A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects
A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Bérenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it pos...
Saved in:
Published in | The Journal of the Acoustical Society of America Vol. 122; no. 3; pp. 1472 - 1485 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Woodbury, NY
Acoustical Society of America
01.09.2007
American Institute of Physics |
Subjects | |
Online Access | Get full text |
ISSN | 0001-4966 1520-8524 1520-8524 |
DOI | 10.1121/1.2764471 |
Cover
Abstract | A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Bérenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from
a priori
estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation. |
---|---|
AbstractList | A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Berenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation. A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Bérenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation. A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Berenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation.A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Berenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation. A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Bérenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation. |
Author | Tesei, Alessandra Zampolli, Mario Malm, Nils Blottman, John B. Jensen, Finn B. |
Author_xml | – sequence: 1 givenname: Mario surname: Zampolli fullname: Zampolli, Mario email: zampolli@nurc.nato.int organization: NATO Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy – sequence: 2 givenname: Alessandra surname: Tesei fullname: Tesei, Alessandra organization: NATO Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy – sequence: 3 givenname: Finn surname: Jensen middlename: B. fullname: Jensen, Finn B. organization: NATO Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy – sequence: 4 givenname: Nils surname: Malm fullname: Malm, Nils organization: COMSOL AB, Tegnérgatan 23, SE-111 40 Stockholm, Sweden – sequence: 5 givenname: John surname: Blottman middlename: B. fullname: Blottman, John B. organization: Naval Undersea Warfare Center, Code 1516, 1176 Howell Street, Newport,Rhode Island 02841-1708 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19063114$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17927408$$D View this record in MEDLINE/PubMed |
BookMark | eNp10U1rFTEUBuAgFXtbXfgHJBsFF9PmYybJbIRL8QsKbroPmcyJTUkmY5KL3rV_3NR7q1B0FV54zgs55wydLGkBhF5SckEpo5f0gknR95I-QRs6MNKpgfUnaEMIoV0_CnGKzkq5a3FQfHyGTqkcmeyJ2qCfW2xTXHfVVJ8WE8Ieg3Peelgqdn7xFTAEiPcxphkC_u7rLV4hO7C16WiqvYUZB7OHXLBZ1-BbrAkXa2qF7Jev2OUUsfnhf_eXfYxQs7c4TXetpDxHT50JBV4c33N08-H9zdWn7vrLx89X2-vOcqFqxxiZFTGSkWmYDXeWGSBOUe5Gq4gTXAGxo5vHiYnBDrO1wJ2UZOipmCbGz9GbQ-2a07cdlKqjLxZCMAukXdFCcankODT46gh3U4RZr9lHk_f6YWsNvD4C0z4ZXDaL9eWvG4nglPbNXR6czamUDE5bf1h0zcYHTYm-v5-m-ni_NvH20cSf0n_YdwdbHlr_j7f60ZU1OP4LAhGx9w |
CODEN | JASMAN |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3349031 crossref_primary_10_1121_1_4986941 crossref_primary_10_1142_S0218396X12500087 crossref_primary_10_1121_1_4904490 crossref_primary_10_7498_aps_65_064301 crossref_primary_10_1121_1_3569729 crossref_primary_10_1142_S0218396X12400073 crossref_primary_10_1121_1_5125424 crossref_primary_10_1121_1_4881923 crossref_primary_10_1109_JOE_2009_2031060 crossref_primary_10_1093_icesjms_fsab183 crossref_primary_10_1121_1_4976814 crossref_primary_10_1121_1_5016030 crossref_primary_10_1016_j_jsv_2010_01_007 crossref_primary_10_1016_j_apacoust_2021_108607 crossref_primary_10_1121_1_3436526 crossref_primary_10_1121_1_3613806 crossref_primary_10_1088_0964_1726_24_11_115010 crossref_primary_10_1121_10_0009162 crossref_primary_10_1121_1_2839002 crossref_primary_10_1121_1_2902139 crossref_primary_10_7498_aps_62_094302 crossref_primary_10_3390_inventions7040111 crossref_primary_10_1063_5_0086290 crossref_primary_10_1155_2011_710623 crossref_primary_10_1016_j_jsv_2008_03_024 crossref_primary_10_1121_1_2945701 crossref_primary_10_1016_j_apacoust_2021_108233 crossref_primary_10_1121_1_2799932 crossref_primary_10_1016_j_dt_2022_04_008 crossref_primary_10_1121_1_3583546 crossref_primary_10_7498_aps_65_184301 crossref_primary_10_1007_s40430_016_0537_3 crossref_primary_10_1088_1674_1056_25_12_124312 crossref_primary_10_1016_j_dsr2_2010_05_018 crossref_primary_10_1109_JOE_2015_2478995 crossref_primary_10_1121_1_5038256 crossref_primary_10_1016_j_jsv_2021_116133 crossref_primary_10_1016_j_oceaneng_2022_110913 crossref_primary_10_1088_0256_307X_30_7_074301 crossref_primary_10_1109_JOE_2014_2313060 crossref_primary_10_1016_j_compstruc_2013_08_010 crossref_primary_10_1121_1_4768886 crossref_primary_10_1088_1742_6596_2458_1_012030 crossref_primary_10_1142_S2591728520500048 crossref_primary_10_1088_0256_307X_29_1_014302 crossref_primary_10_1016_j_oceaneng_2023_116531 crossref_primary_10_1007_s40857_019_00170_5 crossref_primary_10_1121_1_4954736 crossref_primary_10_1177_1475921720976926 crossref_primary_10_3390_jmse11020307 crossref_primary_10_3390_s21010192 crossref_primary_10_1121_1_3419926 crossref_primary_10_1007_s11433_012_4666_0 crossref_primary_10_1121_1_3027446 crossref_primary_10_1007_s11433_013_5297_9 crossref_primary_10_1007_s00004_021_00583_8 crossref_primary_10_1121_1_4962284 crossref_primary_10_1142_S2591728521500092 crossref_primary_10_1121_10_0034794 crossref_primary_10_1121_10_0016885 crossref_primary_10_1121_10_0017931 crossref_primary_10_1121_1_4998591 crossref_primary_10_1121_1_4982039 crossref_primary_10_1121_1_5125250 crossref_primary_10_1121_1_4792489 crossref_primary_10_1121_1_4937607 crossref_primary_10_1016_j_aquaeng_2022_102263 crossref_primary_10_1016_j_cma_2013_03_017 crossref_primary_10_1121_10_0028516 crossref_primary_10_1016_j_jsv_2018_07_004 crossref_primary_10_1121_1_5048797 crossref_primary_10_1016_j_joes_2024_12_002 crossref_primary_10_1121_1_4996127 crossref_primary_10_1121_1_4887445 crossref_primary_10_7498_aps_65_034301 crossref_primary_10_3934_matersci_2017_2_522 crossref_primary_10_1007_s11831_010_9041_6 crossref_primary_10_1007_s11831_021_09581_y crossref_primary_10_1121_1_4971161 crossref_primary_10_1121_1_3531810 crossref_primary_10_1063_5_0167755 crossref_primary_10_1121_1_4965964 crossref_primary_10_1142_S0218396X15500113 |
Cites_doi | 10.1121/1.411286 10.1121/1.392670 10.1016/S0045-7949(00)00167-X 10.1121/1.419657 10.1121/1.2164987 10.1121/1.406739 10.1137/S1064827596301406 10.1137/0142032 10.1121/1.397485 10.1121/1.397718 10.1121/1.2357711 10.1016/0022-460X(81)90335-7 10.1006/jcph.1994.1159 10.1016/j.cma.2006.07.009 10.1121/1.426812 10.1109/8.805891 10.1002/nme.1879 10.1121/1.1369783 10.1016/S0045-7825(98)00050-4 10.1121/1.2062467 10.1016/S0045-7949(96)00252-0 10.1016/S0168-9274(98)00026-9 10.1109/8.477535 10.1121/1.1414705 10.2514/3.3356 10.1109/LMWC.2002.1010000 |
ContentType | Journal Article |
Copyright | 2007 Acoustical Society of America 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 Acoustical Society of America – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1121/1.2764471 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1520-8524 |
EndPage | 1485 |
ExternalDocumentID | 17927408 19063114 10_1121_1_2764471 jasa |
Genre | Journal Article |
GroupedDBID | --- --Z -~X .DC .GJ 123 186 29L 3O- 4.4 41~ 5-Q 53G 5RE 5VS 6TJ 85S AAAAW AAEUA AAPUP AAYIH ABDNZ ABEFF ABEFU ABJNI ABNAN ABPPZ ABTAH ABZEH ACBNA ACBRY ACCUC ACGFO ACGFS ACNCT ACXMS ACYGS ADCTM AEGXH AENEX AETEA AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AGVCI AHPGS AHSDT AI. AIAGR AIDUJ AIZTS ALMA_UNASSIGNED_HOLDINGS AQWKA BAUXJ CS3 D0L DU5 EBS EJD ESX F5P G8K H~9 M71 M73 MVM NEJ NHB OHT OK1 P2P RAZ RIP RNS ROL RQS S10 SC5 SJN TN5 TWZ UCJ UHB UPT UQL VH1 VOH VQA WH7 XFK XJT XOL XSW YQT ZCG ZXP ZY4 ~02 ~G0 AAGWI AAYXX ABDPE ABJGX ADMLS CITATION AEILP IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c368t-220d80a720b5da3fc2ae0f813f9c80f638e0c9fd9b265c5dcce3f7705416bb23 |
ISSN | 0001-4966 1520-8524 |
IngestDate | Fri Sep 05 09:42:11 EDT 2025 Thu Apr 03 07:12:02 EDT 2025 Wed Apr 02 07:09:18 EDT 2025 Wed Oct 01 01:42:37 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Fri Jun 21 00:19:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Finite element method Impedance matching Frequency domain method Underwater acoustics Modeling Axial symmetry Structural acoustics |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-220d80a720b5da3fc2ae0f813f9c80f638e0c9fd9b265c5dcce3f7705416bb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17927408 |
PQID | 68378795 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_68378795 pubmed_primary_17927408 pascalfrancis_primary_19063114 crossref_citationtrail_10_1121_1_2764471 crossref_primary_10_1121_1_2764471 scitation_primary_10_1121_1_2764471A_computationally_ef |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-09-01 |
PublicationDateYYYYMMDD | 2007-09-01 |
PublicationDate_xml | – month: 09 year: 2007 text: 2007-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Woodbury, NY |
PublicationPlace_xml | – name: Woodbury, NY – name: United States |
PublicationTitle | The Journal of the Acoustical Society of America |
PublicationTitleAlternate | J Acoust Soc Am |
PublicationYear | 2007 |
Publisher | Acoustical Society of America American Institute of Physics |
Publisher_xml | – name: Acoustical Society of America – name: American Institute of Physics |
References | Sammelmann, G.; Trivett, D.; Hackman, R. 1989; 85 Everstine, G. 1997; 65 Liu, Q. 1999; 105 Bérenger, J. 2002; 12 Burnett, D. 1994; 96 Collino, F.; Monk, P. 1998; 19 Everstine, G. 1981; 79 Sommerfeld, A. 1912; 21 Shirron, J.; Babuska, I. 1998; 164 Zeng, Y.; Liu, Q. 2001; 109 Schmidt, H.; Glattetre, J. 1985; 78 DiPerna, D.; Feit, D. 2001; 110 Dey, S.; Shirron, J.; Couchman, L. 2001; 79 Bérenger, J. 1996; 44 Liu, Q.; Tao, J. 1997; 102 Shirron, J.; Giddings, T. 2006; 196 Thompson, L. 2006; 119 Wilson, E. 1965; 3 Bérenger, J. 1994; 114 Turkel, E.; Yefet, A. 1998; 27 Matar, O.; Preobrazhensky, V.; Pernod, P. 2005; 118 Bayliss, A.; Gunzberger, M.; Turkel, E. 1982; 42 Kargl, S.; Marston, P. 1989; 85 Collins, M. 1993; 93 Avery, P.; Farhat, C.; Reese, G. 2007; 69 Lucifredi, I.; Schmidt, H. 2006; 120 Bérenger, J. 1999; 47 (2023072906225227700_c6) 1994; 114 2023072906225227700_c14 (2023072906225227700_c10) 1999; 105 (2023072906225227700_c16) 1965; 3 (2023072906225227700_c21) 2002; 12 (2023072906225227700_c28) 1993 (2023072906225227700_c39) 1968 (2023072906225227700_c45) 2006; 120 (2023072906225227700_c13) 2006; 196 Pace (2023072906225227700_c41) 2005 (2023072906225227700_c2) 1912; 21 (2023072906225227700_c3) 1998; 164 (2023072906225227700_c11) 1998 (2023072906225227700_c4) 1994; 96 (2023072906225227700_c25) 1989; 85 (2023072906225227700_c27) 1998 (2023072906225227700_c40) 1968 (2023072906225227700_c22) 2001; 109 2023072906225227700_c5 (2023072906225227700_c36) 1972 (2023072906225227700_c12) 1997; 102 (2023072906225227700_c32) 1981; 79 (2023072906225227700_c34) 1993 (2023072906225227700_c31) 1993 (2023072906225227700_c24) 2001; 110 (2023072906225227700_c18) 1981 2023072906225227700_c29 (2023072906225227700_c42) 2000 (2023072906225227700_c1) 2006; 119 (2023072906225227700_c17) 1994 (2023072906225227700_c23) 2005; 118 (2023072906225227700_c33) 1997; 65 (2023072906225227700_c8) 1998; 19 (2023072906225227700_c7) 1996; 44 (2023072906225227700_c20) 2001; 79 (2023072906225227700_c26) 1989; 85 (2023072906225227700_c9) 1998; 27 (2023072906225227700_c37) 1982; 42 COMSOL AB, Stockholm (2023072906225227700_c38) 2005 (2023072906225227700_c44) 1985; 78 (2023072906225227700_c15) 2006 (2023072906225227700_c30) 1991 (2023072906225227700_c19) 1988 (2023072906225227700_c46) 2007; 69 (2023072906225227700_c43) 1993; 93 (2023072906225227700_c35) 1999; 47 |
References_xml | – volume: 96 start-page: 2798-2816 year: 1994 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.411286 – volume: 78 start-page: 2105-2114 year: 1985 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.392670 – volume: 79 start-page: 617-629 year: 2001 publication-title: Comput. Struct. doi: 10.1016/S0045-7949(00)00167-X – volume: 102 start-page: 2072-2082 year: 1997 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.419657 – volume: 119 start-page: 1315-1330 year: 2006 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2164987 – volume: 21 start-page: 309-353 year: 1912 publication-title: Jahresber. Deutsch. Math. Ver. – volume: 93 start-page: 1736-1742 year: 1993 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.406739 – volume: 19 start-page: 2061-2090 year: 1998 publication-title: SIAM J. Sci. Comput. (USA) doi: 10.1137/S1064827596301406 – volume: 42 start-page: 430-451 year: 1982 publication-title: SIAM J. Appl. Math. doi: 10.1137/0142032 – volume: 85 start-page: 1014-1028 year: 1989 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.397485 – volume: 85 start-page: 114-124 year: 1989 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.397718 – volume: 120 start-page: 3566-3583 year: 2006 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2357711 – volume: 79 start-page: 157-160 year: 1981 publication-title: J. Sound Vib. doi: 10.1016/0022-460X(81)90335-7 – volume: 114 start-page: 185-200 year: 1994 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1159 – volume: 196 start-page: 279-288 year: 2006 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.07.009 – volume: 105 start-page: 2075-2084 year: 1999 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.426812 – volume: 47 start-page: 1497-1503 year: 1999 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.805891 – volume: 69 start-page: 2848-2875 year: 2007 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1879 – volume: 109 start-page: 2571-2580 year: 2001 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1369783 – volume: 3 start-page: 2269-2274 year: 1965 publication-title: AIAA J. – volume: 164 start-page: 121-139 year: 1998 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00050-4 – volume: 118 start-page: 2880-2890 year: 2005 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2062467 – volume: 65 start-page: 307-321 year: 1997 publication-title: Comput. Struct. doi: 10.1016/S0045-7949(96)00252-0 – volume: 27 start-page: 533-557 year: 1998 publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(98)00026-9 – volume: 44 start-page: 110-117 year: 1996 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.477535 – volume: 110 start-page: 3018-3024 year: 2001 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1414705 – volume: 12 start-page: 218-220 year: 2002 publication-title: IEEE Microw. Wirel. Compon. Lett. – volume: 110 start-page: 3018 year: 2001 ident: 2023072906225227700_c24 article-title: An approximate analytic solution for the radiation from a line-driven fluid-loaded plate publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1414705 – volume-title: Wave Propagation in Elastic Solids year: 1993 ident: 2023072906225227700_c28 – volume-title: Resonance Acoustic Spectroscopy year: 1993 ident: 2023072906225227700_c34 – volume: 19 start-page: 2061 year: 1998 ident: 2023072906225227700_c8 article-title: The perfectly matched layer in curvilinear coordinates publication-title: SIAM J. Sci. Comput. (USA) doi: 10.1137/S1064827596301406 – volume-title: Acoustics-An Introduction to its Physical Principles and Applications year: 1991 ident: 2023072906225227700_c30 – volume-title: Computational Ocean Acoustics year: 2000 ident: 2023072906225227700_c42 – volume: 85 start-page: 1014 year: 1989 ident: 2023072906225227700_c25 article-title: Observations and modeling of the backscattering of short tone bursts from a spherical shell: Lamb wave echoes, glory, and axial reverberations publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.397485 – volume: 78 start-page: 2105 year: 1985 ident: 2023072906225227700_c44 article-title: A fast field model for the three-dimensional wave propagation in stratified environments based on the global matrix method publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.392670 – volume-title: Sound, Structures, and Their Interaction year: 1972 ident: 2023072906225227700_c36 – ident: 2023072906225227700_c5 – volume: 27 start-page: 533 year: 1998 ident: 2023072906225227700_c9 article-title: Absorbing PML boundary layers for wave-like equations publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(98)00026-9 – volume: 105 start-page: 2075 year: 1999 ident: 2023072906225227700_c10 article-title: Perfectly matched layers for elastic waves in cylindrical and spherical coordinates publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.426812 – volume: 21 start-page: 309 year: 1912 ident: 2023072906225227700_c2 article-title: Die Greensche Funktion der Schwingungsgleichung publication-title: Jahresber. Deutsch. Math. Ver. – volume: 44 start-page: 110 year: 1996 ident: 2023072906225227700_c7 article-title: Perfectly matched layer for the FDTD solution of wave-structure interaction problems publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.477535 – volume-title: COMSOL Multiphysics 3.2—User’s Guide year: 2005 ident: 2023072906225227700_c38 – volume: 102 start-page: 2072 year: 1997 ident: 2023072906225227700_c12 article-title: The perfectly matched layer for acoustic waves in absorptive media publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.419657 – volume: 109 start-page: 2571 year: 2001 ident: 2023072906225227700_c22 article-title: A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1369783 – volume: 65 start-page: 307 year: 1997 ident: 2023072906225227700_c33 article-title: Finite element formulations of structural acoustics problems publication-title: Comput. Struct. doi: 10.1016/S0045-7949(96)00252-0 – volume-title: The Finite Element Method year: 1994 ident: 2023072906225227700_c17 – volume: 79 start-page: 617 year: 2001 ident: 2023072906225227700_c20 article-title: Mid-frequency structural acoustic and vibration analysis in arbitrary, curved three-dimensional domains publication-title: Comput. Struct. doi: 10.1016/S0045-7949(00)00167-X – volume: 69 start-page: 2848 year: 2007 ident: 2023072906225227700_c46 article-title: Fast frequency sweep computations using a multipoint Padé-based reconstruction method and an efficient iterative solver publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1879 – volume: 120 start-page: 3566 year: 2006 ident: 2023072906225227700_c45 article-title: Subcritical scattering from buried elastic shells publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2357711 – volume: 47 start-page: 1497 year: 1999 ident: 2023072906225227700_c35 article-title: Evanescent waves in PML’s: Origin of the numerical reflection in wave-structure interaction problems publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.805891 – ident: 2023072906225227700_c29 – volume: 114 start-page: 185 year: 1994 ident: 2023072906225227700_c6 article-title: A perfectly matched layer for the absorption of electromagnetic waves publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1159 – volume-title: Proceedings of the 8th European Conference on Underwater Acoustics year: 2006 ident: 2023072906225227700_c15 article-title: Benchmarking range-dependent seismo-acoustic propagation problems – volume-title: Finite Element Analysis of Acoustic Scattering year: 1998 ident: 2023072906225227700_c11 – volume-title: Handbook of Mathematical Functions year: 1968 ident: 2023072906225227700_c40 – volume: 196 start-page: 279 year: 2006 ident: 2023072906225227700_c13 article-title: A finite element model for acoustic scattering from objects near a fluid-fluid interface publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.07.009 – volume: 118 start-page: 2880 year: 2005 ident: 2023072906225227700_c23 article-title: Two-dimensional axisymmetric numerical simulation of supercritical phase conjugation of ultrasound in active solid media publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2062467 – volume-title: Finite Element Analysis-from Concepts to Applications year: 1988 ident: 2023072906225227700_c19 – volume: 164 start-page: 121 year: 1998 ident: 2023072906225227700_c3 article-title: A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00050-4 – volume: 119 start-page: 1315 year: 2006 ident: 2023072906225227700_c1 article-title: A review of finite-element methods for time-harmonic acoustics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2164987 – start-page: 349 volume-title: Proc. Conf. on Boundary Influences in High Frequency Shallow Water Acoustics year: 2005 ident: 2023072906225227700_c41 article-title: Finite element and hybrid modeling tools for the detection and classification of buried objects in shallow water – ident: 2023072906225227700_c14 – volume: 3 start-page: 2269 year: 1965 ident: 2023072906225227700_c16 article-title: Structural analysis of axisymmetric solids publication-title: AIAA J. doi: 10.2514/3.3356 – volume: 85 start-page: 114 year: 1989 ident: 2023072906225227700_c26 article-title: The acoustic scattering by a submerged spherical shell. I: The bifurcation of the dispersion curve for the spherical axisymmetric Lamb wave publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.397718 – volume-title: Concepts and Applications of Finite Element Analysis year: 1981 ident: 2023072906225227700_c18 – volume: 93 start-page: 1736 year: 1993 ident: 2023072906225227700_c43 article-title: A split-step Padé solution for the parabolic equation method publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.406739 – volume: 42 start-page: 430 year: 1982 ident: 2023072906225227700_c37 article-title: Boundary conditions for the numerical solution of elliptic equations in exterior regions publication-title: SIAM J. Appl. Math. doi: 10.1137/0142032 – volume-title: Theoretical Acoustics year: 1968 ident: 2023072906225227700_c39 – volume-title: Dynamics of Thin Walled Elastic Bodies year: 1998 ident: 2023072906225227700_c27 – volume: 12 start-page: 218 year: 2002 ident: 2023072906225227700_c21 article-title: Application of the CFS PML to the absorption of evanescent waves in waveguides publication-title: IEEE Microw. Wirel. Compon. Lett. doi: 10.1109/LMWC.2002.1010000 – volume-title: Physical Acoustics year: 1993 ident: 2023072906225227700_c31 article-title: Variational formulations in acoustic radiation and scattering – volume: 79 start-page: 157 year: 1981 ident: 2023072906225227700_c32 article-title: A symmetric potential formulation for fluid-structure interaction publication-title: J. Sound Vib. doi: 10.1016/0022-460X(81)90335-7 – volume: 96 start-page: 2798 year: 1994 ident: 2023072906225227700_c4 article-title: A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.411286 |
SSID | ssj0005839 |
Score | 2.2474802 |
Snippet | A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a... |
SourceID | proquest pubmed pascalfrancis crossref scitation |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1472 |
SubjectTerms | Acoustics Algorithms Elasticity Elements Energy Transfer Exact sciences and technology Fundamental areas of phenomenology (including applications) Image Enhancement Models, Theoretical Physics Stress, Mechanical Structural acoustics and vibration Thermal Conductivity Underwater sound |
Title | A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects |
URI | http://dx.doi.org/10.1121/1.2764471 https://www.ncbi.nlm.nih.gov/pubmed/17927408 https://www.proquest.com/docview/68378795 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1520-8524 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0005839 issn: 0001-4966 databaseCode: ADMLS dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jLKIi4t3xsgbxQSgd27RN28d6WZZFfXGFfStpLjDQ6QzTDri--s_8ZZ40mXRmHGH1pZSS9PZ9Tc45_U4OQq8VsABMe-GTPOB-zDl8UhFjfsSBQYLmnIpebfGFnn6Lzy6Si9Ho15Zqad1VU_7jYF7J_6AKxwBXnSX7D8i6k8IB2Ad8YQsIw_ZKGBe9Inzd2YBefanlGbM-xdFTM21NetLIw03FGxN1XcqV1nBAa7BWATPh1Uwb3h6zFimYoy3v193sZZY6AYV9n_Xnby_nc12Di3uLSkdw2m3jdkgzqzfSg4Iv-nJhes0Rqw_Vpq_5TeSC1my-1GuD29whowwzgudWzmwaTtuyRqxcnzPZ2NjRyaxpvHfTIbReW4rXuyGN1Gm2hmEaHNuc2jWy7cgMfm6WmIRrN3QTssXRaGsgDmNTEchO6uD0JYcnDKInjHBKUjAMTTGY3UW59yZLJ2HsnScSlmFpu15DR7BHyRgdFR8-f_o6CI2yyDph5qHs-lbQ-a277o5VdHvJAOVamcoqh1yfW-gGGEiGXVvm0PlddMfCjAtDyntoJJv76HqvJ-btA_SzwHvUxI6a2FATW2rinppYUxM7amJLTWyoiS01cbfAAzWxpia21MSOmthS8yE6P_l4_v7Ut_U-fB7RrPMJCUQWsJQEVSJYpDhhMlBZGKmcZ4GCmUIGPFcirwhNeCI4l5FKU3A6QlpVJHqExs2ikU8Qlnmak5hSkYL1xSv9L51WlASJlIooUU3Qm83rLjfvUZdkqcs_YJ2gV67p0iwAc6jR8Q5mQ8scXIAwjCfo5QbEEsZv_VOONRK-wJLqig5pnkzQY4Pt0BeeIY2DbIJSB_bfb6Eo92AtpXp6lXt_hm4O3-BzNO5Wa_kCDO2uOrZM_g1Z29nt |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computationally+efficient+finite+element+model+with+perfectly+matched+layers+applied+to+scattering+from+axially+symmetric+objects&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Zampolli%2C+Mario&rft.au=Tesei%2C+Alessandra&rft.au=Jensen%2C+Finn+B.&rft.au=Malm%2C+Nils&rft.date=2007-09-01&rft.issn=0001-4966&rft.eissn=1520-8524&rft.volume=122&rft.issue=3&rft.spage=1472&rft.epage=1485&rft_id=info:doi/10.1121%2F1.2764471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1121_1_2764471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon |