Penalized estimation of a class of single‐index varying‐coefficient models for integrative genomic analysis

Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understandin...

Full description

Saved in:
Bibliographic Details
Published inBiometrical journal Vol. 65; no. 1; pp. e2100139 - n/a
Main Authors Ng, Hoi Min, Jiang, Binyan, Wong, Kin Yau
Format Journal Article
LanguageEnglish
Published Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.01.2023
Subjects
Online AccessGet full text
ISSN0323-3847
1521-4036
1521-4036
DOI10.1002/bimj.202100139

Cover

Abstract Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single‐index varying‐coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right‐censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study.
AbstractList Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single‐index varying‐coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right‐censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study.
Recent technological advances have made it possible to collect high-dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single-index varying-coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right-censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study.Recent technological advances have made it possible to collect high-dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single-index varying-coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right-censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study.
Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single‐index varying‐coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right‐censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study.
Author Jiang, Binyan
Ng, Hoi Min
Wong, Kin Yau
Author_xml – sequence: 1
  givenname: Hoi Min
  orcidid: 0000-0002-1470-9251
  surname: Ng
  fullname: Ng, Hoi Min
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Binyan
  surname: Jiang
  fullname: Jiang, Binyan
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Kin Yau
  orcidid: 0000-0001-9066-1619
  surname: Wong
  fullname: Wong, Kin Yau
  email: kin-yau.wong@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35837982$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1uFDEUhS0URDaBlhJZoqHZ5fpnxjMlRPwEBUEBteWxr1dezdjBng0sVR4hz8iT4CUbikiIyr7Wd-69PueEHMUUkZCnDFYMgL8cwrRZceC1YKJ_QBas4WwpQbRHZAGCi6XopDomJ6VsAKAHyR-RY9F0QvUdX5D0GaMZw090FMscJjOHFGny1FA7mlL21xLiesRf1zchOvxBr0ze1Zda24TeBxswznRKDsdCfco0xBnXuXa6QrrGmKZgqalTdiWUx-ShN2PBJ4fzlHx9--bL2fvlxad352evLpZWtF277AfHle0bwYS3kltjfOesciAGbl3T2dZJcCBRSOuZV14w6KSHgYPtrPfilLy47XuZ07dt_ZqeQrE4jiZi2hbN255Bo9q-r-jze-gmbXPdt1KqlUqA6ppKPTtQ22FCpy9zNSvv9J2VFZC3gM2plIxe2zD_sXPOJoyagd4npveJ6b-JVdnqnuyu8z8Fhznfw4i7_9D69fnHD1yoVvwGPjuraw
CitedBy_id crossref_primary_10_1093_bioinformatics_btae132
Cites_doi 10.1080/03610918.2019.1680691
10.1214/13-AOS1096
10.1016/j.ajhg.2020.08.009
10.1177/0962280220909969
10.1155/2017/7691937
10.1111/j.2517-6161.1993.tb01939.x
10.1080/10618600.2014.938812
10.3150/10-BEJ252
10.1198/016214506000000735
10.1093/bioinformatics/bts655
10.1016/j.jmva.2015.03.008
10.7150/jca.27655
10.1001/jama.1982.03320430047030
10.1007/s11222-012-9332-x
10.1371/journal.pone.0001651
10.1109/IEMBS.2007.4353566
10.1093/bioinformatics/bth294
10.1007/s11464-013-0284-z
10.1007/s11010-014-2074-7
10.1214/12-AOS1077
10.1093/bib/bbu003
10.1093/hmg/ddg287
10.1198/016214501753382273
10.1186/1471-2105-10-413
10.1073/pnas.0401736101
10.1016/j.jmva.2015.02.007
10.4310/SII.2009.v2.n3.a10
10.1214/aos/1176349020
10.1111/j.2517-6161.1996.tb02080.x
10.1186/s13059-019-1640-4
10.1111/j.1467-9868.2005.00532.x
10.1016/j.jspi.2010.10.003
10.1093/bioinformatics/bti824
10.1038/nature10983
10.1186/1755-8794-4-3
10.1093/bioinformatics/btl230
10.1186/1471-2407-8-29
10.1007/978-1-4899-3324-9
10.1038/nm.1790
10.5705/ss.2009.316
10.1136/bmj.313.7059.711
10.1186/gm39
10.1093/bioinformatics/btt610
10.18632/oncotarget.13346
10.1007/s12094-013-1022-4
10.18632/aging.102311
10.18632/oncotarget.26217
10.1093/biostatistics/kxw010
10.18632/oncotarget.8519
10.3892/ijo.2017.3915
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH.
