A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects

A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Bérenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it pos...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 122; no. 3; pp. 1472 - 1485
Main Authors Zampolli, Mario, Tesei, Alessandra, Jensen, Finn B., Malm, Nils, Blottman, John B.
Format Journal Article
LanguageEnglish
Published Woodbury, NY Acoustical Society of America 01.09.2007
American Institute of Physics
Subjects
Online AccessGet full text
ISSN0001-4966
1520-8524
1520-8524
DOI10.1121/1.2764471

Cover

Abstract A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Bérenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation.
AbstractList A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Berenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation.
A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Bérenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation.
A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Berenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation.A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Berenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation.
A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Bérenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation.
Author Tesei, Alessandra
Zampolli, Mario
Malm, Nils
Blottman, John B.
Jensen, Finn B.
Author_xml – sequence: 1
  givenname: Mario
  surname: Zampolli
  fullname: Zampolli, Mario
  email: zampolli@nurc.nato.int
  organization: NATO Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy
– sequence: 2
  givenname: Alessandra
  surname: Tesei
  fullname: Tesei, Alessandra
  organization: NATO Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy
– sequence: 3
  givenname: Finn
  surname: Jensen
  middlename: B.
  fullname: Jensen, Finn B.
  organization: NATO Undersea Research Centre, Viale San Bartolomeo 400, 19138 La Spezia, Italy
– sequence: 4
  givenname: Nils
  surname: Malm
  fullname: Malm, Nils
  organization: COMSOL AB, Tegnérgatan 23, SE-111 40 Stockholm, Sweden
– sequence: 5
  givenname: John
  surname: Blottman
  middlename: B.
  fullname: Blottman, John B.
  organization: Naval Undersea Warfare Center, Code 1516, 1176 Howell Street, Newport,Rhode Island 02841-1708
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19063114$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17927408$$D View this record in MEDLINE/PubMed
BookMark eNp10U1rFTEUBuAgFXtbXfgHJBsFF9PmYybJbIRL8QsKbroPmcyJTUkmY5KL3rV_3NR7q1B0FV54zgs55wydLGkBhF5SckEpo5f0gknR95I-QRs6MNKpgfUnaEMIoV0_CnGKzkq5a3FQfHyGTqkcmeyJ2qCfW2xTXHfVVJ8WE8Ieg3Peelgqdn7xFTAEiPcxphkC_u7rLV4hO7C16WiqvYUZB7OHXLBZ1-BbrAkXa2qF7Jev2OUUsfnhf_eXfYxQs7c4TXetpDxHT50JBV4c33N08-H9zdWn7vrLx89X2-vOcqFqxxiZFTGSkWmYDXeWGSBOUe5Gq4gTXAGxo5vHiYnBDrO1wJ2UZOipmCbGz9GbQ-2a07cdlKqjLxZCMAukXdFCcankODT46gh3U4RZr9lHk_f6YWsNvD4C0z4ZXDaL9eWvG4nglPbNXR6czamUDE5bf1h0zcYHTYm-v5-m-ni_NvH20cSf0n_YdwdbHlr_j7f60ZU1OP4LAhGx9w
CODEN JASMAN
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3349031
crossref_primary_10_1121_1_4986941
crossref_primary_10_1142_S0218396X12500087
crossref_primary_10_1121_1_4904490
crossref_primary_10_7498_aps_65_064301
crossref_primary_10_1121_1_3569729
crossref_primary_10_1142_S0218396X12400073
crossref_primary_10_1121_1_5125424
crossref_primary_10_1121_1_4881923
crossref_primary_10_1109_JOE_2009_2031060
crossref_primary_10_1093_icesjms_fsab183
crossref_primary_10_1121_1_4976814
crossref_primary_10_1121_1_5016030
crossref_primary_10_1016_j_jsv_2010_01_007
crossref_primary_10_1016_j_apacoust_2021_108607
crossref_primary_10_1121_1_3436526
crossref_primary_10_1121_1_3613806
crossref_primary_10_1088_0964_1726_24_11_115010
crossref_primary_10_1121_10_0009162
crossref_primary_10_1121_1_2839002
crossref_primary_10_1121_1_2902139
crossref_primary_10_7498_aps_62_094302
crossref_primary_10_3390_inventions7040111
crossref_primary_10_1063_5_0086290
crossref_primary_10_1155_2011_710623
crossref_primary_10_1016_j_jsv_2008_03_024
crossref_primary_10_1121_1_2945701
crossref_primary_10_1016_j_apacoust_2021_108233
crossref_primary_10_1121_1_2799932
crossref_primary_10_1016_j_dt_2022_04_008
crossref_primary_10_1121_1_3583546
crossref_primary_10_7498_aps_65_184301
crossref_primary_10_1007_s40430_016_0537_3
crossref_primary_10_1088_1674_1056_25_12_124312
crossref_primary_10_1016_j_dsr2_2010_05_018
crossref_primary_10_1109_JOE_2015_2478995
crossref_primary_10_1121_1_5038256
crossref_primary_10_1016_j_jsv_2021_116133
crossref_primary_10_1016_j_oceaneng_2022_110913
crossref_primary_10_1088_0256_307X_30_7_074301
crossref_primary_10_1109_JOE_2014_2313060
crossref_primary_10_1016_j_compstruc_2013_08_010
crossref_primary_10_1121_1_4768886
crossref_primary_10_1088_1742_6596_2458_1_012030
crossref_primary_10_1142_S2591728520500048
crossref_primary_10_1088_0256_307X_29_1_014302
crossref_primary_10_1016_j_oceaneng_2023_116531
crossref_primary_10_1007_s40857_019_00170_5
crossref_primary_10_1121_1_4954736
crossref_primary_10_1177_1475921720976926
crossref_primary_10_3390_jmse11020307
crossref_primary_10_3390_s21010192
crossref_primary_10_1121_1_3419926
crossref_primary_10_1007_s11433_012_4666_0
crossref_primary_10_1121_1_3027446
crossref_primary_10_1007_s11433_013_5297_9
crossref_primary_10_1007_s00004_021_00583_8
crossref_primary_10_1121_1_4962284
crossref_primary_10_1142_S2591728521500092
crossref_primary_10_1121_10_0034794
crossref_primary_10_1121_10_0016885
crossref_primary_10_1121_10_0017931
crossref_primary_10_1121_1_4998591
crossref_primary_10_1121_1_4982039
crossref_primary_10_1121_1_5125250
crossref_primary_10_1121_1_4792489
crossref_primary_10_1121_1_4937607
crossref_primary_10_1016_j_aquaeng_2022_102263
crossref_primary_10_1016_j_cma_2013_03_017
crossref_primary_10_1121_10_0028516
crossref_primary_10_1016_j_jsv_2018_07_004
crossref_primary_10_1121_1_5048797
crossref_primary_10_1016_j_joes_2024_12_002
crossref_primary_10_1121_1_4996127
crossref_primary_10_1121_1_4887445
crossref_primary_10_7498_aps_65_034301
crossref_primary_10_3934_matersci_2017_2_522
crossref_primary_10_1007_s11831_010_9041_6
crossref_primary_10_1007_s11831_021_09581_y
crossref_primary_10_1121_1_4971161
crossref_primary_10_1121_1_3531810
crossref_primary_10_1063_5_0167755
crossref_primary_10_1121_1_4965964
crossref_primary_10_1142_S0218396X15500113
Cites_doi 10.1121/1.411286
10.1121/1.392670
10.1016/S0045-7949(00)00167-X
10.1121/1.419657
10.1121/1.2164987
10.1121/1.406739
10.1137/S1064827596301406
10.1137/0142032
10.1121/1.397485
10.1121/1.397718
10.1121/1.2357711
10.1016/0022-460X(81)90335-7
10.1006/jcph.1994.1159
10.1016/j.cma.2006.07.009
10.1121/1.426812
10.1109/8.805891
10.1002/nme.1879
10.1121/1.1369783
10.1016/S0045-7825(98)00050-4
10.1121/1.2062467
10.1016/S0045-7949(96)00252-0
10.1016/S0168-9274(98)00026-9
10.1109/8.477535
10.1121/1.1414705
10.2514/3.3356
10.1109/LMWC.2002.1010000
ContentType Journal Article
Copyright 2007 Acoustical Society of America
2007 INIST-CNRS
Copyright_xml – notice: 2007 Acoustical Society of America
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1121/1.2764471
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1520-8524
EndPage 1485
ExternalDocumentID 17927408
19063114
10_1121_1_2764471
jasa
Genre Journal Article
GroupedDBID ---
--Z
-~X
.DC
.GJ
123
186
29L
3O-
4.4
41~
5-Q
53G
5RE
5VS
6TJ
85S
AAAAW
AAEUA
AAPUP
AAYIH
ABDNZ
ABEFF
ABEFU
ABJNI
ABNAN
ABPPZ
ABTAH
ABZEH
ACBNA
ACBRY
ACCUC
ACGFO
ACGFS
ACNCT
ACXMS
ACYGS
ADCTM
AEGXH
AENEX
AETEA
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AGVCI
AHPGS
AHSDT
AI.
AIAGR
AIDUJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
CS3
D0L
DU5
EBS
EJD
ESX
F5P
G8K
H~9
M71
M73
MVM
NEJ
NHB
OHT
OK1
P2P
RAZ
RIP
RNS
ROL
RQS
S10
SC5
SJN
TN5
TWZ
UCJ
UHB
UPT
UQL
VH1
VOH
VQA
WH7
XFK
XJT
XOL
XSW
YQT
ZCG
ZXP
ZY4
~02
~G0
AAGWI
AAYXX
ABDPE
ABJGX
ADMLS
CITATION
AEILP
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c368t-220d80a720b5da3fc2ae0f813f9c80f638e0c9fd9b265c5dcce3f7705416bb23
ISSN 0001-4966
1520-8524
IngestDate Fri Sep 05 09:42:11 EDT 2025
Thu Apr 03 07:12:02 EDT 2025
Wed Apr 02 07:09:18 EDT 2025
Wed Oct 01 01:42:37 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Fri Jun 21 00:19:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Finite element method
Impedance matching
Frequency domain method
Underwater acoustics
Modeling
Axial symmetry
Structural acoustics
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-220d80a720b5da3fc2ae0f813f9c80f638e0c9fd9b265c5dcce3f7705416bb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17927408
PQID 68378795
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_68378795
pubmed_primary_17927408
pascalfrancis_primary_19063114
crossref_citationtrail_10_1121_1_2764471
crossref_primary_10_1121_1_2764471
scitation_primary_10_1121_1_2764471A_computationally_ef
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-09-01
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Woodbury, NY
PublicationPlace_xml – name: Woodbury, NY
– name: United States
PublicationTitle The Journal of the Acoustical Society of America
PublicationTitleAlternate J Acoust Soc Am
PublicationYear 2007
Publisher Acoustical Society of America
American Institute of Physics
Publisher_xml – name: Acoustical Society of America
– name: American Institute of Physics
References Sammelmann, G.; Trivett, D.; Hackman, R. 1989; 85
Everstine, G. 1997; 65
Liu, Q. 1999; 105
Bérenger, J. 2002; 12
Burnett, D. 1994; 96
Collino, F.; Monk, P. 1998; 19
Everstine, G. 1981; 79
Sommerfeld, A. 1912; 21
Shirron, J.; Babuska, I. 1998; 164
Zeng, Y.; Liu, Q. 2001; 109
Schmidt, H.; Glattetre, J. 1985; 78
DiPerna, D.; Feit, D. 2001; 110
Dey, S.; Shirron, J.; Couchman, L. 2001; 79
Bérenger, J. 1996; 44
Liu, Q.; Tao, J. 1997; 102
Shirron, J.; Giddings, T. 2006; 196
Thompson, L. 2006; 119
Wilson, E. 1965; 3
Bérenger, J. 1994; 114
Turkel, E.; Yefet, A. 1998; 27
Matar, O.; Preobrazhensky, V.; Pernod, P. 2005; 118
Bayliss, A.; Gunzberger, M.; Turkel, E. 1982; 42
Kargl, S.; Marston, P. 1989; 85
Collins, M. 1993; 93
Avery, P.; Farhat, C.; Reese, G. 2007; 69
Lucifredi, I.; Schmidt, H. 2006; 120
Bérenger, J. 1999; 47
(2023072906225227700_c6) 1994; 114
2023072906225227700_c14
(2023072906225227700_c10) 1999; 105
(2023072906225227700_c16) 1965; 3
(2023072906225227700_c21) 2002; 12
(2023072906225227700_c28) 1993
(2023072906225227700_c39) 1968
(2023072906225227700_c45) 2006; 120
(2023072906225227700_c13) 2006; 196
Pace (2023072906225227700_c41) 2005
(2023072906225227700_c2) 1912; 21
(2023072906225227700_c3) 1998; 164
(2023072906225227700_c11) 1998
(2023072906225227700_c4) 1994; 96
(2023072906225227700_c25) 1989; 85
(2023072906225227700_c27) 1998
(2023072906225227700_c40) 1968
(2023072906225227700_c22) 2001; 109
2023072906225227700_c5
(2023072906225227700_c36) 1972
(2023072906225227700_c12) 1997; 102
(2023072906225227700_c32) 1981; 79
(2023072906225227700_c34) 1993
(2023072906225227700_c31) 1993
(2023072906225227700_c24) 2001; 110
(2023072906225227700_c18) 1981
2023072906225227700_c29
(2023072906225227700_c42) 2000
(2023072906225227700_c1) 2006; 119
(2023072906225227700_c17) 1994
(2023072906225227700_c23) 2005; 118
(2023072906225227700_c33) 1997; 65
(2023072906225227700_c8) 1998; 19
(2023072906225227700_c7) 1996; 44
(2023072906225227700_c20) 2001; 79
(2023072906225227700_c26) 1989; 85
(2023072906225227700_c9) 1998; 27
(2023072906225227700_c37) 1982; 42
COMSOL AB, Stockholm (2023072906225227700_c38) 2005
(2023072906225227700_c44) 1985; 78
(2023072906225227700_c15) 2006
(2023072906225227700_c30) 1991
(2023072906225227700_c19) 1988
(2023072906225227700_c46) 2007; 69
(2023072906225227700_c43) 1993; 93
(2023072906225227700_c35) 1999; 47
References_xml – volume: 96
  start-page: 2798-2816
  year: 1994
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.411286
– volume: 78
  start-page: 2105-2114
  year: 1985
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.392670
– volume: 79
  start-page: 617-629
  year: 2001
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(00)00167-X
– volume: 102
  start-page: 2072-2082
  year: 1997
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.419657
– volume: 119
  start-page: 1315-1330
  year: 2006
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2164987
– volume: 21
  start-page: 309-353
  year: 1912
  publication-title: Jahresber. Deutsch. Math. Ver.
– volume: 93
  start-page: 1736-1742
  year: 1993
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.406739
– volume: 19
  start-page: 2061-2090
  year: 1998
  publication-title: SIAM J. Sci. Comput. (USA)
  doi: 10.1137/S1064827596301406
– volume: 42
  start-page: 430-451
  year: 1982
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0142032
– volume: 85
  start-page: 1014-1028
  year: 1989
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.397485
– volume: 85
  start-page: 114-124
  year: 1989
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.397718
– volume: 120
  start-page: 3566-3583
  year: 2006
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2357711
– volume: 79
  start-page: 157-160
  year: 1981
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(81)90335-7
– volume: 114
  start-page: 185-200
  year: 1994
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1159
– volume: 196
  start-page: 279-288
  year: 2006
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.07.009
– volume: 105
  start-page: 2075-2084
  year: 1999
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.426812
– volume: 47
  start-page: 1497-1503
  year: 1999
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.805891
– volume: 69
  start-page: 2848-2875
  year: 2007
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1879
– volume: 109
  start-page: 2571-2580
  year: 2001
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1369783
– volume: 3
  start-page: 2269-2274
  year: 1965
  publication-title: AIAA J.
– volume: 164
  start-page: 121-139
  year: 1998
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00050-4
– volume: 118
  start-page: 2880-2890
  year: 2005
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2062467
– volume: 65
  start-page: 307-321
  year: 1997
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(96)00252-0
– volume: 27
  start-page: 533-557
  year: 1998
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(98)00026-9
– volume: 44
  start-page: 110-117
  year: 1996
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.477535
– volume: 110
  start-page: 3018-3024
  year: 2001
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1414705
– volume: 12
  start-page: 218-220
  year: 2002
  publication-title: IEEE Microw. Wirel. Compon. Lett.
– volume: 110
  start-page: 3018
  year: 2001
  ident: 2023072906225227700_c24
  article-title: An approximate analytic solution for the radiation from a line-driven fluid-loaded plate
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1414705
– volume-title: Wave Propagation in Elastic Solids
  year: 1993
  ident: 2023072906225227700_c28
– volume-title: Resonance Acoustic Spectroscopy
  year: 1993
  ident: 2023072906225227700_c34
– volume: 19
  start-page: 2061
  year: 1998
  ident: 2023072906225227700_c8
  article-title: The perfectly matched layer in curvilinear coordinates
  publication-title: SIAM J. Sci. Comput. (USA)
  doi: 10.1137/S1064827596301406
– volume-title: Acoustics-An Introduction to its Physical Principles and Applications
  year: 1991
  ident: 2023072906225227700_c30
– volume-title: Computational Ocean Acoustics
  year: 2000
  ident: 2023072906225227700_c42
– volume: 85
  start-page: 1014
  year: 1989
  ident: 2023072906225227700_c25
  article-title: Observations and modeling of the backscattering of short tone bursts from a spherical shell: Lamb wave echoes, glory, and axial reverberations
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.397485
– volume: 78
  start-page: 2105
  year: 1985
  ident: 2023072906225227700_c44
  article-title: A fast field model for the three-dimensional wave propagation in stratified environments based on the global matrix method
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.392670
– volume-title: Sound, Structures, and Their Interaction
  year: 1972
  ident: 2023072906225227700_c36
– ident: 2023072906225227700_c5
– volume: 27
  start-page: 533
  year: 1998
  ident: 2023072906225227700_c9
  article-title: Absorbing PML boundary layers for wave-like equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(98)00026-9
– volume: 105
  start-page: 2075
  year: 1999
  ident: 2023072906225227700_c10
  article-title: Perfectly matched layers for elastic waves in cylindrical and spherical coordinates
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.426812
– volume: 21
  start-page: 309
  year: 1912
  ident: 2023072906225227700_c2
  article-title: Die Greensche Funktion der Schwingungsgleichung
  publication-title: Jahresber. Deutsch. Math. Ver.
– volume: 44
  start-page: 110
  year: 1996
  ident: 2023072906225227700_c7
  article-title: Perfectly matched layer for the FDTD solution of wave-structure interaction problems
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.477535
– volume-title: COMSOL Multiphysics 3.2—User’s Guide
  year: 2005
  ident: 2023072906225227700_c38
– volume: 102
  start-page: 2072
  year: 1997
  ident: 2023072906225227700_c12
  article-title: The perfectly matched layer for acoustic waves in absorptive media
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.419657
– volume: 109
  start-page: 2571
  year: 2001
  ident: 2023072906225227700_c22
  article-title: A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1369783
– volume: 65
  start-page: 307
  year: 1997
  ident: 2023072906225227700_c33
  article-title: Finite element formulations of structural acoustics problems
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(96)00252-0
– volume-title: The Finite Element Method
  year: 1994
  ident: 2023072906225227700_c17
– volume: 79
  start-page: 617
  year: 2001
  ident: 2023072906225227700_c20
  article-title: Mid-frequency structural acoustic and vibration analysis in arbitrary, curved three-dimensional domains
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(00)00167-X
– volume: 69
  start-page: 2848
  year: 2007
  ident: 2023072906225227700_c46
  article-title: Fast frequency sweep computations using a multipoint Padé-based reconstruction method and an efficient iterative solver
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1879
– volume: 120
  start-page: 3566
  year: 2006
  ident: 2023072906225227700_c45
  article-title: Subcritical scattering from buried elastic shells
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2357711
– volume: 47
  start-page: 1497
  year: 1999
  ident: 2023072906225227700_c35
  article-title: Evanescent waves in PML’s: Origin of the numerical reflection in wave-structure interaction problems
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.805891
– ident: 2023072906225227700_c29
– volume: 114
  start-page: 185
  year: 1994
  ident: 2023072906225227700_c6
  article-title: A perfectly matched layer for the absorption of electromagnetic waves
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1159
– volume-title: Proceedings of the 8th European Conference on Underwater Acoustics
  year: 2006
  ident: 2023072906225227700_c15
  article-title: Benchmarking range-dependent seismo-acoustic propagation problems
– volume-title: Finite Element Analysis of Acoustic Scattering
  year: 1998
  ident: 2023072906225227700_c11
– volume-title: Handbook of Mathematical Functions
  year: 1968
  ident: 2023072906225227700_c40
– volume: 196
  start-page: 279
  year: 2006
  ident: 2023072906225227700_c13
  article-title: A finite element model for acoustic scattering from objects near a fluid-fluid interface
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.07.009
– volume: 118
  start-page: 2880
  year: 2005
  ident: 2023072906225227700_c23
  article-title: Two-dimensional axisymmetric numerical simulation of supercritical phase conjugation of ultrasound in active solid media
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2062467
– volume-title: Finite Element Analysis-from Concepts to Applications
  year: 1988
  ident: 2023072906225227700_c19
– volume: 164
  start-page: 121
  year: 1998
  ident: 2023072906225227700_c3
  article-title: A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00050-4
– volume: 119
  start-page: 1315
  year: 2006
  ident: 2023072906225227700_c1
  article-title: A review of finite-element methods for time-harmonic acoustics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2164987
– start-page: 349
  volume-title: Proc. Conf. on Boundary Influences in High Frequency Shallow Water Acoustics
  year: 2005
  ident: 2023072906225227700_c41
  article-title: Finite element and hybrid modeling tools for the detection and classification of buried objects in shallow water
– ident: 2023072906225227700_c14
– volume: 3
  start-page: 2269
  year: 1965
  ident: 2023072906225227700_c16
  article-title: Structural analysis of axisymmetric solids
  publication-title: AIAA J.
  doi: 10.2514/3.3356
– volume: 85
  start-page: 114
  year: 1989
  ident: 2023072906225227700_c26
  article-title: The acoustic scattering by a submerged spherical shell. I: The bifurcation of the dispersion curve for the spherical axisymmetric Lamb wave
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.397718
– volume-title: Concepts and Applications of Finite Element Analysis
  year: 1981
  ident: 2023072906225227700_c18
– volume: 93
  start-page: 1736
  year: 1993
  ident: 2023072906225227700_c43
  article-title: A split-step Padé solution for the parabolic equation method
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.406739
– volume: 42
  start-page: 430
  year: 1982
  ident: 2023072906225227700_c37
  article-title: Boundary conditions for the numerical solution of elliptic equations in exterior regions
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0142032
– volume-title: Theoretical Acoustics
  year: 1968
  ident: 2023072906225227700_c39
– volume-title: Dynamics of Thin Walled Elastic Bodies
  year: 1998
  ident: 2023072906225227700_c27
– volume: 12
  start-page: 218
  year: 2002
  ident: 2023072906225227700_c21
  article-title: Application of the CFS PML to the absorption of evanescent waves in waveguides
  publication-title: IEEE Microw. Wirel. Compon. Lett.
  doi: 10.1109/LMWC.2002.1010000
– volume-title: Physical Acoustics
  year: 1993
  ident: 2023072906225227700_c31
  article-title: Variational formulations in acoustic radiation and scattering
– volume: 79
  start-page: 157
  year: 1981
  ident: 2023072906225227700_c32
  article-title: A symmetric potential formulation for fluid-structure interaction
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(81)90335-7
– volume: 96
  start-page: 2798
  year: 1994
  ident: 2023072906225227700_c4
  article-title: A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.411286
SSID ssj0005839
Score 2.2474802
Snippet A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a...
SourceID proquest
pubmed
pascalfrancis
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1472
SubjectTerms Acoustics
Algorithms
Elasticity
Elements
Energy Transfer
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Image Enhancement
Models, Theoretical
Physics
Stress, Mechanical
Structural acoustics and vibration
Thermal Conductivity
Underwater sound
Title A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects
URI http://dx.doi.org/10.1121/1.2764471
https://www.ncbi.nlm.nih.gov/pubmed/17927408
https://www.proquest.com/docview/68378795
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1520-8524
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0005839
  issn: 0001-4966
  databaseCode: ADMLS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jLKIi4t3xsgbxQSgd27RN28d6WZZFfXGFfStpLjDQ6QzTDri--s_8ZZ40mXRmHGH1pZSS9PZ9Tc45_U4OQq8VsABMe-GTPOB-zDl8UhFjfsSBQYLmnIpebfGFnn6Lzy6Si9Ho15Zqad1VU_7jYF7J_6AKxwBXnSX7D8i6k8IB2Ad8YQsIw_ZKGBe9Inzd2YBefanlGbM-xdFTM21NetLIw03FGxN1XcqV1nBAa7BWATPh1Uwb3h6zFimYoy3v193sZZY6AYV9n_Xnby_nc12Di3uLSkdw2m3jdkgzqzfSg4Iv-nJhes0Rqw_Vpq_5TeSC1my-1GuD29whowwzgudWzmwaTtuyRqxcnzPZ2NjRyaxpvHfTIbReW4rXuyGN1Gm2hmEaHNuc2jWy7cgMfm6WmIRrN3QTssXRaGsgDmNTEchO6uD0JYcnDKInjHBKUjAMTTGY3UW59yZLJ2HsnScSlmFpu15DR7BHyRgdFR8-f_o6CI2yyDph5qHs-lbQ-a277o5VdHvJAOVamcoqh1yfW-gGGEiGXVvm0PlddMfCjAtDyntoJJv76HqvJ-btA_SzwHvUxI6a2FATW2rinppYUxM7amJLTWyoiS01cbfAAzWxpia21MSOmthS8yE6P_l4_v7Ut_U-fB7RrPMJCUQWsJQEVSJYpDhhMlBZGKmcZ4GCmUIGPFcirwhNeCI4l5FKU3A6QlpVJHqExs2ikU8Qlnmak5hSkYL1xSv9L51WlASJlIooUU3Qm83rLjfvUZdkqcs_YJ2gV67p0iwAc6jR8Q5mQ8scXIAwjCfo5QbEEsZv_VOONRK-wJLqig5pnkzQY4Pt0BeeIY2DbIJSB_bfb6Eo92AtpXp6lXt_hm4O3-BzNO5Wa_kCDO2uOrZM_g1Z29nt
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computationally+efficient+finite+element+model+with+perfectly+matched+layers+applied+to+scattering+from+axially+symmetric+objects&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Zampolli%2C+Mario&rft.au=Tesei%2C+Alessandra&rft.au=Jensen%2C+Finn+B.&rft.au=Malm%2C+Nils&rft.date=2007-09-01&rft.issn=0001-4966&rft.eissn=1520-8524&rft.volume=122&rft.issue=3&rft.spage=1472&rft.epage=1485&rft_id=info:doi/10.1121%2F1.2764471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1121_1_2764471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon