Convergence of the Projection-Difference Method for the Approximate Solution of a Smoothly Solvable Parabolic Equation with a Weighted Integral Condition

We search for an approximate solution of an abstract linear parabolic equation in a Hilbert space with a nonlocal weighted integral condition by the projection-difference method and the implicit Euler method in time. The approximation of the problem with respect to spatial variables is oriented to t...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 275; no. 5; pp. 583 - 591
Main Author Petrova, A. A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
1573-8795
DOI10.1007/s10958-023-06699-1

Cover

Abstract We search for an approximate solution of an abstract linear parabolic equation in a Hilbert space with a nonlocal weighted integral condition by the projection-difference method and the implicit Euler method in time. The approximation of the problem with respect to spatial variables is oriented to the finite element method in the case of arbitrary projection subspaces under an additional smoothness condition. Estimates of errors of approximate solutions are established, the convergence of approximate solutions to the exact solution is proved, and the convergence rate is estimated.
AbstractList We search for an approximate solution of an abstract linear parabolic equation in a Hilbert space with a nonlocal weighted integral condition by the projection-difference method and the implicit Euler method in time. The approximation of the problem with respect to spatial variables is oriented to the finite element method in the case of arbitrary projection subspaces under an additional smoothness condition. Estimates of errors of approximate solutions are established, the convergence of approximate solutions to the exact solution is proved, and the convergence rate is estimated.
We search for an approximate solution of an abstract linear parabolic equation in a Hilbert space with a nonlocal weighted integral condition by the projection-difference method and the implicit Euler method in time. The approximation of the problem with respect to spatial variables is oriented to the finite element method in the case of arbitrary projection subspaces under an additional smoothness condition. Estimates of errors of approximate solutions are established, the convergence of approximate solutions to the exact solution is proved, and the convergence rate is estimated. Keywords and phrases: Hilbert space, parabolic equation, nonlocal weighted integral condition, projection-difference method, implicit Euler method. AMS Subject Classification: 35K90
Audience Academic
Author Petrova, A. A.
Author_xml – sequence: 1
  givenname: A. A.
  surname: Petrova
  fullname: Petrova, A. A.
  email: rezolwenta@mail.ru
  organization: Voronezh State University
BookMark eNqNkV1r2zAUhs3oYP3YH9iVYVe7cKcP27IvQ9ZtgY6VpbBLIctHjoJjpZLcNj9l_3bHSdkIhDF0IXH0vIejRxfJ2eAGSJJ3lFxTQsTHQEldVBlhPCNlWdcZfZWc00LwrBJ1cYZnIljGucjfJBchrAmGyoqfJ7_mbngE38GgIXUmjStI77xbg47WDdknawz4_eU3iCvXpsb5PTTbbr17thsVIV26fpzwqYFKlxvn4qrfTeVH1fTYUHnVuN7q9OZhVHvyycYVsj_BdqsIbboYInRe9SnO09oJuUpeG9UHePuyXyb3n2_u51-z2-9fFvPZbaZ5WdGsJnUDJGecN0KrFp8JuaacCiGqkjOUgTdGVyWtmVFl3lZNKzRRrOVFnVN-mfBD23HYqt2T6nu59fgsv5OUyEmuPMiVKFfu5cop9f6QQgkPI4Qo1270A84pGRoXpSAo_w_VqR6kHYyLXumNDVrOhGBFyThlSGUnKPwRQB_4zcZi-Yi_PsHjamFj9cnAh6MAMhGeY6fGEORi-eOYZQdWexeCB_N_Nl4cBoSHDvxfG_9I_QaiqdTz
Cites_doi 10.1115/1.3424474
10.4213/sm214
10.1134/S0374064118070142
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
ISR
ADTOC
UNPAY
DOI 10.1007/s10958-023-06699-1
DatabaseName CrossRef
Gale In Context: Science
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList





Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 591
ExternalDocumentID 10.1007/s10958-023-06699-1
A772562312
10_1007_s10958_023_06699_1
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ADTOC
UNPAY
ID FETCH-LOGICAL-c3681-909be04233b7cad072e4c131777863266933bfc86192fa64d8bd7c0a2d359413
IEDL.DBID UNPAY
ISSN 1072-3374
1573-8795
IngestDate Tue Aug 19 21:23:00 EDT 2025
Thu Sep 18 00:03:33 EDT 2025
Mon Oct 20 22:48:50 EDT 2025
Fri Jun 13 00:12:56 EDT 2025
Mon Oct 20 16:58:06 EDT 2025
Thu Oct 16 15:53:29 EDT 2025
Wed Oct 01 02:23:49 EDT 2025
Fri Feb 21 02:43:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords nonlocal weighted integral condition
Hilbert space
parabolic equation
implicit Euler method
35K90
projection-difference method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3681-909be04233b7cad072e4c131777863266933bfc86192fa64d8bd7c0a2d359413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10958-023-06699-1.pdf
PQID 2879767057
PQPubID 2043545
PageCount 9
ParticipantIDs unpaywall_primary_10_1007_s10958_023_06699_1
proquest_journals_2879767057
gale_infotracmisc_A772562312
gale_infotracgeneralonefile_A772562312
gale_infotracacademiconefile_A772562312
gale_incontextgauss_ISR_A772562312
crossref_primary_10_1007_s10958_023_06699_1
springer_journals_10_1007_s10958_023_06699_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231000
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References LionsJ-LMagenesEProblèmes aux limites non homogènes et applications1971ParisDunod0212.43801
P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam–New York–Oxford (1978).
PetrovaAAConvergence of the projection-difference method of an approximate solution of a parabolic equation with a weighted integral condition on the solutionDiffer. Uravn.20185479759873849333
SmaginVVEstimates of the convergence rate of the projection and projection-difference methods for weakly solvable parabolic equationsMat. Sb.199718831431601462027
MarchukGIAgoshkovVIIntroduction to Projection-Grid Methods1981MoscowNauka0642.65037[in Russian]
A. A. Petrova and V. V. Smagin, “Solvability of a parabolic variational problem type with a weighted integral condition,” Vestn. Voronezh. Univ. Ser. Fiz. Mat., No. 4, 160–169 (2014).
SamarskiiAALazarovRDMakarovVLFinite-Difference Schemes for Differential Equations with Generalized Solutions1987MoscowVysshaya Shkola[in Russian]
V. V. Smagin, “Energy convergence of the error of the projection-difference method for weakly solvable parabolic equations,” Tr. Mat. Fak. Voronezh. Univ., No. 4, 114–119 (1999).
SmaginVVProjection-difference methods for approximate solution of parabolic equations with nonsymmetric operatorsDiffer. Uravn.200137111512318464060996.65084
AubinJPApproximation of Elliptic Boundary-Value Problems1972New York-LondonWiley-Interscience0248.65063
VainikkoGMOiaPEOn the convergence and the rate of convergence of the Galerkin method for abstract evolutionary equationsDiffer. Uravn.197511712691277
JP Aubin (6699_CR1) 1972
GI Marchuk (6699_CR4) 1981
AA Samarskii (6699_CR7) 1987
6699_CR2
6699_CR9
6699_CR6
AA Petrova (6699_CR5) 2018; 54
VV Smagin (6699_CR8) 1997; 188
GM Vainikko (6699_CR11) 1975; 11
J-L Lions (6699_CR3) 1971
VV Smagin (6699_CR10) 2001; 37
References_xml – reference: SamarskiiAALazarovRDMakarovVLFinite-Difference Schemes for Differential Equations with Generalized Solutions1987MoscowVysshaya Shkola[in Russian]
– reference: MarchukGIAgoshkovVIIntroduction to Projection-Grid Methods1981MoscowNauka0642.65037[in Russian]
– reference: A. A. Petrova and V. V. Smagin, “Solvability of a parabolic variational problem type with a weighted integral condition,” Vestn. Voronezh. Univ. Ser. Fiz. Mat., No. 4, 160–169 (2014).
– reference: V. V. Smagin, “Energy convergence of the error of the projection-difference method for weakly solvable parabolic equations,” Tr. Mat. Fak. Voronezh. Univ., No. 4, 114–119 (1999).
– reference: SmaginVVProjection-difference methods for approximate solution of parabolic equations with nonsymmetric operatorsDiffer. Uravn.200137111512318464060996.65084
– reference: AubinJPApproximation of Elliptic Boundary-Value Problems1972New York-LondonWiley-Interscience0248.65063
– reference: P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam–New York–Oxford (1978).
– reference: VainikkoGMOiaPEOn the convergence and the rate of convergence of the Galerkin method for abstract evolutionary equationsDiffer. Uravn.197511712691277
– reference: SmaginVVEstimates of the convergence rate of the projection and projection-difference methods for weakly solvable parabolic equationsMat. Sb.199718831431601462027
– reference: LionsJ-LMagenesEProblèmes aux limites non homogènes et applications1971ParisDunod0212.43801
– reference: PetrovaAAConvergence of the projection-difference method of an approximate solution of a parabolic equation with a weighted integral condition on the solutionDiffer. Uravn.20185479759873849333
– volume-title: Approximation of Elliptic Boundary-Value Problems
  year: 1972
  ident: 6699_CR1
– ident: 6699_CR6
– ident: 6699_CR2
  doi: 10.1115/1.3424474
– volume: 11
  start-page: 1269
  issue: 7
  year: 1975
  ident: 6699_CR11
  publication-title: Differ. Uravn.
– volume: 188
  start-page: 143
  issue: 3
  year: 1997
  ident: 6699_CR8
  publication-title: Mat. Sb.
  doi: 10.4213/sm214
– volume-title: Problèmes aux limites non homogènes et applications
  year: 1971
  ident: 6699_CR3
– volume: 54
  start-page: 975
  issue: 7
  year: 2018
  ident: 6699_CR5
  publication-title: Differ. Uravn.
  doi: 10.1134/S0374064118070142
– ident: 6699_CR9
– volume-title: Introduction to Projection-Grid Methods
  year: 1981
  ident: 6699_CR4
– volume-title: Finite-Difference Schemes for Differential Equations with Generalized Solutions
  year: 1987
  ident: 6699_CR7
– volume: 37
  start-page: 115
  issue: 1
  year: 2001
  ident: 6699_CR10
  publication-title: Differ. Uravn.
SSID ssj0007683
Score 2.295953
Snippet We search for an approximate solution of an abstract linear parabolic equation in a Hilbert space with a nonlocal weighted integral condition by the...
SourceID unpaywall
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 583
SubjectTerms Convergence
Exact solutions
Finite element method
Hilbert space
Mathematics
Mathematics and Statistics
Smoothness
Subspaces
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQOUAPiE-xUJCFEByopW5sJ_FxVVq1SIsq2orerLHjVJXSbNnsAv0p_FtmnGS7QRWCSw6ZkZV4xvbzeOaZsbceVBZSMxYOpBRKaRBOK3ykzmlXUMyBqpGnn9ODU_XpTJ91RWFNn-3eH0nGmXqt2M3oXOAaQ1Xzxgjc89zVROeFXnyaTFbzLwLoNq0-S4SUmepKZW5vY7Ac_Tkpr52ObrJ7y_oKrn9AVa0tQPsP2YMOOfJJa-pH7E6oH7PN6Yp2tXnCfu1SDnkspwx8VnIU8aM21ILdLz52l6GgcBovjuaIWKPShJjFf15gO4H3gTJqAPjx5QxtWV3T6-9UZsWPYI6OU114vvet5QnnFMxF3a8xzBoKfthyUFQcv6eIOWFP2cn-3snugejuXhBepjllbRgXKGdGusxDgX0ZlB8j2CC-OYR8qUFJ6XPaf5WQqiJ3ReZ3ICmkNrgwPmMb9awOzxkvE10mvgxpGYySkBsoQGoHOyEYdJRsxD70FrBXLcOGveFSJntZtJeN9rLjEXtDRrJEXVFTbsw5LJvGHh5_sRPcKBCaGycj9r5TKmeLOXjoSg3wg4jtaqD5bqB53nJ936a4NVDEQeiH4t5pbDcJNBY3owj2MkTEI7bdO9KN-G8_ub1ytn_okxf_1_pLdj-hERAzErfYxmK-DK8QWS3c6ziQfgNSuhlJ
  priority: 102
  providerName: Springer Nature
Title Convergence of the Projection-Difference Method for the Approximate Solution of a Smoothly Solvable Parabolic Equation with a Weighted Integral Condition
URI https://link.springer.com/article/10.1007/s10958-023-06699-1
https://www.proquest.com/docview/2879767057
https://link.springer.com/content/pdf/10.1007/s10958-023-06699-1.pdf
UnpaywallVersion publishedVersion
Volume 275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-8795
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1573-8795
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: AMVHM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: AFBBN
  dateStart: 19730101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t7QPsge-JjlFZCMEDy7Z8J4_Z1rKBWlVsFduTZTvONJGlpU2B8Z_w33KXj62ZJgTiJZFyJyu2f7bP57ufAV4r4fjaC01DCts2HMcVhnQdfHhSujImnwNlIw-G3uHY-XDqnq7AQZ0LU0S710eSZU4DsTRl-c40TnaWEt9CNzBwvaEM-jA0cL6Jk1Voey5a5C1oj4ej6KwMN7QM2y7ImE3Xtw26W7vKnbm7oMb6dHuWXjouXYN7i2wqrr6LNF1akfoPQdd1KQNRvmwvcrmtft6iefzfyj6CB5XJyqISY49hRWdPYG1wzfc6fwq_9il4vcjj1GySMBSxUenjwX43DqpbWFA4KG6sZmgqF0oRUZr_uMByNKs9dFSAYMeXEwRRekWfv1F-FxuJGSI2vVCs97UkKGfkRUbdz4V_V8fsqCS_SBn-T1wEoz2Dk37vZP_QqC59MJTtBRQuEkpNwTq29JWIsf-0o0y0cojoDm1NL0RJogLa-CXCc-JAxr7aFVZsuyGuyOvQyiaZfg4ssdzEUon2Eh06tghCEQvblWJX6xAR6nfgXd3TfFpSe_AbEmdqc45tzos252YHXhEYOHFmZBSUcy4W8zk_Ov7EI9yhkBlpWh14Wyklk3wmlKhyHPCHiGarofmmoXlekozfpbjZUMTRr5riGpy8mn3mHHfBaGX6aIp3YKvG1434T5Xcugb1X7TJxr-pv4D7FqG4CIXchFY-W-iXaNLlsgvtqL-3N6T3-7OPvS6sjq2oW43j3zYpRcc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9N5YHxsO9pZWyzpml7GEE0cT78WLGydlCERtHYk2U7DkKEFJp2G_tP-G-5y0dpEJrGSx5yJ8uxL_bd-Xc_A3wwioc2EB1HK89zOPeVo32Oj0BrX8eUc6Bq5OFe0D_k3478o6ooLK_R7vWRZLFSLxS7CT9ycI-hqnkhHIx5ljgGKG4Llrpff-705iswutAlsD50Hc8LeVUsc3crjQ3p9rK8cD66Asuz7Fxd_lZpurAFbT-Gw7rzJfLkdGM21Rvm7y1ex_t-3RN4VPmkrFsa0VN4YLNnsDKcE7rmz-Fqi9DpRaGmZeOEoYjtl0kcnFjnS3XNCgqHxZXUDH3hQqlLnOV_TrAdy-oUHDWg2MHZGK0kvaTXv6iAi-2rCZpkemJY76JkIGeUJkbdH0UC18ZsULJbpAz7Exdosxcw2u6NtvpOdauDY7wgIjyI0JbQOJ4OjYpxjiw3HXRjiMkOnclAoCQxEUV2iQp4HOk4NJvKjT1f4Jb7ElrZOLOvgCWun7gmsUFiBfdUJFSsPF-rTWsFmmDYhs_1zMrzkrtD3rA003hLHG9ZjLfstOE9Tb4kUoyMUDfHapbncnDwXXYxBCE_seO24VOllIynE2VUVcSAHSIerYbmx4bmcckifpfiWkMRf2_TFNfGKKvlJZcY5qIbGaKv3Yb12p5uxP_6yPW5Ef_HmKzer_V3sNwfDXfl7mBv5zU8dMmaC9zjGrSmk5l9g_7bVL-tftdrFS45OA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkYAeEE91oQULITjQqN3Yefi4arvqAlutaCt6s_ysKoXsso-W_hT-bWecZLtBFYJLDpmRlXjG9ng832dC3hvFM5eKbqQVYxHniYp0wuGRap1oizkHRCMPj9LDU_75LDlbQfGHavfmSLLCNCBLUznfmVi_swJ8E0kewXqDCHohItj_3OdIlAAefRr3lnMxBNNViX0WR4xlvIbN3N1Ga2n6c4JeOSldJw8X5URdX6miWFmM-k_I4zqKpL3K7E_JPVc-I-vDJQXr7Dn5vYf15AFa6ejYUxDRUZV2AVNE-_XFKCAchkukKUSvQamHLOO_LqAdR5ukGTag6PGPMdi1uMbXlwi5oiM1BScqLgw9-FlxhlNM7ILu95BydZYOKj6KgsL32FAf9oKc9A9O9g6j-h6GyLA0xwoOoR3WzzCdGWWhLx03XQg8kHsOwr9UgMSbHPdiXqXc5tpmZlfFliUCFsmXZK0cl26DUB8nPjbepd4JzlQulFUs0WrXOQFOk3XIp8YCclKxbchbXmW0lwR7yWAv2e2Qd2gkiTQWJdbJnKvFbCYHx99kDzYNGNl14w75WCv58XyqjKphB_BByHzV0vzQ0jyveL_vUtxsKcKANG1x4zSynhBmEjamEPhlEB13yHbjSLfiv_3k9tLZ_qFPXv1f62_Jg9F-X34dHH15TR7FOBhCoeImWZtPF24LAq65fhPG1A29xCBx
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gA98EZsKchCCA40bRPHSXxc9aEWaasVbUU5WX5WFSG73c0C5Z_wb5nJo91UFQJx2cPOyIrtL_Z48s1nQt4YFacuEWGgFWNBHHMVaB7DT6I11xZzDliNPDxM9k_iD6f8dInstLUwFdu9_SRZ1zSgSlNRbk6s31wofBM8C2C_wQp6IQJYb6y_Q5YTDhF5jyyfHI4Gn2u6YRQwVokxhzxlAd6t3dTO3N5QZ3-6uUovfC5dIXfnxURdfld5vrAj7T0gru1LTUT5sjEv9Yb5eUPm8X87-5Dcb0JWOqgx9ogsueIxWRle6b3OnpBf20her-o4HR17CiY6qnM8MO_BTnMLCxiH1Y3VFELlymmAkuY_zqEdR9sMHTag6NHXMYAov8S_v2F9Fx2pKSA2Pzd096IWKKeYRQbfT1V-11l6UItf5BSex1ZktKfkeG_3eHs_aC59CAxLMqSLCO2QrMN0apSF-XOxCSHKQaE7iDUTARZvMjz4eZXENtM2NVsqsowL2JGfkV4xLtxzQn3EfWS8S7wTMVOZUFYxrtWWcwIQmvbJ-3am5aSW9pDXIs445hLGXFZjLsM-eY1gkKiZUSAp50zNZzN5cPRRDuCEgmFkGPXJu8bJj8upMqqpcYAHQpmtjufbjudZLTJ-m-NaxxHeftM1t-CUzeozk3AKhigzhVC8T9ZbfF2b_9TJ9StQ_8WYrP6b-wtyL0IUV1TINdIrp3P3EkK6Ur9q3tjfaHdBzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CONVERGENCE+OF+THE+PROJECTION-DIFFERENCE+METHOD+FOR+THE+APPROXIMATE+SOLUTION+OF+A+SMOOTHLY+SOLVABLE+PARABOLIC+EQUATION+WITH+A+WEIGHTED+INTEGRAL+CONDITION&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Petrova%2C+A.A&rft.date=2023-10-01&rft.pub=Springer&rft.issn=1072-3374&rft.volume=275&rft.issue=5&rft.spage=583&rft_id=info:doi/10.1007%2Fs10958-023-06699-1&rft.externalDocID=A772562312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon