Brittleness index predictions from Lower Barnett Shale well-log data applying an optimized data matching algorithm at various sampling densities

The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations. Measuring mineralogical components in rocks is expensive and time consuming. However, the basic well log...

Full description

Saved in:
Bibliographic Details
Published inDi xue qian yuan. Vol. 12; no. 6; p. 101087
Main Author Wood, David A.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier B.V 01.11.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN1674-9871
2588-9192
2588-9192
DOI10.1016/j.gsf.2020.09.016

Cover

Abstract The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations. Measuring mineralogical components in rocks is expensive and time consuming. However, the basic well log curves are not well correlated with BI so correlation-based, machine-learning methods are not able to derive highly accurate BI predictions using such data. A correlation-free, optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas). This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors. It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE) between calculated and predicted (BI). The prediction accuracy achieved by TOB using just five well logs (Gr, ρb, Ns, Rs, Dt) to predict BI is dependent on the density of data records sampled. At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE ~ 0.056 and R2 ~ 0.790. At a sampling density of about one sample per 0.1 ft BI is predicted with RMSE ~ 0.008 and R2 ~ 0.995. Adding a stratigraphic height index as an additional (sixth) input variable method improves BI prediction accuracy to RMSE ~ 0.003 and R2 ~ 0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of > ± 0.1. The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories. The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially. [Display omitted] •Brittleness index (BI) prediction from basic well log data avoiding correlations.•Optimized data matching and supervised learning at varied sampling densities.•Higher data-sampling density of input logs leads to higher BI prediction accuracy.
AbstractList The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations. Measuring mineralogical components in rocks is expensive and time consuming. However, the basic well log curves are not well correlated with BI so correlation-based, machine-learning methods are not able to derive highly accurate BI predictions using such data. A correlation-free, optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas). This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors. It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE) between calculated and predicted (BI). The prediction accuracy achieved by TOB using just five well logs (Gr, ρb, Ns, Rs, Dt) to predict BI is dependent on the density of data records sampled. At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE ~ 0.056 and R2 ~ 0.790. At a sampling density of about one sample per 0.1 ft BI is predicted with RMSE ~ 0.008 and R2 ~ 0.995. Adding a stratigraphic height index as an additional (sixth) input variable method improves BI prediction accuracy to RMSE ~ 0.003 and R2 ~ 0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of > ± 0.1. The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories. The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially.
The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations. Measuring mineralogical components in rocks is expensive and time consuming. However, the basic well log curves are not well correlated with BI so correlation-based, machine-learning methods are not able to derive highly accurate BI predictions using such data. A correlation-free, optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas). This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors. It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE) between calculated and predicted (BI). The prediction accuracy achieved by TOB using just five well logs (Gr, ρb, Ns, Rs, Dt) to predict BI is dependent on the density of data records sampled. At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE ~ 0.056 and R2 ~ 0.790. At a sampling density of about one sample per 0.1 ft BI is predicted with RMSE ~ 0.008 and R2 ~ 0.995. Adding a stratigraphic height index as an additional (sixth) input variable method improves BI prediction accuracy to RMSE ~ 0.003 and R2 ~ 0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of > ± 0.1. The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories. The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially. [Display omitted] •Brittleness index (BI) prediction from basic well log data avoiding correlations.•Optimized data matching and supervised learning at varied sampling densities.•Higher data-sampling density of input logs leads to higher BI prediction accuracy.
ArticleNumber 101087
Author Wood, David A.
Author_xml – sequence: 1
  givenname: David A.
  orcidid: 0000-0003-3202-4069
  surname: Wood
  fullname: Wood, David A.
  email: dw@dwasolutions.com
  organization: DWA Energy Limited, Lincoln, United Kingdom
BookMark eNqNkc9u1DAQxi3USiylD8DNEucEO2n8R5xoBS3SShygZ8u1J7teOXawvV22T8Ej4204cajwZaz55jcz-uYNOgsxAELvKGkpoezDrt3kse1IR1oi25p5hVbdIEQjqezO0IoyftVIwelrdJnzjtTHueCcrNDv6-RK8RAgZ-yChV94TmCdKS6GjMcUJ7yOB0j4WqcApeDvW-0BH8D7xscNtrporOfZH13YYB1wnIub3BPYRZp0MdtnyW9inbWdsC74UScX9xlnPc3-pFoI2RUH-S06H7XPcPk3XqD7L59_3Nw162-3X28-rRvTM1EaphkQa_qR2F5yy0H00vDBCqnHh5E8XBHJyMBAskEYyogxFgQTuv7GgY28v0Dd0ncfZn08aO_VnNyk01FRok62qp2qtqqTrYpIVTMVer9Ac4o_95CL2sV9CnVP1bGODkJ2TNYqulSZFHNOMP5XZ_4PY1zRpyOUpJ1_kfy4kFDdenSQVDYOgqlHTGCKstG9QP8BUC60ZQ
CitedBy_id crossref_primary_10_1007_s12040_023_02073_6
crossref_primary_10_1063_5_0193903
crossref_primary_10_2205_2023ES000886
crossref_primary_10_1007_s10712_022_09705_4
crossref_primary_10_1016_j_gsf_2021_101172
crossref_primary_10_1016_j_petrol_2021_110081
crossref_primary_10_1016_j_cageo_2022_105266
crossref_primary_10_1016_j_egyr_2022_01_139
crossref_primary_10_1063_5_0190078
crossref_primary_10_1021_acssuschemeng_1c06610
crossref_primary_10_1016_j_rineng_2022_100846
crossref_primary_10_1016_j_geoen_2023_212518
crossref_primary_10_1021_acs_energyfuels_4c03197
crossref_primary_10_1155_2022_2301795
crossref_primary_10_1007_s12145_023_01098_1
crossref_primary_10_1109_TGRS_2024_3450103
Cites_doi 10.1063/1.5064268
10.1016/j.jngse.2016.05.041
10.1306/12190606068
10.1007/s13202-017-0360-0
10.26804/ager.2018.02.04
10.1007/s12583-017-0734-8
10.1306/04261110116
10.1007/s40808-019-00583-1
10.1016/0264-8172(95)00062-3
10.1016/j.jngse.2016.03.013
10.1016/j.jrmge.2016.03.002
10.1016/j.jngse.2016.09.009
10.1190/INT-2015-0168.1
10.1007/s40808-018-0543-9
10.1306/10300606008
10.1016/j.petrol.2016.02.011
10.1016/j.jngse.2015.10.020
10.1190/INT-2015-0166.1
10.3390/geosciences9070319
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Nov 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Nov 2021
DBID 6I.
AAFTH
AAYXX
CITATION
8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1016/j.gsf.2020.09.016
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2588-9192
ExternalDocumentID 10.1016/j.gsf.2020.09.016
10_1016_j_gsf_2020_09_016
S167498712030219X
GroupedDBID --K
-01
-0A
-SA
-S~
0R~
0SF
2B.
2C.
4.4
457
5SA
5VR
5VS
6I.
92E
92I
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADEZE
AEXQZ
AFPKN
AFTJW
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
E3Z
EBS
EJD
FA0
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
JUIAU
KQ8
M41
NCXOZ
O-L
O9-
OK1
Q--
Q-0
R-A
RIG
ROL
RT1
S..
SES
SSZ
T8Q
TCJ
TGP
U1F
U1G
U5A
U5K
XH2
~LI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
8FD
H8D
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c368t-6a6e0dc3f0d397d7e839c75d89afbf0b4096056e9658c160ccde868a60cf56f73
IEDL.DBID IXB
ISSN 1674-9871
2588-9192
IngestDate Tue Aug 19 22:04:43 EDT 2025
Fri Jul 25 06:02:29 EDT 2025
Wed Oct 29 21:09:08 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Tue Jul 25 21:02:45 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Well-log brittleness index estimates
Data record sample densities
Zoomed-in data interpolation
Correlation-free prediction analysis
Mineralogical and elastic influences
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-6a6e0dc3f0d397d7e839c75d89afbf0b4096056e9658c160ccde868a60cf56f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3202-4069
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S167498712030219X
PQID 2621589269
PQPubID 2047466
ParticipantIDs unpaywall_primary_10_1016_j_gsf_2020_09_016
proquest_journals_2621589269
crossref_primary_10_1016_j_gsf_2020_09_016
crossref_citationtrail_10_1016_j_gsf_2020_09_016
elsevier_sciencedirect_doi_10_1016_j_gsf_2020_09_016
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Di xue qian yuan.
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Guo, Li, Chapman (bb0050) 2012
Glorioso, Rattia (bb0040) 2012
Verma, Zhao, Marfurt, Devegowda (bb0120) 2016; 4
Grieser, Bray (bb0045) 2007; 106623
Wang, Gale (bb0135) 2009; 59
Gholami, Rasouli, Sarmadivaleh, Minaeian, Fakhari (bb0035) 2016; 33
Wood (bb0150) 2019; 5
Al-Mudhafar (bb0010) 2017; 7
Frontline Solvers (bb0030) 2019
Wood (bb0140) 2016; 33
Wood, Hazra (bb0160) 2017; 28
Lai, Wang, Huang, Li, Ran, Wang, Zhou, Chen (bb0080) 2015; 27
Rickman, Mullen, Petre, Grieser, Kundert (bb0100) 2008
Jin, Shah, Roegiers, Zhang (bb0070) 2014
Mews, Alhubail, Barati (bb0085) 2019; 9
Walper (bb0125) 1982
Zhang, Ranjith, Perera (bb0170) 2016; 143
Jarvie, Hill, Ruble, Pollastro (bb0065) 2007; 91
Singh, Slatt, Coffey (bb0115) 2008; 58
Shi, Liu, Cheng, Yang, Jiang, Chen, Jiang, Wang (bb0110) 2016; 35A
Wood (bb0155) 2019; 5
Wood (bb0145) 2018; 2
Huang, Williamson (bb0060) 1996; 13
Pollastro, Jarvie, Hill, Adams, W. (bb0095) 2007; 91
Sakar, Verma, Marfurt (bb0105) 2016
Wang (bb0130) 2013; 35
Abouelresh, Slatt (bb0005) 2012; 96
Altindag (bb0015) 2003; 102
Boyer, Kieschnick, Suarez-Rivera, Lewis, Waters (bb0025) 2006; 18
Nugroho, Kusumaningtias, Fennita, Supriyanto (bb0090) 2018; 2023
Herwanger, Bottrill, Mildren (bb0055) 2015
Yang, Sone, Hows, Zoback (bb0165) 2013
Alzahabi, AlQahtani, Soliman, Bateman, Asquith, Vadapalli (bb0020) 2015
Kuanda, Asbury (bb0075) 2016; 8
Wood (10.1016/j.gsf.2020.09.016_bb0140) 2016; 33
Alzahabi (10.1016/j.gsf.2020.09.016_bb0020) 2015
Boyer (10.1016/j.gsf.2020.09.016_bb0025) 2006; 18
Lai (10.1016/j.gsf.2020.09.016_bb0080) 2015; 27
Huang (10.1016/j.gsf.2020.09.016_bb0060) 1996; 13
Mews (10.1016/j.gsf.2020.09.016_bb0085) 2019; 9
Wood (10.1016/j.gsf.2020.09.016_bb0160) 2017; 28
Zhang (10.1016/j.gsf.2020.09.016_bb0170) 2016; 143
Guo (10.1016/j.gsf.2020.09.016_bb0050) 2012
Shi (10.1016/j.gsf.2020.09.016_bb0110) 2016; 35A
Nugroho (10.1016/j.gsf.2020.09.016_bb0090) 2018; 2023
Kuanda (10.1016/j.gsf.2020.09.016_bb0075) 2016; 8
Wang (10.1016/j.gsf.2020.09.016_bb0130) 2013; 35
Sakar (10.1016/j.gsf.2020.09.016_bb0105) 2016
Jin (10.1016/j.gsf.2020.09.016_bb0070) 2014
Wang (10.1016/j.gsf.2020.09.016_bb0135) 2009; 59
Jarvie (10.1016/j.gsf.2020.09.016_bb0065) 2007; 91
Rickman (10.1016/j.gsf.2020.09.016_bb0100) 2008
Yang (10.1016/j.gsf.2020.09.016_bb0165) 2013
Al-Mudhafar (10.1016/j.gsf.2020.09.016_bb0010) 2017; 7
Herwanger (10.1016/j.gsf.2020.09.016_bb0055) 2015
Pollastro (10.1016/j.gsf.2020.09.016_bb0095) 2007; 91
Wood (10.1016/j.gsf.2020.09.016_bb0145) 2018; 2
Singh (10.1016/j.gsf.2020.09.016_bb0115) 2008; 58
Abouelresh (10.1016/j.gsf.2020.09.016_bb0005) 2012; 96
Gholami (10.1016/j.gsf.2020.09.016_bb0035) 2016; 33
Frontline Solvers (10.1016/j.gsf.2020.09.016_bb0030)
Altindag (10.1016/j.gsf.2020.09.016_bb0015) 2003; 102
Verma (10.1016/j.gsf.2020.09.016_bb0120) 2016; 4
Wood (10.1016/j.gsf.2020.09.016_bb0150) 2019; 5
Grieser (10.1016/j.gsf.2020.09.016_bb0045) 2007; 106623
Wood (10.1016/j.gsf.2020.09.016_bb0155) 2019; 5
Walper (10.1016/j.gsf.2020.09.016_bb0125) 1982
Glorioso (10.1016/j.gsf.2020.09.016_bb0040) 2012
References_xml – start-page: 20
  year: 2012
  end-page: 22
  ident: bb0040
  article-title: Unconventional reservoirs: Basic petrophysical concepts for shale gas
  publication-title: Proceedings of the SPE/EAGE European Unconventional Resources Conference and Exhibition from Potential to Production, Vienna, Austria
– start-page: 2013
  year: 2013
  ident: bb0165
  article-title: Comparison of Brittleness Indices in Organic-Rich Shale Formations
– volume: 33
  start-page: 751
  year: 2016
  end-page: 768
  ident: bb0140
  article-title: Metaheuristic profiling to assess performance of hybrid evolutionary optimization algorithms applied to complex wellbore trajectories
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 2023
  year: 2018
  ident: bb0090
  article-title: Shale gas zone characterization in North Sumatera area using neural network multi attribute analysis
  publication-title: AIP Conf. Proceed.
– volume: 106623
  start-page: 1
  year: 2007
  end-page: 6
  ident: bb0045
  article-title: Identification of production potential in unconventional reservoirs
  publication-title: Soc. Pet. Eng.
– year: 2008
  ident: bb0100
  article-title: A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale
  publication-title: Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 115258
– start-page: T403
  year: 2016
  end-page: T417
  ident: bb0105
  article-title: Seismic-petrophysical reservoir characterization in the northernpart of the Chicontepec Basin, Mexico
  publication-title: Interpretation
– volume: 96
  start-page: 1
  year: 2012
  end-page: 22
  ident: bb0005
  article-title: Lithofacies and sequence stratigraphy of the Barnett Shale in east-Central Fort Worth Basin, Texas
  publication-title: AAPG Bull.
– volume: 91
  start-page: 475
  year: 2007
  end-page: 499
  ident: bb0065
  article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment
  publication-title: AAPG Bull.
– volume: 102
  start-page: 163
  year: 2003
  end-page: 172
  ident: bb0015
  article-title: Correlation of specific energy with rock brittleness concepts on rock cutting
  publication-title: J. South Afr. Inst. Min. Metallurg.
– start-page: 237
  year: 1982
  end-page: 251
  ident: bb0125
  article-title: Plate tectonic evolution of the Fort Worth Basin
  publication-title: Petroleum Geology of the Fort Worth Basin and Bend Arch Area
– volume: 2
  start-page: 148
  year: 2018
  end-page: 162
  ident: bb0145
  article-title: A transparent Open-Box learning network provides insight to complex systems and a performance benchmark for more-opaque machine learning algorithms
  publication-title: Adv. Geo-Energy Res.
– start-page: 21
  year: 2015
  end-page: 23
  ident: bb0020
  article-title: Fracturability index is a mineralogical index: A new approach for fracturing decision
  publication-title: Proceedings of the SPE Saudi Arabia Section Annual Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia
– volume: 13
  start-page: 227
  year: 1996
  end-page: 290
  ident: bb0060
  article-title: Artificial neural network modeling as an aid to source rock characterization
  publication-title: Mar. Pet. Geol.
– volume: 4
  start-page: 373
  year: 2016
  end-page: 385
  ident: bb0120
  article-title: Estimation of total organic carbon and brittleness volume
  publication-title: Interpretation
– volume: 35
  start-page: 100
  year: 2013
  end-page: 104
  ident: bb0130
  article-title: The method of application of gamma-ray spectral logging data for determining clay mineral content
  publication-title: J. Oil Gas Technol.
– year: 2012
  ident: bb0050
  article-title: Correlation of brittleness index with fractures and 502 microstructure in the Barnett Shale
  publication-title: Proceeding of 74th EAGE Conference & Exhibition, Extended.503 Abstracts F022
– year: 2019
  ident: bb0030
  article-title: Standard Excel Solver - Limitations of Nonlinear Optimization
– volume: 33
  start-page: 1244
  year: 2016
  end-page: 1259
  ident: bb0035
  article-title: Brittleness of gas shale reservoirs: a case study from the North Perth basin, Australia
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 8
  start-page: 533
  year: 2016
  end-page: 540
  ident: bb0075
  article-title: Prediction of rock brittleness using nondestructive methods for hard rock tunnelling
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 27
  start-page: 1536
  year: 2015
  end-page: 1545
  ident: bb0080
  article-title: Brittleness index estimation in a tight shaly sandstone reservoir using well logs
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 28
  start-page: 779
  year: 2017
  end-page: 803
  ident: bb0160
  article-title: Characterization of organic-rich shales for petroleum exploration & exploitation: a review - part 3 applied geomechanics, petrophysics and reservoir modeling
  publication-title: J. Earth Sci.
– volume: 59
  start-page: 779
  year: 2009
  end-page: 793
  ident: bb0135
  article-title: Screening criteria for shale-gas systems
  publication-title: Gulf Coast Assoc. Geol. Soc. Transac.
– volume: 35A
  start-page: 673
  year: 2016
  end-page: 685
  ident: bb0110
  article-title: Brittleness index prediction in shale gas reservoirs based on efficient network models
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 58
  start-page: 777
  year: 2008
  end-page: 795
  ident: bb0115
  article-title: Barnett Shale - Unfolded: sedimentology, sequence stratigraphy, and regional mapping
  publication-title: Gulf Coast Assoc. Geol. Soc. Transac.
– volume: 7
  start-page: 1023
  year: 2017
  end-page: 1033
  ident: bb0010
  article-title: Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms
  publication-title: J. Pet. Explor. Prod. Technol.
– year: 2015
  ident: bb0055
  article-title: Uses and abuses of the brittleness index with applications to hydraulic stimulation
  publication-title: Proceeding of Unconventional Resources Technology Conference (URTeC: 2172545)
– year: 2014
  ident: bb0070
  article-title: Fracability evaluation in shale reservoirs: An integrated petrophysics and geomechanics approach
  publication-title: Proceeding of the SPE Hydraulic Fracturing Technology Conference
– volume: 18
  start-page: 36
  year: 2006
  end-page: 49
  ident: bb0025
  article-title: Producing gas from its source
  publication-title: Oilfield Rev.
– volume: 143
  start-page: 158
  year: 2016
  end-page: 170
  ident: bb0170
  article-title: The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review
  publication-title: J. Pet. Sci. Eng.
– volume: 5
  start-page: 395
  year: 2019
  end-page: 419
  ident: bb0150
  article-title: Transparent open box learning network provides auditable predictions for coal gross calorific value
  publication-title: Model. Earth Syst. Environ.
– volume: 9
  start-page: 319
  year: 2019
  ident: bb0085
  article-title: A review of brittleness index correlations for unconventional tight and ultra-tight reservoirs
  publication-title: Geosciences
– volume: 91
  start-page: 405
  year: 2007
  end-page: 436
  ident: bb0095
  article-title: Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas
  publication-title: AAPG Bull.
– volume: 5
  start-page: 753
  year: 2019
  end-page: 766
  ident: bb0155
  article-title: Sensitivity analysis and optimization capabilities of the transparent open box learning network in predicting coal gross calorific value from underlying compositional variables
  publication-title: Model. Earth Syst. Environ.
– volume: 2023
  year: 2018
  ident: 10.1016/j.gsf.2020.09.016_bb0090
  article-title: Shale gas zone characterization in North Sumatera area using neural network multi attribute analysis
  publication-title: AIP Conf. Proceed.
  doi: 10.1063/1.5064268
– volume: 35
  start-page: 100
  issue: 2
  year: 2013
  ident: 10.1016/j.gsf.2020.09.016_bb0130
  article-title: The method of application of gamma-ray spectral logging data for determining clay mineral content
  publication-title: J. Oil Gas Technol.
– volume: 33
  start-page: 751
  year: 2016
  ident: 10.1016/j.gsf.2020.09.016_bb0140
  article-title: Metaheuristic profiling to assess performance of hybrid evolutionary optimization algorithms applied to complex wellbore trajectories
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.05.041
– volume: 91
  start-page: 475
  issue: 4
  year: 2007
  ident: 10.1016/j.gsf.2020.09.016_bb0065
  article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment
  publication-title: AAPG Bull.
  doi: 10.1306/12190606068
– start-page: 237
  year: 1982
  ident: 10.1016/j.gsf.2020.09.016_bb0125
  article-title: Plate tectonic evolution of the Fort Worth Basin
– volume: 7
  start-page: 1023
  year: 2017
  ident: 10.1016/j.gsf.2020.09.016_bb0010
  article-title: Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-017-0360-0
– year: 2014
  ident: 10.1016/j.gsf.2020.09.016_bb0070
  article-title: Fracability evaluation in shale reservoirs: An integrated petrophysics and geomechanics approach
– start-page: 20
  year: 2012
  ident: 10.1016/j.gsf.2020.09.016_bb0040
  article-title: Unconventional reservoirs: Basic petrophysical concepts for shale gas
– volume: 2
  start-page: 148
  issue: 2
  year: 2018
  ident: 10.1016/j.gsf.2020.09.016_bb0145
  article-title: A transparent Open-Box learning network provides insight to complex systems and a performance benchmark for more-opaque machine learning algorithms
  publication-title: Adv. Geo-Energy Res.
  doi: 10.26804/ager.2018.02.04
– volume: 28
  start-page: 779
  issue: 5
  year: 2017
  ident: 10.1016/j.gsf.2020.09.016_bb0160
  article-title: Characterization of organic-rich shales for petroleum exploration & exploitation: a review - part 3 applied geomechanics, petrophysics and reservoir modeling
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-017-0734-8
– volume: 96
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.gsf.2020.09.016_bb0005
  article-title: Lithofacies and sequence stratigraphy of the Barnett Shale in east-Central Fort Worth Basin, Texas
  publication-title: AAPG Bull.
  doi: 10.1306/04261110116
– volume: 5
  start-page: 753
  issue: 3
  year: 2019
  ident: 10.1016/j.gsf.2020.09.016_bb0155
  article-title: Sensitivity analysis and optimization capabilities of the transparent open box learning network in predicting coal gross calorific value from underlying compositional variables
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-019-00583-1
– year: 2008
  ident: 10.1016/j.gsf.2020.09.016_bb0100
  article-title: A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale
– volume: 106623
  start-page: 1
  year: 2007
  ident: 10.1016/j.gsf.2020.09.016_bb0045
  article-title: Identification of production potential in unconventional reservoirs
  publication-title: Soc. Pet. Eng.
– volume: 13
  start-page: 227
  year: 1996
  ident: 10.1016/j.gsf.2020.09.016_bb0060
  article-title: Artificial neural network modeling as an aid to source rock characterization
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/0264-8172(95)00062-3
– volume: 33
  start-page: 1244
  year: 2016
  ident: 10.1016/j.gsf.2020.09.016_bb0035
  article-title: Brittleness of gas shale reservoirs: a case study from the North Perth basin, Australia
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.03.013
– volume: 8
  start-page: 533
  year: 2016
  ident: 10.1016/j.gsf.2020.09.016_bb0075
  article-title: Prediction of rock brittleness using nondestructive methods for hard rock tunnelling
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2016.03.002
– start-page: 21
  year: 2015
  ident: 10.1016/j.gsf.2020.09.016_bb0020
  article-title: Fracturability index is a mineralogical index: A new approach for fracturing decision
– volume: 35A
  start-page: 673
  year: 2016
  ident: 10.1016/j.gsf.2020.09.016_bb0110
  article-title: Brittleness index prediction in shale gas reservoirs based on efficient network models
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.09.009
– start-page: T403
  year: 2016
  ident: 10.1016/j.gsf.2020.09.016_bb0105
  article-title: Seismic-petrophysical reservoir characterization in the northernpart of the Chicontepec Basin, Mexico
  publication-title: Interpretation
  doi: 10.1190/INT-2015-0168.1
– volume: 102
  start-page: 163
  issue: 1
  year: 2003
  ident: 10.1016/j.gsf.2020.09.016_bb0015
  article-title: Correlation of specific energy with rock brittleness concepts on rock cutting
  publication-title: J. South Afr. Inst. Min. Metallurg.
– year: 2015
  ident: 10.1016/j.gsf.2020.09.016_bb0055
  article-title: Uses and abuses of the brittleness index with applications to hydraulic stimulation
– year: 2012
  ident: 10.1016/j.gsf.2020.09.016_bb0050
  article-title: Correlation of brittleness index with fractures and 502 microstructure in the Barnett Shale
– volume: 5
  start-page: 395
  issue: 2
  year: 2019
  ident: 10.1016/j.gsf.2020.09.016_bb0150
  article-title: Transparent open box learning network provides auditable predictions for coal gross calorific value
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-018-0543-9
– volume: 18
  start-page: 36
  year: 2006
  ident: 10.1016/j.gsf.2020.09.016_bb0025
  article-title: Producing gas from its source
  publication-title: Oilfield Rev.
– volume: 58
  start-page: 777
  year: 2008
  ident: 10.1016/j.gsf.2020.09.016_bb0115
  article-title: Barnett Shale - Unfolded: sedimentology, sequence stratigraphy, and regional mapping
  publication-title: Gulf Coast Assoc. Geol. Soc. Transac.
– ident: 10.1016/j.gsf.2020.09.016_bb0030
– volume: 91
  start-page: 405
  issue: 4
  year: 2007
  ident: 10.1016/j.gsf.2020.09.016_bb0095
  article-title: Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas
  publication-title: AAPG Bull.
  doi: 10.1306/10300606008
– volume: 59
  start-page: 779
  year: 2009
  ident: 10.1016/j.gsf.2020.09.016_bb0135
  article-title: Screening criteria for shale-gas systems
  publication-title: Gulf Coast Assoc. Geol. Soc. Transac.
– volume: 143
  start-page: 158
  year: 2016
  ident: 10.1016/j.gsf.2020.09.016_bb0170
  article-title: The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2016.02.011
– volume: 27
  start-page: 1536
  year: 2015
  ident: 10.1016/j.gsf.2020.09.016_bb0080
  article-title: Brittleness index estimation in a tight shaly sandstone reservoir using well logs
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.10.020
– start-page: 2013
  year: 2013
  ident: 10.1016/j.gsf.2020.09.016_bb0165
– volume: 4
  start-page: 373
  issue: 3
  year: 2016
  ident: 10.1016/j.gsf.2020.09.016_bb0120
  article-title: Estimation of total organic carbon and brittleness volume
  publication-title: Interpretation
  doi: 10.1190/INT-2015-0166.1
– volume: 9
  start-page: 319
  year: 2019
  ident: 10.1016/j.gsf.2020.09.016_bb0085
  article-title: A review of brittleness index correlations for unconventional tight and ultra-tight reservoirs
  publication-title: Geosciences
  doi: 10.3390/geosciences9070319
SSID ssj0000778770
Score 2.3566208
Snippet The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101087
SubjectTerms Algorithms
Brittleness
Correlation
Correlation-free prediction analysis
Data record sample densities
Density
Elastic properties
Machine learning
Matching
Mineralogical and elastic influences
Mineralogy
Predictions
Rock properties
Root-mean-square errors
Sampling
Shale gas
Stratigraphy
Well-log brittleness index estimates
Wells
Zoomed-in data interpolation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVogTUB5iUUFz6AmUKpvYjnMsVUuFaFUJViony88W2GZXmyyo_RX8ZGbyqAqCQm9RYjuJPba_8cx8w9hWkeeOOxOTVGYOFZSiTMowUUnhPUf0b8XEUoDz4ZE8mPJ3J-KkJ4umWJhf7PetH9ZpTUybWdrSkU7kHbYuBcLuEVufHh3vfCKFShY8Qd2ZlKtMKJrAZTZYMP_Uxt_2oGsY896qWpiL72Y2u7bd7D_oHLXqlqWQvEy-bq8au-0uf-Nw_K8_ecju96ATdjop2WBroXrE7r5tk_pePGY_6IQAZYZWPWjpE2GxJANOK5NAESjwnrKpwRuzrELTwIcz3FeAzv0SbALIzRTIFE4xU2AqmONCdP75MvjuEaLi1mUTzOx0ju86OwfTwDdU0-erGmpDXu341JMzPRG8PmHT_b2PuwdJn6khcblUTSKNDKl3eUw94htfBIRdrhBelSbamFpOipKQgZhm3ESmzvmgpDJ4FYWMRf6Ujap5FZ4xUMorLxw3NnjuY6FEzHxU3DrpjHXZmKXD2GnX05hTNo2ZHvzVvmjsaE0drdNS450xe3VVZdFxeNxUmA8CoXsQ0oELjQN6U7XNQXh0vwrUOpMIqFSZyXLMXl8J1L-_4fmtSm-yUbNchRcIjhr7sp8WPwHBUg1i
  priority: 102
  providerName: Unpaywall
Title Brittleness index predictions from Lower Barnett Shale well-log data applying an optimized data matching algorithm at various sampling densities
URI https://dx.doi.org/10.1016/j.gsf.2020.09.016
https://www.proquest.com/docview/2621589269
https://doi.org/10.1016/j.gsf.2020.09.016
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2588-9192
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778770
  issn: 1674-9871
  databaseCode: KQ8
  dateStart: 20101001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 2588-9192
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778770
  issn: 1674-9871
  databaseCode: IXB
  dateStart: 20101001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2588-9192
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778770
  issn: 1674-9871
  databaseCode: AKRWK
  dateStart: 20101001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY2wvo90Hy9aVe9jTholiy7L82Ja13VfZ6ALZk5D10aakTkicle6v6J_cO8UOHYwO9mKMPmyhO53upN_dMfa2yDIrrAkJl6lFA6Uok9IPVFI4J1D7r_JBRQ7OX0_k8VB8GuWjDXbQ-cIQrLKV_SuZHqV1W9JvZ7M_G4_7p4SfR4t5kCKf4roboRzOhKL0DR9H--tzFl4gS8accdQ-oQ7d5WaEeZ0tKJBnymO0U8p6_vft6Y76-WhZz8z1lZlM7uxEh1vsSatCwt5qlNtsw9dP2cOjmKL3-hm7IXsfOYBkGMRgiDCb03VM5DAgfxL4QrnRYN_Ma980cHqOuwTQKV6CnwACjQJdbJMHFJgapihWLse_vVtVoY4bAZhgJmdT_Nf5JZgGfqHRPV0uYGEIo461jqDxFK71ORsefvhxcJy0eRcSm0nVJNJIz53NAneorbjCoxJli9yp0oQq8EqQ2ZNLT3Fj7EBya51XUhl8C7kMRfaCbdbT2r9koJRTLrfCVN4JFwqVh9QFJSorrals2mO8m25t26DklBtjojv02YVGCmmikOalxpIee7fuMltF5LivsehoqP9gK407xn3ddjp663ZNL3QqUT1SZSrLHnu_5oF_j-HV_43hNXucEn4m-j3usM1mvvRvUAFqqt3I4fj8_F3tsgfDk297P28BRAgI0Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGENpe0PgSHQPugSdQVDdxHOeRTWwFur1sk_pmOf7Yirq0alPQ-Cv4k7lzk2pIaEi8RXacWPb5_Dv7d3eMvSuyzAprQsJlatFAKcqk9AOVFM4JRP9VPqjIwfn0TA4vxZdxPt5iR50vDNEqW92_1ulRW7cl_XY0-_PJpH9O_Hm0mAcpyimuu_ED9lDkiE7Ii298uDlo4QXKZEwaRw0SatHdbkae19WSInmmPIY7pbTnf9-f7uDPnVU9N7c_zHR6Zys63mOPWwwJH9fdfMK2fP2UPTqJOXpvn7FfZPCjCJASgxgNEeYLuo-JIgbkUAIjSo4Gh2ZR-6aB82vcJoCO8RL8BBBrFOhmm1ygwNQwQ71yM_np3boKQW5kYIKZXs3wX9c3YBr4jlb3bLWEpSGSOtY64sZTvNbn7PL408XRMGkTLyQ2k6pJpJGeO5sF7hCuuMIjirJF7lRpQhV4JcjuyaWnwDF2ILm1ziupDD6FXIYie8G261ntXzJQyimXW2Eq74QLhcpD6oISlZXWVDbtMd4Nt7ZtVHJKjjHVHf3sm8YZ0jRDmpcaS3rs_abJfB2S476XRTeH-g-50rhl3NfsoJtv3S7qpU4l4iNVprLssQ8bGfh3H_b_rw9v2c7w4nSkR5_Pvr5iuymRaaIT5AHbbhYr_xrRUFO9idL-Gx4nCVI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVogTUB5iUUFz6AmUKpvYjnMsVUuFaFUJViony88W2GZXmyyo_RX8ZGbyqAqCQm9RYjuJPba_8cx8w9hWkeeOOxOTVGYOFZSiTMowUUnhPUf0b8XEUoDz4ZE8mPJ3J-KkJ4umWJhf7PetH9ZpTUybWdrSkU7kHbYuBcLuEVufHh3vfCKFShY8Qd2ZlKtMKJrAZTZYMP_Uxt_2oGsY896qWpiL72Y2u7bd7D_oHLXqlqWQvEy-bq8au-0uf-Nw_K8_ecju96ATdjop2WBroXrE7r5tk_pePGY_6IQAZYZWPWjpE2GxJANOK5NAESjwnrKpwRuzrELTwIcz3FeAzv0SbALIzRTIFE4xU2AqmONCdP75MvjuEaLi1mUTzOx0ju86OwfTwDdU0-erGmpDXu341JMzPRG8PmHT_b2PuwdJn6khcblUTSKNDKl3eUw94htfBIRdrhBelSbamFpOipKQgZhm3ESmzvmgpDJ4FYWMRf6Ujap5FZ4xUMorLxw3NnjuY6FEzHxU3DrpjHXZmKXD2GnX05hTNo2ZHvzVvmjsaE0drdNS450xe3VVZdFxeNxUmA8CoXsQ0oELjQN6U7XNQXh0vwrUOpMIqFSZyXLMXl8J1L-_4fmtSm-yUbNchRcIjhr7sp8WPwHBUg1i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brittleness+index+predictions+from+Lower+Barnett+Shale+well-log+data+applying+an+optimized+data+matching+algorithm+at+various+sampling+densities&rft.jtitle=Di+xue+qian+yuan.&rft.au=Wood%2C+David+A.&rft.date=2021-11-01&rft.issn=1674-9871&rft.volume=12&rft.issue=6&rft.spage=101087&rft_id=info:doi/10.1016%2Fj.gsf.2020.09.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gsf_2020_09_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-9871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-9871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-9871&client=summon