Measurement of active power using fiber bragg grating and a piezo-electric transducer

This article develops an optical fiber sensor using fiber Bragg grating (FBG) and a piezo‐electrical transducer (PZT) to measure active power.Mounting an FBG on a PZT bar, a dynamic strain simulator was constructed. The equivalent voltage produced by active power applied to the PZT was converted to...

Full description

Saved in:
Bibliographic Details
Published inMicrowave and optical technology letters Vol. 55; no. 3; pp. 682 - 686
Main Authors Cheng, Chin-Hsing, Chang, Min-Chih, Liu, Wen-Fung
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0895-2477
1098-2760
DOI10.1002/mop.27394

Cover

Abstract This article develops an optical fiber sensor using fiber Bragg grating (FBG) and a piezo‐electrical transducer (PZT) to measure active power.Mounting an FBG on a PZT bar, a dynamic strain simulator was constructed. The equivalent voltage produced by active power applied to the PZT was converted to the dynamic variation of the FBG Bragg wavelength. The active power was attained by measuring the changing value of the wavelength. Thus, the sensor can be used to measure active power without the use of a traditional power meter. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:682–686, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27394
AbstractList This article develops an optical fiber sensor using fiber Bragg grating (FBG) and a piezo-electrical transducer (PZT) to measure active power.Mounting an FBG on a PZT bar, a dynamic strain simulator was constructed. The equivalent voltage produced by active power applied to the PZT was converted to the dynamic variation of the FBG Bragg wavelength. The active power was attained by measuring the changing value of the wavelength. Thus, the sensor can be used to measure active power without the use of a traditional power meter. [copy 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:682-686, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27394
This article develops an optical fiber sensor using fiber Bragg grating (FBG) and a piezo‐electrical transducer (PZT) to measure active power.Mounting an FBG on a PZT bar, a dynamic strain simulator was constructed. The equivalent voltage produced by active power applied to the PZT was converted to the dynamic variation of the FBG Bragg wavelength. The active power was attained by measuring the changing value of the wavelength. Thus, the sensor can be used to measure active power without the use of a traditional power meter. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:682–686, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27394
This article develops an optical fiber sensor using fiber Bragg grating (FBG) and a piezo-electrical transducer (PZT) to measure active power.Mounting an FBG on a PZT bar, a dynamic strain simulator was constructed. The equivalent voltage produced by active power applied to the PZT was converted to the dynamic variation of the FBG Bragg wavelength. The active power was attained by measuring the changing value of the wavelength. Thus, the sensor can be used to measure active power without the use of a traditional power meter. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:682-686, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27394 [PUBLICATION ABSTRACT]
Author Cheng, Chin-Hsing
Chang, Min-Chih
Liu, Wen-Fung
Author_xml – sequence: 1
  givenname: Chin-Hsing
  surname: Cheng
  fullname: Cheng, Chin-Hsing
  email: chcheng@fcu.edu.tw
  organization: Department of Electrical Engineering, Feng Chia University, Taichung 407, Taiwan, Republic of China
– sequence: 2
  givenname: Min-Chih
  surname: Chang
  fullname: Chang, Min-Chih
  organization: Department of Electrical Engineering, Feng Chia University, Taichung 407, Taiwan, Republic of China
– sequence: 3
  givenname: Wen-Fung
  surname: Liu
  fullname: Liu, Wen-Fung
  organization: Department of Electrical Engineering, Feng Chia University, Taichung 407, Taiwan, Republic of China
BookMark eNp9kE1P3DAQhq0KJBbaA__AUi_lEPBHYnuPFBVotQscijhajj1ZGbJ2sJPy8etrum0PSHCa0czzjkbPLtoKMQBC-5QcUkLY0ToOh0zyef0BzSiZq4pJQbbQjKh5U7Fayh20m_MtIYRLyWboegkmTwnWEEYcO2zs6H8BHuIDJDxlH1a4823p22RWK7xKZnyZmeCwwYOH51hBD3ZM3uIxmZDdZCF9RNud6TN8-lv30PXpt58n59Xi8uz7yfGislyoumqtBKE4Ux1zDiztnKitaBpCABredo6TxrG27J3qeEtq3jhhhRJGMetMzffQl83dIcX7CfKo1z5b6HsTIE5Z05rPZU0U4wX9_Aq9jVMK5TtNmWK0kUywQh1sKJtizgk6PSS_NulJU6JfBOsiWP8RXNijV6z1Y9ETQxHh-_cSD76Hp7dP6-Xl1b9EtUn4PMLj_4RJd1pILht9c3Gml4sf9IKLr_qG_waqKp4S
CODEN MOTLEO
CitedBy_id crossref_primary_10_1109_TIM_2022_3211542
crossref_primary_10_1002_mop_27617
crossref_primary_10_1002_mop_28359
Cites_doi 10.1109/68.531843
10.1016/j.jsv.2007.04.037
10.1002/mop.23317
10.1109/TIM.2007.907946
10.1109/68.849081
10.1002/mop.25844
10.1049/el:19960732
10.1109/19.843057
10.1109/50.618377
10.1109/50.618320
10.1002/mop.24660
10.1364/AO.38.002749
10.1109/68.736409
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
7U5
DOI 10.1002/mop.27394
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-2760
EndPage 686
ExternalDocumentID 2876641501
10_1002_mop_27394
MOP27394
ark_67375_WNG_MLJ1N36B_W
Genre article
GrantInformation_xml – fundername: National Science Council of Taiwan, Republic of China
  funderid: NSC 100‐2221‐E‐035‐005; NSC 101‐2221‐E‐035‐073
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SP
8FD
F28
FR3
L7M
7U5
ID FETCH-LOGICAL-c3684-bc7e68328f2ddec1fd64c65500ee53bfd305d2b28fd8f3b0435d6c686a82cda43
IEDL.DBID DR2
ISSN 0895-2477
IngestDate Fri Jul 11 02:50:57 EDT 2025
Fri Jul 25 12:23:24 EDT 2025
Tue Jul 01 00:51:43 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Sun Sep 21 06:20:19 EDT 2025
Sun Sep 21 06:19:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3684-bc7e68328f2ddec1fd64c65500ee53bfd305d2b28fd8f3b0435d6c686a82cda43
Notes istex:2C71E4D60B781D2FCD74E343D4A3FEC4644AA72D
ArticleID:MOP27394
ark:/67375/WNG-MLJ1N36B-W
National Science Council of Taiwan, Republic of China - No. NSC 100-2221-E-035-005; No. NSC 101-2221-E-035-073
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1282157262
PQPubID 1006447
PageCount 5
ParticipantIDs proquest_miscellaneous_1439740823
proquest_journals_1282157262
crossref_primary_10_1002_mop_27394
crossref_citationtrail_10_1002_mop_27394
wiley_primary_10_1002_mop_27394_MOP27394
istex_primary_ark_67375_WNG_MLJ1N36B_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03
March 2013
2013-03-00
20130301
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York
PublicationTitle Microwave and optical technology letters
PublicationTitleAlternate Microw. Opt. Technol. Lett
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References A. Sarkar and S. Sengupta, A low-cost fault-tolerant real, reactive, and apparent power measurement technique using microprocessor, IEEE Trans Instrum Meas 56 ( 2007), 2672-2680.
W.C. Du, X.M. Tao, and H.Y. Tam, Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature, IEEE Photon Technol Lett 11 ( 1999), 105-107.
W.K. Yoon and M.J. Devaney, Reactive power measurement using the wavelet transform, IEEE Trans Instrum Meas 49 ( 2000), 246-252.
C.H. Cheng, L.M. Lin, and W.F. Liu, Measurement of electric power using an optical fiber grating, Microwave Opt Technol Lett 51 ( 2009), 2438-2441.
D.R. Tutakne, H.M. Suryawanshi, T.G. Arora, M. Mishra, and S.G. Tarnekar, Single-phase fast response power factor transducer, IEEE Int Symp Ind Electron 3 ( 2006), 1765-1768.
C.H. Cheng, L.H. Lai, and W.F. Liu, Noise sensor based on a fiber Bragg grating and a piezo-electric transducer, Microwave Opt Technol Lett 53 ( 2011), 958-961.
L.H. Kang, D.K. Kim, and J.H. Han, Estimation of dynamic structural displacements using fiber Bragg grating strain sensors, J Sound Vib 305 ( 2007), 534-542.
K.O. Hill and G. Meltz, Fiber Bragg grating technology fundamentals and overview, J Lightwave Technol 15 ( 1997), 1263-1276.
C.H. Cheng, M.H. Chen, and W.F. Liu, Measurement of AC current using a superstructure fiber grating, Microwave Opt Technol Lett 50 ( 2008), 1168-1171.
A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlance, K.P. Koo, C.G. Askins, M.A. Putnam, and E.J. Friebele, Fiber grating sensors, J Lightwave Technol 15 ( 1997), 1442-1463.
H.J. Patrick, G.M. Williams, A.D. Kersey, J.P. Pedrazzani, and A.M. Vengsarkar, Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination, IEEE Photon Technol Lett 8 ( 1996), 1223-1225.
J. Jung, H. Nam, J.H. Lee, N. Park, and B. Lee, Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier, Appl Opt 38 ( 1999), 2749-2751.
B.O. Guan, H.Y. Tam, X.M. Tao, and X.Y. Dong, Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating, IEEE Photon Technol Lett 12 ( 2000), 675-677.
S.W. James, M.L. Dockney, and R.P. Tatam, Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors, Electron Lett 32 ( 1996), 1133-1134.
2007; 305
2009; 51
2000; 49
2000; 12
1997; 15
1999; 38
2011; 53
1999; 11
2006
2006; 3
2008; 50
2007; 56
1996; 32
1996; 8
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_4_2
Tutakne D.R. (e_1_2_6_13_2) 2006; 3
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_14_2
Yao Y. (e_1_2_6_15_2) 2006
References_xml – reference: B.O. Guan, H.Y. Tam, X.M. Tao, and X.Y. Dong, Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating, IEEE Photon Technol Lett 12 ( 2000), 675-677.
– reference: A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlance, K.P. Koo, C.G. Askins, M.A. Putnam, and E.J. Friebele, Fiber grating sensors, J Lightwave Technol 15 ( 1997), 1442-1463.
– reference: K.O. Hill and G. Meltz, Fiber Bragg grating technology fundamentals and overview, J Lightwave Technol 15 ( 1997), 1263-1276.
– reference: L.H. Kang, D.K. Kim, and J.H. Han, Estimation of dynamic structural displacements using fiber Bragg grating strain sensors, J Sound Vib 305 ( 2007), 534-542.
– reference: J. Jung, H. Nam, J.H. Lee, N. Park, and B. Lee, Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier, Appl Opt 38 ( 1999), 2749-2751.
– reference: S.W. James, M.L. Dockney, and R.P. Tatam, Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors, Electron Lett 32 ( 1996), 1133-1134.
– reference: D.R. Tutakne, H.M. Suryawanshi, T.G. Arora, M. Mishra, and S.G. Tarnekar, Single-phase fast response power factor transducer, IEEE Int Symp Ind Electron 3 ( 2006), 1765-1768.
– reference: C.H. Cheng, L.M. Lin, and W.F. Liu, Measurement of electric power using an optical fiber grating, Microwave Opt Technol Lett 51 ( 2009), 2438-2441.
– reference: W.C. Du, X.M. Tao, and H.Y. Tam, Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature, IEEE Photon Technol Lett 11 ( 1999), 105-107.
– reference: A. Sarkar and S. Sengupta, A low-cost fault-tolerant real, reactive, and apparent power measurement technique using microprocessor, IEEE Trans Instrum Meas 56 ( 2007), 2672-2680.
– reference: W.K. Yoon and M.J. Devaney, Reactive power measurement using the wavelet transform, IEEE Trans Instrum Meas 49 ( 2000), 246-252.
– reference: C.H. Cheng, M.H. Chen, and W.F. Liu, Measurement of AC current using a superstructure fiber grating, Microwave Opt Technol Lett 50 ( 2008), 1168-1171.
– reference: H.J. Patrick, G.M. Williams, A.D. Kersey, J.P. Pedrazzani, and A.M. Vengsarkar, Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination, IEEE Photon Technol Lett 8 ( 1996), 1223-1225.
– reference: C.H. Cheng, L.H. Lai, and W.F. Liu, Noise sensor based on a fiber Bragg grating and a piezo-electric transducer, Microwave Opt Technol Lett 53 ( 2011), 958-961.
– volume: 12
  start-page: 675
  year: 2000
  end-page: 677
  article-title: Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating
  publication-title: IEEE Photon Technol Lett
– volume: 3
  start-page: 1765
  year: 2006
  end-page: 1768
  article-title: Single‐phase fast response power factor transducer
  publication-title: IEEE Int Symp Ind Electron
– volume: 51
  start-page: 2438
  year: 2009
  end-page: 2441
  article-title: Measurement of electric power using an optical fiber grating
  publication-title: Microwave Opt Technol Lett
– volume: 49
  start-page: 246
  year: 2000
  end-page: 252
  article-title: Reactive power measurement using the wavelet transform
  publication-title: IEEE Trans Instrum Meas
– volume: 15
  start-page: 1442
  year: 1997
  end-page: 1463
  article-title: Fiber grating sensors
  publication-title: J Lightwave Technol
– volume: 305
  start-page: 534
  year: 2007
  end-page: 542
  article-title: Estimation of dynamic structural displacements using fiber Bragg grating strain sensors
  publication-title: J Sound Vib
– volume: 38
  start-page: 2749
  year: 1999
  end-page: 2751
  article-title: Simultaneous measurement of strain and temperature by use of a single‐fiber Bragg grating and an erbium‐doped fiber amplifier
  publication-title: Appl Opt
– volume: 53
  start-page: 958
  year: 2011
  end-page: 961
  article-title: Noise sensor based on a fiber Bragg grating and a piezo‐electric transducer
  publication-title: Microwave Opt Technol Lett
– year: 2006
– volume: 32
  start-page: 1133
  year: 1996
  end-page: 1134
  article-title: Simultaneous independent temperature and strain measurement using in‐fiber Bragg grating sensors
  publication-title: Electron Lett
– volume: 8
  start-page: 1223
  year: 1996
  end-page: 1225
  article-title: Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination
  publication-title: IEEE Photon Technol Lett
– volume: 56
  start-page: 2672
  year: 2007
  end-page: 2680
  article-title: A low‐cost fault‐tolerant real, reactive, and apparent power measurement technique using microprocessor
  publication-title: IEEE Trans Instrum Meas
– volume: 50
  start-page: 1168
  year: 2008
  end-page: 1171
  article-title: Measurement of AC current using a superstructure fiber grating
  publication-title: Microwave Opt Technol Lett
– volume: 11
  start-page: 105
  year: 1999
  end-page: 107
  article-title: Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature
  publication-title: IEEE Photon Technol Lett
– volume: 15
  start-page: 1263
  year: 1997
  end-page: 1276
  article-title: Fiber Bragg grating technology fundamentals and overview
  publication-title: J Lightwave Technol
– ident: e_1_2_6_10_2
  doi: 10.1109/68.531843
– ident: e_1_2_6_14_2
  doi: 10.1016/j.jsv.2007.04.037
– ident: e_1_2_6_6_2
  doi: 10.1002/mop.23317
– ident: e_1_2_6_3_2
  doi: 10.1109/TIM.2007.907946
– ident: e_1_2_6_12_2
  doi: 10.1109/68.849081
– ident: e_1_2_6_16_2
  doi: 10.1002/mop.25844
– ident: e_1_2_6_9_2
  doi: 10.1049/el:19960732
– volume-title: International Conference on wireless communications, Networking, and Mobile Computing
  year: 2006
  ident: e_1_2_6_15_2
– ident: e_1_2_6_2_2
  doi: 10.1109/19.843057
– ident: e_1_2_6_5_2
  doi: 10.1109/50.618377
– ident: e_1_2_6_4_2
  doi: 10.1109/50.618320
– ident: e_1_2_6_7_2
  doi: 10.1002/mop.24660
– ident: e_1_2_6_8_2
  doi: 10.1364/AO.38.002749
– volume: 3
  start-page: 1765
  year: 2006
  ident: e_1_2_6_13_2
  article-title: Single‐phase fast response power factor transducer
  publication-title: IEEE Int Symp Ind Electron
– ident: e_1_2_6_11_2
  doi: 10.1109/68.736409
SSID ssj0003772
Score 2.00973
Snippet This article develops an optical fiber sensor using fiber Bragg grating (FBG) and a piezo‐electrical transducer (PZT) to measure active power.Mounting an FBG...
This article develops an optical fiber sensor using fiber Bragg grating (FBG) and a piezo-electrical transducer (PZT) to measure active power.Mounting an FBG...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 682
SubjectTerms active power
Bragg gratings
Dynamics
fiber Bragg grating (FBG)
Lead zirconate titanates
Microwaves
Optical fibers
piezo-electrical transducer (PZT)
Sensors
Transducers
Wavelengths
Title Measurement of active power using fiber bragg grating and a piezo-electric transducer
URI https://api.istex.fr/ark:/67375/WNG-MLJ1N36B-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmop.27394
https://www.proquest.com/docview/1282157262
https://www.proquest.com/docview/1439740823
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KRdAHL1VxtS2jiPiS7e5MMjOLT7VaS3FXEcv2QRjmupRqsuwFpE_-BH-jv8RzJptsKwriW0hOyMnMuWVy5vsIeRb7DLJ84bPCK5fluAdYscizEKQSzuaQ03A38nAkjk7y49PidIO8bPbC1PgQ7YIbekaK1-jgxs731qChX6tpF3LvALFA-1wgbv7rj2voKC4TcVNPwdNZLmWDKtRje-2dV3LRNRzWb1cKzcvlaso3h7fJ50bTus3kvLtc2K67-A3E8T9f5Q65tapD6X5tOHfJRii3yM1L6IRb5HrqDnXze2Q8XK8k0ipSk4IknSLDGsXO-QmN2HlCQYnJhCL8BJ4zpaeGTs_CRfXz-4-acOfM0QWmRw8mNbtPTg7ffDo4ylaMDJnjQuWZdTIIiAEqMgiLrh-9yJ2Aj5xeCAW30UP08MzCda8itz2oxbxwQgmjmPMm5w_IZlmV4SGhhZRRBOcH0hY5D3HgINQhuh2XlhtjOuRFMzfareDKkTXji66BlpmGUdNp1DrkaSs6rTE6_iT0PE1wK2Fm59jUJgs9Hr3Vw3fH_REXr_S4Q7YbC9Arf55ryOJQG0kmWIc8aS-DJ-LvFVOGagkyWNshfzcH3dN0_10bPXz_IR08-nfRx-QGS1wc2AC3TTYXs2XYgYpoYXeT6f8CNRsIEg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTQh44M8AURhgEEK8pGvtxE4lXgAxymgKQpu6l8lK_KeatqVV10poT3wEPiOfhDunSTcEEuItii_Kxfbd_WKffwfwwnc5RvnERolNTRTTGeCUexE5p1JpihhjGp1Gzoayvx_vHiQHa_C6PgtT8UM0C25kGcFfk4HTgvT2ijX0dDJtY_DtxVdgI-zPEST6uiKPEiqUbuqk-H4eK1XzCnX4dvPopWi0QR377RLUvAhYQ8TZuQWHta5VoslxezEv2ub8NxrH__2Y23BzCUXZm2ru3IE1V27CjQsEhZtwNSSImrO7MMpWi4ls4lke_CSbUpE1RsnzY-Yp-YShFuMxIwYKupeXluVseuTOJz-__6hq7hwZNqcIaXFWze7B_s77vXf9aFmUITJCpnFUGOUkuoHUc_SMpuutjI3E_5yOc4kovEUHYnmB7Tb1ouggHLPSyFTmKTc2j8V9WC8npXsALFHKS2dsTxVJLJzvGfR2RHAnVCHyPG_Bq3pwtFkyllPhjBNdcS1zjb2mQ6-14HkjOq1oOv4k9DKMcCORz44pr00lejT8oLPBbnco5Fs9asFWPQX00qTPNAZyhEeKS96CZ00zGiPtsOSlmyxQhuAdlfAWqHsY779ro7PPX8LFw38XfQrX-nvZQA8-Dj89gus8lOagfLgtWJ_PFu4xAqR58STYwS-r2Qww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am0DwwGWAKAwwCCFe0rW2Y6fiiVsZYy0TYuoekCzHl2oaJFHXSmhP_AR-I7-EY6dJNwQS4i1KThTH9jnfF-f4OwBPfJ8iyqc2SW1mEh72AGfUs8Q5mQmTc8S0sBt5NBY7B3z3MD1cg-fNXphaH6JdcAueEeN1cPDK-u2VaOjXsuoi9g74BdjgAmEyMKKPK-0oJmPlpl6Gj6dcykZWqEe321vPgdFG6Ndv55jmWb4aAWd4DT43Ta3zTI67i3neNae_qTj-57tch6tLIkpe1DPnBqy5YhOunJEn3ISLMT3UnNyEyWi1lEhKT3SMkqQKJdZISJ2fEh9STwg2YjolQX8inNOFJZpUR-60_Pn9R11x58iQecBHi3NqdgsOhm8-vdpJliUZEsNExpPcSCcwCGSeYlw0fW8FNwK_cnrOpSz3FsOHpTlet5lneQ_JmBVGZEJn1FjN2W1YL8rC3QGSSumFM3Yg85Qz5wcGY12Qt2MyZ1rrDjxrxkaZpV55KJvxRdVKy1Rhr6nYax143JpWtUjHn4yexgFuLfTsOGS1yVRNxm_VaG-3P2bipZp0YKuZAWrp0CcKYRzJkaSCduBRexldMfxf0YUrF2gTyF0o4M2w7XG4_94aNfqwHw_u_rvpQ7i0_3qo9t6N39-DyzTW5QjJcFuwPp8t3H1kR_P8QfSCX4ZXCt8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+active+power+using+fiber+bragg+grating+and+a+piezo%E2%80%90electric+transducer&rft.jtitle=Microwave+and+optical+technology+letters&rft.au=Cheng%2C+Chin%E2%80%90Hsing&rft.au=Chang%2C+Min%E2%80%90Chih&rft.au=Liu%2C+Wen%E2%80%90Fung&rft.date=2013-03-01&rft.issn=0895-2477&rft.eissn=1098-2760&rft.volume=55&rft.issue=3&rft.spage=682&rft.epage=686&rft_id=info:doi/10.1002%2Fmop.27394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mop_27394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-2477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-2477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-2477&client=summon