Penalized estimation of a class of single‐index varying‐coefficient models for integrative genomic analysis
Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understandin...
        Saved in:
      
    
          | Published in | Biometrical journal Vol. 65; no. 1; pp. e2100139 - n/a | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Germany
          Wiley - VCH Verlag GmbH & Co. KGaA
    
        01.01.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0323-3847 1521-4036 1521-4036  | 
| DOI | 10.1002/bimj.202100139 | 
Cover
| Abstract | Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single‐index varying‐coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right‐censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study. | 
    
|---|---|
| AbstractList | Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single‐index varying‐coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right‐censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study. Recent technological advances have made it possible to collect high-dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single-index varying-coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right-censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study.Recent technological advances have made it possible to collect high-dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single-index varying-coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right-censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study. Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single‐index varying‐coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right‐censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study.  | 
    
| Author | Jiang, Binyan Ng, Hoi Min Wong, Kin Yau  | 
    
| Author_xml | – sequence: 1 givenname: Hoi Min orcidid: 0000-0002-1470-9251 surname: Ng fullname: Ng, Hoi Min organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Binyan surname: Jiang fullname: Jiang, Binyan organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Kin Yau orcidid: 0000-0001-9066-1619 surname: Wong fullname: Wong, Kin Yau email: kin-yau.wong@polyu.edu.hk organization: The Hong Kong Polytechnic University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35837982$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkb1uFDEUhS0URDaBlhJZoqHZ5fpnxjMlRPwEBUEBteWxr1dezdjBng0sVR4hz8iT4CUbikiIyr7Wd-69PueEHMUUkZCnDFYMgL8cwrRZceC1YKJ_QBas4WwpQbRHZAGCi6XopDomJ6VsAKAHyR-RY9F0QvUdX5D0GaMZw090FMscJjOHFGny1FA7mlL21xLiesRf1zchOvxBr0ze1Zda24TeBxswznRKDsdCfco0xBnXuXa6QrrGmKZgqalTdiWUx-ShN2PBJ4fzlHx9--bL2fvlxad352evLpZWtF277AfHle0bwYS3kltjfOesciAGbl3T2dZJcCBRSOuZV14w6KSHgYPtrPfilLy47XuZ07dt_ZqeQrE4jiZi2hbN255Bo9q-r-jze-gmbXPdt1KqlUqA6ppKPTtQ22FCpy9zNSvv9J2VFZC3gM2plIxe2zD_sXPOJoyagd4npveJ6b-JVdnqnuyu8z8Fhznfw4i7_9D69fnHD1yoVvwGPjuraw | 
    
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btae132 | 
    
| Cites_doi | 10.1080/03610918.2019.1680691 10.1214/13-AOS1096 10.1016/j.ajhg.2020.08.009 10.1177/0962280220909969 10.1155/2017/7691937 10.1111/j.2517-6161.1993.tb01939.x 10.1080/10618600.2014.938812 10.3150/10-BEJ252 10.1198/016214506000000735 10.1093/bioinformatics/bts655 10.1016/j.jmva.2015.03.008 10.7150/jca.27655 10.1001/jama.1982.03320430047030 10.1007/s11222-012-9332-x 10.1371/journal.pone.0001651 10.1109/IEMBS.2007.4353566 10.1093/bioinformatics/bth294 10.1007/s11464-013-0284-z 10.1007/s11010-014-2074-7 10.1214/12-AOS1077 10.1093/bib/bbu003 10.1093/hmg/ddg287 10.1198/016214501753382273 10.1186/1471-2105-10-413 10.1073/pnas.0401736101 10.1016/j.jmva.2015.02.007 10.4310/SII.2009.v2.n3.a10 10.1214/aos/1176349020 10.1111/j.2517-6161.1996.tb02080.x 10.1186/s13059-019-1640-4 10.1111/j.1467-9868.2005.00532.x 10.1016/j.jspi.2010.10.003 10.1093/bioinformatics/bti824 10.1038/nature10983 10.1186/1755-8794-4-3 10.1093/bioinformatics/btl230 10.1186/1471-2407-8-29 10.1007/978-1-4899-3324-9 10.1038/nm.1790 10.5705/ss.2009.316 10.1136/bmj.313.7059.711 10.1186/gm39 10.1093/bioinformatics/btt610 10.18632/oncotarget.13346 10.1007/s12094-013-1022-4 10.18632/aging.102311 10.18632/oncotarget.26217 10.1093/biostatistics/kxw010 10.18632/oncotarget.8519 10.3892/ijo.2017.3915  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Wiley‐VCH GmbH. 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH.  | 
    
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH. – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8  | 
    
| DOI | 10.1002/bimj.202100139 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1521-4036 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 35837982 10_1002_bimj_202100139 BIMJ2376  | 
    
| Genre | article Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Hong Kong Research Grants Council funderid: PolyU 253042/18P – fundername: Hong Kong Research Grants Council grantid: PolyU 253042/18P  | 
    
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AMVHM CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8  | 
    
| ID | FETCH-LOGICAL-c3686-9bd27c95313fc42caaf8dc7d03b2cd58c6d40d04e34cf1f7f31084f0b20c8cff3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0323-3847 1521-4036  | 
    
| IngestDate | Fri Jul 11 12:16:38 EDT 2025 Tue Oct 07 05:51:07 EDT 2025 Thu Apr 03 07:00:18 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Wed Oct 01 04:57:16 EDT 2025 Wed Jan 22 16:20:49 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | interaction semiparametric models adaptive lasso group penalty splines  | 
    
| Language | English | 
    
| License | 2022 Wiley-VCH GmbH. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3686-9bd27c95313fc42caaf8dc7d03b2cd58c6d40d04e34cf1f7f31084f0b20c8cff3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-1470-9251 0000-0001-9066-1619  | 
    
| PMID | 35837982 | 
    
| PQID | 2764730785 | 
    
| PQPubID | 105592 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_2691057699 proquest_journals_2764730785 pubmed_primary_35837982 crossref_citationtrail_10_1002_bimj_202100139 crossref_primary_10_1002_bimj_202100139 wiley_primary_10_1002_bimj_202100139_BIMJ2376  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2023 2023-01-00 20230101  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Germany | 
    
| PublicationPlace_xml | – name: Germany – name: Weinheim  | 
    
| PublicationTitle | Biometrical journal | 
    
| PublicationTitleAlternate | Biom J | 
    
| PublicationYear | 2023 | 
    
| Publisher | Wiley - VCH Verlag GmbH & Co. KGaA | 
    
| Publisher_xml | – name: Wiley - VCH Verlag GmbH & Co. KGaA | 
    
| References | 2004; 101 2013; 29 2017; 8 2004; 20 2010; 16 2015; 16 2012; 486 2017; 2017 2019; 11 2013; 23 2022; 51 1993; 21 2013; 41 2008; 14 2007 2008; 8 2020; 107 1982; 247 2014; 393 2008; 3 2011; 4 1996; 58 2013; 8 2016; 17 2003; 12 2015; 24 2017; 50 2018; 9 2016; 7 2013; 15 2009; 10 2019; 20 2006; 68 2006; 22 1993; 55 1986; 26 2017 2011; 21 2015; 139 1996; 313 2011; 141 2014; 30 2009; 2 2009; 1 2016; 26 2006; 101 2001; 96 2020; 29 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Tibshirani R. (e_1_2_9_41_1) 1996; 58 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 Hastie T. (e_1_2_9_21_1) 1993; 55 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Lin H. (e_1_2_9_31_1) 2016; 26 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1  | 
    
| References_xml | – volume: 23 start-page: 589 year: 2013 end-page: 599 article-title: Statistical inference for a single‐index varying‐coefficient model publication-title: Statistics and Computing – volume: 11 start-page: 8169 year: 2019 end-page: 8182 article-title: KCNK levels are prognostic and diagnostic markers for hepatocellular carcinoma publication-title: Aging (Albany NY) – volume: 247 start-page: 2543 year: 1982 end-page: 2546 article-title: Evaluating the yield of medical tests publication-title: Journal of American Medical Association – volume: 8 start-page: 541 year: 2013 end-page: 565 article-title: Variable selection for single‐index varying‐coefficient model publication-title: Frontiers of Mathematics in China – volume: 139 start-page: 227 year: 2015 end-page: 244 article-title: Model detection and estimation for single‐index varying coefficient model publication-title: Journal of Multivariate Analysis – volume: 96 start-page: 1348 year: 2001 end-page: 1360 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: Journal of the American Statistical Association – volume: 16 start-page: 1369 year: 2010 end-page: 1384 article-title: Consistent group selection in high‐dimensional linear regression publication-title: Bernoulli (Andover) – volume: 4 start-page: 3 year: 2011 article-title: Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures publication-title: BMC Medical Genomics – volume: 30 start-page: 838 year: 2014 end-page: 845 article-title: A pathway‐based data integration framework for prediction of disease progression publication-title: Bioinformatics – volume: 10 start-page: 413 year: 2009 article-title: Survival prediction from clinico‐genomic models ‐ a comparative study publication-title: BMC Bioinformatics – volume: 9 start-page: 4568 year: 2018 end-page: 4577 article-title: Systematic analysis of gene expression alteration and co‐expression network of eukaryotic initiation factor 4A‐3 in cancer publication-title: Journal of Cancer – volume: 15 start-page: 910 year: 2013 end-page: 918 article-title: Expression and effects of modulation of the K2P potassium channels TREK‐1 (KCNK2) and TREK‐2 (KCNK10) in the normal human ovary and epithelial ovarian cancer publication-title: Clinical and Translational Oncology – volume: 41 start-page: 1111 year: 2013 end-page: 1141 article-title: A lasso for hierarchical interactions publication-title: Annals of Statistics – start-page: 5411 year: 2007 end-page: 5415 article-title: Integration of clinical and microarray data with kernel methods – volume: 29 start-page: 149 year: 2013 end-page: 159 article-title: iBAG: Integrative Bayesian analysis of high‐dimensional multiplatform genomics data publication-title: Bioinformatics – volume: 12 start-page: R153 year: 2003 end-page: R157 article-title: Towards integrated clinico‐genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction publication-title: Human Molecular Genetics – volume: 26 year: 1986 – volume: 16 start-page: 291 year: 2015 end-page: 303 article-title: Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA publication-title: Briefings in Bioinformatics – volume: 2 start-page: 369 year: 2009 end-page: 380 article-title: Penalized methods for bi‐level variable selection publication-title: Statistics and Its Interface – volume: 313 start-page: 711 year: 1996 end-page: 715 article-title: Impaired lung function and mortality risk in men and women: findings from the Renfrew and Paisley prospective population study publication-title: BMJ – volume: 50 start-page: 1383 year: 2017 end-page: 1391 article-title: miR‐28‐5p promotes the development and progression of ovarian cancer through inhibition of N4BP1 publication-title: International Journal of Oncology – volume: 3 year: 2008 article-title: Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival publication-title: PLoS One – volume: 141 start-page: 1362 year: 2011 end-page: 1379 article-title: Penalized least squares for single index models publication-title: Journal of Statistical Planning and Inference – volume: 41 start-page: 802 year: 2013 end-page: 837 article-title: Valid post‐selection inference publication-title: The Annals of Statistics – volume: 9 start-page: 35528 year: 2018 end-page: 35540 article-title: Distinct lung cancer subtypes associate to distinct drivers of tumor progression publication-title: Oncotarget – volume: 7 start-page: 40846 year: 2016 end-page: 40859 article-title: The emerging roles and therapeutic potential of cyclin‐dependent kinase 11 (CDK11) in human cancer publication-title: Oncotarget – volume: 393 start-page: 301 year: 2014 end-page: 307 article-title: Reliability of HSP70 (HSPA) expression as a prognostic marker in glioma publication-title: Molecular and Cellular Biochemistry – volume: 101 start-page: 8431 year: 2004 end-page: 8436 article-title: Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes publication-title: Proceedings of the National Academy of Sciences – volume: 21 start-page: 157 year: 1993 end-page: 178 article-title: Optimal smoothing in single‐index models publication-title: The Annals of Statistics – volume: 26 start-page: 779 year: 2016 end-page: 807 article-title: A semiparametrically efficient estimator of single‐index varying coefficient Cox proportional hazards models publication-title: Statistica Sinica – volume: 8 start-page: 1 year: 2008 end-page: 11 article-title: Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells and publication-title: BMC Cancer – volume: 29 start-page: 2865 year: 2020 end-page: 2880 article-title: Semiparametric integrative interaction analysis for non‐small‐cell lung cancer publication-title: Statistical Methods in Medical Research – year: 2007 – volume: 8 start-page: 133 year: 2017 end-page: 144 article-title: Differentiated regulation of immune‐response related genes between LUAD and LUSC subtypes of lung cancers publication-title: Oncotarget – volume: 21 start-page: 1515 year: 2011 end-page: 1540 article-title: Variable selection and estimation in high‐dimensional varying‐coefficient models publication-title: Statistica Sinica – volume: 51 start-page: 1685 year: 2022 end-page: 1703 article-title: Estimation for a partially linear single‐index varying‐coefficient model publication-title: Communications in Statistics ‐ Simulation and Computation – volume: 2017 year: 2017 article-title: IPF‐LASSO: Integrative ‐penalized egression with penalty factors for prediction based on multi‐omics data publication-title: Computational and Mathematical Methods in Medicine – volume: 68 start-page: 49 year: 2006 end-page: 67 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society: Series B – volume: 24 start-page: 627 year: 2015 end-page: 654 article-title: Learning interactions via hierarchical group‐lasso regularization publication-title: Journal of Computational and Graphical Statistics – volume: 1 start-page: 39 year: 2009 article-title: A kernel‐based integration of genome‐wide data for clinical decision support publication-title: Genome Medicine – volume: 139 start-page: 266 year: 2015 end-page: 282 article-title: High dimensional single index models publication-title: Journal of Multivariate Analysis – volume: 486 start-page: 346 year: 2012 end-page: 352 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature – volume: 22 start-page: e184 year: 2006 end-page: e190 article-title: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks publication-title: Bioinformatics – volume: 20 start-page: 2626 year: 2004 end-page: 2635 article-title: A statistical framework for genomic data fusion publication-title: Bioinformatics – volume: 17 start-page: 605 year: 2016 end-page: 618 article-title: Integrating multidimensional omics data for cancer outcome publication-title: Biostatistics – volume: 14 start-page: 822 year: 2008 end-page: 827 article-title: Gene expression–based survival prediction in lung adenocarcinoma: a multi‐site, blinded validation study publication-title: Nature Medicine – volume: 20 start-page: 52 year: 2019 article-title: I‐Boost: an integrative boosting approach for predicting survival time with multiple genomics platforms publication-title: Genome Biology – volume: 107 start-page: 698 year: 2020 end-page: 713 article-title: Inferring gene‐by‐environment interactions with a Bayesian whole‐genome regression model publication-title: The American Journal of Human Genetics – year: 2017 – volume: 22 start-page: 466 year: 2006 end-page: 471 article-title: Survival prediction of diffuse large‐B‐cell lymphoma based on both clinical and gene expression information publication-title: Bioinformatics – volume: 101 start-page: 1418 year: 2006 end-page: 1429 article-title: The adaptive lasso and its oracle properties publication-title: Journal of the American Statistical Association – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B – volume: 55 start-page: 757 year: 1993 end-page: 779 article-title: Varying‐coefficient models publication-title: Journal of the Royal Statistical Society: Series B – ident: e_1_2_9_51_1 doi: 10.1080/03610918.2019.1680691 – ident: e_1_2_9_4_1 doi: 10.1214/13-AOS1096 – volume: 26 start-page: 779 year: 2016 ident: e_1_2_9_31_1 article-title: A semiparametrically efficient estimator of single‐index varying coefficient Cox proportional hazards models publication-title: Statistica Sinica – ident: e_1_2_9_24_1 doi: 10.1016/j.ajhg.2020.08.009 – ident: e_1_2_9_29_1 doi: 10.1177/0962280220909969 – ident: e_1_2_9_5_1 doi: 10.1155/2017/7691937 – volume: 55 start-page: 757 year: 1993 ident: e_1_2_9_21_1 article-title: Varying‐coefficient models publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.2517-6161.1993.tb01939.x – ident: e_1_2_9_30_1 doi: 10.1080/10618600.2014.938812 – ident: e_1_2_9_43_1 doi: 10.3150/10-BEJ252 – ident: e_1_2_9_54_1 doi: 10.1198/016214506000000735 – ident: e_1_2_9_42_1 doi: 10.1093/bioinformatics/bts655 – ident: e_1_2_9_16_1 doi: 10.1016/j.jmva.2015.03.008 – ident: e_1_2_9_32_1 doi: 10.7150/jca.27655 – ident: e_1_2_9_20_1 doi: 10.1001/jama.1982.03320430047030 – ident: e_1_2_9_47_1 doi: 10.1007/s11222-012-9332-x – ident: e_1_2_9_26_1 doi: 10.1371/journal.pone.0001651 – ident: e_1_2_9_11_1 doi: 10.1109/IEMBS.2007.4353566 – ident: e_1_2_9_25_1 doi: 10.1093/bioinformatics/bth294 – ident: e_1_2_9_15_1 doi: 10.1007/s11464-013-0284-z – ident: e_1_2_9_49_1 – ident: e_1_2_9_2_1 doi: 10.1007/s11010-014-2074-7 – ident: e_1_2_9_3_1 doi: 10.1214/12-AOS1077 – ident: e_1_2_9_50_1 doi: 10.1093/bib/bbu003 – ident: e_1_2_9_33_1 doi: 10.1093/hmg/ddg287 – ident: e_1_2_9_14_1 doi: 10.1198/016214501753382273 – ident: e_1_2_9_6_1 doi: 10.1186/1471-2105-10-413 – ident: e_1_2_9_35_1 doi: 10.1073/pnas.0401736101 – ident: e_1_2_9_36_1 doi: 10.1016/j.jmva.2015.02.007 – ident: e_1_2_9_7_1 doi: 10.4310/SII.2009.v2.n3.a10 – ident: e_1_2_9_19_1 doi: 10.1214/aos/1176349020 – volume: 58 start-page: 267 year: 1996 ident: e_1_2_9_41_1 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_9_45_1 doi: 10.1186/s13059-019-1640-4 – ident: e_1_2_9_48_1 doi: 10.1111/j.1467-9868.2005.00532.x – ident: e_1_2_9_34_1 doi: 10.1016/j.jspi.2010.10.003 – ident: e_1_2_9_27_1 doi: 10.1093/bioinformatics/bti824 – ident: e_1_2_9_10_1 doi: 10.1038/nature10983 – ident: e_1_2_9_13_1 doi: 10.1186/1755-8794-4-3 – ident: e_1_2_9_17_1 doi: 10.1093/bioinformatics/btl230 – ident: e_1_2_9_8_1 doi: 10.1186/1471-2407-8-29 – ident: e_1_2_9_40_1 doi: 10.1007/978-1-4899-3324-9 – ident: e_1_2_9_39_1 doi: 10.1038/nm.1790 – ident: e_1_2_9_44_1 doi: 10.5705/ss.2009.316 – ident: e_1_2_9_22_1 doi: 10.1136/bmj.313.7059.711 – ident: e_1_2_9_12_1 doi: 10.1186/gm39 – ident: e_1_2_9_38_1 doi: 10.1093/bioinformatics/btt610 – ident: e_1_2_9_9_1 doi: 10.18632/oncotarget.13346 – ident: e_1_2_9_23_1 doi: 10.1007/s12094-013-1022-4 – ident: e_1_2_9_18_1 – ident: e_1_2_9_28_1 doi: 10.18632/aging.102311 – ident: e_1_2_9_37_1 doi: 10.18632/oncotarget.26217 – ident: e_1_2_9_53_1 doi: 10.1093/biostatistics/kxw010 – ident: e_1_2_9_52_1 doi: 10.18632/oncotarget.8519 – ident: e_1_2_9_46_1 doi: 10.3892/ijo.2017.3915  | 
    
| SSID | ssj0009042 | 
    
| Score | 2.3303878 | 
    
| Snippet | Recent technological advances have made it possible to collect high‐dimensional genomic data along with clinical data on a large number of subjects. In the... Recent technological advances have made it possible to collect high-dimensional genomic data along with clinical data on a large number of subjects. In the...  | 
    
| SourceID | proquest pubmed crossref wiley  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | e2100139 | 
    
| SubjectTerms | adaptive lasso Cancer Chronic illnesses Computer Simulation Genomic analysis Genomics group penalty Heterogeneity Humans interaction Neoplasms - genetics Proportional Hazards Models semiparametric models splines Statistical models  | 
    
| Title | Penalized estimation of a class of single‐index varying‐coefficient models for integrative genomic analysis | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.202100139 https://www.ncbi.nlm.nih.gov/pubmed/35837982 https://www.proquest.com/docview/2764730785 https://www.proquest.com/docview/2691057699  | 
    
| Volume | 65 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1521-4036 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009042 issn: 0323-3847 databaseCode: AMVHM dateStart: 20120701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0323-3847 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4036 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009042 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEA8iCL7UWrVe1RJB8Gl1L8lls49VFBUUEQXflmSSgFVvS--uUJ_8CP2M_SSdJLtrz1JEfNs_s7vZZGbyyyT5DSFbXln0_CFQZQocoOAoCG2O-0yiMgumC8YhxDtOz-TRlTi5Hlz_tYs_8UN0AbdgGdFfBwPXZrT7RBpqbu6_4viO9SOKQSfc5zKOqS6e-KPKXKRpBMYzjn64ZW3M2e7049O90j9Qcxq5xq7ncIHottBpxcntzmRsduDhGZ_jW_7qPXnX4FL6JSnSIplxww9kLmWq_LlE6nMXEPuDszTQcqT9jrT2VFMI-DschqjDnfv9-CsyMNIfWAi8gudQu0hUgf0bjZl3RhShMm2ZKtDf0kAVe38DVDccKcvk6vDgcv8oa3I1ZMClkllpLCugRIvmHgQDrVELoLA5NwzsQIG0Ire5cFyA7_vCI6xUwueG5aDAe75CZof10K0SqjQzDh0DYh0tSq0NCnILKG1VoUrZI1nbVhU0ROYhn8ZdlSiYWRUqseoqsUe2O_lvicLjv5LrbdNXjSmPKoZKi26wUIMe2exuoxGGmRU9dPUEZWQZ8iXLEl_xMalM9yk-ULwoFcNix4Z_oQzV3vHpSViq9OmV8mtkHi_yFB5aJ7Pj7xO3gYBpbD5Ho_gDud0P9Q | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxUxEJ4gxOiL4A2PgtbExKeFpe3pdh_FSA7IIcZA4tum1wSBs0bOMZEnf4K_kV_CzHZ3ycEQY3zby-xut52Zfp223wC8idqj56dAlS1wgIKjILQ5ETOFyiy5KbhwFO8YH6jRkdz7MuxWE9JemMQP0QfcyDIaf00GTgHpzWvWUHt89hUHeHyrgTF3YEkqHKwQLvp8zSBV5jJNJHCRCfTEHW9jzjfnn5_vl_4Am_PYtel8dpbBdsVOa05ONmZTu-EubjA6_td_rcCDFpqyd0mXHsJCmDyCuylZ5c_HUH8KBNovgmfEzJG2PLI6MsMcQXA6pMDDabj89bshYWQ_sBR4Bc9dHRquCuziWJN855whWmYdWQW6XEZssWfHjpmWJuUJHO18OHw_ytp0DZkTSqustJ4XrkSjFtFJ7oxBRXCFz4Xlzg-1U17mPpdBSBe3YhERWWoZc8tzp12M4iksTupJeAZMG24D-gaEO0aWxlgUFN6htNeFLtUAsq6xKtdymVNKjdMqsTDziiqx6itxAG97-W-JxeNWybWu7avWms8rjnqLnrDQwwG87m-jHdLkipmEeoYyqqSUyarEV6wmnek_JYZaFKXmWOym5f9Shmp7d7xHq5We_6P8K7g3OhzvV_u7Bx9fwH0UEClatAaL0--zsI74aWpfNhZyBbjXFBY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9UwFG8Ug_HFPyB6FbUmJD4NRttt7aOKN4BCiIGEt6U9bRMQ7ojcayJPfgQ_o5_Ec9Zt5GqMMb5t69nWreec_nra_g5ja1F79PwUqHIVDlBwFIQ2J2NWojIrYSshgeIde_vl9pHaPS761YS0FybxQwwBN7KM1l-TgYcLHzeuWUPdyfkpDvDEZgtjbrJbqjCaVvVtfbxmkDK5ShMJQmYSPXHP25iLjfn75_ul38DmPHZtO5_xPeb6aqc1J5_WZ1O3Dle_MDr-13fdZ3c7aMpfJ116wG6EyRJbTMkqvy6z5iAQaL8KnhMzR9ryyJvILQeC4HRIgYez8OPb95aEkX_BWuAVPIcmtFwV2MXxNvnOJUe0zHuyCnS5nNhiz0-A244m5SE7Gr87fLuddekaMpClLjPjvKjAoFHLCEqAtagIUPlcOgG-0FB6lftcBakgbsYqIrLUKuZO5KAhRrnCFibNJDxmXFvhAvoGhDtWGWsdCkoPKO11pU05YlnfWDV0XOaUUuOsTizMoqafWA8_ccReDfIXicXjj5KrfdvXnTVf1gL1Fj1hpYsRezkUox3S5IqdhGaGMqWhlMmlwUc8SjozvEoWWlZGC6x22_J_qUP9Zmdvl1YrPflH-Rfs9sHWuP6ws__-KbuD5TIFi1bZwvTzLDxD-DR1z1sD-QlFyBOa | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penalized+estimation+of+a+class+of+single%E2%80%90index+varying%E2%80%90coefficient+models+for+integrative+genomic+analysis&rft.jtitle=Biometrical+journal&rft.au=Ng%2C+Hoi+Min&rft.au=Jiang%2C+Binyan&rft.au=Wong%2C+Kin+Yau&rft.date=2023-01-01&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=65&rft.issue=1&rft_id=info:doi/10.1002%2Fbimj.202100139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bimj_202100139 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |