Classification of surface EMG signal with fractal dimension
Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm...
Saved in:
| Published in | Journal of Zhejiang University. B. Science Vol. 6; no. 8; pp. 844 - 848 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
China
Department of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
01.08.2005
Zhejiang University Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1673-1581 1009-3095 1862-1783 |
| DOI | 10.1631/jzus.2005.B0844 |
Cover
| Abstract | Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal dimension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can represent different patterns of surface EMG signals. |
|---|---|
| AbstractList | R318.04; Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS)or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal dimension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can represent different patterns of surface EMG signals. Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal dimension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can represent different patterns of surface EMG signals. Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal dimension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can represent different patterns of surface EMG signals. Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal dimension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can represent different patterns of surface EMG signals.Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal dimension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can represent different patterns of surface EMG signals. |
| Author | 胡晓 王志中 任小梅 |
| AuthorAffiliation | Department of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China |
| AuthorAffiliation_xml | – name: Department of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China |
| Author_xml | – sequence: 1 fullname: 胡晓 王志中 任小梅 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16052721$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVUUtv1DAQtlARfcCZG4o4cKiUZfyI4wipEqxKQSriAmdr4ti7XrL2Nk7Ytr--jnalwsljzfeY-eacnIQYLCFvKSyo5PTj5nFKCwZQLb6AEuIFOaNKspLWip_kWta8pJWip-Q8pQ2AEFDLV-SUSqhYzegZ-bTsMSXvvMHRx1BEV6RpcGhscf3jpkh-FbAv9n5cF25AM-ZP57c2pAx-TV467JN9c3wvyO-v17-W38rbnzffl59vS8OlYiWrOs4dRyqoqIRVyFoqnGlVY3mnHFojDTU1CFOJVnW87pwyvLWNaaBuOPALAgfdKezwYY99r3eD3-LwoCnoOQc956DnHHQ755ApVwfKbmq3tjM2jAM-0yJ6_X8n-LVexb-actUo2WSBy4PAHoPDsNKbOA05iqQfN939fdtqO9uBAsYy-MPRbYh3k02j3vpkbN9jsDEPJhU0UIk6A9_9O9bzGsd7ZMD7A8CsY1jd-WzcovnjfG_zepIJUJQ_AZ3kmfc |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2014_07_009 crossref_primary_10_1142_S2424922X18400089 crossref_primary_10_1007_s00521_015_1953_5 crossref_primary_10_1016_j_jelekin_2009_02_003 crossref_primary_10_3390_biology11091337 crossref_primary_10_1016_j_bspc_2018_09_014 crossref_primary_10_1051_matecconf_201815105006 crossref_primary_10_1007_s11517_023_02917_9 crossref_primary_10_1142_S0219477511000570 crossref_primary_10_1109_THMS_2020_3041201 crossref_primary_10_2478_v10178_011_0061_9 crossref_primary_10_1142_S0219519411003867 crossref_primary_10_1007_s13246_011_0066_4 crossref_primary_10_1631_jzus_2006_B0844 crossref_primary_10_1109_JBHI_2013_2261311 crossref_primary_10_29252_nirp_bcn_9_1_15 crossref_primary_10_1016_j_jelekin_2008_05_004 crossref_primary_10_1631_jzus_2007_A0910 crossref_primary_10_1142_S0218348X22501328 crossref_primary_10_1007_s11517_012_0990_9 crossref_primary_10_1080_10255842_2012_675055 |
