidification is altering the marine environment’s chemical structure at an unprecedented rate. Due to its potential socioeconomic impact, this subject attracted significant research interest. This study used traditional linear...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 15; no. 7; p. 5796
Main Authors Wang, Jie, Yao, Peiling, Liu, Jiaming, Wang, Xun, Mao, Jingjing, Xu, Jiayuan, Wang, Jiarui
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2023
Subjects
Online AccessGet full text
ISSN2071-1050
2071-1050
DOI10.3390/su15075796

Cover

Abstract In the recent significant rise in atmospheric CO2, seawater’s continuous acidification is altering the marine environment’s chemical structure at an unprecedented rate. Due to its potential socioeconomic impact, this subject attracted significant research interest. This study used traditional linear regression, nonlinear regression random forest, and the BP neural network algorithm to establish a prediction model for surface seawater pH based on data of North Pacific sea surface temperature (SST), salinity (SSS), chlorophyll-a concentration (Chl-a), and pressure of carbon dioxide on the sea surface (pCO2) from 1993 to 2018. According to existing research, three approaches were found to be highly accurate in reconstructing the surface seawater pH of the North Pacific. The highest-performing models were the linear regression model using SSS, Chl-a, and pCO2, the random forest model using SST and pCO2, and the BP neural network model using SST, SSS, Chl-a, and pCO2. The BP neural network model outperformed the linear regression and random forest model when comparing the root mean square error and fitting coefficient of the three best models. In addition, the best BP neural network model had substantially higher seasonal applicability than the best linear regression and the best random forest model, with good fitting effects in all four seasons—spring, summer, autumn, and winter. The process of CO2 exchange at the sea–air interface was the key factor affecting the pH of the surface seawater, which was found to be negatively correlated with pCO2 and SST, and positively correlated with SSS and Chl-a. Using the best BP neural network model to reconstruct the surface seawater pH over the North Pacific, it was found that the pH exhibited significant temporal and spatiotemporal variation characteristics. The surface seawater pH value was greater in the winter than the summer, and the pH decline rate over the past 26 years averaged 0.0013 yr−1, with a general decreasing tendency from the northwest to the southeast. The highest value was observed in the tropical western Pacific, while the lowest value was observed in the eastern equatorial region with upwelling, which is consistent with the findings of previous studies.
AbstractList In the recent significant rise in atmospheric CO2, seawater’s continuous acidification is altering the marine environment’s chemical structure at an unprecedented rate. Due to its potential socioeconomic impact, this subject attracted significant research interest. This study used traditional linear regression, nonlinear regression random forest, and the BP neural network algorithm to establish a prediction model for surface seawater pH based on data of North Pacific sea surface temperature (SST), salinity (SSS), chlorophyll-a concentration (Chl-a), and pressure of carbon dioxide on the sea surface (pCO2) from 1993 to 2018. According to existing research, three approaches were found to be highly accurate in reconstructing the surface seawater pH of the North Pacific. The highest-performing models were the linear regression model using SSS, Chl-a, and pCO2, the random forest model using SST and pCO2, and the BP neural network model using SST, SSS, Chl-a, and pCO2. The BP neural network model outperformed the linear regression and random forest model when comparing the root mean square error and fitting coefficient of the three best models. In addition, the best BP neural network model had substantially higher seasonal applicability than the best linear regression and the best random forest model, with good fitting effects in all four seasons—spring, summer, autumn, and winter. The process of CO2 exchange at the sea–air interface was the key factor affecting the pH of the surface seawater, which was found to be negatively correlated with pCO2 and SST, and positively correlated with SSS and Chl-a. Using the best BP neural network model to reconstruct the surface seawater pH over the North Pacific, it was found that the pH exhibited significant temporal and spatiotemporal variation characteristics. The surface seawater pH value was greater in the winter than the summer, and the pH decline rate over the past 26 years averaged 0.0013 yr−1, with a general decreasing tendency from the northwest to the southeast. The highest value was observed in the tropical western Pacific, while the lowest value was observed in the eastern equatorial region with upwelling, which is consistent with the findings of previous studies.
In the recent significant rise in atmospheric CO[sub.2] , seawater’s continuous acidification is altering the marine environment’s chemical structure at an unprecedented rate. Due to its potential socioeconomic impact, this subject attracted significant research interest. This study used traditional linear regression, nonlinear regression random forest, and the BP neural network algorithm to establish a prediction model for surface seawater pH based on data of North Pacific sea surface temperature (SST), salinity (SSS), chlorophyll-a concentration (Chl-a), and pressure of carbon dioxide on the sea surface (pCO[sub.2] ) from 1993 to 2018. According to existing research, three approaches were found to be highly accurate in reconstructing the surface seawater pH of the North Pacific. The highest-performing models were the linear regression model using SSS, Chl-a, and pCO[sub.2] , the random forest model using SST and pCO[sub.2] , and the BP neural network model using SST, SSS, Chl-a, and pCO[sub.2] . The BP neural network model outperformed the linear regression and random forest model when comparing the root mean square error and fitting coefficient of the three best models. In addition, the best BP neural network model had substantially higher seasonal applicability than the best linear regression and the best random forest model, with good fitting effects in all four seasons—spring, summer, autumn, and winter. The process of CO[sub.2] exchange at the sea–air interface was the key factor affecting the pH of the surface seawater, which was found to be negatively correlated with pCO[sub.2] and SST, and positively correlated with SSS and Chl-a. Using the best BP neural network model to reconstruct the surface seawater pH over the North Pacific, it was found that the pH exhibited significant temporal and spatiotemporal variation characteristics. The surface seawater pH value was greater in the winter than the summer, and the pH decline rate over the past 26 years averaged 0.0013 yr[sup.−1] , with a general decreasing tendency from the northwest to the southeast. The highest value was observed in the tropical western Pacific, while the lowest value was observed in the eastern equatorial region with upwelling, which is consistent with the findings of previous studies.
Audience Academic
Author Mao, Jingjing
Wang, Xun
Xu, Jiayuan
Liu, Jiaming
Yao, Peiling
Wang, Jiarui
Wang, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
– sequence: 2
  givenname: Peiling
  surname: Yao
  fullname: Yao, Peiling
– sequence: 3
  givenname: Jiaming
  surname: Liu
  fullname: Liu, Jiaming
– sequence: 4
  givenname: Xun
  surname: Wang
  fullname: Wang, Xun
– sequence: 5
  givenname: Jingjing
  surname: Mao
  fullname: Mao, Jingjing
– sequence: 6
  givenname: Jiayuan
  surname: Xu
  fullname: Xu, Jiayuan
– sequence: 7
  givenname: Jiarui
  surname: Wang
  fullname: Wang, Jiarui
BookMark eNp9kV9LwzAUxYMoqNMXP0HBJ5XOpGnSxjcZ6gZDZdPncpcmW6Q2M0lRv70ZFfyDmPuQcPmdcM69-2i7ta1C6IjgIaUCn_uOMFywQvAttJfhgqQEM7z97b2LDr1_wvFQSgThe-hipqRtfXCdDMa2idXJvHMapErmCl4hKJesx4lpk7BSya11YZXcgzTayAO0o6Hx6vDzHqDH66uH0Tid3t1MRpfTVFJehpQvRCH0goNkGde5LphmRIAUJYOspjSrueKC1qAlYwzXWglZEgBOGFvkitMBOuv_7do1vL9C01RrZ57BvVcEV5vk1VfySB_39NrZl075UD3ZzrXRYJUVQhSYZbmI1LCnltCoyrTaBgcyVq2eTRyI0ib2L4uci7ws6UZw8kMQmaDewhI676vJfPaTPe1Z6az3Tun__eJfsDQBNruIjkzzl-QDdgKT5A
CitedBy_id crossref_primary_10_1016_j_colsurfa_2024_135339
crossref_primary_10_1016_j_cej_2025_160220
crossref_primary_10_1016_j_ecoinf_2025_103094
crossref_primary_10_1016_j_microc_2024_110847
Cites_doi 10.1029/2009GL040999
10.1038/425365a
10.1073/pnas.0906044106
10.5194/bg-14-4545-2017
10.1029/2018JG004992
10.1038/ngeo1297
10.1073/pnas.0810079105
10.1016/0196-8904(95)00292-8
10.3390/su15053933
10.1016/j.jmarsys.2012.09.002
10.1146/annurev.marine.010908.163834
10.1080/16000889.2021.1971924
10.5194/essd-11-421-2019
10.1016/j.dsr2.2021.104936
10.1126/science.1113692
10.1016/j.dsr.2011.12.003
10.5194/bg-10-4319-2013
10.5670/oceanog.2014.16
10.5194/bg-11-57-2014
10.1016/0304-4203(93)90198-W
10.1146/annurev-earth-042711-105521
10.1007/s10872-019-00532-7
10.1038/nature04095
10.1038/s41598-019-55039-4
10.1007/s12237-013-9594-3
10.5670/oceanog.2009.95
10.1002/2015JC011615
10.1029/2011JC007511
10.4194/1303-2712-v12_2_27
10.5194/bg-10-6199-2013
10.1126/science.1097329
10.1016/j.marchem.2014.06.004
10.1007/s10872-005-0075-6
10.1029/2007JC004646
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/su15075796
DatabaseName CrossRef
Gale in Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10.3390/su15075796
A746948839
10_3390_su15075796
GeographicLocations Pacific Ocean
Hawaii
United States--US
GeographicLocations_xml – name: Pacific Ocean
– name: Hawaii
– name: United States--US
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c368t-6b979fb6ac526f4f75f519ac985a2d332d6e693dafc5550dfe9c81aa6155b4e63
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Sun Oct 26 03:59:24 EDT 2025
Mon Jun 30 07:46:32 EDT 2025
Mon Oct 20 16:56:24 EDT 2025
Thu Oct 16 15:46:39 EDT 2025
Thu Oct 16 04:34:01 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-6b979fb6ac526f4f75f519ac985a2d332d6e693dafc5550dfe9c81aa6155b4e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2799705249?pq-origsite=%requestingapplication%&accountid=15518
PQID 2799705249
PQPubID 2032327
ParticipantIDs unpaywall_primary_10_3390_su15075796
proquest_journals_2799705249
gale_infotracacademiconefile_A746948839
gale_incontextgauss_ISR_A746948839
crossref_primary_10_3390_su15075796
crossref_citationtrail_10_3390_su15075796
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Richard (ref_3) 2009; 22
ref_50
Polonsky (ref_12) 2012; 12
Liu (ref_44) 2017; 48
Zeebe (ref_45) 2012; 40
Cai (ref_15) 2011; 4
ref_51
Friedrich (ref_24) 2009; 114
Duarte (ref_38) 2013; 36
Takahashi (ref_53) 2014; 164
Zhang (ref_37) 2009; 30
Orr (ref_2) 2005; 437
Rueda (ref_42) 2003; 17
Shi (ref_49) 2005; 5
Zhang (ref_36) 2013; 6
Chen (ref_31) 1998; 5
ref_21
Monaco (ref_35) 2021; 1
Doney (ref_9) 2009; 1
He (ref_4) 2014; 38
Byrne (ref_14) 2010; 37
Li (ref_18) 1998; 4
Bates (ref_8) 2014; 27
Nakano (ref_19) 2005; 61
Bostock (ref_26) 2013; 10
Yu (ref_1) 2016; 2016
Midorikawa (ref_11) 2012; 61
ref_33
Zhang (ref_41) 2008; 6
ref_32
Feely (ref_17) 2004; 305
ref_30
Alin (ref_20) 2012; 117
Dickson (ref_16) 1993; 44
Laruelle (ref_25) 2017; 14
Haugan (ref_7) 1996; 37
Chen (ref_55) 2016; 36
Pelejero (ref_57) 2005; 309
Guo (ref_23) 2002; 2
Fransson (ref_47) 2014; 11
Chen (ref_29) 2009; 27
ref_46
Sasse (ref_27) 2013; 10
Velo (ref_28) 2013; 111
Bofeng (ref_22) 2016; 121
ref_43
Omar (ref_39) 2019; 124
Sun (ref_48) 2003; 3
Watanabe (ref_5) 2020; 76
Sridevi (ref_34) 2021; 73
Qu (ref_54) 2020; 39
Wootton (ref_13) 2008; 105
Sutton (ref_40) 2019; 11
Feely (ref_10) 2008; 16
Jiang (ref_52) 2019; 9
Caldeira (ref_6) 2003; 425
Dore (ref_56) 2009; 106
References_xml – volume: 17
  start-page: GB001993
  year: 2003
  ident: ref_42
  article-title: Seasonal and interannual variability of sea-surface carbon dioxide species at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000
  publication-title: Glob. Biogeochem. Cycles
– volume: 37
  start-page: L02601
  year: 2010
  ident: ref_14
  article-title: Direct observations of basin-wide acidification of the North Pacific Ocean
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL040999
– ident: ref_32
– volume: 425
  start-page: 365
  year: 2003
  ident: ref_6
  article-title: Oceanography: Anthropogenic carbon ocean pH
  publication-title: Nature
  doi: 10.1038/425365a
– ident: ref_51
– volume: 106
  start-page: 30
  year: 2009
  ident: ref_56
  article-title: Physical and biogeochemical modulation of ocean acidification in the central North Pacific
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0906044106
– volume: 14
  start-page: 4545
  year: 2017
  ident: ref_25
  article-title: Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation
  publication-title: Biogeosciences
  doi: 10.5194/bg-14-4545-2017
– volume: 124
  start-page: 3088
  year: 2019
  ident: ref_39
  article-title: Trends of Ocean Acidification and pCO2 in the Northern North Sea, 2003–2015
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2018JG004992
– volume: 4
  start-page: 766
  year: 2011
  ident: ref_15
  article-title: Acidification of subsurface coastal waters enhanced by eutrophication
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1297
– volume: 2
  start-page: 127
  year: 2002
  ident: ref_23
  article-title: Temporal and spatial characteristics of interannual and interdecadal variations in the global ocean-atmosphere system
  publication-title: Sci. Meteorol. Sin.
– volume: 105
  start-page: 18848
  year: 2008
  ident: ref_13
  article-title: Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810079105
– volume: 37
  start-page: 1019
  year: 1996
  ident: ref_7
  article-title: Effects of CO2 on the ocean environment
  publication-title: Energy Convers. Manag.
  doi: 10.1016/0196-8904(95)00292-8
– volume: 16
  start-page: 22
  year: 2008
  ident: ref_10
  article-title: Ocean acidification of the North Pacific Ocean
  publication-title: PICES Press
– volume: 2016
  start-page: 296
  year: 2016
  ident: ref_1
  article-title: Global ocean acidification research trend and latest progress analysis
  publication-title: Mar. Sci. J.
– ident: ref_50
  doi: 10.3390/su15053933
– volume: 111
  start-page: 11
  year: 2013
  ident: ref_28
  article-title: Total alkalinity estimation using MLR and neural network techniques
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2012.09.002
– volume: 1
  start-page: 169
  year: 2009
  ident: ref_9
  article-title: Ocean acidification: The other CO2 problem
  publication-title: Annu. Rev. Mar. Sci.
  doi: 10.1146/annurev.marine.010908.163834
– volume: 73
  start-page: 1
  year: 2021
  ident: ref_34
  article-title: Role of river discharge and warming on ocean acidification and pCO2 levels in the Bay of Bengal
  publication-title: Tellus B Chem. Phys. Meteorol.
  doi: 10.1080/16000889.2021.1971924
– volume: 30
  start-page: 1321
  year: 2009
  ident: ref_37
  article-title: Quantitative remote sensing study of chlorophyll a in Taihu Lake based on machine learning method
  publication-title: Environ. Sci.
– volume: 11
  start-page: 421
  year: 2019
  ident: ref_40
  article-title: Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-11-421-2019
– volume: 1
  start-page: 104936
  year: 2021
  ident: ref_35
  article-title: Distribution and long-term change of the sea surface carbonate system in the Mozambique Channel (1963–2019)
  publication-title: Deep Sea Res. Part II Top. Stud. Oceanogr.
  doi: 10.1016/j.dsr2.2021.104936
– volume: 39
  start-page: 281
  year: 2020
  ident: ref_54
  article-title: Research progress on time series of ocean acidification
  publication-title: Mar. Notif.
– volume: 48
  start-page: 398
  year: 2017
  ident: ref_44
  article-title: Research on the trend and influencing factors of surface seawater acidification in the coastal waters of the East China Sea
  publication-title: Ocean. Lakes
– volume: 36
  start-page: 41
  year: 2016
  ident: ref_55
  article-title: Coral reef seawater pH change and its significance for ocean acidification
  publication-title: Trop. Geogr.
– volume: 309
  start-page: 2204
  year: 2005
  ident: ref_57
  article-title: Preindustrial to modern interdecadal variability in coral reef pH
  publication-title: Science
  doi: 10.1126/science.1113692
– volume: 61
  start-page: 131
  year: 2012
  ident: ref_11
  article-title: Decreasing pH trend estimated from 35-year time series of carbonate parameters in the Pacific sector of the Southern Ocean in summer
  publication-title: Deep Sea Res. Part I Oceanogr. Res. Pap.
  doi: 10.1016/j.dsr.2011.12.003
– volume: 10
  start-page: 4319
  year: 2013
  ident: ref_27
  article-title: A novel method for diagnosing seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural networks
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-4319-2013
– volume: 27
  start-page: 126
  year: 2014
  ident: ref_8
  article-title: A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification
  publication-title: Oceanography.
  doi: 10.5670/oceanog.2014.16
– volume: 5
  start-page: 404
  year: 2005
  ident: ref_49
  article-title: Distribution characteristics and influencing factors of dissolved oxygen and pH in spring in red tide high-incidence area of East China Sea
  publication-title: Ocean Lake
– ident: ref_30
– volume: 11
  start-page: 57
  year: 2014
  ident: ref_47
  article-title: Ocean acidification state in western Antarctic surface waters: Controls and interannual variability
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-57-2014
– volume: 3
  start-page: 517
  year: 2003
  ident: ref_48
  article-title: Estimate of chlorophyll a concentration and primary productivity in central Bohai and its adjacent waters in spring and autumn 1998–1999
  publication-title: Ecology
– volume: 44
  start-page: 131
  year: 1993
  ident: ref_16
  article-title: The measurement of sea water pH
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(93)90198-W
– volume: 4
  start-page: 35
  year: 1998
  ident: ref_18
  article-title: Distribution characteristics and influencing factors of seawater pH in the adjacent sea area of the Yellow River estuary in August 1985
  publication-title: Mar. Lake Marsh Notif.
– volume: 40
  start-page: 141
  year: 2012
  ident: ref_45
  article-title: History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-042711-105521
– volume: 76
  start-page: 155
  year: 2020
  ident: ref_5
  article-title: Spatiotemporal changes of ocean carbon species in the western North Pacific using parameterization technique
  publication-title: J. Oceanogr.
  doi: 10.1007/s10872-019-00532-7
– volume: 437
  start-page: 681
  year: 2005
  ident: ref_2
  article-title: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms
  publication-title: Nature
  doi: 10.1038/nature04095
– volume: 9
  start-page: 18624
  year: 2019
  ident: ref_52
  article-title: Surface ocean pH and buffer capacity: Past, present and future
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55039-4
– volume: 27
  start-page: 108
  year: 2009
  ident: ref_29
  article-title: Research progress on ecological hazards of ocean acidification
  publication-title: Sci. Technol. Rep.
– volume: 36
  start-page: 221
  year: 2013
  ident: ref_38
  article-title: Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH
  publication-title: Estuaries Coasts
  doi: 10.1007/s12237-013-9594-3
– volume: 22
  start-page: 36
  year: 2009
  ident: ref_3
  article-title: Ocean Acidification: Present Conditions and Future Changes in a High-CO2 World
  publication-title: Oceanography
  doi: 10.5670/oceanog.2009.95
– ident: ref_21
– volume: 121
  start-page: 3435
  year: 2016
  ident: ref_22
  article-title: Spatiotemporal distribution of seawater pH in the North Pacific subpolar region by using the parameterization technique
  publication-title: J. Geophys. Res. Oceans. JGR
  doi: 10.1002/2015JC011615
– volume: 117
  start-page: C05033-1
  year: 2012
  ident: ref_20
  article-title: Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011)
  publication-title: J. Geophys. Res.
  doi: 10.1029/2011JC007511
– ident: ref_33
– volume: 6
  start-page: 61
  year: 2013
  ident: ref_36
  article-title: Multiple linear regression and BP neural network prediction model comparison and application research
  publication-title: J. Kunming Univ. Technol. Nat. Sci. Ed.
– volume: 38
  start-page: 85
  year: 2014
  ident: ref_4
  article-title: Marine acidification research progress
  publication-title: Mar. Sci.
– ident: ref_46
– volume: 12
  start-page: 391
  year: 2012
  ident: ref_12
  article-title: Had been observing the acidification of the black sea upper layer in XX Century
  publication-title: Turk. J. Fish. Aquat. Sci.
  doi: 10.4194/1303-2712-v12_2_27
– volume: 10
  start-page: 6199
  year: 2013
  ident: ref_26
  article-title: Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-6199-2013
– volume: 305
  start-page: 362
  year: 2004
  ident: ref_17
  article-title: Impact of anthropogenic CO2 on the CaCO3 system in the oceans
  publication-title: Science
  doi: 10.1126/science.1097329
– volume: 164
  start-page: 95
  year: 2014
  ident: ref_53
  article-title: Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2014.06.004
– volume: 5
  start-page: 43
  year: 1998
  ident: ref_31
  article-title: The combined effects of SST anomalies in the Pacific on the summer rainband types in eastern China
  publication-title: Atmos. Sci.
– volume: 61
  start-page: 673
  year: 2005
  ident: ref_19
  article-title: Reconstruction of pH in the surface seawater over the North Pacific basin for all seasons using temperature and chlorophyll-a
  publication-title: J. Oceanogr.
  doi: 10.1007/s10872-005-0075-6
– ident: ref_43
– volume: 114
  start-page: JC004646
  year: 2009
  ident: ref_24
  article-title: Neural network-based estimates of north atlantic surface pCO2 from satellite data: A methodological study
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JC004646
– volume: 6
  start-page: 955
  year: 2008
  ident: ref_41
  article-title: Distribution and influencing factors of pCO2 in surface seawater of the North Yellow Sea in winter
  publication-title: J. Ocean Univ. China Nat. Sci. Ed.
SSID ssj0000331916
Score 2.3359869
Snippet In the recent significant rise in atmospheric CO2, seawater’s continuous acidification is altering the marine environment’s chemical structure at an...
In the recent significant rise in atmospheric CO[sub.2] , seawater’s continuous acidification is altering the marine environment’s chemical structure at an...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5796
SubjectTerms Acidification
Algorithms
Alkalinity
Analysis
Biodiversity
Carbon cycle
Carbon dioxide
Climate change
Neural networks
Ocean acidity
Regression analysis
Salinity
Seawater
Variables
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB8kPtg-tGorpn6wtELpw5nN7e1eti8liBL7IKVpwD5d91PEcAleotS_3tncnqlSSsH3ubs9Znbm99udD4CDlGrhvZJJqHsMRze4pfKcJxmCgS7VWlO7yPI9E4NR9vWcn8c5p1VMq0Qqfrlw0inGP_QTnHa6vIPEPZeiM7X-y008SgpXCJKmMnD2VcERjLdgdXT2rf8zjJRrHq6bkjIk96jcgH_Cex6FoafO-CWszcup-n2rxuM_os3Ja_jVrLNOMrk6nM_0obl70sLxGT-yDq8iEiX92nQ2YMWVm7DWFCpXm7B1vCyCQ8HoBao38Dlw1mXnWTLxZDi_9so4MnTqFtHrNZkOyGVJEF2Sxc0Qicl_b2F0cvzjaJDEGQyJYaI3S4SWufRaKMNT4TOfc4-YTxnZ4yq1jKVWOCGZVd5wJDvWO2l6XaXCdafOnGBb0ConpdsGwlRKZY9aZg26DSuVlcg3ZSaYc95ltA2fGpUUJjYoD3MyxgUSlaC-Yqm-Nnx4kJ3WbTn-KvU-aLYIfS7KkEhzoeZVVZwOvxf9PBMSnReTbfgYhfwEP2dUrEvARYfWWI8kdxsLKeJOr4oUNZdTjiy2DQcPVvOPRb37P7EdeBEm29dJQrvQQp26PcQ_M70fbfweQ679Og
  priority: 102
  providerName: Unpaywall
Title Reconstruction of Surface Seawater pH in the North Pacific
URI https://www.proquest.com/docview/2799705249
https://www.mdpi.com/2071-1050/15/7/5796/pdf?version=1679902950
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: A8Z
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS-NAEB-0Png-HH5yvVNZVJB7CJdmk01XEKlSrT4UsVeoT2GzH4dQ0p6xiP-9M-2mVREfA0MSZnZmf7M78xuAoyjMhXNKBtT3SEc36FJpmgQxgoFGmOd5aKZVvl3R6cc3g2SwBN2qF4bKKquYOA3UZqTpjPxPlEqZhglmC2fj_wFNjaLb1WqEhvKjFczplGJsGVYiYsaqwcp5u3t7Nz91CTkuuYaY8ZRyzPfR3gSJqCPz3c70MT6vweqkGKuXZzUcvtmALtfhu0eOrDUz9QYs2WITVqvG4nITdtqLpjUU9F5bbsEJ5ZgLplg2cqw3eXRKW9az6hnR5iMbd9hDwRANsulNDvPFetvQv2z_vegEfmZCoLloPgUil6l0uVA6iYSLXZo4xGhKy2aiIsN5ZIQVkhvldILJiXFW6mZDKbqezGMr-A7UilFhfwDjKgplMzTcaHRzI5WRqFIZC26ts3FYh9-VvjLtCcVprsUww8SCdJstdFuHw7nseEaj8anUAak9I16Kggpf_qlJWWbXvbuslWIej8GGyzoceyE3ws9p5fsI8KeJyuqd5G5lvsx7Zpkt1lEdjuYm_eKnfn79ll_wjSbQz4p5dqGGtrR7iFOe8n2_-PZh-WrQwKd-97Z1_wpuv-jH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxNBEJ4gPFQfjKLEIspGMcaHC9fdvb0uCTGgJa1gYygkvK17-8OQNNfK0TT8c_5tzLZ7rRjDG--Tvc3M3Ow3uzPfAOzQtBDea5mEvsdwdYO_VJ5nCUcw0EqLokjtrMq3L7rn_NtFdrECf-pemFBWWcfEWaC2IxPuyHdpLmWeZpgtfB7_TsLUqPC6Wo_Q0HG0gt2fUYzFxo5jdzPFFK7a731Fe3-g9Khz9qWbxCkDiWGifZ2IQubSF0KbjArPfZ55RDXayHamqWWMWuGEZFZ7kyGct95J025pHR70Cu4Ew3UfwRpnXGLyt3bY6f84XdzypAxdvCXmvKiMyRT9K0Cw0AF65yT89zx4Ao1JOdY3Uz0c_nXgHT2DpxGpkoO5az2HFVeuQ6NuZK7WYaOzbJJDwRglqhewF3LaJTMtGXkymFx5bRwZOD1FdHtFxl1yWRJEn2T2ckRiceBLOH8Q7W3Aajkq3SsgTNNUtlPLrMGwYqW2EvNRyQVzzjueNuFTrS9lIoF5mKMxVJjIBN2qpW6b8H4hO57TdvxX6l1Quwo8GGUotPmlJ1WleoNTdZBzITG4MdmEj1HIj_BzRse-Bdx0oM66I7lVm0_FSFCppd82YWdh0ns2tXn_KtvQ6J59P1Envf7xa3hMEXPNC4m2YBXt6t4gRrou3kZHJPDzoX3_FuX4I_M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ8gJIIPRlFiFXSjGOPDhe3u3V6XhBiUNq2YhlBJeFv39oOQNNfC0TT8i_5VzrZ7rRjDG--T3c3M7Oxvdr4AdhkthPdaJqHuMXzd4JXK8yxJEQw0aVEU1M6yfPuie5Z-P8_OV-B3XQsT0iprmzgz1HZkwh_5HsulzGmG3sKej2kRJ0edL-OrJEyQCpHWepyGjmMW7MGs3Vgs8jh2t1N056qD3hHK_iNjnfbPb90kThxIDBetm0QUMpe-ENpkTPjU55lHhKONbGWaWc6ZFU5IbrU3GUJ76500rabWIbhXpE5wXPcRrIXgFxqJta_t_snp4seHclT3ppj3SOVcUtS1AMdCNeidV_Hft-EJrE_Ksb6d6uHwr8ev8wyeRtRKDudq9hxWXLkJ63VRc7UJW-1lwRwSRotRvYD94N8uu9SSkSeDybXXxpGB01NEutdk3CWXJUEkSmZRJBITBV_C2YNwbwtWy1HpXgHhmlHZopZbgybGSm0l-qYyFdw571LagM81v5SJzczDTI2hQqcm8FYteduADwva8byFx3-p3ge2q9ATowzadaEnVaV6g1N1mKdCoqHjsgGfIpEf4XZGxxoGPHRoo3WHcrsWn4pWoVJLHW7A7kKk9xzq9f2rvIPHeAfUj17_-A1sMIRf85yibVhFsbodhEs3xduohwR-PbTq_wFCdCgi
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB8kPtg-tGorpn6wtELpw5nN7e1eti8liBL7IKVpwD5d91PEcAleotS_3tncnqlSSsH3ubs9Znbm99udD4CDlGrhvZJJqHsMRze4pfKcJxmCgS7VWlO7yPI9E4NR9vWcn8c5p1VMq0Qqfrlw0inGP_QTnHa6vIPEPZeiM7X-y008SgpXCJKmMnD2VcERjLdgdXT2rf8zjJRrHq6bkjIk96jcgH_Cex6FoafO-CWszcup-n2rxuM_os3Ja_jVrLNOMrk6nM_0obl70sLxGT-yDq8iEiX92nQ2YMWVm7DWFCpXm7B1vCyCQ8HoBao38Dlw1mXnWTLxZDi_9so4MnTqFtHrNZkOyGVJEF2Sxc0Qicl_b2F0cvzjaJDEGQyJYaI3S4SWufRaKMNT4TOfc4-YTxnZ4yq1jKVWOCGZVd5wJDvWO2l6XaXCdafOnGBb0ConpdsGwlRKZY9aZg26DSuVlcg3ZSaYc95ltA2fGpUUJjYoD3MyxgUSlaC-Yqm-Nnx4kJ3WbTn-KvU-aLYIfS7KkEhzoeZVVZwOvxf9PBMSnReTbfgYhfwEP2dUrEvARYfWWI8kdxsLKeJOr4oUNZdTjiy2DQcPVvOPRb37P7EdeBEm29dJQrvQQp26PcQ_M70fbfweQ679Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Surface+Seawater+pH+in+the+North+Pacific&rft.jtitle=Sustainability&rft.au=Wang%2C+Jie&rft.au=Yao%2C+Peiling&rft.au=Liu%2C+Jiaming&rft.au=Wang%2C+Xun&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=7&rft_id=info:doi/10.3390%2Fsu15075796&rft.externalDocID=A746948839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon