Brittleness index predictions from Lower Barnett Shale well-log data applying an optimized data matching algorithm at various sampling densities
The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations. Measuring mineralogical components in rocks is expensive and time consuming. However, the basic well log...
Saved in:
| Published in | Di xue qian yuan. Vol. 12; no. 6; p. 101087 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier B.V
01.11.2021
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-9871 2588-9192 2588-9192 |
| DOI | 10.1016/j.gsf.2020.09.016 |
Cover
| Abstract | The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations. Measuring mineralogical components in rocks is expensive and time consuming. However, the basic well log curves are not well correlated with BI so correlation-based, machine-learning methods are not able to derive highly accurate BI predictions using such data. A correlation-free, optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas). This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors. It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE) between calculated and predicted (BI). The prediction accuracy achieved by TOB using just five well logs (Gr, ρb, Ns, Rs, Dt) to predict BI is dependent on the density of data records sampled. At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE ~ 0.056 and R2 ~ 0.790. At a sampling density of about one sample per 0.1 ft BI is predicted with RMSE ~ 0.008 and R2 ~ 0.995. Adding a stratigraphic height index as an additional (sixth) input variable method improves BI prediction accuracy to RMSE ~ 0.003 and R2 ~ 0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of > ± 0.1. The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories. The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially.
[Display omitted]
•Brittleness index (BI) prediction from basic well log data avoiding correlations.•Optimized data matching and supervised learning at varied sampling densities.•Higher data-sampling density of input logs leads to higher BI prediction accuracy. |
|---|---|
| AbstractList | The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations. Measuring mineralogical components in rocks is expensive and time consuming. However, the basic well log curves are not well correlated with BI so correlation-based, machine-learning methods are not able to derive highly accurate BI predictions using such data. A correlation-free, optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas). This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors. It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE) between calculated and predicted (BI). The prediction accuracy achieved by TOB using just five well logs (Gr, ρb, Ns, Rs, Dt) to predict BI is dependent on the density of data records sampled. At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE ~ 0.056 and R2 ~ 0.790. At a sampling density of about one sample per 0.1 ft BI is predicted with RMSE ~ 0.008 and R2 ~ 0.995. Adding a stratigraphic height index as an additional (sixth) input variable method improves BI prediction accuracy to RMSE ~ 0.003 and R2 ~ 0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of > ± 0.1. The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories. The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially. The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations. Measuring mineralogical components in rocks is expensive and time consuming. However, the basic well log curves are not well correlated with BI so correlation-based, machine-learning methods are not able to derive highly accurate BI predictions using such data. A correlation-free, optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas). This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors. It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE) between calculated and predicted (BI). The prediction accuracy achieved by TOB using just five well logs (Gr, ρb, Ns, Rs, Dt) to predict BI is dependent on the density of data records sampled. At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE ~ 0.056 and R2 ~ 0.790. At a sampling density of about one sample per 0.1 ft BI is predicted with RMSE ~ 0.008 and R2 ~ 0.995. Adding a stratigraphic height index as an additional (sixth) input variable method improves BI prediction accuracy to RMSE ~ 0.003 and R2 ~ 0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of > ± 0.1. The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories. The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially. [Display omitted] •Brittleness index (BI) prediction from basic well log data avoiding correlations.•Optimized data matching and supervised learning at varied sampling densities.•Higher data-sampling density of input logs leads to higher BI prediction accuracy. |
| ArticleNumber | 101087 |
| Author | Wood, David A. |
| Author_xml | – sequence: 1 givenname: David A. orcidid: 0000-0003-3202-4069 surname: Wood fullname: Wood, David A. email: dw@dwasolutions.com organization: DWA Energy Limited, Lincoln, United Kingdom |
| BookMark | eNqNkc9u1DAQxi3USiylD8DNEucEO2n8R5xoBS3SShygZ8u1J7teOXawvV22T8Ej4204cajwZaz55jcz-uYNOgsxAELvKGkpoezDrt3kse1IR1oi25p5hVbdIEQjqezO0IoyftVIwelrdJnzjtTHueCcrNDv6-RK8RAgZ-yChV94TmCdKS6GjMcUJ7yOB0j4WqcApeDvW-0BH8D7xscNtrporOfZH13YYB1wnIub3BPYRZp0MdtnyW9inbWdsC74UScX9xlnPc3-pFoI2RUH-S06H7XPcPk3XqD7L59_3Nw162-3X28-rRvTM1EaphkQa_qR2F5yy0H00vDBCqnHh5E8XBHJyMBAskEYyogxFgQTuv7GgY28v0Dd0ncfZn08aO_VnNyk01FRok62qp2qtqqTrYpIVTMVer9Ac4o_95CL2sV9CnVP1bGODkJ2TNYqulSZFHNOMP5XZ_4PY1zRpyOUpJ1_kfy4kFDdenSQVDYOgqlHTGCKstG9QP8BUC60ZQ |
| CitedBy_id | crossref_primary_10_1007_s12040_023_02073_6 crossref_primary_10_1063_5_0193903 crossref_primary_10_2205_2023ES000886 crossref_primary_10_1007_s10712_022_09705_4 crossref_primary_10_1016_j_gsf_2021_101172 crossref_primary_10_1016_j_petrol_2021_110081 crossref_primary_10_1016_j_cageo_2022_105266 crossref_primary_10_1016_j_egyr_2022_01_139 crossref_primary_10_1063_5_0190078 crossref_primary_10_1021_acssuschemeng_1c06610 crossref_primary_10_1016_j_rineng_2022_100846 crossref_primary_10_1016_j_geoen_2023_212518 crossref_primary_10_1021_acs_energyfuels_4c03197 crossref_primary_10_1155_2022_2301795 crossref_primary_10_1007_s12145_023_01098_1 crossref_primary_10_1109_TGRS_2024_3450103 |
| Cites_doi | 10.1063/1.5064268 10.1016/j.jngse.2016.05.041 10.1306/12190606068 10.1007/s13202-017-0360-0 10.26804/ager.2018.02.04 10.1007/s12583-017-0734-8 10.1306/04261110116 10.1007/s40808-019-00583-1 10.1016/0264-8172(95)00062-3 10.1016/j.jngse.2016.03.013 10.1016/j.jrmge.2016.03.002 10.1016/j.jngse.2016.09.009 10.1190/INT-2015-0168.1 10.1007/s40808-018-0543-9 10.1306/10300606008 10.1016/j.petrol.2016.02.011 10.1016/j.jngse.2015.10.020 10.1190/INT-2015-0166.1 10.3390/geosciences9070319 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Nov 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Nov 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 8FD H8D L7M ADTOC UNPAY |
| DOI | 10.1016/j.gsf.2020.09.016 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2588-9192 |
| ExternalDocumentID | 10.1016/j.gsf.2020.09.016 10_1016_j_gsf_2020_09_016 S167498712030219X |
| GroupedDBID | --K -01 -0A -SA -S~ 0R~ 0SF 2B. 2C. 4.4 457 5SA 5VR 5VS 6I. 92E 92I 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AALRI AAXUO ABMAC ACGFS ADEZE AEXQZ AFPKN AFTJW AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ CAJEA CAJUS CCEZO CCVFK CHBEP E3Z EBS EJD FA0 FDB GROUPED_DOAJ HZ~ IPNFZ IXB JUIAU KQ8 M41 NCXOZ O-L O9- OK1 Q-- Q-0 R-A RIG ROL RT1 S.. SES SSZ T8Q TCJ TGP U1F U1G U5A U5K XH2 ~LI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION 8FD H8D L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c368t-6a6e0dc3f0d397d7e839c75d89afbf0b4096056e9658c160ccde868a60cf56f73 |
| IEDL.DBID | IXB |
| ISSN | 1674-9871 2588-9192 |
| IngestDate | Tue Aug 19 22:04:43 EDT 2025 Fri Jul 25 06:02:29 EDT 2025 Wed Oct 29 21:09:08 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Tue Jul 25 21:02:45 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Well-log brittleness index estimates Data record sample densities Zoomed-in data interpolation Correlation-free prediction analysis Mineralogical and elastic influences |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-6a6e0dc3f0d397d7e839c75d89afbf0b4096056e9658c160ccde868a60cf56f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3202-4069 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S167498712030219X |
| PQID | 2621589269 |
| PQPubID | 2047466 |
| ParticipantIDs | unpaywall_primary_10_1016_j_gsf_2020_09_016 proquest_journals_2621589269 crossref_primary_10_1016_j_gsf_2020_09_016 crossref_citationtrail_10_1016_j_gsf_2020_09_016 elsevier_sciencedirect_doi_10_1016_j_gsf_2020_09_016 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Di xue qian yuan. |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Guo, Li, Chapman (bb0050) 2012 Glorioso, Rattia (bb0040) 2012 Verma, Zhao, Marfurt, Devegowda (bb0120) 2016; 4 Grieser, Bray (bb0045) 2007; 106623 Wang, Gale (bb0135) 2009; 59 Gholami, Rasouli, Sarmadivaleh, Minaeian, Fakhari (bb0035) 2016; 33 Wood (bb0150) 2019; 5 Al-Mudhafar (bb0010) 2017; 7 Frontline Solvers (bb0030) 2019 Wood (bb0140) 2016; 33 Wood, Hazra (bb0160) 2017; 28 Lai, Wang, Huang, Li, Ran, Wang, Zhou, Chen (bb0080) 2015; 27 Rickman, Mullen, Petre, Grieser, Kundert (bb0100) 2008 Jin, Shah, Roegiers, Zhang (bb0070) 2014 Mews, Alhubail, Barati (bb0085) 2019; 9 Walper (bb0125) 1982 Zhang, Ranjith, Perera (bb0170) 2016; 143 Jarvie, Hill, Ruble, Pollastro (bb0065) 2007; 91 Singh, Slatt, Coffey (bb0115) 2008; 58 Shi, Liu, Cheng, Yang, Jiang, Chen, Jiang, Wang (bb0110) 2016; 35A Wood (bb0155) 2019; 5 Wood (bb0145) 2018; 2 Huang, Williamson (bb0060) 1996; 13 Pollastro, Jarvie, Hill, Adams, W. (bb0095) 2007; 91 Sakar, Verma, Marfurt (bb0105) 2016 Wang (bb0130) 2013; 35 Abouelresh, Slatt (bb0005) 2012; 96 Altindag (bb0015) 2003; 102 Boyer, Kieschnick, Suarez-Rivera, Lewis, Waters (bb0025) 2006; 18 Nugroho, Kusumaningtias, Fennita, Supriyanto (bb0090) 2018; 2023 Herwanger, Bottrill, Mildren (bb0055) 2015 Yang, Sone, Hows, Zoback (bb0165) 2013 Alzahabi, AlQahtani, Soliman, Bateman, Asquith, Vadapalli (bb0020) 2015 Kuanda, Asbury (bb0075) 2016; 8 Wood (10.1016/j.gsf.2020.09.016_bb0140) 2016; 33 Alzahabi (10.1016/j.gsf.2020.09.016_bb0020) 2015 Boyer (10.1016/j.gsf.2020.09.016_bb0025) 2006; 18 Lai (10.1016/j.gsf.2020.09.016_bb0080) 2015; 27 Huang (10.1016/j.gsf.2020.09.016_bb0060) 1996; 13 Mews (10.1016/j.gsf.2020.09.016_bb0085) 2019; 9 Wood (10.1016/j.gsf.2020.09.016_bb0160) 2017; 28 Zhang (10.1016/j.gsf.2020.09.016_bb0170) 2016; 143 Guo (10.1016/j.gsf.2020.09.016_bb0050) 2012 Shi (10.1016/j.gsf.2020.09.016_bb0110) 2016; 35A Nugroho (10.1016/j.gsf.2020.09.016_bb0090) 2018; 2023 Kuanda (10.1016/j.gsf.2020.09.016_bb0075) 2016; 8 Wang (10.1016/j.gsf.2020.09.016_bb0130) 2013; 35 Sakar (10.1016/j.gsf.2020.09.016_bb0105) 2016 Jin (10.1016/j.gsf.2020.09.016_bb0070) 2014 Wang (10.1016/j.gsf.2020.09.016_bb0135) 2009; 59 Jarvie (10.1016/j.gsf.2020.09.016_bb0065) 2007; 91 Rickman (10.1016/j.gsf.2020.09.016_bb0100) 2008 Yang (10.1016/j.gsf.2020.09.016_bb0165) 2013 Al-Mudhafar (10.1016/j.gsf.2020.09.016_bb0010) 2017; 7 Herwanger (10.1016/j.gsf.2020.09.016_bb0055) 2015 Pollastro (10.1016/j.gsf.2020.09.016_bb0095) 2007; 91 Wood (10.1016/j.gsf.2020.09.016_bb0145) 2018; 2 Singh (10.1016/j.gsf.2020.09.016_bb0115) 2008; 58 Abouelresh (10.1016/j.gsf.2020.09.016_bb0005) 2012; 96 Gholami (10.1016/j.gsf.2020.09.016_bb0035) 2016; 33 Frontline Solvers (10.1016/j.gsf.2020.09.016_bb0030) Altindag (10.1016/j.gsf.2020.09.016_bb0015) 2003; 102 Verma (10.1016/j.gsf.2020.09.016_bb0120) 2016; 4 Wood (10.1016/j.gsf.2020.09.016_bb0150) 2019; 5 Grieser (10.1016/j.gsf.2020.09.016_bb0045) 2007; 106623 Wood (10.1016/j.gsf.2020.09.016_bb0155) 2019; 5 Walper (10.1016/j.gsf.2020.09.016_bb0125) 1982 Glorioso (10.1016/j.gsf.2020.09.016_bb0040) 2012 |
| References_xml | – start-page: 20 year: 2012 end-page: 22 ident: bb0040 article-title: Unconventional reservoirs: Basic petrophysical concepts for shale gas publication-title: Proceedings of the SPE/EAGE European Unconventional Resources Conference and Exhibition from Potential to Production, Vienna, Austria – start-page: 2013 year: 2013 ident: bb0165 article-title: Comparison of Brittleness Indices in Organic-Rich Shale Formations – volume: 33 start-page: 751 year: 2016 end-page: 768 ident: bb0140 article-title: Metaheuristic profiling to assess performance of hybrid evolutionary optimization algorithms applied to complex wellbore trajectories publication-title: J. Nat. Gas Sci. Eng. – volume: 2023 year: 2018 ident: bb0090 article-title: Shale gas zone characterization in North Sumatera area using neural network multi attribute analysis publication-title: AIP Conf. Proceed. – volume: 106623 start-page: 1 year: 2007 end-page: 6 ident: bb0045 article-title: Identification of production potential in unconventional reservoirs publication-title: Soc. Pet. Eng. – year: 2008 ident: bb0100 article-title: A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale publication-title: Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 115258 – start-page: T403 year: 2016 end-page: T417 ident: bb0105 article-title: Seismic-petrophysical reservoir characterization in the northernpart of the Chicontepec Basin, Mexico publication-title: Interpretation – volume: 96 start-page: 1 year: 2012 end-page: 22 ident: bb0005 article-title: Lithofacies and sequence stratigraphy of the Barnett Shale in east-Central Fort Worth Basin, Texas publication-title: AAPG Bull. – volume: 91 start-page: 475 year: 2007 end-page: 499 ident: bb0065 article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment publication-title: AAPG Bull. – volume: 102 start-page: 163 year: 2003 end-page: 172 ident: bb0015 article-title: Correlation of specific energy with rock brittleness concepts on rock cutting publication-title: J. South Afr. Inst. Min. Metallurg. – start-page: 237 year: 1982 end-page: 251 ident: bb0125 article-title: Plate tectonic evolution of the Fort Worth Basin publication-title: Petroleum Geology of the Fort Worth Basin and Bend Arch Area – volume: 2 start-page: 148 year: 2018 end-page: 162 ident: bb0145 article-title: A transparent Open-Box learning network provides insight to complex systems and a performance benchmark for more-opaque machine learning algorithms publication-title: Adv. Geo-Energy Res. – start-page: 21 year: 2015 end-page: 23 ident: bb0020 article-title: Fracturability index is a mineralogical index: A new approach for fracturing decision publication-title: Proceedings of the SPE Saudi Arabia Section Annual Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia – volume: 13 start-page: 227 year: 1996 end-page: 290 ident: bb0060 article-title: Artificial neural network modeling as an aid to source rock characterization publication-title: Mar. Pet. Geol. – volume: 4 start-page: 373 year: 2016 end-page: 385 ident: bb0120 article-title: Estimation of total organic carbon and brittleness volume publication-title: Interpretation – volume: 35 start-page: 100 year: 2013 end-page: 104 ident: bb0130 article-title: The method of application of gamma-ray spectral logging data for determining clay mineral content publication-title: J. Oil Gas Technol. – year: 2012 ident: bb0050 article-title: Correlation of brittleness index with fractures and 502 microstructure in the Barnett Shale publication-title: Proceeding of 74th EAGE Conference & Exhibition, Extended.503 Abstracts F022 – year: 2019 ident: bb0030 article-title: Standard Excel Solver - Limitations of Nonlinear Optimization – volume: 33 start-page: 1244 year: 2016 end-page: 1259 ident: bb0035 article-title: Brittleness of gas shale reservoirs: a case study from the North Perth basin, Australia publication-title: J. Nat. Gas Sci. Eng. – volume: 8 start-page: 533 year: 2016 end-page: 540 ident: bb0075 article-title: Prediction of rock brittleness using nondestructive methods for hard rock tunnelling publication-title: J. Rock Mech. Geotech. Eng. – volume: 27 start-page: 1536 year: 2015 end-page: 1545 ident: bb0080 article-title: Brittleness index estimation in a tight shaly sandstone reservoir using well logs publication-title: J. Nat. Gas Sci. Eng. – volume: 28 start-page: 779 year: 2017 end-page: 803 ident: bb0160 article-title: Characterization of organic-rich shales for petroleum exploration & exploitation: a review - part 3 applied geomechanics, petrophysics and reservoir modeling publication-title: J. Earth Sci. – volume: 59 start-page: 779 year: 2009 end-page: 793 ident: bb0135 article-title: Screening criteria for shale-gas systems publication-title: Gulf Coast Assoc. Geol. Soc. Transac. – volume: 35A start-page: 673 year: 2016 end-page: 685 ident: bb0110 article-title: Brittleness index prediction in shale gas reservoirs based on efficient network models publication-title: J. Nat. Gas Sci. Eng. – volume: 58 start-page: 777 year: 2008 end-page: 795 ident: bb0115 article-title: Barnett Shale - Unfolded: sedimentology, sequence stratigraphy, and regional mapping publication-title: Gulf Coast Assoc. Geol. Soc. Transac. – volume: 7 start-page: 1023 year: 2017 end-page: 1033 ident: bb0010 article-title: Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms publication-title: J. Pet. Explor. Prod. Technol. – year: 2015 ident: bb0055 article-title: Uses and abuses of the brittleness index with applications to hydraulic stimulation publication-title: Proceeding of Unconventional Resources Technology Conference (URTeC: 2172545) – year: 2014 ident: bb0070 article-title: Fracability evaluation in shale reservoirs: An integrated petrophysics and geomechanics approach publication-title: Proceeding of the SPE Hydraulic Fracturing Technology Conference – volume: 18 start-page: 36 year: 2006 end-page: 49 ident: bb0025 article-title: Producing gas from its source publication-title: Oilfield Rev. – volume: 143 start-page: 158 year: 2016 end-page: 170 ident: bb0170 article-title: The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review publication-title: J. Pet. Sci. Eng. – volume: 5 start-page: 395 year: 2019 end-page: 419 ident: bb0150 article-title: Transparent open box learning network provides auditable predictions for coal gross calorific value publication-title: Model. Earth Syst. Environ. – volume: 9 start-page: 319 year: 2019 ident: bb0085 article-title: A review of brittleness index correlations for unconventional tight and ultra-tight reservoirs publication-title: Geosciences – volume: 91 start-page: 405 year: 2007 end-page: 436 ident: bb0095 article-title: Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas publication-title: AAPG Bull. – volume: 5 start-page: 753 year: 2019 end-page: 766 ident: bb0155 article-title: Sensitivity analysis and optimization capabilities of the transparent open box learning network in predicting coal gross calorific value from underlying compositional variables publication-title: Model. Earth Syst. Environ. – volume: 2023 year: 2018 ident: 10.1016/j.gsf.2020.09.016_bb0090 article-title: Shale gas zone characterization in North Sumatera area using neural network multi attribute analysis publication-title: AIP Conf. Proceed. doi: 10.1063/1.5064268 – volume: 35 start-page: 100 issue: 2 year: 2013 ident: 10.1016/j.gsf.2020.09.016_bb0130 article-title: The method of application of gamma-ray spectral logging data for determining clay mineral content publication-title: J. Oil Gas Technol. – volume: 33 start-page: 751 year: 2016 ident: 10.1016/j.gsf.2020.09.016_bb0140 article-title: Metaheuristic profiling to assess performance of hybrid evolutionary optimization algorithms applied to complex wellbore trajectories publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.05.041 – volume: 91 start-page: 475 issue: 4 year: 2007 ident: 10.1016/j.gsf.2020.09.016_bb0065 article-title: Unconventional shale-gas systems: the Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment publication-title: AAPG Bull. doi: 10.1306/12190606068 – start-page: 237 year: 1982 ident: 10.1016/j.gsf.2020.09.016_bb0125 article-title: Plate tectonic evolution of the Fort Worth Basin – volume: 7 start-page: 1023 year: 2017 ident: 10.1016/j.gsf.2020.09.016_bb0010 article-title: Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-017-0360-0 – year: 2014 ident: 10.1016/j.gsf.2020.09.016_bb0070 article-title: Fracability evaluation in shale reservoirs: An integrated petrophysics and geomechanics approach – start-page: 20 year: 2012 ident: 10.1016/j.gsf.2020.09.016_bb0040 article-title: Unconventional reservoirs: Basic petrophysical concepts for shale gas – volume: 2 start-page: 148 issue: 2 year: 2018 ident: 10.1016/j.gsf.2020.09.016_bb0145 article-title: A transparent Open-Box learning network provides insight to complex systems and a performance benchmark for more-opaque machine learning algorithms publication-title: Adv. Geo-Energy Res. doi: 10.26804/ager.2018.02.04 – volume: 28 start-page: 779 issue: 5 year: 2017 ident: 10.1016/j.gsf.2020.09.016_bb0160 article-title: Characterization of organic-rich shales for petroleum exploration & exploitation: a review - part 3 applied geomechanics, petrophysics and reservoir modeling publication-title: J. Earth Sci. doi: 10.1007/s12583-017-0734-8 – volume: 96 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.gsf.2020.09.016_bb0005 article-title: Lithofacies and sequence stratigraphy of the Barnett Shale in east-Central Fort Worth Basin, Texas publication-title: AAPG Bull. doi: 10.1306/04261110116 – volume: 5 start-page: 753 issue: 3 year: 2019 ident: 10.1016/j.gsf.2020.09.016_bb0155 article-title: Sensitivity analysis and optimization capabilities of the transparent open box learning network in predicting coal gross calorific value from underlying compositional variables publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-019-00583-1 – year: 2008 ident: 10.1016/j.gsf.2020.09.016_bb0100 article-title: A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale – volume: 106623 start-page: 1 year: 2007 ident: 10.1016/j.gsf.2020.09.016_bb0045 article-title: Identification of production potential in unconventional reservoirs publication-title: Soc. Pet. Eng. – volume: 13 start-page: 227 year: 1996 ident: 10.1016/j.gsf.2020.09.016_bb0060 article-title: Artificial neural network modeling as an aid to source rock characterization publication-title: Mar. Pet. Geol. doi: 10.1016/0264-8172(95)00062-3 – volume: 33 start-page: 1244 year: 2016 ident: 10.1016/j.gsf.2020.09.016_bb0035 article-title: Brittleness of gas shale reservoirs: a case study from the North Perth basin, Australia publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.03.013 – volume: 8 start-page: 533 year: 2016 ident: 10.1016/j.gsf.2020.09.016_bb0075 article-title: Prediction of rock brittleness using nondestructive methods for hard rock tunnelling publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2016.03.002 – start-page: 21 year: 2015 ident: 10.1016/j.gsf.2020.09.016_bb0020 article-title: Fracturability index is a mineralogical index: A new approach for fracturing decision – volume: 35A start-page: 673 year: 2016 ident: 10.1016/j.gsf.2020.09.016_bb0110 article-title: Brittleness index prediction in shale gas reservoirs based on efficient network models publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.09.009 – start-page: T403 year: 2016 ident: 10.1016/j.gsf.2020.09.016_bb0105 article-title: Seismic-petrophysical reservoir characterization in the northernpart of the Chicontepec Basin, Mexico publication-title: Interpretation doi: 10.1190/INT-2015-0168.1 – volume: 102 start-page: 163 issue: 1 year: 2003 ident: 10.1016/j.gsf.2020.09.016_bb0015 article-title: Correlation of specific energy with rock brittleness concepts on rock cutting publication-title: J. South Afr. Inst. Min. Metallurg. – year: 2015 ident: 10.1016/j.gsf.2020.09.016_bb0055 article-title: Uses and abuses of the brittleness index with applications to hydraulic stimulation – year: 2012 ident: 10.1016/j.gsf.2020.09.016_bb0050 article-title: Correlation of brittleness index with fractures and 502 microstructure in the Barnett Shale – volume: 5 start-page: 395 issue: 2 year: 2019 ident: 10.1016/j.gsf.2020.09.016_bb0150 article-title: Transparent open box learning network provides auditable predictions for coal gross calorific value publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-018-0543-9 – volume: 18 start-page: 36 year: 2006 ident: 10.1016/j.gsf.2020.09.016_bb0025 article-title: Producing gas from its source publication-title: Oilfield Rev. – volume: 58 start-page: 777 year: 2008 ident: 10.1016/j.gsf.2020.09.016_bb0115 article-title: Barnett Shale - Unfolded: sedimentology, sequence stratigraphy, and regional mapping publication-title: Gulf Coast Assoc. Geol. Soc. Transac. – ident: 10.1016/j.gsf.2020.09.016_bb0030 – volume: 91 start-page: 405 issue: 4 year: 2007 ident: 10.1016/j.gsf.2020.09.016_bb0095 article-title: Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas publication-title: AAPG Bull. doi: 10.1306/10300606008 – volume: 59 start-page: 779 year: 2009 ident: 10.1016/j.gsf.2020.09.016_bb0135 article-title: Screening criteria for shale-gas systems publication-title: Gulf Coast Assoc. Geol. Soc. Transac. – volume: 143 start-page: 158 year: 2016 ident: 10.1016/j.gsf.2020.09.016_bb0170 article-title: The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.02.011 – volume: 27 start-page: 1536 year: 2015 ident: 10.1016/j.gsf.2020.09.016_bb0080 article-title: Brittleness index estimation in a tight shaly sandstone reservoir using well logs publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.10.020 – start-page: 2013 year: 2013 ident: 10.1016/j.gsf.2020.09.016_bb0165 – volume: 4 start-page: 373 issue: 3 year: 2016 ident: 10.1016/j.gsf.2020.09.016_bb0120 article-title: Estimation of total organic carbon and brittleness volume publication-title: Interpretation doi: 10.1190/INT-2015-0166.1 – volume: 9 start-page: 319 year: 2019 ident: 10.1016/j.gsf.2020.09.016_bb0085 article-title: A review of brittleness index correlations for unconventional tight and ultra-tight reservoirs publication-title: Geosciences doi: 10.3390/geosciences9070319 |
| SSID | ssj0000778770 |
| Score | 2.3566208 |
| Snippet | The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 101087 |
| SubjectTerms | Algorithms Brittleness Correlation Correlation-free prediction analysis Data record sample densities Density Elastic properties Machine learning Matching Mineralogical and elastic influences Mineralogy Predictions Rock properties Root-mean-square errors Sampling Shale gas Stratigraphy Well-log brittleness index estimates Wells Zoomed-in data interpolation |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVogTUB5iUUFz6AmUKpvYjnMsVUuFaFUJViony88W2GZXmyyo_RX8ZGbyqAqCQm9RYjuJPba_8cx8w9hWkeeOOxOTVGYOFZSiTMowUUnhPUf0b8XEUoDz4ZE8mPJ3J-KkJ4umWJhf7PetH9ZpTUybWdrSkU7kHbYuBcLuEVufHh3vfCKFShY8Qd2ZlKtMKJrAZTZYMP_Uxt_2oGsY896qWpiL72Y2u7bd7D_oHLXqlqWQvEy-bq8au-0uf-Nw_K8_ecju96ATdjop2WBroXrE7r5tk_pePGY_6IQAZYZWPWjpE2GxJANOK5NAESjwnrKpwRuzrELTwIcz3FeAzv0SbALIzRTIFE4xU2AqmONCdP75MvjuEaLi1mUTzOx0ju86OwfTwDdU0-erGmpDXu341JMzPRG8PmHT_b2PuwdJn6khcblUTSKNDKl3eUw94htfBIRdrhBelSbamFpOipKQgZhm3ESmzvmgpDJ4FYWMRf6Ujap5FZ4xUMorLxw3NnjuY6FEzHxU3DrpjHXZmKXD2GnX05hTNo2ZHvzVvmjsaE0drdNS450xe3VVZdFxeNxUmA8CoXsQ0oELjQN6U7XNQXh0vwrUOpMIqFSZyXLMXl8J1L-_4fmtSm-yUbNchRcIjhr7sp8WPwHBUg1i priority: 102 providerName: Unpaywall |
| Title | Brittleness index predictions from Lower Barnett Shale well-log data applying an optimized data matching algorithm at various sampling densities |
| URI | https://dx.doi.org/10.1016/j.gsf.2020.09.016 https://www.proquest.com/docview/2621589269 https://doi.org/10.1016/j.gsf.2020.09.016 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2588-9192 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778770 issn: 1674-9871 databaseCode: KQ8 dateStart: 20101001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 2588-9192 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778770 issn: 1674-9871 databaseCode: IXB dateStart: 20101001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2588-9192 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778770 issn: 1674-9871 databaseCode: AKRWK dateStart: 20101001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY2wvo90Hy9aVe9jTholiy7L82Ja13VfZ6ALZk5D10aakTkicle6v6J_cO8UOHYwO9mKMPmyhO53upN_dMfa2yDIrrAkJl6lFA6Uok9IPVFI4J1D7r_JBRQ7OX0_k8VB8GuWjDXbQ-cIQrLKV_SuZHqV1W9JvZ7M_G4_7p4SfR4t5kCKf4roboRzOhKL0DR9H--tzFl4gS8accdQ-oQ7d5WaEeZ0tKJBnymO0U8p6_vft6Y76-WhZz8z1lZlM7uxEh1vsSatCwt5qlNtsw9dP2cOjmKL3-hm7IXsfOYBkGMRgiDCb03VM5DAgfxL4QrnRYN_Ma980cHqOuwTQKV6CnwACjQJdbJMHFJgapihWLse_vVtVoY4bAZhgJmdT_Nf5JZgGfqHRPV0uYGEIo461jqDxFK71ORsefvhxcJy0eRcSm0nVJNJIz53NAneorbjCoxJli9yp0oQq8EqQ2ZNLT3Fj7EBya51XUhl8C7kMRfaCbdbT2r9koJRTLrfCVN4JFwqVh9QFJSorrals2mO8m25t26DklBtjojv02YVGCmmikOalxpIee7fuMltF5LivsehoqP9gK407xn3ddjp663ZNL3QqUT1SZSrLHnu_5oF_j-HV_43hNXucEn4m-j3usM1mvvRvUAFqqt3I4fj8_F3tsgfDk297P28BRAgI0Q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGENpe0PgSHQPugSdQVDdxHOeRTWwFur1sk_pmOf7Yirq0alPQ-Cv4k7lzk2pIaEi8RXacWPb5_Dv7d3eMvSuyzAprQsJlatFAKcqk9AOVFM4JRP9VPqjIwfn0TA4vxZdxPt5iR50vDNEqW92_1ulRW7cl_XY0-_PJpH9O_Hm0mAcpyimuu_ED9lDkiE7Ii298uDlo4QXKZEwaRw0SatHdbkae19WSInmmPIY7pbTnf9-f7uDPnVU9N7c_zHR6Zys63mOPWwwJH9fdfMK2fP2UPTqJOXpvn7FfZPCjCJASgxgNEeYLuo-JIgbkUAIjSo4Gh2ZR-6aB82vcJoCO8RL8BBBrFOhmm1ygwNQwQ71yM_np3boKQW5kYIKZXs3wX9c3YBr4jlb3bLWEpSGSOtY64sZTvNbn7PL408XRMGkTLyQ2k6pJpJGeO5sF7hCuuMIjirJF7lRpQhV4JcjuyaWnwDF2ILm1ziupDD6FXIYie8G261ntXzJQyimXW2Eq74QLhcpD6oISlZXWVDbtMd4Nt7ZtVHJKjjHVHf3sm8YZ0jRDmpcaS3rs_abJfB2S476XRTeH-g-50rhl3NfsoJtv3S7qpU4l4iNVprLssQ8bGfh3H_b_rw9v2c7w4nSkR5_Pvr5iuymRaaIT5AHbbhYr_xrRUFO9idL-Gx4nCVI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVogTUB5iUUFz6AmUKpvYjnMsVUuFaFUJViony88W2GZXmyyo_RX8ZGbyqAqCQm9RYjuJPba_8cx8w9hWkeeOOxOTVGYOFZSiTMowUUnhPUf0b8XEUoDz4ZE8mPJ3J-KkJ4umWJhf7PetH9ZpTUybWdrSkU7kHbYuBcLuEVufHh3vfCKFShY8Qd2ZlKtMKJrAZTZYMP_Uxt_2oGsY896qWpiL72Y2u7bd7D_oHLXqlqWQvEy-bq8au-0uf-Nw_K8_ecju96ATdjop2WBroXrE7r5tk_pePGY_6IQAZYZWPWjpE2GxJANOK5NAESjwnrKpwRuzrELTwIcz3FeAzv0SbALIzRTIFE4xU2AqmONCdP75MvjuEaLi1mUTzOx0ju86OwfTwDdU0-erGmpDXu341JMzPRG8PmHT_b2PuwdJn6khcblUTSKNDKl3eUw94htfBIRdrhBelSbamFpOipKQgZhm3ESmzvmgpDJ4FYWMRf6Ujap5FZ4xUMorLxw3NnjuY6FEzHxU3DrpjHXZmKXD2GnX05hTNo2ZHvzVvmjsaE0drdNS450xe3VVZdFxeNxUmA8CoXsQ0oELjQN6U7XNQXh0vwrUOpMIqFSZyXLMXl8J1L-_4fmtSm-yUbNchRcIjhr7sp8WPwHBUg1i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brittleness+index+predictions+from+Lower+Barnett+Shale+well-log+data+applying+an+optimized+data+matching+algorithm+at+various+sampling+densities&rft.jtitle=Di+xue+qian+yuan.&rft.au=Wood%2C+David+A.&rft.date=2021-11-01&rft.issn=1674-9871&rft.volume=12&rft.issue=6&rft.spage=101087&rft_id=info:doi/10.1016%2Fj.gsf.2020.09.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gsf_2020_09_016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-9871&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-9871&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-9871&client=summon |