| ClassificationCodes | R318.04 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. Copyright © 2005, Journal of Zhejiang University Science 2005 |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. – notice: Copyright © 2005, Journal of Zhejiang University Science 2005 |
| DBID | 2RA 92L CQIGP W91 ~WA CGR CUY CVF ECM EIF NPM 7X8 2B. 4A8 92I 93N PSX TCJ 5PM ADTOC UNPAY |
| DOI | 10.1631/jzus.2005.B0844 |
| DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-医药卫生 中文科技期刊数据库- 镜像站点 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Sciences (General) |
| DocumentTitleAlternate | Classification of surface EMG signal with fractal dimension |
| EISSN | 1862-1783 |
| EndPage | 848 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:1389869 PMC1389869 zjdxxbb_e200508022 16052721 20624081 |
| Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: 国家自然科学基金; 国家重点基础研究发展计划(973计划) funderid: (60171006); (2005CB724303) |
| GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 188 1N0 29L 29~ 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2WC 30V 3V. 4.4 406 408 40D 40E 53G 5GY 5VR 5VS 67N 6NX 7X2 7X7 7XC 88E 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AAKDD AANXM AANZL AARHV AARTL AAYIU AAYQN ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABJCF ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABUWG ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACPRK ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKPE ADMDM ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFKRA AFLOW AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AINHJ AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYQR ARAPS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBAFP BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CCEZO CDYEO CEKLB CHBEP COF CQIGP CS3 CSCUP CW9 D1I D1J D1K DIK DNIVK DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HLICF HMJXF HRMNR HVGLF HYE HZ~ IHE IPNFZ IXD I~X I~Z J-C JBSCW JZLTJ K6- KB. KDC KOV L6V LK5 LK8 LLZTM M0K M1P M4Y M7P M7R M7S MA- N2Q NB0 NQJWS NU0 O9- O9J OK1 OVD P62 PATMY PCBAR PDBOC PF0 PQEST PQQKQ PQUKI PROAC PSQYO PT4 PTHSS PYCSY Q2X QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SCL SDH SHX SISQX SJN SJYHP SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TEORI TGP TR2 TSG TUC U2A U9L UG4 UGNYK UKHRP UNUBA UOJIU UTJUX UZ3 UZ4 UZ5 UZXMN VC2 VFIZW W23 W48 W91 WK8 WOQ YLTOR ZMTXR ZOVNA ~A9 ~WA -SA -S~ AACDK AAHBH AAJBT AASML AATNV AAXDM AAYZH ABAKF ABJNI ABQSL ABTKH ACAOD ACDTI ACPIV ACZOJ ADTPH AEFQL AEMSY AESKC AEVLU AGQEE AGRTI AIGIU ALIPV AMXSW AOCGG BSONS CAJEA CCPQU CGR CUY CVF DDRTE DPUIP ECM EIF HMCUK IKXTQ IWAJR NPM NPVJJ Q-- SNPRN SOHCF U1G U5K 7X8 AAPKM ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA PHGZM PHGZT PJZUB PPXIY PQGLB 4A8 ABBRH ABDBE ACMFV AFDZB PMFND PSX 5PM PUEGO --- ADTOC SEG UNPAY |
| ID | FETCH-LOGICAL-c3682-25d33f3a141454e8a2b14fcb89e3d8faec6c1c704c54b8d37df8c3be9c9079303 |
| IEDL.DBID | UNPAY |
| ISSN | 1673-1581 1009-3095 |
| IngestDate | Sun Oct 26 05:57:19 EDT 2025 Tue Sep 30 16:08:35 EDT 2025 Thu May 29 04:06:15 EDT 2025 Tue Oct 21 13:35:21 EDT 2025 Wed Feb 19 01:54:15 EST 2025 Fri Nov 25 07:24:27 EST 2022 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | GP algorithm Fractal dimension Correlation dimension Surface EMG signal Self-similarity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3682-25d33f3a141454e8a2b14fcb89e3d8faec6c1c704c54b8d37df8c3be9c9079303 |
| Notes | R445 33-1356/Q Surface EMG signal, Fractal dimension, Correlation dimension, Self-similarity, GP algorithm ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1631/jzus.2005.B0844 |
| PMID | 16052721 |
| PQID | 68090547 |
| PQPubID | 23479 |
| PageCount | 5 |
| ParticipantIDs | unpaywall_primary_10_1631_jzus_2005_b0844 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1389869 wanfang_journals_zjdxxbb_e200508022 proquest_miscellaneous_68090547 pubmed_primary_16052721 chongqing_backfile_20624081 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-08-00 |
| PublicationDateYYYYMMDD | 2005-08-01 |
| PublicationDate_xml | – month: 08 year: 2005 text: 2005-08-00 |
| PublicationDecade | 2000 |
| PublicationPlace | China |
| PublicationPlace_xml | – name: China – name: Hangzhou |
| PublicationTitle | Journal of Zhejiang University. B. Science |
| PublicationTitleAlternate | Journal of Zhejiang University Science |
| PublicationTitle_FL | JOURNAL OF ZHEJIANG UNIVERSITY SCIENCE B |
| PublicationYear | 2005 |
| Publisher | Department of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China Zhejiang University Press |
| Publisher_xml | – name: Department of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China – name: Zhejiang University Press |
| References | 8818137 - Med Eng Phys. 1996 Jul;18(5):390-5 12636979 - Artif Intell Med. 2003 Feb;27(2):201-22 8892237 - Med Eng Phys. 1996 Oct;18(7):529-37 9291030 - Int J Med Inform. 1997 Jul;45(3):185-92 10969201 - J Electromyogr Kinesiol. 2000 Aug;10(4):275-81 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94 11876246 - Physiol Meas. 2002 Feb;23(1):R1-38 15913836 - Comput Methods Programs Biomed. 2005 Sep;79(3):189-95 10624739 - Med Eng Phys. 1999 Jul-Sep;21(6-7):431-8 |
| References_xml | – reference: 10624739 - Med Eng Phys. 1999 Jul-Sep;21(6-7):431-8 – reference: 8892237 - Med Eng Phys. 1996 Oct;18(7):529-37 – reference: 8818137 - Med Eng Phys. 1996 Jul;18(5):390-5 – reference: 10969201 - J Electromyogr Kinesiol. 2000 Aug;10(4):275-81 – reference: 8468080 - IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94 – reference: 9291030 - Int J Med Inform. 1997 Jul;45(3):185-92 – reference: 11876246 - Physiol Meas. 2002 Feb;23(1):R1-38 – reference: 12636979 - Artif Intell Med. 2003 Feb;27(2):201-22 – reference: 15913836 - Comput Methods Programs Biomed. 2005 Sep;79(3):189-95 |
| SSID | ssj0044076 |
| Score | 1.9188386 |
| Snippet | Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different... Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns... R318.04; Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different... |
| SourceID | unpaywall pubmedcentral wanfang proquest pubmed chongqing |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 844 |
| SubjectTerms | Algorithms Diagnosis, Computer-Assisted - methods Electromyography - methods Fractals Humans Muscle Contraction - physiology Pattern Recognition, Automated - methods Plant & Animal Sciences and Biotechnology Signal Processing, Computer-Assisted 信噪比 图象参数 肌电图学 表面信号 高频噪声 |
| Title | Classification of surface EMG signal with fractal dimension |
| URI | http://lib.cqvip.com/qk/86281A/20058/20624081.html https://www.ncbi.nlm.nih.gov/pubmed/16052721 https://www.proquest.com/docview/68090547 https://d.wanfangdata.com.cn/periodical/zjdxxbb-e200508022 https://pubmed.ncbi.nlm.nih.gov/PMC1389869 http://doi.org/10.1631/jzus.2005.B0844 |
| UnpaywallVersion | submittedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1862-1783 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044076 issn: 1673-1581 databaseCode: HH5 dateStart: 20040101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1862-1783 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044076 issn: 1673-1581 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1862-1783 dateEnd: 20190731 omitProxy: true ssIdentifier: ssj0044076 issn: 1673-1581 databaseCode: 7X7 dateStart: 20050401 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1862-1783 dateEnd: 20190731 omitProxy: true ssIdentifier: ssj0044076 issn: 1673-1581 databaseCode: BENPR dateStart: 20050401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1862-1783 dateEnd: 20181231 omitProxy: true ssIdentifier: ssj0044076 issn: 1673-1581 databaseCode: 8FG dateStart: 20050401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1862-1783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044076 issn: 1673-1581 databaseCode: AGYKE dateStart: 20050101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1862-1783 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044076 issn: 1673-1581 databaseCode: U2A dateStart: 20050401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6N9mF7YbCfGayLtD2Mh7L8sONEe4KpLZpEhaZV6p4s27FhgFwgjYD-9fM5oVAxadpLpCiOpeQ76z777r4D-CQzKVWpWF_R2GBJjnFLSoo-k6lkVDqvYLB2-HCcHUzI9ymd3ifIPgzfZ2n85XRRV83Bx36UE7IG3Yw6zt2B7mR8tPfLhzJ98L6grW7P6lsS30LZhJOZPb50zuBvRPJxPuTT2l6I22txfu5reawR9viB2xk-h9Fd8U6TbXK2W8_lrlo81nL8xxdtwHrLPMO9xlQ24Ym2L2CzXdtV-LkVoN55CV99p0zMIfKwhTMTVvWVEUqHg8NRiCkfbiI8wQ0NFlm5mxKbBODB2yuYDAc_vx302yYLfZVmjl0ntHQApSImMaFE5yKRMTFK5oVOy9wIrTIVKxYRRYnMy5SVJlep1IUqUFsvSl9Dx86sfgsh_uyYRbpATmkEkUaWolRGs8RQpZIAtpY4OCetzlB6iidRhjJrcQAf7pDhzsQxbiGsntUVz_KocMySBfCmwYlfNEocPHabscTtYQNgKwguB6B49uoT-_vEi2hjgDbPigB2lljfT-s2Rg4rjlhhn07KvR0F8LG1Bd4u9IovTsubGym5xmG-bvndf8y4Bc-8FKxPKNyGzvyq1u8dyZnLHqyxKXPXfDjqQXd_MD760Wut_g-2ZP4u |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAXoDxDeUSCAz1sGyd-JOJUUB9CasWBlcrJ8rOlrbyl2Yiyvx6Pk267KhLiGMW2lHxjzWfPzDcA7zXX2lgjxoYRjyU5Pm4prcZCV1owHb2Cx9rh_QO-N6FfDtnhdYLszfA9r8jmybxr-4uPT0VN6V1Y4Sxy7hGsTA6-bn1PocwUvG_YoNuzPEvjLJRNOJ6Go5_RGfyNSN7Oh7zXhXP1-5c6O0u1PMGrcHTD7ew8hN2r4p0-2-R0o5vpDTO_reX4jy96BA8G5plv9aayCndceAyrw95u8w-DAPX6E_iYOmViDlGCLZ_6vO0uvDIu397fzTHlIy6EN7i5xyKr-GCxSQBevD2Fyc72t89746HJwthUPLLrktkIUKUIJZRRV6tSE-qNrhtX2dorZ7ghRhTUMKprWwnra1Np15gGtfWK6hmMwjS4F5DjzyaicA1ySq-o9toqa7wTpWfGlBmsLXCITtqcovSULAuOMmskg7dXyMho4hi3UMFNu1byumgisxQZPO9xkue9Eock8TBWxjNsBmIJwcUAFM9efhN-HCcRbQzQ1rzJYH2B9fWy8WAUsZKIFfbpZDLZUQbvBluQw0Zv5fzEXl5qLR0OS3XLL_9jxTW4n6RgU0LhKxjNLjr3OpKcmX4zWPgfBqL6xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+surface+EMG+signal+with+fractal+dimension&rft.jtitle=Journal+of+Zhejiang+University.+B.+Science&rft.au=Hu%2C+Xiao&rft.au=Wang%2C+Zhi-zhong&rft.au=Ren%2C+Xiao-mei&rft.date=2005-08-01&rft.pub=Zhejiang+University+Press&rft.issn=1673-1581&rft.volume=6&rft.issue=8&rft.spage=844&rft.epage=848&rft_id=info:doi/10.1631%2Fjzus.2005.B0844&rft_id=info%3Apmid%2F16052721&rft.externalDocID=PMC1389869 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86281A%2F86281A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxbb-e%2Fzjdxxbb-e.jpg |