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH.
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/bimj.202100139
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage n/a
ExternalDocumentID 35837982
10_1002_bimj_202100139
BIMJ2376
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Hong Kong Research Grants Council
  funderid: PolyU 253042/18P
– fundername: Hong Kong Research Grants Council
  grantid: PolyU 253042/18P
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3686-9bd27c95313fc42caaf8dc7d03b2cd58c6d40d04e34cf1f7f31084f0b20c8cff3
IEDL.DBID DR2
ISSN 0323-3847
1521-4036
IngestDate Fri Jul 11 12:16:38 EDT 2025
Tue Oct 07 05:51:07 EDT 2025
Thu Apr 03 07:00:18 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Wed Oct 01 04:57:16 EDT 2025
Wed Jan 22 16:20:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords interaction
semiparametric models
adaptive lasso
group penalty
splines
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3686-9bd27c95313fc42caaf8dc7d03b2cd58c6d40d04e34cf1f7f31084f0b20c8cff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1470-9251
0000-0001-9066-1619
PMID 35837982
PQID 2764730785
PQPubID 105592
PageCount 15
ParticipantIDs proquest_miscellaneous_2691057699
proquest_journals_2764730785
pubmed_primary_35837982
crossref_citationtrail_10_1002_bimj_202100139
crossref_primary_10_1002_bimj_202100139
wiley_primary_10_1002_bimj_202100139_BIMJ2376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom J
PublicationYear 2023
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
References 2004; 101
2013; 29
2017; 8
2004; 20
2010; 16
2015; 16
2012; 486
2017; 2017
2019; 11
2013; 23
2022; 51
1993; 21
2013; 41
2008; 14
2007
2008; 8
2020; 107
1982; 247
2014; 393
2008; 3
2011; 4
1996; 58
2013; 8
2016; 17
2003; 12
2015; 24
2017; 50
2018; 9
2016; 7
2013; 15
2009; 10
2019; 20
2006; 68
2006; 22
1993; 55
1986; 26
2017
2011; 21
2015; 139
1996; 313
2011; 141
2014; 30
2009; 2
2009; 1
2016; 26
2006; 101
2001; 96
2020; 29
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Tibshirani R. (e_1_2_9_41_1) 1996; 58
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
Hastie T. (e_1_2_9_21_1) 1993; 55
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Lin H. (e_1_2_9_31_1) 2016; 26
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 23
  start-page: 589
  year: 2013
  end-page: 599
  article-title: Statistical inference for a single‐index varying‐coefficient model
  publication-title: Statistics and Computing
– volume: 11
  start-page: 8169
  year: 2019
  end-page: 8182
  article-title: KCNK levels are prognostic and diagnostic markers for hepatocellular carcinoma
  publication-title: Aging (Albany NY)
– volume: 247
  start-page: 2543
  year: 1982
  end-page: 2546
  article-title: Evaluating the yield of medical tests
  publication-title: Journal of American Medical Association
– volume: 8
  start-page: 541
  year: 2013
  end-page: 565
  article-title: Variable selection for single‐index varying‐coefficient model
  publication-title: Frontiers of Mathematics in China
– volume: 139
  start-page: 227
  year: 2015
  end-page: 244
  article-title: Model detection and estimation for single‐index varying coefficient model
  publication-title: Journal of Multivariate Analysis
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: Journal of the American Statistical Association
– volume: 16
  start-page: 1369
  year: 2010
  end-page: 1384
  article-title: Consistent group selection in high‐dimensional linear regression
  publication-title: Bernoulli (Andover)
– volume: 4
  start-page: 3
  year: 2011
  article-title: Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures
  publication-title: BMC Medical Genomics
– volume: 30
  start-page: 838
  year: 2014
  end-page: 845
  article-title: A pathway‐based data integration framework for prediction of disease progression
  publication-title: Bioinformatics
– volume: 10
  start-page: 413
  year: 2009
  article-title: Survival prediction from clinico‐genomic models ‐ a comparative study
  publication-title: BMC Bioinformatics
– volume: 9
  start-page: 4568
  year: 2018
  end-page: 4577
  article-title: Systematic analysis of gene expression alteration and co‐expression network of eukaryotic initiation factor 4A‐3 in cancer
  publication-title: Journal of Cancer
– volume: 15
  start-page: 910
  year: 2013
  end-page: 918
  article-title: Expression and effects of modulation of the K2P potassium channels TREK‐1 (KCNK2) and TREK‐2 (KCNK10) in the normal human ovary and epithelial ovarian cancer
  publication-title: Clinical and Translational Oncology
– volume: 41
  start-page: 1111
  year: 2013
  end-page: 1141
  article-title: A lasso for hierarchical interactions
  publication-title: Annals of Statistics
– start-page: 5411
  year: 2007
  end-page: 5415
  article-title: Integration of clinical and microarray data with kernel methods
– volume: 29
  start-page: 149
  year: 2013
  end-page: 159
  article-title: iBAG: Integrative Bayesian analysis of high‐dimensional multiplatform genomics data
  publication-title: Bioinformatics
– volume: 12
  start-page: R153
  year: 2003
  end-page: R157
  article-title: Towards integrated clinico‐genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction
  publication-title: Human Molecular Genetics
– volume: 26
  year: 1986
– volume: 16
  start-page: 291
  year: 2015
  end-page: 303
  article-title: Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA
  publication-title: Briefings in Bioinformatics
– volume: 2
  start-page: 369
  year: 2009
  end-page: 380
  article-title: Penalized methods for bi‐level variable selection
  publication-title: Statistics and Its Interface
– volume: 313
  start-page: 711
  year: 1996
  end-page: 715
  article-title: Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study
  publication-title: BMJ
– volume: 50
  start-page: 1383
  year: 2017
  end-page: 1391
  article-title: miR‐28‐5p promotes the development and progression of ovarian cancer through inhibition of N4BP1
  publication-title: International Journal of Oncology
– volume: 3
  year: 2008
  article-title: Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival
  publication-title: PLoS One
– volume: 141
  start-page: 1362
  year: 2011
  end-page: 1379
  article-title: Penalized least squares for single index models
  publication-title: Journal of Statistical Planning and Inference
– volume: 41
  start-page: 802
  year: 2013
  end-page: 837
  article-title: Valid post‐selection inference
  publication-title: The Annals of Statistics
– volume: 9
  start-page: 35528
  year: 2018
  end-page: 35540
  article-title: Distinct lung cancer subtypes associate to distinct drivers of tumor progression
  publication-title: Oncotarget
– volume: 7
  start-page: 40846
  year: 2016
  end-page: 40859
  article-title: The emerging roles and therapeutic potential of cyclin‐dependent kinase 11 (CDK11) in human cancer
  publication-title: Oncotarget
– volume: 393
  start-page: 301
  year: 2014
  end-page: 307
  article-title: Reliability of HSP70 (HSPA) expression as a prognostic marker in glioma
  publication-title: Molecular and Cellular Biochemistry
– volume: 101
  start-page: 8431
  year: 2004
  end-page: 8436
  article-title: Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 21
  start-page: 157
  year: 1993
  end-page: 178
  article-title: Optimal smoothing in single‐index models
  publication-title: The Annals of Statistics
– volume: 26
  start-page: 779
  year: 2016
  end-page: 807
  article-title: A semiparametrically efficient estimator of single‐index varying coefficient Cox proportional hazards models
  publication-title: Statistica Sinica
– volume: 8
  start-page: 1
  year: 2008
  end-page: 11
  article-title: Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells and
  publication-title: BMC Cancer
– volume: 29
  start-page: 2865
  year: 2020
  end-page: 2880
  article-title: Semiparametric integrative interaction analysis for non‐small‐cell lung cancer
  publication-title: Statistical Methods in Medical Research
– year: 2007
– volume: 8
  start-page: 133
  year: 2017
  end-page: 144
  article-title: Differentiated regulation of immune‐response related genes between LUAD and LUSC subtypes of lung cancers
  publication-title: Oncotarget
– volume: 21
  start-page: 1515
  year: 2011
  end-page: 1540
  article-title: Variable selection and estimation in high‐dimensional varying‐coefficient models
  publication-title: Statistica Sinica
– volume: 51
  start-page: 1685
  year: 2022
  end-page: 1703
  article-title: Estimation for a partially linear single‐index varying‐coefficient model
  publication-title: Communications in Statistics ‐ Simulation and Computation
– volume: 2017
  year: 2017
  article-title: IPF‐LASSO: Integrative ‐penalized egression with penalty factors for prediction based on multi‐omics data
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 24
  start-page: 627
  year: 2015
  end-page: 654
  article-title: Learning interactions via hierarchical group‐lasso regularization
  publication-title: Journal of Computational and Graphical Statistics
– volume: 1
  start-page: 39
  year: 2009
  article-title: A kernel‐based integration of genome‐wide data for clinical decision support
  publication-title: Genome Medicine
– volume: 139
  start-page: 266
  year: 2015
  end-page: 282
  article-title: High dimensional single index models
  publication-title: Journal of Multivariate Analysis
– volume: 486
  start-page: 346
  year: 2012
  end-page: 352
  article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
  publication-title: Nature
– volume: 22
  start-page: e184
  year: 2006
  end-page: e190
  article-title: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
  publication-title: Bioinformatics
– volume: 20
  start-page: 2626
  year: 2004
  end-page: 2635
  article-title: A statistical framework for genomic data fusion
  publication-title: Bioinformatics
– volume: 17
  start-page: 605
  year: 2016
  end-page: 618
  article-title: Integrating multidimensional omics data for cancer outcome
  publication-title: Biostatistics
– volume: 14
  start-page: 822
  year: 2008
  end-page: 827
  article-title: Gene expression–based survival prediction in lung adenocarcinoma: a multi‐site, blinded validation study
  publication-title: Nature Medicine
– volume: 20
  start-page: 52
  year: 2019
  article-title: I‐Boost: an integrative boosting approach for predicting survival time with multiple genomics platforms
  publication-title: Genome Biology
– volume: 107
  start-page: 698
  year: 2020
  end-page: 713
  article-title: Inferring gene‐by‐environment interactions with a Bayesian whole‐genome regression model
  publication-title: The American Journal of Human Genetics
– year: 2017
– volume: 22
  start-page: 466
  year: 2006
  end-page: 471
  article-title: Survival prediction of diffuse large‐B‐cell lymphoma based on both clinical and gene expression information
  publication-title: Bioinformatics
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  article-title: The adaptive lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 55
  start-page: 757
  year: 1993
  end-page: 779
  article-title: Varying‐coefficient models
  publication-title: Journal of the Royal Statistical Society: Series B
– ident: e_1_2_9_51_1
  doi: 10.1080/03610918.2019.1680691
– ident: e_1_2_9_4_1
  doi: 10.1214/13-AOS1096
– volume: 26
  start-page: 779
  year: 2016
  ident: e_1_2_9_31_1
  article-title: A semiparametrically efficient estimator of single‐index varying coefficient Cox proportional hazards models
  publication-title: Statistica Sinica
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ajhg.2020.08.009
– ident: e_1_2_9_29_1
  doi: 10.1177/0962280220909969
– ident: e_1_2_9_5_1
  doi: 10.1155/2017/7691937
– volume: 55
  start-page: 757
  year: 1993
  ident: e_1_2_9_21_1
  article-title: Varying‐coefficient models
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1993.tb01939.x
– ident: e_1_2_9_30_1
  doi: 10.1080/10618600.2014.938812
– ident: e_1_2_9_43_1
  doi: 10.3150/10-BEJ252
– ident: e_1_2_9_54_1
  doi: 10.1198/016214506000000735
– ident: e_1_2_9_42_1
  doi: 10.1093/bioinformatics/bts655
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jmva.2015.03.008
– ident: e_1_2_9_32_1
  doi: 10.7150/jca.27655
– ident: e_1_2_9_20_1
  doi: 10.1001/jama.1982.03320430047030
– ident: e_1_2_9_47_1
  doi: 10.1007/s11222-012-9332-x
– ident: e_1_2_9_26_1
  doi: 10.1371/journal.pone.0001651
– ident: e_1_2_9_11_1
  doi: 10.1109/IEMBS.2007.4353566
– ident: e_1_2_9_25_1
  doi: 10.1093/bioinformatics/bth294
– ident: e_1_2_9_15_1
  doi: 10.1007/s11464-013-0284-z
– ident: e_1_2_9_49_1
– ident: e_1_2_9_2_1
  doi: 10.1007/s11010-014-2074-7
– ident: e_1_2_9_3_1
  doi: 10.1214/12-AOS1077
– ident: e_1_2_9_50_1
  doi: 10.1093/bib/bbu003
– ident: e_1_2_9_33_1
  doi: 10.1093/hmg/ddg287
– ident: e_1_2_9_14_1
  doi: 10.1198/016214501753382273
– ident: e_1_2_9_6_1
  doi: 10.1186/1471-2105-10-413
– ident: e_1_2_9_35_1
  doi: 10.1073/pnas.0401736101
– ident: e_1_2_9_36_1
  doi: 10.1016/j.jmva.2015.02.007
– ident: e_1_2_9_7_1
  doi: 10.4310/SII.2009.v2.n3.a10
– ident: e_1_2_9_19_1
  doi: 10.1214/aos/1176349020
– volume: 58
  start-page: 267
  year: 1996
  ident: e_1_2_9_41_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_9_45_1
  doi: 10.1186/s13059-019-1640-4
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jspi.2010.10.003
– ident: e_1_2_9_27_1
  doi: 10.1093/bioinformatics/bti824
– ident: e_1_2_9_10_1
  doi: 10.1038/nature10983
– ident: e_1_2_9_13_1
  doi: 10.1186/1755-8794-4-3
– ident: e_1_2_9_17_1
  doi: 10.1093/bioinformatics/btl230
– ident: e_1_2_9_8_1
  doi: 10.1186/1471-2407-8-29
– ident: e_1_2_9_40_1
  doi: 10.1007/978-1-4899-3324-9
– ident: e_1_2_9_39_1
  doi: 10.1038/nm.1790
– ident: e_1_2_9_44_1
  doi: 10.5705/ss.2009.316
– ident: e_1_2_9_22_1
  doi: 10.1136/bmj.313.7059.711
– ident: e_1_2_9_12_1
  doi: 10.1186/gm39
– ident: e_1_2_9_38_1
  doi: 10.1093/bioinformatics/btt610
– ident: e_1_2_9_9_1
  doi: 10.18632/oncotarget.13346
– ident: e_1_2_9_23_1
  doi: 10.1007/s12094-013-1022-4
– ident: e_1_2_9_18_1
– ident: e_1_2_9_28_1
  doi: 10.18632/aging.102311
– ident: e_1_2_9_37_1
  doi: 10.18632/oncotarget.26217
– ident: e_1_2_9_53_1
  doi: 10.1093/biostatistics/kxw010
– ident: e_1_2_9_52_1
  doi: 10.18632/oncotarget.8519
– ident: e_1_2_9_46_1
  doi: 10.3892/ijo.2017.3915
SSID ssj0009042
Score 2.3303878
Snippet Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the...
Recent technological advances have made it possible to collect high-dimensional genomic data along with clinical data on a large number of subjects. In the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100139
SubjectTerms adaptive lasso
Cancer
Chronic illnesses
Computer Simulation
Genomic analysis
Genomics
group penalty
Heterogeneity
Humans
interaction
Neoplasms - genetics
Proportional Hazards Models
semiparametric models
splines
Statistical models
Title Penalized estimation of a class of single‐index varying‐coefficient models for integrative genomic analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.202100139
https://www.ncbi.nlm.nih.gov/pubmed/35837982
https://www.proquest.com/docview/2764730785
https://www.proquest.com/docview/2691057699
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1521-4036
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009042
  issn: 0323-3847
  databaseCode: AMVHM
  dateStart: 20120701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0323-3847
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009042
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEA8iCL7UWrVe1RJB8Gl1L8lls49VFBUUEQXflmSSgFVvS--uUJ_8CP2M_SSdJLtrz1JEfNs_s7vZZGbyyyT5DSFbXln0_CFQZQocoOAoCG2O-0yiMgumC8YhxDtOz-TRlTi5Hlz_tYs_8UN0AbdgGdFfBwPXZrT7RBpqbu6_4viO9SOKQSfc5zKOqS6e-KPKXKRpBMYzjn64ZW3M2e7049O90j9Qcxq5xq7ncIHottBpxcntzmRsduDhGZ_jW_7qPXnX4FL6JSnSIplxww9kLmWq_LlE6nMXEPuDszTQcqT9jrT2VFMI-DschqjDnfv9-CsyMNIfWAi8gudQu0hUgf0bjZl3RhShMm2ZKtDf0kAVe38DVDccKcvk6vDgcv8oa3I1ZMClkllpLCugRIvmHgQDrVELoLA5NwzsQIG0Ire5cFyA7_vCI6xUwueG5aDAe75CZof10K0SqjQzDh0DYh0tSq0NCnILKG1VoUrZI1nbVhU0ROYhn8ZdlSiYWRUqseoqsUe2O_lvicLjv5LrbdNXjSmPKoZKi26wUIMe2exuoxGGmRU9dPUEZWQZ8iXLEl_xMalM9yk-ULwoFcNix4Z_oQzV3vHpSViq9OmV8mtkHi_yFB5aJ7Pj7xO3gYBpbD5Ho_gDud0P9Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxUxEJ4gxOiL4A2PgtbExKeFpe3pdh_FSA7IIcZA4tum1wSBs0bOMZEnf4K_kV_CzHZ3ycEQY3zby-xut52Zfp223wC8idqj56dAlS1wgIKjILQ5ETOFyiy5KbhwFO8YH6jRkdz7MuxWE9JemMQP0QfcyDIaf00GTgHpzWvWUHt89hUHeHyrgTF3YEkqHKwQLvp8zSBV5jJNJHCRCfTEHW9jzjfnn5_vl_4Am_PYtel8dpbBdsVOa05ONmZTu-EubjA6_td_rcCDFpqyd0mXHsJCmDyCuylZ5c_HUH8KBNovgmfEzJG2PLI6MsMcQXA6pMDDabj89bshYWQ_sBR4Bc9dHRquCuziWJN855whWmYdWQW6XEZssWfHjpmWJuUJHO18OHw_ytp0DZkTSqustJ4XrkSjFtFJ7oxBRXCFz4Xlzg-1U17mPpdBSBe3YhERWWoZc8tzp12M4iksTupJeAZMG24D-gaEO0aWxlgUFN6htNeFLtUAsq6xKtdymVNKjdMqsTDziiqx6itxAG97-W-JxeNWybWu7avWms8rjnqLnrDQwwG87m-jHdLkipmEeoYyqqSUyarEV6wmnek_JYZaFKXmWOym5f9Shmp7d7xHq5We_6P8K7g3OhzvV_u7Bx9fwH0UEClatAaL0--zsI74aWpfNhZyBbjXFBY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9UwFG8Ug_HFPyB6FbUmJD4NRttt7aOKN4BCiIGEt6U9bRMQ7ojcayJPfgQ_o5_Ec9Zt5GqMMb5t69nWreec_nra_g5ja1F79PwUqHIVDlBwFIQ2J2NWojIrYSshgeIde_vl9pHaPS761YS0FybxQwwBN7KM1l-TgYcLHzeuWUPdyfkpDvDEZgtjbrJbqjCaVvVtfbxmkDK5ShMJQmYSPXHP25iLjfn75_ul38DmPHZtO5_xPeb6aqc1J5_WZ1O3Dle_MDr-13fdZ3c7aMpfJ116wG6EyRJbTMkqvy6z5iAQaL8KnhMzR9ryyJvILQeC4HRIgYez8OPb95aEkX_BWuAVPIcmtFwV2MXxNvnOJUe0zHuyCnS5nNhiz0-A244m5SE7Gr87fLuddekaMpClLjPjvKjAoFHLCEqAtagIUPlcOgG-0FB6lftcBakgbsYqIrLUKuZO5KAhRrnCFibNJDxmXFvhAvoGhDtWGWsdCkoPKO11pU05YlnfWDV0XOaUUuOsTizMoqafWA8_ccReDfIXicXjj5KrfdvXnTVf1gL1Fj1hpYsRezkUox3S5IqdhGaGMqWhlMmlwUc8SjozvEoWWlZGC6x22_J_qUP9Zmdvl1YrPflH-Rfs9sHWuP6ws__-KbuD5TIFi1bZwvTzLDxD-DR1z1sD-QlFyBOa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penalized+estimation+of+a+class+of+single%E2%80%90index+varying%E2%80%90coefficient+models+for+integrative+genomic+analysis&rft.jtitle=Biometrical+journal&rft.au=Ng%2C+Hoi+Min&rft.au=Jiang%2C+Binyan&rft.au=Wong%2C+Kin+Yau&rft.date=2023-01-01&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=65&rft.issue=1&rft_id=info:doi/10.1002%2Fbimj.202100139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bimj_202100139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon