Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface
•This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns.•Experimental results on two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) confirm the effectiveness of SFBCSP.•The optimized spatial patterns by SFBCSP gi...
Saved in:
| Published in | Journal of neuroscience methods Vol. 255; pp. 85 - 91 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
30.11.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-0270 1872-678X 1872-678X |
| DOI | 10.1016/j.jneumeth.2015.08.004 |
Cover
| Abstract | •This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns.•Experimental results on two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) confirm the effectiveness of SFBCSP.•The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.•Our study suggests that the proposed SFBCSP is a potential method for improving the performance of MI-based BCI.
Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain–computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually.
This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification.
Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI.
The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.
The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. |
|---|---|
| AbstractList | Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually.
This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification.
Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI.
The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.
The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually.BACKGROUNDCommon spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually.This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification.NEW METHODThis study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification.Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI.RESULTSTwo public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI.The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.COMPARISON WITH EXISTING METHODSThe optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.The proposed SFBCSP is a potential method for improving the performance of MI-based BCI.CONCLUSIONSThe proposed SFBCSP is a potential method for improving the performance of MI-based BCI. •This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns.•Experimental results on two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) confirm the effectiveness of SFBCSP.•The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.•Our study suggests that the proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain–computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. |
| Author | Zhou, Guoxu Wang, Xingyu Cichocki, Andrzej Zhang, Yu Jin, Jing |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0003-4087-6544 surname: Zhang fullname: Zhang, Yu email: yuzhang@ecust.edu.cn organization: Key Laboratory for Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China – sequence: 2 givenname: Guoxu surname: Zhou fullname: Zhou, Guoxu organization: Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan – sequence: 3 givenname: Jing surname: Jin fullname: Jin, Jing organization: Key Laboratory for Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China – sequence: 4 givenname: Xingyu surname: Wang fullname: Wang, Xingyu organization: Key Laboratory for Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China – sequence: 5 givenname: Andrzej surname: Cichocki fullname: Cichocki, Andrzej organization: Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26277421$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFO3DAURa2Kqgy0v4CyZJP02cnEjsQChFqohMSGRXeW4zwPHiV2ajutYNV_6B_yJXg0zKYbNn7S1bnPeveekCPnHRJyRqGiQNuv22rrcJkwPVYM6LoCUQE0H8iKCs7KloufR2SVwXUJjMMxOYlxC5nooP1EjlnLOG8YXZHN_ZzsZJ-t2xRxVsmqscgjYXCx-GPT404NEQtjxywWvXJDLIwPxeSTD6Wd1AbDU9YjDkUflHUvf_9pP83LDrcuv0Zp_Ew-GjVG_PI2T8nD928P17fl3f3Nj-uru1LXrUhl3dRgOhCCa6BMdTggY9qwhmkGqhYDN2CUgIZCw0zd9Ws-6KZvu76GpsX6lJzv187B_1owJjnZqHEclUO_REk5ox0VayEyevaGLv2Eg5xDviU8yUM2GbjYAzr4GAMaqW3KCXmX8pmjpCB3VcitPFQhd1VIEDIHne3tf_bDD-8aL_dGzDn9thhk1BadxsEG1EkO3r634hVxRqof |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2017_12_015 crossref_primary_10_1109_TNSRE_2020_3001990 crossref_primary_10_1109_ACCESS_2021_3068929 crossref_primary_10_1007_s11760_021_01924_3 crossref_primary_10_1016_j_jocs_2023_102140 crossref_primary_10_1016_j_bspc_2022_104397 crossref_primary_10_3389_fnins_2023_1303648 crossref_primary_10_1049_iet_ipr_2019_0900 crossref_primary_10_1038_s42003_022_03665_6 crossref_primary_10_1142_S0129065716500325 crossref_primary_10_1080_03772063_2016_1176543 crossref_primary_10_3389_fnins_2020_00155 crossref_primary_10_3390_s20174749 crossref_primary_10_1007_s11571_019_09541_0 crossref_primary_10_1016_j_neucom_2021_08_119 crossref_primary_10_1088_1741_2552_14_1_011001 crossref_primary_10_1109_TNNLS_2015_2476656 crossref_primary_10_1515_bams_2019_0053 crossref_primary_10_1016_j_neucom_2016_11_008 crossref_primary_10_1080_03772063_2019_1670106 crossref_primary_10_1016_j_autcon_2023_105011 crossref_primary_10_1007_s11042_023_17118_7 crossref_primary_10_1016_j_asoc_2019_105519 crossref_primary_10_1016_j_jneumeth_2016_12_010 crossref_primary_10_1016_j_patcog_2018_12_001 crossref_primary_10_1109_ACCESS_2021_3136774 crossref_primary_10_1016_j_neunet_2021_06_022 crossref_primary_10_3389_fncom_2022_1004301 crossref_primary_10_1016_j_jneumeth_2020_108690 crossref_primary_10_1016_j_jneumeth_2021_109274 crossref_primary_10_1109_TNSRE_2016_2519350 crossref_primary_10_3389_fnhum_2021_773603 crossref_primary_10_3934_mbe_2021213 crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1016_j_patcog_2021_107918 crossref_primary_10_1088_1741_2552_aa8065 crossref_primary_10_1016_j_neucom_2017_01_061 crossref_primary_10_3390_s19061423 crossref_primary_10_37394_232027_2023_5_8 crossref_primary_10_1088_1361_6579_ad4e95 crossref_primary_10_1016_j_eswa_2024_123354 crossref_primary_10_1109_ACCESS_2021_3049191 crossref_primary_10_1142_S0129065717500393 crossref_primary_10_1016_j_neucom_2016_03_106 crossref_primary_10_1038_s41598_020_62967_z crossref_primary_10_1016_j_neucom_2016_05_035 crossref_primary_10_1016_j_jneumeth_2020_108886 crossref_primary_10_1093_pnasnexus_pgae076 crossref_primary_10_3390_s21155105 crossref_primary_10_1016_j_eswa_2024_123239 crossref_primary_10_1109_TBME_2018_2814538 crossref_primary_10_1007_s11517_017_1761_4 crossref_primary_10_1016_j_jneumeth_2019_108434 crossref_primary_10_1109_ACCESS_2020_3003056 crossref_primary_10_1016_j_bspc_2021_103241 crossref_primary_10_1016_j_irbm_2019_11_002 crossref_primary_10_1016_j_bspc_2021_102550 crossref_primary_10_1016_j_bspc_2024_106156 crossref_primary_10_1016_j_bspc_2024_106797 crossref_primary_10_1016_j_neucom_2016_08_082 crossref_primary_10_1016_j_neucom_2016_08_083 crossref_primary_10_1002_EXP_20230146 crossref_primary_10_3389_fnins_2023_1270785 crossref_primary_10_7717_peerj_cs_375 crossref_primary_10_1016_j_bspc_2021_102548 crossref_primary_10_1016_j_neunet_2019_09_037 crossref_primary_10_1038_s41598_019_45605_1 crossref_primary_10_1109_TII_2019_2925624 crossref_primary_10_1155_2022_2856818 crossref_primary_10_1109_TIM_2023_3276509 crossref_primary_10_1049_iet_smt_2015_0200 crossref_primary_10_1186_s12859_017_1964_6 crossref_primary_10_1016_j_compbiomed_2017_10_025 crossref_primary_10_1155_2020_1981728 crossref_primary_10_1080_2326263X_2020_1783170 crossref_primary_10_61186_jsdp_20_3_61 crossref_primary_10_1186_s12859_021_04091_x crossref_primary_10_1038_s41598_024_71118_7 crossref_primary_10_1007_s11517_018_1821_4 crossref_primary_10_1080_10255842_2024_2371036 crossref_primary_10_1109_TNSRE_2018_2848222 crossref_primary_10_1016_j_cmpb_2016_04_023 crossref_primary_10_1063_1_5001896 crossref_primary_10_1109_ACCESS_2020_2995302 crossref_primary_10_3390_s17102282 crossref_primary_10_1109_TNNLS_2020_3015505 crossref_primary_10_1016_j_compbiomed_2018_04_022 crossref_primary_10_1016_j_bspc_2020_101994 crossref_primary_10_1016_j_compbiomed_2024_108504 crossref_primary_10_1016_j_bspc_2020_101991 crossref_primary_10_3389_fnagi_2016_00172 crossref_primary_10_1016_j_neucom_2019_08_037 crossref_primary_10_3389_fnhum_2020_00231 crossref_primary_10_1016_j_procs_2019_09_256 crossref_primary_10_3390_math11173801 crossref_primary_10_1007_s10916_018_0931_8 crossref_primary_10_1088_1741_2552_aaf046 crossref_primary_10_1007_s11517_017_1622_1 crossref_primary_10_1007_s11042_019_08602_0 crossref_primary_10_1016_j_cmpb_2019_06_009 crossref_primary_10_1109_ACCESS_2020_3016700 crossref_primary_10_1109_TNSRE_2019_2922713 crossref_primary_10_1016_j_eswa_2023_122286 crossref_primary_10_1109_ACCESS_2020_3037995 crossref_primary_10_3390_app142311208 crossref_primary_10_1007_s11517_024_03069_0 crossref_primary_10_1109_JSEN_2020_3016402 crossref_primary_10_3390_s22218526 crossref_primary_10_1088_1741_2552_aab2f2 crossref_primary_10_1016_j_measurement_2023_113861 crossref_primary_10_3390_app142311323 crossref_primary_10_1007_s11517_021_02449_0 crossref_primary_10_1016_j_medengphy_2020_05_006 crossref_primary_10_1111_exsy_12494 crossref_primary_10_3389_fnins_2023_1113593 crossref_primary_10_2139_ssrn_4061453 crossref_primary_10_1016_j_bspc_2022_104118 crossref_primary_10_1016_j_measen_2023_100823 crossref_primary_10_1155_2019_7529572 crossref_primary_10_1016_j_jneumeth_2022_109495 crossref_primary_10_1016_j_bspc_2022_103825 crossref_primary_10_1109_TNSRE_2022_3217573 crossref_primary_10_1016_j_compbiomed_2022_106267 crossref_primary_10_1109_ACCESS_2019_2944938 crossref_primary_10_1109_TNSRE_2020_3040984 crossref_primary_10_1155_2018_6265108 crossref_primary_10_3389_fnhum_2023_1075666 crossref_primary_10_1109_JBHI_2018_2832538 crossref_primary_10_3233_JIFS_169104 crossref_primary_10_1007_s11042_016_3291_8 crossref_primary_10_1016_j_swevo_2019_100597 crossref_primary_10_1016_j_jneumeth_2020_108725 crossref_primary_10_1109_ACCESS_2016_2637409 crossref_primary_10_1109_TNSRE_2021_3071785 crossref_primary_10_3390_electronics9101584 crossref_primary_10_1109_JSEN_2024_3351880 crossref_primary_10_1016_j_chaos_2021_111450 crossref_primary_10_3389_fnhum_2021_595723 crossref_primary_10_1016_j_artmed_2019_101747 crossref_primary_10_3390_s22197596 crossref_primary_10_1016_j_neulet_2017_06_044 crossref_primary_10_1109_TNSRE_2021_3071140 crossref_primary_10_1080_2326263X_2020_1801112 crossref_primary_10_1109_JTEHM_2021_3056911 crossref_primary_10_1109_TIM_2022_3193407 crossref_primary_10_1016_j_asoc_2024_112087 crossref_primary_10_1088_1741_2552_aac313 crossref_primary_10_3389_fnhum_2020_00173 crossref_primary_10_1007_s10916_016_0475_8 crossref_primary_10_1016_j_imu_2020_100352 crossref_primary_10_1088_1741_2552_abce70 crossref_primary_10_1016_j_bspc_2021_102626 crossref_primary_10_1109_ACCESS_2023_3289709 crossref_primary_10_3233_JIFS_169690 crossref_primary_10_1109_TSMC_2020_2964684 crossref_primary_10_1007_s11571_019_09560_x crossref_primary_10_3390_app112110388 crossref_primary_10_1088_2057_1976_ab54ad crossref_primary_10_1109_ACCESS_2020_2996685 crossref_primary_10_1002_ima_22381 crossref_primary_10_1016_j_compbiomed_2019_103441 crossref_primary_10_1007_s11042_023_14659_9 crossref_primary_10_1109_TCYB_2018_2841847 crossref_primary_10_1109_TNNLS_2021_3053576 crossref_primary_10_1007_s11571_022_09906_y crossref_primary_10_1007_s00521_018_3735_3 crossref_primary_10_1016_j_bspc_2022_104389 crossref_primary_10_3389_fnhum_2023_1292428 crossref_primary_10_1002_ima_22823 crossref_primary_10_1016_j_eswa_2017_07_033 crossref_primary_10_3233_THC_202619 crossref_primary_10_3389_fnins_2017_00550 crossref_primary_10_1186_s13638_019_1497_y crossref_primary_10_1080_10255842_2024_2448576 crossref_primary_10_1016_j_jneumeth_2021_109378 crossref_primary_10_1080_03772063_2021_1914204 crossref_primary_10_1109_TNSRE_2023_3299355 crossref_primary_10_1109_ACCESS_2020_2992631 crossref_primary_10_18100_ijamec_266073 crossref_primary_10_3390_app10238628 crossref_primary_10_1007_s12559_018_9562_0 crossref_primary_10_1142_S0218126620500346 crossref_primary_10_1155_2020_2913019 crossref_primary_10_3389_fnins_2018_00540 crossref_primary_10_1016_j_eswa_2020_113907 |
| Cites_doi | 10.1109/TPAMI.2014.2330598 10.1109/MSP.2008.4408441 10.1016/j.neucom.2014.08.092 10.1142/S0129065715500112 10.1109/86.895946 10.1016/S1388-2457(02)00057-3 10.1109/MC.2008.431 10.1109/TBME.2005.851521 10.1109/TNSRE.2013.2243471 10.1142/S0129065714500130 10.1109/TNNLS.2013.2239310 10.1016/j.jneumeth.2010.09.010 10.1016/j.bspc.2011.02.002 10.1109/TBME.2011.2131142 10.1109/5.939829 10.1162/neco.1992.4.3.415 10.1109/JSTSP.2011.2159773 10.1109/TBME.2014.2300164 10.1016/j.jneumeth.2014.03.012 10.1109/TBME.2006.883649 10.1142/S0129065714500038 10.1109/TBME.2009.2026181 10.1016/j.jneumeth.2007.03.005 10.18637/jss.v033.i01 10.1016/j.neucom.2013.04.049 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.neuroimage.2005.12.003 10.1016/j.jneumeth.2013.07.018 10.1109/TBME.2010.2082540 10.1109/TBME.2012.2215960 10.1142/S0129065713500068 10.1016/j.neuroimage.2013.11.028 10.1109/TNNLS.2013.2271507 10.1142/S0129065713500135 10.1016/j.jneumeth.2015.03.018 10.1016/j.jneumeth.2012.09.020 10.1016/j.patrec.2008.01.030 10.1016/j.jneumeth.2014.04.010 10.1016/j.neuroimage.2011.03.032 10.1088/1741-2560/9/2/026018 10.1016/j.jneumeth.2014.10.002 10.1109/TNSRE.2013.2279680 10.1142/S0129065710002413 10.1016/j.jneumeth.2014.04.016 10.1109/TNNLS.2015.2476656 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.jneumeth.2015.08.004 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1872-678X |
| EndPage | 91 |
| ExternalDocumentID | 26277421 10_1016_j_jneumeth_2015_08_004 S016502701500285X |
| Genre | Validation Studies Comparative Study Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- SEW SNS WUQ X7M ZGI ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c368t-3430f90887c012a9ede22cf242c20a38d7f0fa8041042f39b57dc4b69b3046e3 |
| IEDL.DBID | .~1 |
| ISSN | 0165-0270 1872-678X |
| IngestDate | Sun Sep 28 02:50:13 EDT 2025 Mon Jul 21 05:40:11 EDT 2025 Thu Oct 02 04:25:29 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Fri Feb 23 02:33:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Motor imagery (MI) Sparse regression Electroencephalogram (EEG) Common spatial pattern (CSP) Brain–computer interface (BCI) |
| Language | English |
| License | Copyright © 2015 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-3430f90887c012a9ede22cf242c20a38d7f0fa8041042f39b57dc4b69b3046e3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0003-4087-6544 |
| PMID | 26277421 |
| PQID | 1721918588 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1721918588 pubmed_primary_26277421 crossref_citationtrail_10_1016_j_jneumeth_2015_08_004 crossref_primary_10_1016_j_jneumeth_2015_08_004 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2015_08_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-11-30 |
| PublicationDateYYYYMMDD | 2015-11-30 |
| PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of neuroscience methods |
| PublicationTitleAlternate | J Neurosci Methods |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Xu, Cheng, Yao (bib0245) 2014; 221 Bishop (bib0020) 2006 Li, Guan, Li, Chin (bib0115) 2008; 29 Zhang, Rao (bib0210) 2011; 5 Wu, Zhang, Cichocki (bib0205) 2014; 129 Zhang, Jin, Qing, Wang, Wang (bib0220) 2012; 7 Dornhege, Blankertz, Krauledat, Losch, Curio, Müller (bib0060) 2006; 53 Cong, Lin, Kuang, Gong, Astikainen, Ristaniemi (bib0055) 2015; 248 Zhang, Zhou, Jin, Wang, Cichocki (bib0255) 2015; 244 Lu, Eng, Guan, Plataniotis, Venetsanopoulos (bib0130) 2010; 57 Zhao, Zhou, Zhang, Cichocki, Amari (bib0260) 2015 Cichocki, Washizawa, Rutkowski, Bakardjian, Phan, Choi, Lee, Zhao, Zhang, Li (bib0040) 2008; 41 Gao, Wang, Gao, Hong (bib0070) 2014; 61 Wu, Chen, Gao, Li, Brown, Gao (bib0200) 2014; 37 Wolpaw, Birbaumer, McFarland, Pfutscheller, Vaughan (bib0185) 2002; 113 Arvaneh, Guan, Ang, Quek (bib0010) 2011; 58 Higashi, Tanaka (bib0075) 2013; 60 Wu, Chen, Gao, Brown (bib0190) 2011; 56 Pfurtscheller, Neuper (bib0145) 2001; 89 Novi, Guan, Dat, Xue (bib0140) 2007 MacKay (bib0135) 1992; 4 Zhou, Cichocki, Xie (bib0265) 2013; 24 Higashi, Cichocki, Tanaka (bib0080) 2012 Wu, Wu, Gao, Liu, Li, Gao (bib0195) 2014; 88 Tibshirani (bib0175) 1996; 58 Blankertz, Curio, Müller (bib0025) 2002 Cong, Kalyakin, Huttunen-Scott, Li, Lyytinen, Ristaniemi (bib0045) 2010; 20 Blankertz, Tomioka, Lemm, Kawanabe, Müller (bib0030) 2008; 25 Li, Liang, Zhao, Li, Hong, Zhang (bib0120) 2013; 23 Zhang, Zhou, Jin, Wang, Wang, Cichocki (bib0225) 2013; 21 Zhang, Zhou, Zhao, Jin, Wang, Cichocki (bib0230) 2013; 21 Pfurtscheller, Brunner, Schlögl, Lopes da Silva (bib0150) 2006; 31 Zhang, Zhou, Jin, Zhao, Wang, Cichocki (bib0235) 2014; 24 Li, Zhang (bib0110) 2010; 193 Zhang, Zhao, Jin, Wang, Cichocki (bib0215) 2012; 9 Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang and A. Cichocki Sparse Bayesian classification of EEG for brain–computer interface, IEEE Trans Neural Netw Learn Syst (2015), In press. Friedman, Hastie, Tibshirani (bib0065) 2010; 33 Hoffmann, Vesin, Ebrahimi, Diserens (bib0085) 2008; 167 Arvaneh, Cuntai, Kai, Chai (bib0015) 2013; 24 Ramoser, Muller-Gerking, Pfurtscheller (bib0155) 2000; 8 Chen, Jin, Zhang, Wang, Cichocki (bib0035) 2015; 239 Sun, Hu, Wu (bib0165) 2010 Zhang, Zhou, Jin, Wang, Cichocki (bib0240) 2014; 24 Tipping (bib0180) 2001; 1 Koo, Lee, Nam, Kang, Koh, Shin, Choi (bib0100) 2015; 244 Rutkowski, Mori (bib0160) 2015; 244 Thomas, Guan, Lau, Vinod, Ang (bib0170) 2009; 56 Jin, Sellers, Zhou, Zhang, Wang, Cichocki (bib0095) 2015; 25 Lemm, Blankertz, Curio, Müller (bib0105) 2005; 52 Li, Struzik, Zhang, Cichocki (bib0125) 2015; 165 Ang, Chin, Zhang, Guan (bib0005) 2008 Cong, Phan, Astikainen, Zhao, Wu, Hietanen, Ristaniemi, Cichocki (bib0050) 2013; 23 Jin, Sellers, Zhang, Daly, Wang, Cichocki (bib0090) 2013; 212 Arvaneh (10.1016/j.jneumeth.2015.08.004_bib0015) 2013; 24 Zhang (10.1016/j.jneumeth.2015.08.004_bib0210) 2011; 5 Zhang (10.1016/j.jneumeth.2015.08.004_bib0245) 2014; 221 Zhang (10.1016/j.jneumeth.2015.08.004_bib0225) 2013; 21 Li (10.1016/j.jneumeth.2015.08.004_bib0115) 2008; 29 Wu (10.1016/j.jneumeth.2015.08.004_bib0200) 2014; 37 Friedman (10.1016/j.jneumeth.2015.08.004_bib0065) 2010; 33 Novi (10.1016/j.jneumeth.2015.08.004_bib0140) 2007 Zhang (10.1016/j.jneumeth.2015.08.004_bib0240) 2014; 24 Zhang (10.1016/j.jneumeth.2015.08.004_bib0215) 2012; 9 Blankertz (10.1016/j.jneumeth.2015.08.004_bib0025) 2002 Jin (10.1016/j.jneumeth.2015.08.004_bib0095) 2015; 25 Zhang (10.1016/j.jneumeth.2015.08.004_bib0255) 2015; 244 Dornhege (10.1016/j.jneumeth.2015.08.004_bib0060) 2006; 53 Hoffmann (10.1016/j.jneumeth.2015.08.004_bib0085) 2008; 167 Zhang (10.1016/j.jneumeth.2015.08.004_bib0235) 2014; 24 Higashi (10.1016/j.jneumeth.2015.08.004_bib0080) 2012 Li (10.1016/j.jneumeth.2015.08.004_bib0120) 2013; 23 Wu (10.1016/j.jneumeth.2015.08.004_bib0205) 2014; 129 Wu (10.1016/j.jneumeth.2015.08.004_bib0195) 2014; 88 Zhang (10.1016/j.jneumeth.2015.08.004_bib0220) 2012; 7 Ang (10.1016/j.jneumeth.2015.08.004_bib0005) 2008 Zhou (10.1016/j.jneumeth.2015.08.004_bib0265) 2013; 24 Lemm (10.1016/j.jneumeth.2015.08.004_bib0105) 2005; 52 Li (10.1016/j.jneumeth.2015.08.004_bib0110) 2010; 193 Wolpaw (10.1016/j.jneumeth.2015.08.004_bib0185) 2002; 113 Koo (10.1016/j.jneumeth.2015.08.004_bib0100) 2015; 244 Bishop (10.1016/j.jneumeth.2015.08.004_bib0020) 2006 Arvaneh (10.1016/j.jneumeth.2015.08.004_bib0010) 2011; 58 Cong (10.1016/j.jneumeth.2015.08.004_bib0045) 2010; 20 Tibshirani (10.1016/j.jneumeth.2015.08.004_bib0175) 1996; 58 Lu (10.1016/j.jneumeth.2015.08.004_bib0130) 2010; 57 Chen (10.1016/j.jneumeth.2015.08.004_bib0035) 2015; 239 Zhao (10.1016/j.jneumeth.2015.08.004_bib0260) 2015 10.1016/j.jneumeth.2015.08.004_bib0250 Higashi (10.1016/j.jneumeth.2015.08.004_bib0075) 2013; 60 Ramoser (10.1016/j.jneumeth.2015.08.004_bib0155) 2000; 8 Gao (10.1016/j.jneumeth.2015.08.004_bib0070) 2014; 61 Rutkowski (10.1016/j.jneumeth.2015.08.004_bib0160) 2015; 244 Li (10.1016/j.jneumeth.2015.08.004_bib0125) 2015; 165 Cong (10.1016/j.jneumeth.2015.08.004_bib0050) 2013; 23 Pfurtscheller (10.1016/j.jneumeth.2015.08.004_bib0150) 2006; 31 Wu (10.1016/j.jneumeth.2015.08.004_bib0190) 2011; 56 MacKay (10.1016/j.jneumeth.2015.08.004_bib0135) 1992; 4 Cong (10.1016/j.jneumeth.2015.08.004_bib0055) 2015; 248 Sun (10.1016/j.jneumeth.2015.08.004_bib0165) 2010 Jin (10.1016/j.jneumeth.2015.08.004_bib0090) 2013; 212 Zhang (10.1016/j.jneumeth.2015.08.004_bib0230) 2013; 21 Cichocki (10.1016/j.jneumeth.2015.08.004_bib0040) 2008; 41 Blankertz (10.1016/j.jneumeth.2015.08.004_bib0030) 2008; 25 Thomas (10.1016/j.jneumeth.2015.08.004_bib0170) 2009; 56 Pfurtscheller (10.1016/j.jneumeth.2015.08.004_bib0145) 2001; 89 Tipping (10.1016/j.jneumeth.2015.08.004_bib0180) 2001; 1 |
| References_xml | – volume: 57 start-page: 2936 year: 2010 end-page: 2946 ident: bib0130 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE Trans Biomed Eng – volume: 244 start-page: 8 year: 2015 end-page: 15 ident: bib0255 article-title: SSVEP recognition using common feature analysis in brain–computer interface publication-title: J Neurosci Methods – volume: 165 start-page: 23 year: 2015 end-page: 31 ident: bib0125 article-title: Feature learning from incomplete EEG with denoising autoencoder publication-title: Neurocomputing – volume: 7 start-page: 104 year: 2012 end-page: 111 ident: bib0220 article-title: LASSO based stimulus frequency recognition model for SSVEP BCIs publication-title: Biomed Signal Process Control – volume: 129 start-page: 17 year: 2014 end-page: 24 ident: bib0205 article-title: Multifactor sparse feature extraction using convolutive nonnegative tucker decomposition publication-title: Neurocomputing – volume: 193 start-page: 373 year: 2010 end-page: 379 ident: bib0110 article-title: Bilateral adaptation and neurofeedback for brain computer interfacesystem publication-title: J Neurosci Methods – volume: 248 start-page: 59 year: 2015 end-page: 69 ident: bib0055 article-title: Tensor decomposition of EEG signals: a brief review publication-title: J Neurosci Meth – volume: 244 start-page: 26 year: 2015 end-page: 32 ident: bib0100 article-title: A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery publication-title: J Neurosci Methods – volume: 239 start-page: 18 year: 2015 end-page: 27 ident: bib0035 article-title: A survey of the dummy face and human face stimuli used in BCI paradigm publication-title: J Neurosci Methods – volume: 23 start-page: 1350013 year: 2013 ident: bib0120 article-title: Design of assistive wheelchair system directly steered by human thoughts publication-title: Int J Neural Syst – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: bib0180 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J Machine Learn Res – volume: 25 start-page: 41 year: 2008 end-page: 56 ident: bib0030 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process Mag – reference: Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang and A. Cichocki Sparse Bayesian classification of EEG for brain–computer interface, IEEE Trans Neural Netw Learn Syst (2015), In press. – volume: 167 start-page: 115 year: 2008 end-page: 125 ident: bib0085 article-title: An efficient P300-based brain–computer interface for disabled subjects publication-title: J Neurosci Methods – start-page: 2390 year: 2008 end-page: 2397 ident: bib0005 article-title: Filter bank common spatial pattern (FBCSP) in brain–computer interface publication-title: IEEE International Joint Conference on Neural Networks (IJCNN 2008) – volume: 20 start-page: 279 year: 2010 end-page: 292 ident: bib0045 article-title: Single-trial based independent component analysis on mismatch negativity in children publication-title: Int J Neural Syst – volume: 52 start-page: 1541 year: 2005 end-page: 1548 ident: bib0105 article-title: Spatio-spectral filters for improving the classification of single trial EEG publication-title: IEEE Trans Biomed Eng – volume: 4 start-page: 415 year: 1992 end-page: 447 ident: bib0135 article-title: Bayesian interpolation publication-title: Neural Comput – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib0185 article-title: Brain–computer interfaces for communication and control publication-title: Clin Neurophysiol – volume: 56 start-page: 2730 year: 2009 end-page: 2733 ident: bib0170 article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces publication-title: IEEE Trans Biomed Eng – volume: 41 start-page: 34 year: 2008 end-page: 42 ident: bib0040 article-title: Noninvasive BCIs: Multiway signal-processing array decompositions publication-title: IEEE Comput – start-page: 204 year: 2007 end-page: 207 ident: bib0140 article-title: Sub band common spatial pattern for brain–computer interface publication-title: Proceedings of 3rd International Conference Neural Engineering. EEE Engineering in Medicine and Biology Society. (EMBS) – volume: 221 start-page: 32 year: 2014 end-page: 40 ident: bib0245 article-title: Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface publication-title: J Neurosci Methods – volume: 53 start-page: 2274 year: 2006 end-page: 2281 ident: bib0060 article-title: Combined optimization of spatial and temporal filters for improving brain–computer interfacing publication-title: IEEE Trans Biomed Eng – volume: 9 start-page: 026018 year: 2012 ident: bib0215 article-title: A novel BCI based on ERP components sensitive to configural processing of human faces publication-title: J Neural Eng – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bib0065 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Softw – volume: 56 start-page: 1929 year: 2011 end-page: 1945 ident: bib0190 article-title: A hierarchical bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG publication-title: NeuroImage – volume: 88 start-page: 319 year: 2014 end-page: 339 ident: bib0195 article-title: Bayesian estimation of ERP components from multicondition and multichannel EEG publication-title: NeuroImage – volume: 23 start-page: 1350006 year: 2013 ident: bib0050 article-title: Multi-domain feature extraction for small event-related ptentials through nonnegative multi-way array decomposition from low dense array EEG publication-title: Int J Neural Syst – volume: 29 start-page: 1285 year: 2008 end-page: 1294 ident: bib0115 article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system publication-title: Pattern Recognit Lett – volume: 212 start-page: 94 year: 2013 end-page: 99 ident: bib0090 article-title: Whether generic model works for rapid ERP-based BCI calibration publication-title: J Neurosci Methods – volume: 61 start-page: 1436 year: 2014 end-page: 1447 ident: bib0070 article-title: Visual and auditory brain–computer interfaces publication-title: IEEE Trans Biomed Eng – volume: 31 start-page: 153 year: 2006 end-page: 159 ident: bib0150 article-title: Murhythm (de), synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage – volume: 37 start-page: 639 year: 2014 end-page: 653 ident: bib0200 article-title: Probabilistic common spatial patterns for multichannel EEG analysis publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2006 ident: bib0020 article-title: Pattern recognition and machine learning – volume: 60 start-page: 1100 year: 2013 end-page: 1110 ident: bib0075 article-title: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification publication-title: IEEE Trans Biomed Eng – volume: 89 start-page: 1123 year: 2001 end-page: 1134 ident: bib0145 article-title: Motor imagery and direct brain–computer communication publication-title: Proc IEEE – volume: 58 start-page: 1865 year: 2011 end-page: 1873 ident: bib0010 article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI publication-title: IEEE Trans Biomed Eng – volume: 244 start-page: 45 year: 2015 end-page: 51 ident: bib0160 article-title: Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users publication-title: J Neurosci Methods – volume: 21 start-page: 233 year: 2013 end-page: 243 ident: bib0230 article-title: Spatial-temporal discriminant analysis for ERP-based brain–computer interface publication-title: IEEE Trans. Neural Syst Rehabil Eng – volume: 8 start-page: 441 year: 2000 end-page: 446 ident: bib0155 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans Rehab Eng – volume: 24 start-page: 1450003 year: 2014 ident: bib0235 article-title: Aggregation of sparse linear discriminant analysis for event-related potential classification in brain–computer interface publication-title: Int J Neural Syst – volume: 24 start-page: 1450013 year: 2014 ident: bib0240 article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis publication-title: Int J Neural Syst – year: 2015 ident: bib0260 article-title: Bayesian robust tensor factorization for incomplete multiway data publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 721 year: 2012 end-page: 724 ident: bib0080 article-title: Regularization using geometric information between sensors capturing features from brain signals publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2012) – volume: 25 start-page: 1550011 year: 2015 ident: bib0095 article-title: A P300 brain computer interface based on a modification of the mismatch negativity paradigm publication-title: Int J Neural Syst – start-page: 1 year: 2010 end-page: 6 ident: bib0165 article-title: A novel frequency band selection method for common spatial pattern in motor imagery based brain computer interface publication-title: IEEE International Joint Conference on Neural Networks (IJCNN 2010) – start-page: 157 year: 2002 end-page: 164 ident: bib0025 article-title: Classifying single trial EEG: Toward brain computer interfacing publication-title: Proc Advances in Neural Information Processing Systems (NIPS 01) 14 – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0175 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc B – volume: 21 start-page: 887 year: 2013 end-page: 896 ident: bib0225 article-title: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 24 start-page: 610 year: 2013 end-page: 619 ident: bib0015 article-title: Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram-based brain–computer interface publication-title: IEEE Trans Neural Netw Learn Syst – volume: 5 start-page: 912 year: 2011 end-page: 926 ident: bib0210 article-title: Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning publication-title: IEEE J Sel Top Signal Process – volume: 24 start-page: 2051 year: 2013 end-page: 2062 ident: bib0265 article-title: Accelerated canonical polyadic decomposition by using mode reduction publication-title: IEEE Trans Neural Netw Learn Syst – volume: 37 start-page: 639 issue: 3 year: 2014 ident: 10.1016/j.jneumeth.2015.08.004_bib0200 article-title: Probabilistic common spatial patterns for multichannel EEG analysis publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2330598 – volume: 25 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.jneumeth.2015.08.004_bib0030 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2008.4408441 – volume: 165 start-page: 23 year: 2015 ident: 10.1016/j.jneumeth.2015.08.004_bib0125 article-title: Feature learning from incomplete EEG with denoising autoencoder publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.092 – volume: 25 start-page: 1550011 issue: 3 year: 2015 ident: 10.1016/j.jneumeth.2015.08.004_bib0095 article-title: A P300 brain computer interface based on a modification of the mismatch negativity paradigm publication-title: Int J Neural Syst doi: 10.1142/S0129065715500112 – volume: 8 start-page: 441 issue: 4 year: 2000 ident: 10.1016/j.jneumeth.2015.08.004_bib0155 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans Rehab Eng doi: 10.1109/86.895946 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.jneumeth.2015.08.004_bib0185 article-title: Brain–computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – start-page: 1 year: 2010 ident: 10.1016/j.jneumeth.2015.08.004_bib0165 article-title: A novel frequency band selection method for common spatial pattern in motor imagery based brain computer interface – volume: 1 start-page: 211 year: 2001 ident: 10.1016/j.jneumeth.2015.08.004_bib0180 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J Machine Learn Res – volume: 41 start-page: 34 issue: 10 year: 2008 ident: 10.1016/j.jneumeth.2015.08.004_bib0040 article-title: Noninvasive BCIs: Multiway signal-processing array decompositions publication-title: IEEE Comput doi: 10.1109/MC.2008.431 – volume: 52 start-page: 1541 issue: 9 year: 2005 ident: 10.1016/j.jneumeth.2015.08.004_bib0105 article-title: Spatio-spectral filters for improving the classification of single trial EEG publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2005.851521 – volume: 21 start-page: 233 issue: 2 year: 2013 ident: 10.1016/j.jneumeth.2015.08.004_bib0230 article-title: Spatial-temporal discriminant analysis for ERP-based brain–computer interface publication-title: IEEE Trans. Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2013.2243471 – volume: 24 start-page: 1450013 issue: 4 year: 2014 ident: 10.1016/j.jneumeth.2015.08.004_bib0240 article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis publication-title: Int J Neural Syst doi: 10.1142/S0129065714500130 – start-page: 721 year: 2012 ident: 10.1016/j.jneumeth.2015.08.004_bib0080 article-title: Regularization using geometric information between sensors capturing features from brain signals – volume: 24 start-page: 610 issue: 4 year: 2013 ident: 10.1016/j.jneumeth.2015.08.004_bib0015 article-title: Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram-based brain–computer interface publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2239310 – volume: 193 start-page: 373 issue: 2 year: 2010 ident: 10.1016/j.jneumeth.2015.08.004_bib0110 article-title: Bilateral adaptation and neurofeedback for brain computer interfacesystem publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.09.010 – volume: 7 start-page: 104 issue: 4 year: 2012 ident: 10.1016/j.jneumeth.2015.08.004_bib0220 article-title: LASSO based stimulus frequency recognition model for SSVEP BCIs publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2011.02.002 – volume: 58 start-page: 1865 issue: 6 year: 2011 ident: 10.1016/j.jneumeth.2015.08.004_bib0010 article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2131142 – volume: 89 start-page: 1123 issue: 7 year: 2001 ident: 10.1016/j.jneumeth.2015.08.004_bib0145 article-title: Motor imagery and direct brain–computer communication publication-title: Proc IEEE doi: 10.1109/5.939829 – start-page: 2390 year: 2008 ident: 10.1016/j.jneumeth.2015.08.004_bib0005 article-title: Filter bank common spatial pattern (FBCSP) in brain–computer interface – volume: 4 start-page: 415 issue: 3 year: 1992 ident: 10.1016/j.jneumeth.2015.08.004_bib0135 article-title: Bayesian interpolation publication-title: Neural Comput doi: 10.1162/neco.1992.4.3.415 – volume: 5 start-page: 912 issue: 5 year: 2011 ident: 10.1016/j.jneumeth.2015.08.004_bib0210 article-title: Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2011.2159773 – start-page: 157 year: 2002 ident: 10.1016/j.jneumeth.2015.08.004_bib0025 article-title: Classifying single trial EEG: Toward brain computer interfacing – year: 2006 ident: 10.1016/j.jneumeth.2015.08.004_bib0020 – volume: 61 start-page: 1436 issue: 5 year: 2014 ident: 10.1016/j.jneumeth.2015.08.004_bib0070 article-title: Visual and auditory brain–computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2300164 – volume: 244 start-page: 8 year: 2015 ident: 10.1016/j.jneumeth.2015.08.004_bib0255 article-title: SSVEP recognition using common feature analysis in brain–computer interface publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.03.012 – volume: 53 start-page: 2274 issue: 11 year: 2006 ident: 10.1016/j.jneumeth.2015.08.004_bib0060 article-title: Combined optimization of spatial and temporal filters for improving brain–computer interfacing publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.883649 – year: 2015 ident: 10.1016/j.jneumeth.2015.08.004_bib0260 article-title: Bayesian robust tensor factorization for incomplete multiway data publication-title: IEEE Trans Neural Netw Learn Syst – volume: 24 start-page: 1450003 issue: 1 year: 2014 ident: 10.1016/j.jneumeth.2015.08.004_bib0235 article-title: Aggregation of sparse linear discriminant analysis for event-related potential classification in brain–computer interface publication-title: Int J Neural Syst doi: 10.1142/S0129065714500038 – volume: 56 start-page: 2730 issue: 11 year: 2009 ident: 10.1016/j.jneumeth.2015.08.004_bib0170 article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2026181 – volume: 167 start-page: 115 issue: 1 year: 2008 ident: 10.1016/j.jneumeth.2015.08.004_bib0085 article-title: An efficient P300-based brain–computer interface for disabled subjects publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.03.005 – start-page: 204 year: 2007 ident: 10.1016/j.jneumeth.2015.08.004_bib0140 article-title: Sub band common spatial pattern for brain–computer interface – volume: 33 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.jneumeth.2015.08.004_bib0065 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Stat Softw doi: 10.18637/jss.v033.i01 – volume: 129 start-page: 17 year: 2014 ident: 10.1016/j.jneumeth.2015.08.004_bib0205 article-title: Multifactor sparse feature extraction using convolutive nonnegative tucker decomposition publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.049 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.jneumeth.2015.08.004_bib0175 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 31 start-page: 153 issue: 1 year: 2006 ident: 10.1016/j.jneumeth.2015.08.004_bib0150 article-title: Murhythm (de), synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.003 – volume: 221 start-page: 32 year: 2014 ident: 10.1016/j.jneumeth.2015.08.004_bib0245 article-title: Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2013.07.018 – volume: 57 start-page: 2936 issue: 12 year: 2010 ident: 10.1016/j.jneumeth.2015.08.004_bib0130 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2082540 – volume: 60 start-page: 1100 issue: 4 year: 2013 ident: 10.1016/j.jneumeth.2015.08.004_bib0075 article-title: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2215960 – volume: 23 start-page: 1350006 issue: 2 year: 2013 ident: 10.1016/j.jneumeth.2015.08.004_bib0050 article-title: Multi-domain feature extraction for small event-related ptentials through nonnegative multi-way array decomposition from low dense array EEG publication-title: Int J Neural Syst doi: 10.1142/S0129065713500068 – volume: 88 start-page: 319 year: 2014 ident: 10.1016/j.jneumeth.2015.08.004_bib0195 article-title: Bayesian estimation of ERP components from multicondition and multichannel EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.028 – volume: 24 start-page: 2051 issue: 12 year: 2013 ident: 10.1016/j.jneumeth.2015.08.004_bib0265 article-title: Accelerated canonical polyadic decomposition by using mode reduction publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2271507 – volume: 23 start-page: 1350013 issue: 3 year: 2013 ident: 10.1016/j.jneumeth.2015.08.004_bib0120 article-title: Design of assistive wheelchair system directly steered by human thoughts publication-title: Int J Neural Syst doi: 10.1142/S0129065713500135 – volume: 248 start-page: 59 year: 2015 ident: 10.1016/j.jneumeth.2015.08.004_bib0055 article-title: Tensor decomposition of EEG signals: a brief review publication-title: J Neurosci Meth doi: 10.1016/j.jneumeth.2015.03.018 – volume: 212 start-page: 94 issue: 1 year: 2013 ident: 10.1016/j.jneumeth.2015.08.004_bib0090 article-title: Whether generic model works for rapid ERP-based BCI calibration publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2012.09.020 – volume: 29 start-page: 1285 issue: 9 year: 2008 ident: 10.1016/j.jneumeth.2015.08.004_bib0115 article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2008.01.030 – volume: 244 start-page: 45 year: 2015 ident: 10.1016/j.jneumeth.2015.08.004_bib0160 article-title: Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.04.010 – volume: 56 start-page: 1929 issue: 4 year: 2011 ident: 10.1016/j.jneumeth.2015.08.004_bib0190 article-title: A hierarchical bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.032 – volume: 9 start-page: 026018 issue: 2 year: 2012 ident: 10.1016/j.jneumeth.2015.08.004_bib0215 article-title: A novel BCI based on ERP components sensitive to configural processing of human faces publication-title: J Neural Eng doi: 10.1088/1741-2560/9/2/026018 – volume: 239 start-page: 18 year: 2015 ident: 10.1016/j.jneumeth.2015.08.004_bib0035 article-title: A survey of the dummy face and human face stimuli used in BCI paradigm publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.10.002 – volume: 21 start-page: 887 issue: 6 year: 2013 ident: 10.1016/j.jneumeth.2015.08.004_bib0225 article-title: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2013.2279680 – volume: 20 start-page: 279 issue: 4 year: 2010 ident: 10.1016/j.jneumeth.2015.08.004_bib0045 article-title: Single-trial based independent component analysis on mismatch negativity in children publication-title: Int J Neural Syst doi: 10.1142/S0129065710002413 – volume: 244 start-page: 26 year: 2015 ident: 10.1016/j.jneumeth.2015.08.004_bib0100 article-title: A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.04.016 – ident: 10.1016/j.jneumeth.2015.08.004_bib0250 doi: 10.1109/TNNLS.2015.2476656 |
| SSID | ssj0004906 |
| Score | 2.5783525 |
| Snippet | •This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns.•Experimental results on two public EEG datasets... Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI)... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 85 |
| SubjectTerms | Access to Information Brain - physiology Brain-Computer Interfaces Brain–computer interface (BCI) Common spatial pattern (CSP) Datasets as Topic Electroencephalogram (EEG) Electroencephalography - methods Humans Imagination - physiology Motor imagery (MI) Psychomotor Performance - physiology Signal Processing, Computer-Assisted Sparse regression Support Vector Machine |
| Title | Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface |
| URI | https://dx.doi.org/10.1016/j.jneumeth.2015.08.004 https://www.ncbi.nlm.nih.gov/pubmed/26277421 https://www.proquest.com/docview/1721918588 |
| Volume | 255 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCiWX0ObRbNoGBUJvzjqW_NBxCQ3bhqSHJLA3IetRvGS9yz4O20Ppf-g_7C_pjC2nDaTk0KOFZQuNpJnRzHwfwIkuEydtYSPupIyEjnlU5ha9FJckORqwPs6pwPnqOhveic-jdLQB510tDKVVhrO_PdOb0zq09MNs9mdV1b-hQhx0qshlRyWZjqiCXeTEYnD6_U-ah5ANvya9TPHK-K8q4fHpuHYrYmqmFK-0gfIMhG1PKKh_GaCNIrp4BdvBgmSDdpCvYcPVO7A7qNF7nqzZB9bkdDaX5Tvw8iqEznfh6xc8HCbVN1RVbEFp1PiNWQOuWS8Y3cZS63zhmK8ogM5KqgFmaNIyFOZ0HlUTQrtYM1J7lpXELPHrx08TSCEYwU7MvTZuD24vPt6eD6PAshAZnhXLiAsee8p2yg0qKy2dRTEZj6rbJLHmhUV5eU0wRbi_PZdlmlsjykyWFFR1fB8262ntDoClZ45rZ7PUai_IFSqENz7nOZkx1uoepN3MKhMQyIkI4151qWZj1UlEkUQUMWTGogf9h36zFoPj2R6yE5x6tJoUKopn-x53kla41Sh-oms3XS0UecsS7Zui6MGbdgk8jCfJEjSkk7PD__jzW9iipxZY8h1sLucr9x5NnmV51KzpI3gx-HQ5vP4NMtADew |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIkEvFW15bIFiJMQt3TR2Hj5WFdUWuuXAIu3NcvxAWbHZ1T4O7aHqf-Af8kuYSZwCElUPXJ04sTzjeXhmvgF4p8vESVvYiDspI6FjHpW5RS_FJUmOBqyPcypwHl5kg6_i4zgdb8BJVwtDaZVB9rcyvZHWYaQfdrM_r6r-FyrEQaeKXHZUkun4ATwUaZKTB3Z4_TvPQ8imwSa9TQHL-I8y4cnhpHZratVMOV5pg-UZOrb9Q0PdZYE2muj0CWwHE5Idt6vcgQ1X78LecY3u8_SSvWdNUmdzW74Lj4Yhdr4H3z6jdJhWV6ir2JLyqPEb8wZds14yuo6l0cXSMV9RBJ2VVATM0KZlSM3ZIqqmBHdxyUjvWVZSa4mfNz9M6ArBCHdi4bVxT2F0-mF0MohCm4XI8KxYRVzw2FO6U25QW2npLNLJeNTdJok1LywSzGvCKcID7rks09waUWaypKiq489gs57V7gWw9Mhx7WyWWu0F-UKF8MbnPCc7xlrdg7TbWWUCBDl1wviuulyzieoooogiilpkxqIH_dt58xaE494ZsiOc-oudFGqKe-e-7Sit8KxRAEXXbrZeKnKXJRo4RdGD5y0L3K4nyZD1RHK0_x9_fgOPB6PhuTo_u_j0ErboSYsy-Qo2V4u1e432z6o8aPj7Fx_cBRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+spatial+patterns+with+sparse+filter+bands+for+motor-imagery+based+brain%E2%80%93computer+interface&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Zhang%2C+Yu&rft.au=Zhou%2C+Guoxu&rft.au=Jin%2C+Jing&rft.au=Wang%2C+Xingyu&rft.date=2015-11-30&rft.issn=0165-0270&rft.volume=255&rft.spage=85&rft.epage=91&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2015_08_004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |