SEM algorithm and unsupervised statistical segmentation of satellite images

The work addresses Bayesian unsupervised satellite image segmentation, using contextual methods. It is shown, via a simulation study, that the spatial or spectral context contribution is sensitive to image parameters such as homogeneity, means, variances, and spatial or spectral correlations of the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 31; no. 3; pp. 618 - 633
Main Authors Masson, P., Pieczynski, W.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.1993
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0196-2892
DOI10.1109/36.225529

Cover

Abstract The work addresses Bayesian unsupervised satellite image segmentation, using contextual methods. It is shown, via a simulation study, that the spatial or spectral context contribution is sensitive to image parameters such as homogeneity, means, variances, and spatial or spectral correlations of the noise. From this one may choose the best context contribution according to the estimated values of the above parameters. The parameter estimation is done by SEM, a densities mixture estimator which is a stochastic variant of the EM (expectation-maximization) algorithm. Another simulation study shows good robustness of the SEM algorithm with respect to different image parameters. Thus, modification of the behavior of the contextual methods, when the SEM-based unsupervised approaches are considered, is limited, and the conclusions of the supervised simulation study stay valid. An adaptive unsupervised method using more relevant contextual features is proposed. Different SEM-based unsupervised contextual segmentation methods, applied to two real SPOT images, give consistently better results than a classical histogram-based method.< >
AbstractList This work addresses Bayesian unsupervised satellite image segmentation. We propose, as an alternative to global methods like MAP or MPM, the use of contextual ones, which is partially justified by previous works. We show, via a simulation study, that spatial or spectral context contribution is sensitive to image parameters such as homogeneity, means, variances, and spatial or spectral correlations of the noise. From this one may choose the best context contribution according to the estimated values of the above parameters. The parameter estimation step is treated by the SEM, a densities mixture estimator which is a stochastic variant of the EM algorithm. Another simulation study shows good robustness of the SEM algorithm with respect to different image parameters. Thus modification of the behavior of the contextual methods, when the SEM-based unsupervised approaches are considered, remains limited and the conclusions of the supervised simulation study stay valid. We propose an 'adaptive unsupervised method' using more relevant contextual features. Furthermore, we apply different SEM-based unsupervised contextual segmentation methods to two real SPOT images and observe that the results obtained are consistently better than those obtained by a classical histogram based method.
The work addresses Bayesian unsupervised satellite image segmentation, using contextual methods. It is shown, via a simulation study, that the spatial or spectral context contribution is sensitive to image parameters such as homogeneity, means, variances, and spatial or spectral correlations of the noise. From this one may choose the best context contribution according to the estimated values of the above parameters. The parameter estimation is done by SEM, a densities mixture estimator which is a stochastic variant of the EM (expectation-maximization) algorithm. Another simulation study shows good robustness of the SEM algorithm with respect to different image parameters. Thus, modification of the behavior of the contextual methods, when the SEM-based unsupervised approaches are considered, is limited, and the conclusions of the supervised simulation study stay valid. An adaptive unsupervised method using more relevant contextual features is proposed. Different SEM-based unsupervised contextual segmentation methods, applied to two real SPOT images, give consistently better results than a classical histogram-based method.< >
The work addresses Bayesian unsupervised satellite image segmentation, using contextual methods. It is shown, via a simulation study, that the spatial or spectral context contribution is sensitive to image parameters such as homogeneity, means, variances, and spatial or spectral correlations of the noise. From this one may choose the best context contribution according to the estimated values of the above parameters. The parameter estimation is done by SEM, a densities mixture estimator which is a stochastic variant of the EM (expectation-maximization) algorithm. Another simulation study shows good robustness of the SEM algorithm with respect to different image parameters. Thus, modification of the behavior of the contextual methods, when the SEM-based unsupervised approaches are considered, is limited, and the conclusions of the supervised simulation study stay valid. An adaptive unsupervised method using more relevant contextual features is proposed. Different SEM-based unsupervised contextual segmentation methods, applied to two real SPOT images, give consistently better results than a classical histogram-based method
Author Masson, P.
Pieczynski, W.
Author_xml – sequence: 1
  givenname: P.
  surname: Masson
  fullname: Masson, P.
  organization: Dept. Math. et Syst. de Commun., Ecole Nat. Superieure des Telecommun. de Bretagne, Brest, France
– sequence: 2
  givenname: W.
  surname: Pieczynski
  fullname: Pieczynski, W.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4851125$$DView record in Pascal Francis
BookMark eNqFkc1Lw0AQxfdQwbZ68OopBxE8pN2PbLJ7lFI_sOJBPYftZlJX0qTubAT_exNSehChp4GZ33sM703IqG5qIOSC0RljVM9FOuNcSq5HZEyZTmOuND8lE8RPSlkiWTYmT6_L58hUm8a78LGNTF1EbY3tDvy3QygiDCY4DM6aKkLYbKHuF00dNWWEJkBVuQCR25oN4Bk5KU2FcL6fU_J-t3xbPMSrl_vHxe0qtiJVIZY2TSSoVIBIlBKglaFZAYUEoMZKVVDLeQa6lCVdq4KVKl1Lw21WlJyvQYgpuR58d775agFDvnVou1dMDU2LOddUiIyp46CSmdZUHgdTzjJFe8erPWiwi6T0prYO853vEvA_eaIkY7z3uxkw6xtED-WBYDTvu8lFmg_ddOz8D2vdkHHwxlX_Ki4HhQOAg_P--AunmZzm
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JPROC_2012_2197589
crossref_primary_10_1117_1_JRS_8_083553
crossref_primary_10_1080_01431169508954484
crossref_primary_10_1109_MAES_2010_5546306
crossref_primary_10_1080_01431161003745640
crossref_primary_10_1109_JSTARS_2014_2328597
crossref_primary_10_1109_TGRS_2010_2062526
crossref_primary_10_1109_JSEN_2009_2037794
crossref_primary_10_1109_TIP_2012_2219545
crossref_primary_10_1007_s10044_015_0519_6
crossref_primary_10_1016_j_media_2008_03_001
crossref_primary_10_1155_2012_425947
crossref_primary_10_1080_01431161_2014_967883
crossref_primary_10_1109_TGRS_2009_2016214
crossref_primary_10_1142_S0129156408005394
crossref_primary_10_4236_jgis_2024_165020
crossref_primary_10_1109_83_913593
crossref_primary_10_1109_36_239902
crossref_primary_10_1109_83_847834
crossref_primary_10_1109_TGRS_2005_859349
crossref_primary_10_1109_TGRS_2007_895416
crossref_primary_10_1109_34_589206
crossref_primary_10_1109_TGRS_2004_830644
crossref_primary_10_1109_TGRS_2016_2562018
crossref_primary_10_1364_AO_43_006596
crossref_primary_10_1088_0031_9155_56_18_001
crossref_primary_10_1109_TIP_2006_873446
crossref_primary_10_1109_5_784235
crossref_primary_10_1007_s00138_012_0441_5
crossref_primary_10_1016_j_jksuci_2023_101715
crossref_primary_10_1016_j_rse_2005_01_011
crossref_primary_10_1016_j_neucom_2012_11_016
crossref_primary_10_1016_S0167_8655_02_00193_9
crossref_primary_10_1007_s10851_019_00885_0
crossref_primary_10_1117_1_OE_55_7_073101
crossref_primary_10_1109_TIP_2010_2076298
crossref_primary_10_1109_83_557353
crossref_primary_10_1109_TGRS_2020_2986239
crossref_primary_10_1109_83_624951
crossref_primary_10_1137_16M1057346
crossref_primary_10_1109_JSTARS_2013_2272697
crossref_primary_10_1016_j_patrec_2008_01_007
crossref_primary_10_1080_02757250109532431
crossref_primary_10_1109_TGRS_2007_907973
crossref_primary_10_1016_j_physa_2010_10_015
crossref_primary_10_1016_S0031_3203_99_00135_1
crossref_primary_10_1016_S0262_8856_03_00136_7
crossref_primary_10_1109_TGRS_2004_841481
crossref_primary_10_1016_j_jvcir_2007_05_001
crossref_primary_10_1109_JSTARS_2012_2186284
crossref_primary_10_1117_1_3077179
crossref_primary_10_1109_JSTARS_2015_2416255
crossref_primary_10_1109_TIP_2019_2933747
crossref_primary_10_1109_42_544504
crossref_primary_10_1109_TMI_2006_872142
crossref_primary_10_1016_j_artmed_2015_04_002
crossref_primary_10_1109_TGRS_2002_803716
crossref_primary_10_1117_1_3386069
crossref_primary_10_1007_BF02344714
crossref_primary_10_1117_1_JRS_13_036502
crossref_primary_10_1007_s11554_008_0105_x
crossref_primary_10_1007_s00521_011_0538_1
crossref_primary_10_1364_AO_47_000F27
crossref_primary_10_3390_math11040986
crossref_primary_10_1007_s11227_018_2288_7
crossref_primary_10_1006_gmip_1997_0431
crossref_primary_10_1016_j_sigpro_2007_04_010
crossref_primary_10_1109_79_974730
crossref_primary_10_1155_2010_372370
crossref_primary_10_1109_TIP_2005_851710
crossref_primary_10_1155_2012_162106
crossref_primary_10_1016_j_patrec_2006_03_005
crossref_primary_10_1109_36_942557
crossref_primary_10_1016_S0167_8655_98_00076_2
crossref_primary_10_1016_j_imavis_2006_03_005
Cites_doi 10.1109/IGARSS.1992.578461
10.1109/34.85674
10.1109/TGRS.1986.289563
10.1109/29.7551
10.1109/34.6774
10.1080/02664768900000022
10.1016/0031-3203(89)90011-3
10.1080/02664768900000021
10.1117/12.463182
10.2307/2289127
10.1007/BF00341287
10.1109/TGRS.1987.289751
10.1109/TC.1976.1674719
10.1109/IGARSS.1992.578356
10.1080/02664768900000014
10.1109/IGARSS.1991.580308
10.1109/TGRS.1982.350410
10.1016/0031-3203(81)90005-4
10.1109/IGARSS.1992.578462
10.1109/TPAMI.1984.4767596
10.1109/IGARSS.1991.575472
ContentType Journal Article
Copyright 1993 INIST-CNRS
Copyright_xml – notice: 1993 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
H8D
L7M
FR3
KR7
DOI 10.1109/36.225529
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 633
ExternalDocumentID 4851125
10_1109_36_225529
225529
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
IQODW
RIG
8FD
H8D
L7M
FR3
KR7
ID FETCH-LOGICAL-c368t-5c645e863e34883e98a07ded5ee0ac58d0c227e9f5f0b8d1f86b5a2c7df22be33
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Wed Oct 01 13:38:42 EDT 2025
Sat Sep 27 23:32:27 EDT 2025
Mon Sep 29 04:09:41 EDT 2025
Mon Jul 21 09:12:14 EDT 2025
Thu Apr 24 22:53:46 EDT 2025
Wed Oct 01 05:07:13 EDT 2025
Tue Aug 26 16:39:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Bayes estimation
algorithms
Random field
Parameter estimation
spectral signature
Image processing
algorithm performance
imagery
data processing
segmentation
remote sensing
classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-5c645e863e34883e98a07ded5ee0ac58d0c227e9f5f0b8d1f86b5a2c7df22be33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 26217808
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_29033718
ieee_primary_225529
proquest_miscellaneous_28579905
pascalfrancis_primary_4851125
proquest_miscellaneous_26217808
crossref_primary_10_1109_36_225529
crossref_citationtrail_10_1109_36_225529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1993-05-01
PublicationDateYYYYMMDD 1993-05-01
PublicationDate_xml – month: 05
  year: 1993
  text: 1993-05-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 1993
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
masson (ref21) 1990
ref15
ref14
ref31
ref30
ref11
ref32
ref10
celeux (ref4) 1986; 34
ref17
braathen (ref2) 1991
ref18
pieczynski (ref24) 1990
ref23
ref26
ref25
ref22
devijver (ref8) 1988; 5
masson (ref20) 1990
besag (ref1) 1986; 48
marhic (ref16) 1991; 16
ref28
celeux (ref5) 1986
ref27
(ref19) 0
ref29
ref9
ref3
ref6
dempster (ref7) 1977; 39
References_xml – ident: ref3
  doi: 10.1109/IGARSS.1992.578461
– ident: ref31
  doi: 10.1109/34.85674
– ident: ref12
  doi: 10.1109/TGRS.1986.289563
– year: 1991
  ident: ref2
  article-title: Sur une nouvelle approche de segmentation Bayesienne non supervis e d'images
  publication-title: Proc Treisi me colloque GRETSI
– volume: 48
  start-page: 259
  year: 1986
  ident: ref1
  article-title: On the statistical analysis of dirty pictures
  publication-title: Journal of the Royal Statistical Society
– volume: 5
  year: 1988
  ident: ref8
  article-title: Champs al atoires de Pickard et mod lisation d'images digitales
  publication-title: Traitement du Signal
– ident: ref14
  doi: 10.1109/29.7551
– ident: ref15
  doi: 10.1109/34.6774
– ident: ref23
  doi: 10.1080/02664768900000022
– ident: ref6
  doi: 10.1016/0031-3203(89)90011-3
– ident: ref26
  doi: 10.1080/02664768900000021
– year: 1990
  ident: ref21
  article-title: Segmentation of SPOT images by contextual SEM
  publication-title: Proc of eusipco
– ident: ref25
  doi: 10.1117/12.463182
– volume: 34
  year: 1986
  ident: ref4
  article-title: L'algorithme SEM: an algorithme d'apprentissage probabiliste pour la reconnaissance de m langes de densit s
  publication-title: Revue de Statistique Appliques
– ident: ref18
  doi: 10.2307/2289127
– ident: ref32
  doi: 10.1007/BF00341287
– ident: ref22
  doi: 10.1109/TGRS.1987.289751
– ident: ref13
  doi: 10.1109/TC.1976.1674719
– year: 0
  ident: ref19
– ident: ref28
  doi: 10.1109/IGARSS.1992.578356
– ident: ref9
  doi: 10.1080/02664768900000014
– year: 1990
  ident: ref20
  article-title: Classification d'images du satellite SPOT pour la cartographie bathym trique du littoral
  publication-title: Proc PIXILES 90 Journ es internationales
– ident: ref17
  doi: 10.1109/IGARSS.1991.580308
– ident: ref30
  doi: 10.1109/TGRS.1982.350410
– ident: ref29
  doi: 10.1016/0031-3203(81)90005-4
– year: 1990
  ident: ref24
  publication-title: Mixture of distributions Markov random fields and unsupervised Bayesian segmentation of images
– volume: 16
  year: 1991
  ident: ref16
  article-title: M lange de lois et segmentation non supervis e des donnees SPOT
  publication-title: Statistique et Analyse des Donn es
– year: 1986
  ident: ref5
  publication-title: Comportement asymptotique d'un algorithme d'apprentissage probabiliste pour les m langes de lois de probabilit s
– ident: ref10
  doi: 10.1109/IGARSS.1992.578462
– ident: ref11
  doi: 10.1109/TPAMI.1984.4767596
– ident: ref27
  doi: 10.1109/IGARSS.1991.575472
– volume: 39
  start-page: 1
  year: 1977
  ident: ref7
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society
SSID ssj0014517
Score 1.8136994
Snippet The work addresses Bayesian unsupervised satellite image segmentation, using contextual methods. It is shown, via a simulation study, that the spatial or...
This work addresses Bayesian unsupervised satellite image segmentation. We propose, as an alternative to global methods like MAP or MPM, the use of contextual...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 618
SubjectTerms Areal geology. Maps
Bayesian methods
Context modeling
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geologic maps, cartography
Histograms
Image segmentation
Iterative algorithms
Noise robustness
Parameter estimation
Random variables
Satellites
Soils
Stochastic resonance
Surficial geology
Title SEM algorithm and unsupervised statistical segmentation of satellite images
URI https://ieeexplore.ieee.org/document/225529
https://www.proquest.com/docview/26217808
https://www.proquest.com/docview/28579905
https://www.proquest.com/docview/29033718
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014517
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT6QwFG_UxEQPu-uocVw_GuPBC2OhtLRHY5yY3YwXNfFGSvtQowPGwmX_etvCjB9rjDcCDwJ97fug7_d7CB3GphRMZyQSUvEoNZRFRazLSFOuhdQugRAenDy54OfX6Z8bdtPzbAcsDACE4jMY-cOwl29q3fpfZcdu7rFELqLFTPAOqjXfMEhZ3COjeeRyiKQnEYqJPKZ81N34zvWEXiq-ElJZNxhl18XiP4McvMz4ZwfftoGc0BeXPIzaphjpfx-oG7_5Ab_Qjz7axCfd9FhDC1AN0OobDsIBWg41oNquo7-XZxOsHm_r5_vmbopVZXBb2fbJWxMLBnvsUaB1dk-0cDvtUUsVrktsVWD2bADfT52Fshvoenx2dXoe9b0WvFZEEzHNUwaCU6BuSVOQQpHMgGEARGkmDNFJkoEsWUkKYeJS8IKpRGemTJICKN1ES1VdwRbC3BlYwpTMNHfhgmGykEaLmADV4IIlM0RHMzXkuici9_0wHvOQkBCZU553IzVEB3PRp4594zOhgR_pucDs7O471c4vpyHGZEO0P1N17laU3yZRFdStzRPu0jRBxBcSgmXOi3_1DEkodW5_-9N3-41WXusmd9BS89zCrottmmIvzOoXfoL41Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEYIeeCwgtrTUQhy4ZOvEsWMfEWq10G4vtFJvkWNPSkU3qerkwq_HdrILpVXFLUomUeKx5xHP9w3Ax9TWkpuCJlJpkeSW8aRKTZ0YJoxUxicQMoCTF8difpp_O-NnI892xMIgYiw-w1k4jHv5tjV9-FW25-cez9RDeMTzPOcDWGu9ZZDzdMRGi8RnEdlII5RStcfEbLj1hvOJ3VRCLaR2fjjqoY_FLZMc_czB8wHA7SI9YSgv-Tnru2pmfv1D3vifn_ACno3xJvk8TJCX8ACbCWz-xUI4gcexCtS4V3D4fX9B9OV5e33R_VgS3VjSN66_CvbEoSUBfRSJnf0THZ4vR9xSQ9qaOB25PTskF0tvo9xrOD3YP_kyT8ZuC0Evsku4ETlHKRgyv6gZKqlpYdFyRKoNl5aaLCtQ1bymlbRpLUXFdWYKW2dZhYy9gY2mbfAtEOFNLOVaFUb4gMFyVSlrZEqRGfThkp3Cp5UaSjNSkYeOGJdlTEmoKpkoh5Gawoe16NXAv3GX0CSM9FpgdXbnhmrXl_MYZfIp7K5UXfo1FTZKdINt78pM-ERNUnmPhOSF9-P3PUNRxrzj37rz3XbhyfxkcVQefT0-fAdP_1RRbsNGd93jjo90uup9nOG_AaKy_CI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SEM+algorithm+and+unsupervised+statistical+segmentation+of+satellite+images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=MASSON%2C+P&rft.au=PIECZYNSKI%2C+W&rft.date=1993-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=31&rft.issue=3&rft.spage=618&rft.epage=633&rft_id=info:doi/10.1109%2F36.225529&rft.externalDBID=n%2Fa&rft.externalDocID=4851125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon