Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface

•This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns.•Experimental results on two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) confirm the effectiveness of SFBCSP.•The optimized spatial patterns by SFBCSP gi...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 255; pp. 85 - 91
Main Authors Zhang, Yu, Zhou, Guoxu, Jin, Jing, Wang, Xingyu, Cichocki, Andrzej
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 30.11.2015
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2015.08.004

Cover

Abstract •This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns.•Experimental results on two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) confirm the effectiveness of SFBCSP.•The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.•Our study suggests that the proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain–computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI.
AbstractList Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI.
Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually.BACKGROUNDCommon spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually.This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification.NEW METHODThis study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification.Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI.RESULTSTwo public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI.The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.COMPARISON WITH EXISTING METHODSThe optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.The proposed SFBCSP is a potential method for improving the performance of MI-based BCI.CONCLUSIONSThe proposed SFBCSP is a potential method for improving the performance of MI-based BCI.
•This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns.•Experimental results on two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) confirm the effectiveness of SFBCSP.•The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods.•Our study suggests that the proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain–computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI.
Author Zhou, Guoxu
Wang, Xingyu
Cichocki, Andrzej
Zhang, Yu
Jin, Jing
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0003-4087-6544
  surname: Zhang
  fullname: Zhang, Yu
  email: yuzhang@ecust.edu.cn
  organization: Key Laboratory for Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
– sequence: 2
  givenname: Guoxu
  surname: Zhou
  fullname: Zhou, Guoxu
  organization: Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
– sequence: 3
  givenname: Jing
  surname: Jin
  fullname: Jin, Jing
  organization: Key Laboratory for Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
– sequence: 4
  givenname: Xingyu
  surname: Wang
  fullname: Wang, Xingyu
  organization: Key Laboratory for Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
– sequence: 5
  givenname: Andrzej
  surname: Cichocki
  fullname: Cichocki, Andrzej
  organization: Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26277421$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFO3DAURa2Kqgy0v4CyZJP02cnEjsQChFqohMSGRXeW4zwPHiV2ajutYNV_6B_yJXg0zKYbNn7S1bnPeveekCPnHRJyRqGiQNuv22rrcJkwPVYM6LoCUQE0H8iKCs7KloufR2SVwXUJjMMxOYlxC5nooP1EjlnLOG8YXZHN_ZzsZJ-t2xRxVsmqscgjYXCx-GPT404NEQtjxywWvXJDLIwPxeSTD6Wd1AbDU9YjDkUflHUvf_9pP83LDrcuv0Zp_Ew-GjVG_PI2T8nD928P17fl3f3Nj-uru1LXrUhl3dRgOhCCa6BMdTggY9qwhmkGqhYDN2CUgIZCw0zd9Ws-6KZvu76GpsX6lJzv187B_1owJjnZqHEclUO_REk5ox0VayEyevaGLv2Eg5xDviU8yUM2GbjYAzr4GAMaqW3KCXmX8pmjpCB3VcitPFQhd1VIEDIHne3tf_bDD-8aL_dGzDn9thhk1BadxsEG1EkO3r634hVxRqof
CitedBy_id crossref_primary_10_1016_j_eswa_2017_12_015
crossref_primary_10_1109_TNSRE_2020_3001990
crossref_primary_10_1109_ACCESS_2021_3068929
crossref_primary_10_1007_s11760_021_01924_3
crossref_primary_10_1016_j_jocs_2023_102140
crossref_primary_10_1016_j_bspc_2022_104397
crossref_primary_10_3389_fnins_2023_1303648
crossref_primary_10_1049_iet_ipr_2019_0900
crossref_primary_10_1038_s42003_022_03665_6
crossref_primary_10_1142_S0129065716500325
crossref_primary_10_1080_03772063_2016_1176543
crossref_primary_10_3389_fnins_2020_00155
crossref_primary_10_3390_s20174749
crossref_primary_10_1007_s11571_019_09541_0
crossref_primary_10_1016_j_neucom_2021_08_119
crossref_primary_10_1088_1741_2552_14_1_011001
crossref_primary_10_1109_TNNLS_2015_2476656
crossref_primary_10_1515_bams_2019_0053
crossref_primary_10_1016_j_neucom_2016_11_008
crossref_primary_10_1080_03772063_2019_1670106
crossref_primary_10_1016_j_autcon_2023_105011
crossref_primary_10_1007_s11042_023_17118_7
crossref_primary_10_1016_j_asoc_2019_105519
crossref_primary_10_1016_j_jneumeth_2016_12_010
crossref_primary_10_1016_j_patcog_2018_12_001
crossref_primary_10_1109_ACCESS_2021_3136774
crossref_primary_10_1016_j_neunet_2021_06_022
crossref_primary_10_3389_fncom_2022_1004301
crossref_primary_10_1016_j_jneumeth_2020_108690
crossref_primary_10_1016_j_jneumeth_2021_109274
crossref_primary_10_1109_TNSRE_2016_2519350
crossref_primary_10_3389_fnhum_2021_773603
crossref_primary_10_3934_mbe_2021213
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1016_j_patcog_2021_107918
crossref_primary_10_1088_1741_2552_aa8065
crossref_primary_10_1016_j_neucom_2017_01_061
crossref_primary_10_3390_s19061423
crossref_primary_10_37394_232027_2023_5_8
crossref_primary_10_1088_1361_6579_ad4e95
crossref_primary_10_1016_j_eswa_2024_123354
crossref_primary_10_1109_ACCESS_2021_3049191
crossref_primary_10_1142_S0129065717500393
crossref_primary_10_1016_j_neucom_2016_03_106
crossref_primary_10_1038_s41598_020_62967_z
crossref_primary_10_1016_j_neucom_2016_05_035
crossref_primary_10_1016_j_jneumeth_2020_108886
crossref_primary_10_1093_pnasnexus_pgae076
crossref_primary_10_3390_s21155105
crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_1109_TBME_2018_2814538
crossref_primary_10_1007_s11517_017_1761_4
crossref_primary_10_1016_j_jneumeth_2019_108434
crossref_primary_10_1109_ACCESS_2020_3003056
crossref_primary_10_1016_j_bspc_2021_103241
crossref_primary_10_1016_j_irbm_2019_11_002
crossref_primary_10_1016_j_bspc_2021_102550
crossref_primary_10_1016_j_bspc_2024_106156
crossref_primary_10_1016_j_bspc_2024_106797
crossref_primary_10_1016_j_neucom_2016_08_082
crossref_primary_10_1016_j_neucom_2016_08_083
crossref_primary_10_1002_EXP_20230146
crossref_primary_10_3389_fnins_2023_1270785
crossref_primary_10_7717_peerj_cs_375
crossref_primary_10_1016_j_bspc_2021_102548
crossref_primary_10_1016_j_neunet_2019_09_037
crossref_primary_10_1038_s41598_019_45605_1
crossref_primary_10_1109_TII_2019_2925624
crossref_primary_10_1155_2022_2856818
crossref_primary_10_1109_TIM_2023_3276509
crossref_primary_10_1049_iet_smt_2015_0200
crossref_primary_10_1186_s12859_017_1964_6
crossref_primary_10_1016_j_compbiomed_2017_10_025
crossref_primary_10_1155_2020_1981728
crossref_primary_10_1080_2326263X_2020_1783170
crossref_primary_10_61186_jsdp_20_3_61
crossref_primary_10_1186_s12859_021_04091_x
crossref_primary_10_1038_s41598_024_71118_7
crossref_primary_10_1007_s11517_018_1821_4
crossref_primary_10_1080_10255842_2024_2371036
crossref_primary_10_1109_TNSRE_2018_2848222
crossref_primary_10_1016_j_cmpb_2016_04_023
crossref_primary_10_1063_1_5001896
crossref_primary_10_1109_ACCESS_2020_2995302
crossref_primary_10_3390_s17102282
crossref_primary_10_1109_TNNLS_2020_3015505
crossref_primary_10_1016_j_compbiomed_2018_04_022
crossref_primary_10_1016_j_bspc_2020_101994
crossref_primary_10_1016_j_compbiomed_2024_108504
crossref_primary_10_1016_j_bspc_2020_101991
crossref_primary_10_3389_fnagi_2016_00172
crossref_primary_10_1016_j_neucom_2019_08_037
crossref_primary_10_3389_fnhum_2020_00231
crossref_primary_10_1016_j_procs_2019_09_256
crossref_primary_10_3390_math11173801
crossref_primary_10_1007_s10916_018_0931_8
crossref_primary_10_1088_1741_2552_aaf046
crossref_primary_10_1007_s11517_017_1622_1
crossref_primary_10_1007_s11042_019_08602_0
crossref_primary_10_1016_j_cmpb_2019_06_009
crossref_primary_10_1109_ACCESS_2020_3016700
crossref_primary_10_1109_TNSRE_2019_2922713
crossref_primary_10_1016_j_eswa_2023_122286
crossref_primary_10_1109_ACCESS_2020_3037995
crossref_primary_10_3390_app142311208
crossref_primary_10_1007_s11517_024_03069_0
crossref_primary_10_1109_JSEN_2020_3016402
crossref_primary_10_3390_s22218526
crossref_primary_10_1088_1741_2552_aab2f2
crossref_primary_10_1016_j_measurement_2023_113861
crossref_primary_10_3390_app142311323
crossref_primary_10_1007_s11517_021_02449_0
crossref_primary_10_1016_j_medengphy_2020_05_006
crossref_primary_10_1111_exsy_12494
crossref_primary_10_3389_fnins_2023_1113593
crossref_primary_10_2139_ssrn_4061453
crossref_primary_10_1016_j_bspc_2022_104118
crossref_primary_10_1016_j_measen_2023_100823
crossref_primary_10_1155_2019_7529572
crossref_primary_10_1016_j_jneumeth_2022_109495
crossref_primary_10_1016_j_bspc_2022_103825
crossref_primary_10_1109_TNSRE_2022_3217573
crossref_primary_10_1016_j_compbiomed_2022_106267
crossref_primary_10_1109_ACCESS_2019_2944938
crossref_primary_10_1109_TNSRE_2020_3040984
crossref_primary_10_1155_2018_6265108
crossref_primary_10_3389_fnhum_2023_1075666
crossref_primary_10_1109_JBHI_2018_2832538
crossref_primary_10_3233_JIFS_169104
crossref_primary_10_1007_s11042_016_3291_8
crossref_primary_10_1016_j_swevo_2019_100597
crossref_primary_10_1016_j_jneumeth_2020_108725
crossref_primary_10_1109_ACCESS_2016_2637409
crossref_primary_10_1109_TNSRE_2021_3071785
crossref_primary_10_3390_electronics9101584
crossref_primary_10_1109_JSEN_2024_3351880
crossref_primary_10_1016_j_chaos_2021_111450
crossref_primary_10_3389_fnhum_2021_595723
crossref_primary_10_1016_j_artmed_2019_101747
crossref_primary_10_3390_s22197596
crossref_primary_10_1016_j_neulet_2017_06_044
crossref_primary_10_1109_TNSRE_2021_3071140
crossref_primary_10_1080_2326263X_2020_1801112
crossref_primary_10_1109_JTEHM_2021_3056911
crossref_primary_10_1109_TIM_2022_3193407
crossref_primary_10_1016_j_asoc_2024_112087
crossref_primary_10_1088_1741_2552_aac313
crossref_primary_10_3389_fnhum_2020_00173
crossref_primary_10_1007_s10916_016_0475_8
crossref_primary_10_1016_j_imu_2020_100352
crossref_primary_10_1088_1741_2552_abce70
crossref_primary_10_1016_j_bspc_2021_102626
crossref_primary_10_1109_ACCESS_2023_3289709
crossref_primary_10_3233_JIFS_169690
crossref_primary_10_1109_TSMC_2020_2964684
crossref_primary_10_1007_s11571_019_09560_x
crossref_primary_10_3390_app112110388
crossref_primary_10_1088_2057_1976_ab54ad
crossref_primary_10_1109_ACCESS_2020_2996685
crossref_primary_10_1002_ima_22381
crossref_primary_10_1016_j_compbiomed_2019_103441
crossref_primary_10_1007_s11042_023_14659_9
crossref_primary_10_1109_TCYB_2018_2841847
crossref_primary_10_1109_TNNLS_2021_3053576
crossref_primary_10_1007_s11571_022_09906_y
crossref_primary_10_1007_s00521_018_3735_3
crossref_primary_10_1016_j_bspc_2022_104389
crossref_primary_10_3389_fnhum_2023_1292428
crossref_primary_10_1002_ima_22823
crossref_primary_10_1016_j_eswa_2017_07_033
crossref_primary_10_3233_THC_202619
crossref_primary_10_3389_fnins_2017_00550
crossref_primary_10_1186_s13638_019_1497_y
crossref_primary_10_1080_10255842_2024_2448576
crossref_primary_10_1016_j_jneumeth_2021_109378
crossref_primary_10_1080_03772063_2021_1914204
crossref_primary_10_1109_TNSRE_2023_3299355
crossref_primary_10_1109_ACCESS_2020_2992631
crossref_primary_10_18100_ijamec_266073
crossref_primary_10_3390_app10238628
crossref_primary_10_1007_s12559_018_9562_0
crossref_primary_10_1142_S0218126620500346
crossref_primary_10_1155_2020_2913019
crossref_primary_10_3389_fnins_2018_00540
crossref_primary_10_1016_j_eswa_2020_113907
Cites_doi 10.1109/TPAMI.2014.2330598
10.1109/MSP.2008.4408441
10.1016/j.neucom.2014.08.092
10.1142/S0129065715500112
10.1109/86.895946
10.1016/S1388-2457(02)00057-3
10.1109/MC.2008.431
10.1109/TBME.2005.851521
10.1109/TNSRE.2013.2243471
10.1142/S0129065714500130
10.1109/TNNLS.2013.2239310
10.1016/j.jneumeth.2010.09.010
10.1016/j.bspc.2011.02.002
10.1109/TBME.2011.2131142
10.1109/5.939829
10.1162/neco.1992.4.3.415
10.1109/JSTSP.2011.2159773
10.1109/TBME.2014.2300164
10.1016/j.jneumeth.2014.03.012
10.1109/TBME.2006.883649
10.1142/S0129065714500038
10.1109/TBME.2009.2026181
10.1016/j.jneumeth.2007.03.005
10.18637/jss.v033.i01
10.1016/j.neucom.2013.04.049
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.neuroimage.2005.12.003
10.1016/j.jneumeth.2013.07.018
10.1109/TBME.2010.2082540
10.1109/TBME.2012.2215960
10.1142/S0129065713500068
10.1016/j.neuroimage.2013.11.028
10.1109/TNNLS.2013.2271507
10.1142/S0129065713500135
10.1016/j.jneumeth.2015.03.018
10.1016/j.jneumeth.2012.09.020
10.1016/j.patrec.2008.01.030
10.1016/j.jneumeth.2014.04.010
10.1016/j.neuroimage.2011.03.032
10.1088/1741-2560/9/2/026018
10.1016/j.jneumeth.2014.10.002
10.1109/TNSRE.2013.2279680
10.1142/S0129065710002413
10.1016/j.jneumeth.2014.04.016
10.1109/TNNLS.2015.2476656
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jneumeth.2015.08.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 91
ExternalDocumentID 26277421
10_1016_j_jneumeth_2015_08_004
S016502701500285X
Genre Validation Studies
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
SEW
SNS
WUQ
X7M
ZGI
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c368t-3430f90887c012a9ede22cf242c20a38d7f0fa8041042f39b57dc4b69b3046e3
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Sun Sep 28 02:50:13 EDT 2025
Mon Jul 21 05:40:11 EDT 2025
Thu Oct 02 04:25:29 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
Fri Feb 23 02:33:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motor imagery (MI)
Sparse regression
Electroencephalogram (EEG)
Common spatial pattern (CSP)
Brain–computer interface (BCI)
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-3430f90887c012a9ede22cf242c20a38d7f0fa8041042f39b57dc4b69b3046e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-4087-6544
PMID 26277421
PQID 1721918588
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1721918588
pubmed_primary_26277421
crossref_citationtrail_10_1016_j_jneumeth_2015_08_004
crossref_primary_10_1016_j_jneumeth_2015_08_004
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2015_08_004
PublicationCentury 2000
PublicationDate 2015-11-30
PublicationDateYYYYMMDD 2015-11-30
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-30
  day: 30
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Xu, Cheng, Yao (bib0245) 2014; 221
Bishop (bib0020) 2006
Li, Guan, Li, Chin (bib0115) 2008; 29
Zhang, Rao (bib0210) 2011; 5
Wu, Zhang, Cichocki (bib0205) 2014; 129
Zhang, Jin, Qing, Wang, Wang (bib0220) 2012; 7
Dornhege, Blankertz, Krauledat, Losch, Curio, Müller (bib0060) 2006; 53
Cong, Lin, Kuang, Gong, Astikainen, Ristaniemi (bib0055) 2015; 248
Zhang, Zhou, Jin, Wang, Cichocki (bib0255) 2015; 244
Lu, Eng, Guan, Plataniotis, Venetsanopoulos (bib0130) 2010; 57
Zhao, Zhou, Zhang, Cichocki, Amari (bib0260) 2015
Cichocki, Washizawa, Rutkowski, Bakardjian, Phan, Choi, Lee, Zhao, Zhang, Li (bib0040) 2008; 41
Gao, Wang, Gao, Hong (bib0070) 2014; 61
Wu, Chen, Gao, Li, Brown, Gao (bib0200) 2014; 37
Wolpaw, Birbaumer, McFarland, Pfutscheller, Vaughan (bib0185) 2002; 113
Arvaneh, Guan, Ang, Quek (bib0010) 2011; 58
Higashi, Tanaka (bib0075) 2013; 60
Wu, Chen, Gao, Brown (bib0190) 2011; 56
Pfurtscheller, Neuper (bib0145) 2001; 89
Novi, Guan, Dat, Xue (bib0140) 2007
MacKay (bib0135) 1992; 4
Zhou, Cichocki, Xie (bib0265) 2013; 24
Higashi, Cichocki, Tanaka (bib0080) 2012
Wu, Wu, Gao, Liu, Li, Gao (bib0195) 2014; 88
Tibshirani (bib0175) 1996; 58
Blankertz, Curio, Müller (bib0025) 2002
Cong, Kalyakin, Huttunen-Scott, Li, Lyytinen, Ristaniemi (bib0045) 2010; 20
Blankertz, Tomioka, Lemm, Kawanabe, Müller (bib0030) 2008; 25
Li, Liang, Zhao, Li, Hong, Zhang (bib0120) 2013; 23
Zhang, Zhou, Jin, Wang, Wang, Cichocki (bib0225) 2013; 21
Zhang, Zhou, Zhao, Jin, Wang, Cichocki (bib0230) 2013; 21
Pfurtscheller, Brunner, Schlögl, Lopes da Silva (bib0150) 2006; 31
Zhang, Zhou, Jin, Zhao, Wang, Cichocki (bib0235) 2014; 24
Li, Zhang (bib0110) 2010; 193
Zhang, Zhao, Jin, Wang, Cichocki (bib0215) 2012; 9
Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang and A. Cichocki Sparse Bayesian classification of EEG for brain–computer interface, IEEE Trans Neural Netw Learn Syst (2015), In press.
Friedman, Hastie, Tibshirani (bib0065) 2010; 33
Hoffmann, Vesin, Ebrahimi, Diserens (bib0085) 2008; 167
Arvaneh, Cuntai, Kai, Chai (bib0015) 2013; 24
Ramoser, Muller-Gerking, Pfurtscheller (bib0155) 2000; 8
Chen, Jin, Zhang, Wang, Cichocki (bib0035) 2015; 239
Sun, Hu, Wu (bib0165) 2010
Zhang, Zhou, Jin, Wang, Cichocki (bib0240) 2014; 24
Tipping (bib0180) 2001; 1
Koo, Lee, Nam, Kang, Koh, Shin, Choi (bib0100) 2015; 244
Rutkowski, Mori (bib0160) 2015; 244
Thomas, Guan, Lau, Vinod, Ang (bib0170) 2009; 56
Jin, Sellers, Zhou, Zhang, Wang, Cichocki (bib0095) 2015; 25
Lemm, Blankertz, Curio, Müller (bib0105) 2005; 52
Li, Struzik, Zhang, Cichocki (bib0125) 2015; 165
Ang, Chin, Zhang, Guan (bib0005) 2008
Cong, Phan, Astikainen, Zhao, Wu, Hietanen, Ristaniemi, Cichocki (bib0050) 2013; 23
Jin, Sellers, Zhang, Daly, Wang, Cichocki (bib0090) 2013; 212
Arvaneh (10.1016/j.jneumeth.2015.08.004_bib0015) 2013; 24
Zhang (10.1016/j.jneumeth.2015.08.004_bib0210) 2011; 5
Zhang (10.1016/j.jneumeth.2015.08.004_bib0245) 2014; 221
Zhang (10.1016/j.jneumeth.2015.08.004_bib0225) 2013; 21
Li (10.1016/j.jneumeth.2015.08.004_bib0115) 2008; 29
Wu (10.1016/j.jneumeth.2015.08.004_bib0200) 2014; 37
Friedman (10.1016/j.jneumeth.2015.08.004_bib0065) 2010; 33
Novi (10.1016/j.jneumeth.2015.08.004_bib0140) 2007
Zhang (10.1016/j.jneumeth.2015.08.004_bib0240) 2014; 24
Zhang (10.1016/j.jneumeth.2015.08.004_bib0215) 2012; 9
Blankertz (10.1016/j.jneumeth.2015.08.004_bib0025) 2002
Jin (10.1016/j.jneumeth.2015.08.004_bib0095) 2015; 25
Zhang (10.1016/j.jneumeth.2015.08.004_bib0255) 2015; 244
Dornhege (10.1016/j.jneumeth.2015.08.004_bib0060) 2006; 53
Hoffmann (10.1016/j.jneumeth.2015.08.004_bib0085) 2008; 167
Zhang (10.1016/j.jneumeth.2015.08.004_bib0235) 2014; 24
Higashi (10.1016/j.jneumeth.2015.08.004_bib0080) 2012
Li (10.1016/j.jneumeth.2015.08.004_bib0120) 2013; 23
Wu (10.1016/j.jneumeth.2015.08.004_bib0205) 2014; 129
Wu (10.1016/j.jneumeth.2015.08.004_bib0195) 2014; 88
Zhang (10.1016/j.jneumeth.2015.08.004_bib0220) 2012; 7
Ang (10.1016/j.jneumeth.2015.08.004_bib0005) 2008
Zhou (10.1016/j.jneumeth.2015.08.004_bib0265) 2013; 24
Lemm (10.1016/j.jneumeth.2015.08.004_bib0105) 2005; 52
Li (10.1016/j.jneumeth.2015.08.004_bib0110) 2010; 193
Wolpaw (10.1016/j.jneumeth.2015.08.004_bib0185) 2002; 113
Koo (10.1016/j.jneumeth.2015.08.004_bib0100) 2015; 244
Bishop (10.1016/j.jneumeth.2015.08.004_bib0020) 2006
Arvaneh (10.1016/j.jneumeth.2015.08.004_bib0010) 2011; 58
Cong (10.1016/j.jneumeth.2015.08.004_bib0045) 2010; 20
Tibshirani (10.1016/j.jneumeth.2015.08.004_bib0175) 1996; 58
Lu (10.1016/j.jneumeth.2015.08.004_bib0130) 2010; 57
Chen (10.1016/j.jneumeth.2015.08.004_bib0035) 2015; 239
Zhao (10.1016/j.jneumeth.2015.08.004_bib0260) 2015
10.1016/j.jneumeth.2015.08.004_bib0250
Higashi (10.1016/j.jneumeth.2015.08.004_bib0075) 2013; 60
Ramoser (10.1016/j.jneumeth.2015.08.004_bib0155) 2000; 8
Gao (10.1016/j.jneumeth.2015.08.004_bib0070) 2014; 61
Rutkowski (10.1016/j.jneumeth.2015.08.004_bib0160) 2015; 244
Li (10.1016/j.jneumeth.2015.08.004_bib0125) 2015; 165
Cong (10.1016/j.jneumeth.2015.08.004_bib0050) 2013; 23
Pfurtscheller (10.1016/j.jneumeth.2015.08.004_bib0150) 2006; 31
Wu (10.1016/j.jneumeth.2015.08.004_bib0190) 2011; 56
MacKay (10.1016/j.jneumeth.2015.08.004_bib0135) 1992; 4
Cong (10.1016/j.jneumeth.2015.08.004_bib0055) 2015; 248
Sun (10.1016/j.jneumeth.2015.08.004_bib0165) 2010
Jin (10.1016/j.jneumeth.2015.08.004_bib0090) 2013; 212
Zhang (10.1016/j.jneumeth.2015.08.004_bib0230) 2013; 21
Cichocki (10.1016/j.jneumeth.2015.08.004_bib0040) 2008; 41
Blankertz (10.1016/j.jneumeth.2015.08.004_bib0030) 2008; 25
Thomas (10.1016/j.jneumeth.2015.08.004_bib0170) 2009; 56
Pfurtscheller (10.1016/j.jneumeth.2015.08.004_bib0145) 2001; 89
Tipping (10.1016/j.jneumeth.2015.08.004_bib0180) 2001; 1
References_xml – volume: 57
  start-page: 2936
  year: 2010
  end-page: 2946
  ident: bib0130
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Trans Biomed Eng
– volume: 244
  start-page: 8
  year: 2015
  end-page: 15
  ident: bib0255
  article-title: SSVEP recognition using common feature analysis in brain–computer interface
  publication-title: J Neurosci Methods
– volume: 165
  start-page: 23
  year: 2015
  end-page: 31
  ident: bib0125
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
– volume: 7
  start-page: 104
  year: 2012
  end-page: 111
  ident: bib0220
  article-title: LASSO based stimulus frequency recognition model for SSVEP BCIs
  publication-title: Biomed Signal Process Control
– volume: 129
  start-page: 17
  year: 2014
  end-page: 24
  ident: bib0205
  article-title: Multifactor sparse feature extraction using convolutive nonnegative tucker decomposition
  publication-title: Neurocomputing
– volume: 193
  start-page: 373
  year: 2010
  end-page: 379
  ident: bib0110
  article-title: Bilateral adaptation and neurofeedback for brain computer interfacesystem
  publication-title: J Neurosci Methods
– volume: 248
  start-page: 59
  year: 2015
  end-page: 69
  ident: bib0055
  article-title: Tensor decomposition of EEG signals: a brief review
  publication-title: J Neurosci Meth
– volume: 244
  start-page: 26
  year: 2015
  end-page: 32
  ident: bib0100
  article-title: A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery
  publication-title: J Neurosci Methods
– volume: 239
  start-page: 18
  year: 2015
  end-page: 27
  ident: bib0035
  article-title: A survey of the dummy face and human face stimuli used in BCI paradigm
  publication-title: J Neurosci Methods
– volume: 23
  start-page: 1350013
  year: 2013
  ident: bib0120
  article-title: Design of assistive wheelchair system directly steered by human thoughts
  publication-title: Int J Neural Syst
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: bib0180
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J Machine Learn Res
– volume: 25
  start-page: 41
  year: 2008
  end-page: 56
  ident: bib0030
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process Mag
– reference: Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang and A. Cichocki Sparse Bayesian classification of EEG for brain–computer interface, IEEE Trans Neural Netw Learn Syst (2015), In press.
– volume: 167
  start-page: 115
  year: 2008
  end-page: 125
  ident: bib0085
  article-title: An efficient P300-based brain–computer interface for disabled subjects
  publication-title: J Neurosci Methods
– start-page: 2390
  year: 2008
  end-page: 2397
  ident: bib0005
  article-title: Filter bank common spatial pattern (FBCSP) in brain–computer interface
  publication-title: IEEE International Joint Conference on Neural Networks (IJCNN 2008)
– volume: 20
  start-page: 279
  year: 2010
  end-page: 292
  ident: bib0045
  article-title: Single-trial based independent component analysis on mismatch negativity in children
  publication-title: Int J Neural Syst
– volume: 52
  start-page: 1541
  year: 2005
  end-page: 1548
  ident: bib0105
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Trans Biomed Eng
– volume: 4
  start-page: 415
  year: 1992
  end-page: 447
  ident: bib0135
  article-title: Bayesian interpolation
  publication-title: Neural Comput
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bib0185
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin Neurophysiol
– volume: 56
  start-page: 2730
  year: 2009
  end-page: 2733
  ident: bib0170
  article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces
  publication-title: IEEE Trans Biomed Eng
– volume: 41
  start-page: 34
  year: 2008
  end-page: 42
  ident: bib0040
  article-title: Noninvasive BCIs: Multiway signal-processing array decompositions
  publication-title: IEEE Comput
– start-page: 204
  year: 2007
  end-page: 207
  ident: bib0140
  article-title: Sub band common spatial pattern for brain–computer interface
  publication-title: Proceedings of 3rd International Conference Neural Engineering. EEE Engineering in Medicine and Biology Society. (EMBS)
– volume: 221
  start-page: 32
  year: 2014
  end-page: 40
  ident: bib0245
  article-title: Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface
  publication-title: J Neurosci Methods
– volume: 53
  start-page: 2274
  year: 2006
  end-page: 2281
  ident: bib0060
  article-title: Combined optimization of spatial and temporal filters for improving brain–computer interfacing
  publication-title: IEEE Trans Biomed Eng
– volume: 9
  start-page: 026018
  year: 2012
  ident: bib0215
  article-title: A novel BCI based on ERP components sensitive to configural processing of human faces
  publication-title: J Neural Eng
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib0065
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
– volume: 56
  start-page: 1929
  year: 2011
  end-page: 1945
  ident: bib0190
  article-title: A hierarchical bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG
  publication-title: NeuroImage
– volume: 88
  start-page: 319
  year: 2014
  end-page: 339
  ident: bib0195
  article-title: Bayesian estimation of ERP components from multicondition and multichannel EEG
  publication-title: NeuroImage
– volume: 23
  start-page: 1350006
  year: 2013
  ident: bib0050
  article-title: Multi-domain feature extraction for small event-related ptentials through nonnegative multi-way array decomposition from low dense array EEG
  publication-title: Int J Neural Syst
– volume: 29
  start-page: 1285
  year: 2008
  end-page: 1294
  ident: bib0115
  article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
  publication-title: Pattern Recognit Lett
– volume: 212
  start-page: 94
  year: 2013
  end-page: 99
  ident: bib0090
  article-title: Whether generic model works for rapid ERP-based BCI calibration
  publication-title: J Neurosci Methods
– volume: 61
  start-page: 1436
  year: 2014
  end-page: 1447
  ident: bib0070
  article-title: Visual and auditory brain–computer interfaces
  publication-title: IEEE Trans Biomed Eng
– volume: 31
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib0150
  article-title: Murhythm (de), synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
– volume: 37
  start-page: 639
  year: 2014
  end-page: 653
  ident: bib0200
  article-title: Probabilistic common spatial patterns for multichannel EEG analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2006
  ident: bib0020
  article-title: Pattern recognition and machine learning
– volume: 60
  start-page: 1100
  year: 2013
  end-page: 1110
  ident: bib0075
  article-title: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification
  publication-title: IEEE Trans Biomed Eng
– volume: 89
  start-page: 1123
  year: 2001
  end-page: 1134
  ident: bib0145
  article-title: Motor imagery and direct brain–computer communication
  publication-title: Proc IEEE
– volume: 58
  start-page: 1865
  year: 2011
  end-page: 1873
  ident: bib0010
  article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI
  publication-title: IEEE Trans Biomed Eng
– volume: 244
  start-page: 45
  year: 2015
  end-page: 51
  ident: bib0160
  article-title: Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users
  publication-title: J Neurosci Methods
– volume: 21
  start-page: 233
  year: 2013
  end-page: 243
  ident: bib0230
  article-title: Spatial-temporal discriminant analysis for ERP-based brain–computer interface
  publication-title: IEEE Trans. Neural Syst Rehabil Eng
– volume: 8
  start-page: 441
  year: 2000
  end-page: 446
  ident: bib0155
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans Rehab Eng
– volume: 24
  start-page: 1450003
  year: 2014
  ident: bib0235
  article-title: Aggregation of sparse linear discriminant analysis for event-related potential classification in brain–computer interface
  publication-title: Int J Neural Syst
– volume: 24
  start-page: 1450013
  year: 2014
  ident: bib0240
  article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
  publication-title: Int J Neural Syst
– year: 2015
  ident: bib0260
  article-title: Bayesian robust tensor factorization for incomplete multiway data
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 721
  year: 2012
  end-page: 724
  ident: bib0080
  article-title: Regularization using geometric information between sensors capturing features from brain signals
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2012)
– volume: 25
  start-page: 1550011
  year: 2015
  ident: bib0095
  article-title: A P300 brain computer interface based on a modification of the mismatch negativity paradigm
  publication-title: Int J Neural Syst
– start-page: 1
  year: 2010
  end-page: 6
  ident: bib0165
  article-title: A novel frequency band selection method for common spatial pattern in motor imagery based brain computer interface
  publication-title: IEEE International Joint Conference on Neural Networks (IJCNN 2010)
– start-page: 157
  year: 2002
  end-page: 164
  ident: bib0025
  article-title: Classifying single trial EEG: Toward brain computer interfacing
  publication-title: Proc Advances in Neural Information Processing Systems (NIPS 01) 14
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0175
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc B
– volume: 21
  start-page: 887
  year: 2013
  end-page: 896
  ident: bib0225
  article-title: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 24
  start-page: 610
  year: 2013
  end-page: 619
  ident: bib0015
  article-title: Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram-based brain–computer interface
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 5
  start-page: 912
  year: 2011
  end-page: 926
  ident: bib0210
  article-title: Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning
  publication-title: IEEE J Sel Top Signal Process
– volume: 24
  start-page: 2051
  year: 2013
  end-page: 2062
  ident: bib0265
  article-title: Accelerated canonical polyadic decomposition by using mode reduction
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 37
  start-page: 639
  issue: 3
  year: 2014
  ident: 10.1016/j.jneumeth.2015.08.004_bib0200
  article-title: Probabilistic common spatial patterns for multichannel EEG analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2330598
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.jneumeth.2015.08.004_bib0030
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2008.4408441
– volume: 165
  start-page: 23
  year: 2015
  ident: 10.1016/j.jneumeth.2015.08.004_bib0125
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.092
– volume: 25
  start-page: 1550011
  issue: 3
  year: 2015
  ident: 10.1016/j.jneumeth.2015.08.004_bib0095
  article-title: A P300 brain computer interface based on a modification of the mismatch negativity paradigm
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065715500112
– volume: 8
  start-page: 441
  issue: 4
  year: 2000
  ident: 10.1016/j.jneumeth.2015.08.004_bib0155
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans Rehab Eng
  doi: 10.1109/86.895946
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.jneumeth.2015.08.004_bib0185
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– start-page: 1
  year: 2010
  ident: 10.1016/j.jneumeth.2015.08.004_bib0165
  article-title: A novel frequency band selection method for common spatial pattern in motor imagery based brain computer interface
– volume: 1
  start-page: 211
  year: 2001
  ident: 10.1016/j.jneumeth.2015.08.004_bib0180
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J Machine Learn Res
– volume: 41
  start-page: 34
  issue: 10
  year: 2008
  ident: 10.1016/j.jneumeth.2015.08.004_bib0040
  article-title: Noninvasive BCIs: Multiway signal-processing array decompositions
  publication-title: IEEE Comput
  doi: 10.1109/MC.2008.431
– volume: 52
  start-page: 1541
  issue: 9
  year: 2005
  ident: 10.1016/j.jneumeth.2015.08.004_bib0105
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2005.851521
– volume: 21
  start-page: 233
  issue: 2
  year: 2013
  ident: 10.1016/j.jneumeth.2015.08.004_bib0230
  article-title: Spatial-temporal discriminant analysis for ERP-based brain–computer interface
  publication-title: IEEE Trans. Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2013.2243471
– volume: 24
  start-page: 1450013
  issue: 4
  year: 2014
  ident: 10.1016/j.jneumeth.2015.08.004_bib0240
  article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065714500130
– start-page: 721
  year: 2012
  ident: 10.1016/j.jneumeth.2015.08.004_bib0080
  article-title: Regularization using geometric information between sensors capturing features from brain signals
– volume: 24
  start-page: 610
  issue: 4
  year: 2013
  ident: 10.1016/j.jneumeth.2015.08.004_bib0015
  article-title: Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram-based brain–computer interface
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2239310
– volume: 193
  start-page: 373
  issue: 2
  year: 2010
  ident: 10.1016/j.jneumeth.2015.08.004_bib0110
  article-title: Bilateral adaptation and neurofeedback for brain computer interfacesystem
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.09.010
– volume: 7
  start-page: 104
  issue: 4
  year: 2012
  ident: 10.1016/j.jneumeth.2015.08.004_bib0220
  article-title: LASSO based stimulus frequency recognition model for SSVEP BCIs
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2011.02.002
– volume: 58
  start-page: 1865
  issue: 6
  year: 2011
  ident: 10.1016/j.jneumeth.2015.08.004_bib0010
  article-title: Optimizing the channel selection and classification accuracy in EEG-based BCI
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2131142
– volume: 89
  start-page: 1123
  issue: 7
  year: 2001
  ident: 10.1016/j.jneumeth.2015.08.004_bib0145
  article-title: Motor imagery and direct brain–computer communication
  publication-title: Proc IEEE
  doi: 10.1109/5.939829
– start-page: 2390
  year: 2008
  ident: 10.1016/j.jneumeth.2015.08.004_bib0005
  article-title: Filter bank common spatial pattern (FBCSP) in brain–computer interface
– volume: 4
  start-page: 415
  issue: 3
  year: 1992
  ident: 10.1016/j.jneumeth.2015.08.004_bib0135
  article-title: Bayesian interpolation
  publication-title: Neural Comput
  doi: 10.1162/neco.1992.4.3.415
– volume: 5
  start-page: 912
  issue: 5
  year: 2011
  ident: 10.1016/j.jneumeth.2015.08.004_bib0210
  article-title: Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2011.2159773
– start-page: 157
  year: 2002
  ident: 10.1016/j.jneumeth.2015.08.004_bib0025
  article-title: Classifying single trial EEG: Toward brain computer interfacing
– year: 2006
  ident: 10.1016/j.jneumeth.2015.08.004_bib0020
– volume: 61
  start-page: 1436
  issue: 5
  year: 2014
  ident: 10.1016/j.jneumeth.2015.08.004_bib0070
  article-title: Visual and auditory brain–computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2300164
– volume: 244
  start-page: 8
  year: 2015
  ident: 10.1016/j.jneumeth.2015.08.004_bib0255
  article-title: SSVEP recognition using common feature analysis in brain–computer interface
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2014.03.012
– volume: 53
  start-page: 2274
  issue: 11
  year: 2006
  ident: 10.1016/j.jneumeth.2015.08.004_bib0060
  article-title: Combined optimization of spatial and temporal filters for improving brain–computer interfacing
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.883649
– year: 2015
  ident: 10.1016/j.jneumeth.2015.08.004_bib0260
  article-title: Bayesian robust tensor factorization for incomplete multiway data
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 24
  start-page: 1450003
  issue: 1
  year: 2014
  ident: 10.1016/j.jneumeth.2015.08.004_bib0235
  article-title: Aggregation of sparse linear discriminant analysis for event-related potential classification in brain–computer interface
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065714500038
– volume: 56
  start-page: 2730
  issue: 11
  year: 2009
  ident: 10.1016/j.jneumeth.2015.08.004_bib0170
  article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2026181
– volume: 167
  start-page: 115
  issue: 1
  year: 2008
  ident: 10.1016/j.jneumeth.2015.08.004_bib0085
  article-title: An efficient P300-based brain–computer interface for disabled subjects
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2007.03.005
– start-page: 204
  year: 2007
  ident: 10.1016/j.jneumeth.2015.08.004_bib0140
  article-title: Sub band common spatial pattern for brain–computer interface
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.jneumeth.2015.08.004_bib0065
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 129
  start-page: 17
  year: 2014
  ident: 10.1016/j.jneumeth.2015.08.004_bib0205
  article-title: Multifactor sparse feature extraction using convolutive nonnegative tucker decomposition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.049
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.jneumeth.2015.08.004_bib0175
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 31
  start-page: 153
  issue: 1
  year: 2006
  ident: 10.1016/j.jneumeth.2015.08.004_bib0150
  article-title: Murhythm (de), synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 221
  start-page: 32
  year: 2014
  ident: 10.1016/j.jneumeth.2015.08.004_bib0245
  article-title: Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2013.07.018
– volume: 57
  start-page: 2936
  issue: 12
  year: 2010
  ident: 10.1016/j.jneumeth.2015.08.004_bib0130
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2082540
– volume: 60
  start-page: 1100
  issue: 4
  year: 2013
  ident: 10.1016/j.jneumeth.2015.08.004_bib0075
  article-title: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2215960
– volume: 23
  start-page: 1350006
  issue: 2
  year: 2013
  ident: 10.1016/j.jneumeth.2015.08.004_bib0050
  article-title: Multi-domain feature extraction for small event-related ptentials through nonnegative multi-way array decomposition from low dense array EEG
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065713500068
– volume: 88
  start-page: 319
  year: 2014
  ident: 10.1016/j.jneumeth.2015.08.004_bib0195
  article-title: Bayesian estimation of ERP components from multicondition and multichannel EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.028
– volume: 24
  start-page: 2051
  issue: 12
  year: 2013
  ident: 10.1016/j.jneumeth.2015.08.004_bib0265
  article-title: Accelerated canonical polyadic decomposition by using mode reduction
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2271507
– volume: 23
  start-page: 1350013
  issue: 3
  year: 2013
  ident: 10.1016/j.jneumeth.2015.08.004_bib0120
  article-title: Design of assistive wheelchair system directly steered by human thoughts
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065713500135
– volume: 248
  start-page: 59
  year: 2015
  ident: 10.1016/j.jneumeth.2015.08.004_bib0055
  article-title: Tensor decomposition of EEG signals: a brief review
  publication-title: J Neurosci Meth
  doi: 10.1016/j.jneumeth.2015.03.018
– volume: 212
  start-page: 94
  issue: 1
  year: 2013
  ident: 10.1016/j.jneumeth.2015.08.004_bib0090
  article-title: Whether generic model works for rapid ERP-based BCI calibration
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2012.09.020
– volume: 29
  start-page: 1285
  issue: 9
  year: 2008
  ident: 10.1016/j.jneumeth.2015.08.004_bib0115
  article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2008.01.030
– volume: 244
  start-page: 45
  year: 2015
  ident: 10.1016/j.jneumeth.2015.08.004_bib0160
  article-title: Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2014.04.010
– volume: 56
  start-page: 1929
  issue: 4
  year: 2011
  ident: 10.1016/j.jneumeth.2015.08.004_bib0190
  article-title: A hierarchical bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.032
– volume: 9
  start-page: 026018
  issue: 2
  year: 2012
  ident: 10.1016/j.jneumeth.2015.08.004_bib0215
  article-title: A novel BCI based on ERP components sensitive to configural processing of human faces
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/9/2/026018
– volume: 239
  start-page: 18
  year: 2015
  ident: 10.1016/j.jneumeth.2015.08.004_bib0035
  article-title: A survey of the dummy face and human face stimuli used in BCI paradigm
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2014.10.002
– volume: 21
  start-page: 887
  issue: 6
  year: 2013
  ident: 10.1016/j.jneumeth.2015.08.004_bib0225
  article-title: L1-regularized multiway canonical correlation analysis for SSVEP-based BCI
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2013.2279680
– volume: 20
  start-page: 279
  issue: 4
  year: 2010
  ident: 10.1016/j.jneumeth.2015.08.004_bib0045
  article-title: Single-trial based independent component analysis on mismatch negativity in children
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065710002413
– volume: 244
  start-page: 26
  year: 2015
  ident: 10.1016/j.jneumeth.2015.08.004_bib0100
  article-title: A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2014.04.016
– ident: 10.1016/j.jneumeth.2015.08.004_bib0250
  doi: 10.1109/TNNLS.2015.2476656
SSID ssj0004906
Score 2.5783525
Snippet •This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns.•Experimental results on two public EEG datasets...
Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms Access to Information
Brain - physiology
Brain-Computer Interfaces
Brain–computer interface (BCI)
Common spatial pattern (CSP)
Datasets as Topic
Electroencephalogram (EEG)
Electroencephalography - methods
Humans
Imagination - physiology
Motor imagery (MI)
Psychomotor Performance - physiology
Signal Processing, Computer-Assisted
Sparse regression
Support Vector Machine
Title Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface
URI https://dx.doi.org/10.1016/j.jneumeth.2015.08.004
https://www.ncbi.nlm.nih.gov/pubmed/26277421
https://www.proquest.com/docview/1721918588
Volume 255
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCiWX0ObRbNoGBUJvzjqW_NBxCQ3bhqSHJLA3IetRvGS9yz4O20Ppf-g_7C_pjC2nDaTk0KOFZQuNpJnRzHwfwIkuEydtYSPupIyEjnlU5ha9FJckORqwPs6pwPnqOhveic-jdLQB510tDKVVhrO_PdOb0zq09MNs9mdV1b-hQhx0qshlRyWZjqiCXeTEYnD6_U-ah5ANvya9TPHK-K8q4fHpuHYrYmqmFK-0gfIMhG1PKKh_GaCNIrp4BdvBgmSDdpCvYcPVO7A7qNF7nqzZB9bkdDaX5Tvw8iqEznfh6xc8HCbVN1RVbEFp1PiNWQOuWS8Y3cZS63zhmK8ogM5KqgFmaNIyFOZ0HlUTQrtYM1J7lpXELPHrx08TSCEYwU7MvTZuD24vPt6eD6PAshAZnhXLiAsee8p2yg0qKy2dRTEZj6rbJLHmhUV5eU0wRbi_PZdlmlsjykyWFFR1fB8262ntDoClZ45rZ7PUai_IFSqENz7nOZkx1uoepN3MKhMQyIkI4151qWZj1UlEkUQUMWTGogf9h36zFoPj2R6yE5x6tJoUKopn-x53kla41Sh-oms3XS0UecsS7Zui6MGbdgk8jCfJEjSkk7PD__jzW9iipxZY8h1sLucr9x5NnmV51KzpI3gx-HQ5vP4NMtADew
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIkEvFW15bIFiJMQt3TR2Hj5WFdUWuuXAIu3NcvxAWbHZ1T4O7aHqf-Af8kuYSZwCElUPXJ04sTzjeXhmvgF4p8vESVvYiDspI6FjHpW5RS_FJUmOBqyPcypwHl5kg6_i4zgdb8BJVwtDaZVB9rcyvZHWYaQfdrM_r6r-FyrEQaeKXHZUkun4ATwUaZKTB3Z4_TvPQ8imwSa9TQHL-I8y4cnhpHZratVMOV5pg-UZOrb9Q0PdZYE2muj0CWwHE5Idt6vcgQ1X78LecY3u8_SSvWdNUmdzW74Lj4Yhdr4H3z6jdJhWV6ir2JLyqPEb8wZds14yuo6l0cXSMV9RBJ2VVATM0KZlSM3ZIqqmBHdxyUjvWVZSa4mfNz9M6ArBCHdi4bVxT2F0-mF0MohCm4XI8KxYRVzw2FO6U25QW2npLNLJeNTdJok1LywSzGvCKcID7rks09waUWaypKiq489gs57V7gWw9Mhx7WyWWu0F-UKF8MbnPCc7xlrdg7TbWWUCBDl1wviuulyzieoooogiilpkxqIH_dt58xaE494ZsiOc-oudFGqKe-e-7Sit8KxRAEXXbrZeKnKXJRo4RdGD5y0L3K4nyZD1RHK0_x9_fgOPB6PhuTo_u_j0ErboSYsy-Qo2V4u1e432z6o8aPj7Fx_cBRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+spatial+patterns+with+sparse+filter+bands+for+motor-imagery+based+brain%E2%80%93computer+interface&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Zhang%2C+Yu&rft.au=Zhou%2C+Guoxu&rft.au=Jin%2C+Jing&rft.au=Wang%2C+Xingyu&rft.date=2015-11-30&rft.issn=0165-0270&rft.volume=255&rft.spage=85&rft.epage=91&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.08.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2015_08_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon