Prediction of leptospirosis cases using classification algorithms

Leptospirosis is a potentially life-threatening disease primarily affecting low-income populations, with an estimated annual incidence of 1.03 million infections worldwide. This disease has symptoms often confused with other febrile syndromes, such as dengue fever, influenza and viral hepatitis, oft...

Full description

Saved in:
Bibliographic Details
Published inIET software Vol. 11; no. 3; pp. 93 - 99
Main Authors Nery, Nivison Ruy Rocha, Claro, Daniela Barreiro, Lindow, Janet C
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.06.2017
Subjects
Online AccessGet full text
ISSN1751-8806
1751-8814
1751-8814
DOI10.1049/iet-sen.2016.0193

Cover

Abstract Leptospirosis is a potentially life-threatening disease primarily affecting low-income populations, with an estimated annual incidence of 1.03 million infections worldwide. This disease has symptoms often confused with other febrile syndromes, such as dengue fever, influenza and viral hepatitis, often making diagnosis challenging. Improving the accuracy of early diagnosis of patients with leptospirosis will increase the speed of appropriate antibiotic treatment delivery, and both will improve clinical outcomes for this potentially fatal disease. The authors conducted an analysis of clinically and epidemiologically defined leptospirosis cases to predict disease using data mining classification algorithms. They conducted four sets of experiments to evaluate the performance of the algorithms, assessing their predictive accuracy of using different training and test datasets. The JRIP algorithm achieved 84% sensitivity using a dataset of only confirmed leptospirosis cases, and a specificity of 99% using a dataset of only confirmed dengue cases. Therefore, the approach successfully predicted leptospirosis cases, differentiated them from similar febrile illnesses, and may represent a new tool to assist health professionals, particularly in endemic areas for leptospirosis, accelerating targeted treatment and minimising disease exacerbation and mortality.
AbstractList Leptospirosis is a potentially life‐threatening disease primarily affecting low‐income populations, with an estimated annual incidence of 1.03 million infections worldwide. This disease has symptoms often confused with other febrile syndromes, such as dengue fever, influenza and viral hepatitis, often making diagnosis challenging. Improving the accuracy of early diagnosis of patients with leptospirosis will increase the speed of appropriate antibiotic treatment delivery, and both will improve clinical outcomes for this potentially fatal disease. The authors conducted an analysis of clinically and epidemiologically defined leptospirosis cases to predict disease using data mining classification algorithms. They conducted four sets of experiments to evaluate the performance of the algorithms, assessing their predictive accuracy of using different training and test datasets. The JRIP algorithm achieved 84% sensitivity using a dataset of only confirmed leptospirosis cases, and a specificity of 99% using a dataset of only confirmed dengue cases. Therefore, the approach successfully predicted leptospirosis cases, differentiated them from similar febrile illnesses, and may represent a new tool to assist health professionals, particularly in endemic areas for leptospirosis, accelerating targeted treatment and minimising disease exacerbation and mortality.
Leptospirosis is a potentially life-threatening disease primarily affecting low-income populations, with an estimated annual incidence of 1.03 million infections worldwide. This disease has symptoms often confused with other febrile syndromes, such as dengue fever, influenza and viral hepatitis, often making diagnosis challenging. Improving the accuracy of early diagnosis of patients with leptospirosis will increase the speed of appropriate antibiotic treatment delivery, and both will improve clinical outcomes for this potentially fatal disease. The authors conducted an analysis of clinically and epidemiologically defined leptospirosis cases to predict disease using data mining classification algorithms. They conducted four sets of experiments to evaluate the performance of the algorithms, assessing their predictive accuracy of using different training and test datasets. The JRIP algorithm achieved 84% sensitivity using a dataset of only confirmed leptospirosis cases, and a specificity of 99% using a dataset of only confirmed dengue cases. Therefore, the approach successfully predicted leptospirosis cases, differentiated them from similar febrile illnesses, and may represent a new tool to assist health professionals, particularly in endemic areas for leptospirosis, accelerating targeted treatment and minimising disease exacerbation and mortality.
Author Claro, Daniela Barreiro
Nery, Nivison Ruy Rocha
Lindow, Janet C
Author_xml – sequence: 1
  givenname: Nivison Ruy Rocha
  surname: Nery
  fullname: Nery, Nivison Ruy Rocha
  organization: 2Semantic Formalisms and Applications Research Group (FORMAS), Computer Science Department, Federal University of Bahia (UFBA), Salvador, Brazil
– sequence: 2
  givenname: Daniela Barreiro
  surname: Claro
  fullname: Claro, Daniela Barreiro
  email: dclaro@ufba.br
  organization: 2Semantic Formalisms and Applications Research Group (FORMAS), Computer Science Department, Federal University of Bahia (UFBA), Salvador, Brazil
– sequence: 3
  givenname: Janet C
  surname: Lindow
  fullname: Lindow, Janet C
  organization: 3Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
BookMark eNqFkF1PwjAUhhuDiYD-AO9268XwnI12nXdIQEmImoDxsimlxZKxLe2I4d-7MWOM8aM3pxfv077n6ZFOXuSakEuEAcIwvba6Cr3OBxEgGwCm8QnpYkIx5ByHnc87sDPS834LQCmN0y4ZPTm9tqqyRR4UJsh0WRW-tK7w1gdKeu2Dvbf5JlCZ9N4aq-QxK7NN4Wz1uvPn5NTIzOuLj9knz9PJcnwfzh_vZuPRPFQx4xBy5KuUJRLjZMVSJZteKVtJBiZKGVDOUDEdgaIxpTo2iiuqGa8P41qjifsE23dVXc47bUTp7E66g0AQjQNROxC1A9E4EI2Dmkm-McpWxwUqJ232J3nTkm8204f_vxKL6Ut0OwVAhBq-auEmti32Lq_FiNlkKRaThy9MuW7WCn_I_l7sHYg2lGc
CitedBy_id crossref_primary_10_1038_s41598_024_62254_1
crossref_primary_10_3389_feart_2020_00377
Cites_doi 10.1016/j.eswa.2011.01.114
10.1093/bioinformatics/16.5.412
10.1371/journal.pntd.0003898
10.1007/978-0-387-09823-4_66
10.1109/ICEEI.2011.6021830
10.1016/j.compbiomed.2015.02.006
10.1590/S0100-736X2013000100013
10.1145/1656274.1656278
10.1016/S0140-6736(99)80012-9
10.1016/j.dss.2010.11.001
10.1145/240455.240464
10.1371/journal.pntd.0000228
10.1093/bjaceaccp/mkn041
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2017 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2017 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-sen.2016.0193
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1751-8814
EndPage 99
ExternalDocumentID 10_1049_iet_sen_2016_0193
SFW2BF00110
Genre article
GroupedDBID 0R
24P
29I
3V.
4.4
4IJ
5GY
6IK
8AL
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ABUWG
ACDCL
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
M0N
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
2QL
96U
AAHJG
AAMMB
ABMDY
ABQXS
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
AEFGJ
AEGXH
AFAZI
AGXDD
AIDQK
AIDYY
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
IDLOA
ITC
K1G
MCNEO
MS~
OK1
PHGZM
PHGZT
PQGLB
PUEGO
WIN
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c3680-818b967a137b69ca881496ba60f29605861c6e20c5355e3fc8c5e6888868ee1f3
IEDL.DBID IDLOA
ISSN 1751-8806
1751-8814
IngestDate Wed Oct 29 21:13:30 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Tue Sep 09 05:09:50 EDT 2025
Tue Jan 05 21:45:55 EST 2021
Thu May 09 18:04:54 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords febrile illnesses
pattern classification
data mining
diseases
data mining classification algorithms
JRIP algorithm
leptospirosis cases
antibiotic treatment delivery
life-threatening disease
dengue cases
patient diagnosis
health care
health professionals assistance
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3680-818b967a137b69ca881496ba60f29605861c6e20c5355e3fc8c5e6888868ee1f3
PageCount 7
ParticipantIDs crossref_citationtrail_10_1049_iet_sen_2016_0193
iet_journals_10_1049_iet_sen_2016_0193
wiley_primary_10_1049_iet_sen_2016_0193_SFW2BF00110
crossref_primary_10_1049_iet_sen_2016_0193
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20170600
June 2017
2017-06-00
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 6
  year: 2017
  text: 20170600
PublicationDecade 2010
PublicationTitle IET software
PublicationYear 2017
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Yeh, J.Y.; Wu, T.H.; Tsao, C.W. (C5) 2011; 50
Costa, F.; Hagan, J.E.; Calcagno, J. (C22) 2015; 9
Hall, M.; Frank, E.; Holmes, G. (C15) 2009; 11
Lalkhen, A.G.; McCluskey, A. (C21) 2008; 8
Reis, R.B.; Ribeiro, G.S.; Felzemburgh, R.D. (C1) 2008; 2
Sahle, G.; Meshesha, M. (C9) 2013; 8
Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. (C8) 1996; 39
Yeh, D.Y.; Cheng, C.H.; Chen, Y.W. (C6) 2011; 38
Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. (C7) 1996; 17
Ko, A.I.; Reis, M.G.; Dourado, C.M.R. (C17) 1999; 354
Baldi, P.; Brunak, S.; Chauvin, Y. (C20) 2000; 16
Oguntimilehin, A.; Adetunmbi, A.O.; Abiola, O.B. (C13) 2015; 4
García-Laencina, P.J.; Abreu, P.H.; Abreu, M.H. (C4) 2015; 59
2009; 11
2015; 59
1996; 17
1996; 39
2015; 4
2000; 16
2012
2011
2010
2011; 50
2009
2008; 8
2016
2015
2014
2002
2013
1999; 354
2008; 2
2011; 38
2013; 8
2015; 9
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
Rocha N. (e_1_2_8_17_1) 2016
e_1_2_8_24_1
e_1_2_8_15_1
e_1_2_8_16_1
Dean A.G. (e_1_2_8_25_1) 2002
Fayyad U. (e_1_2_8_8_1) 1996; 17
e_1_2_8_3_1
e_1_2_8_2_1
Oguntimilehin A. (e_1_2_8_14_1) 2015; 4
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
e_1_2_8_23_1
Sahle G. (e_1_2_8_10_1) 2013; 8
References_xml – volume: 59
  start-page: 125
  year: 2015
  end-page: 133
  ident: C4
  article-title: Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values
  publication-title: Comput. Biol. Med.
– volume: 50
  start-page: 439
  issue: 2
  year: 2011
  end-page: 448
  ident: C5
  article-title: Using data mining techniques to predict hospitalization of hemodialysis patients
  publication-title: Decis. Support Syst.
– volume: 8
  start-page: 221
  issue: 6
  year: 2008
  end-page: 223
  ident: C21
  article-title: Clinical tests: sensitivity and specificity
  publication-title: Contin. Educ. Anaesth. Crit. Care Pain
– volume: 8
  start-page: 7
  issue: 1
  year: 2013
  ident: C9
  article-title: Uncovering knowledge that supports malaria prevention and control intervention program in Ethiopia
  publication-title: Electron. J. Health Inform.
– volume: 9
  start-page: e0003898
  issue: 9), p
  year: 2015
  ident: C22
  article-title: Global morbidity and mortality of leptospirosis: a systematic review
  publication-title: PLoS Negl. Trop. Dis.
– volume: 17
  start-page: 37
  issue: 3
  year: 1996
  ident: C7
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Mag.
– volume: 39
  start-page: 27
  issue: 11
  year: 1996
  end-page: 34
  ident: C8
  article-title: The KDD process for extracting useful knowledge from volumes of data
  publication-title: Commun. ACM
– volume: 2
  start-page: e228
  issue: 4), p
  year: 2008
  ident: C1
  article-title: Impact of environment and social gradient on Leptospira infection in urban slums
  publication-title: PLoS Negl. Trop. Dis.
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  end-page: 18
  ident: C15
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explorations Newsletter
– volume: 16
  start-page: 412
  issue: 5
  year: 2000
  end-page: 424
  ident: C20
  article-title: Assessing the accuracy of prediction algorithms for classification: an overview
  publication-title: Bioinformatics
– volume: 4
  start-page: 1087
  year: 2015
  end-page: 1093
  ident: C13
  article-title: A review of predictive models on diagnosis and treatment of malaria fever
  publication-title: Int. J. Comput. Sci. Mobile Comput.
– volume: 354
  start-page: 820
  issue: 9181
  year: 1999
  end-page: 825
  ident: C17
  article-title: Urban epidemic of severe leptospirosis in Brazil
  publication-title: The Lancet
– volume: 38
  start-page: 8970
  issue: 7
  year: 2011
  end-page: 8977
  ident: C6
  article-title: A predictive model for cerebrovascular disease using data mining
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 7
  issue: 1
  year: 2013
  article-title: Uncovering knowledge that supports malaria prevention and control intervention program in Ethiopia
  publication-title: Electron. J. Health Inform.
– start-page: 1
  year: 2011
  end-page: 6
  article-title: Predictive models for dengue outbreak using multiple rule base classifiers
– volume: 4
  start-page: 1087
  year: 2015
  end-page: 1093
  article-title: A review of predictive models on diagnosis and treatment of malaria fever
  publication-title: Int. J. Comput. Sci. Mobile Comput.
– volume: 50
  start-page: 439
  issue: 2
  year: 2011
  end-page: 448
  article-title: Using data mining techniques to predict hospitalization of hemodialysis patients
  publication-title: Decis. Support Syst.
– start-page: 151
  year: 2013
  end-page: 158
  article-title: The application of machine learning technique for malaria diagnosis
– volume: 59
  start-page: 125
  year: 2015
  end-page: 133
  article-title: Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values
  publication-title: Comput. Biol. Med.
– year: 2002
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  end-page: 18
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explorations Newsletter
– start-page: 966
  year: 2016
  end-page: 971
  article-title: Classification model analysis for the prediction of leptospirosis cases
  publication-title: Actas de la 11ª Conferencia Ibérica de Sistemas y Tecnologías de Información, Gran Canaria, España
– volume: 9
  issue: 9
  year: 2015
  article-title: Global morbidity and mortality of leptospirosis: a systematic review
  publication-title: PLoS Negl. Trop. Dis.
– volume: 17
  start-page: 37
  issue: 3
  year: 1996
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Mag.
– start-page: 1269
  year: 2009
  end-page: 1277
  article-title: Weka-a machine learning workbench for data mining
– volume: 39
  start-page: 27
  issue: 11
  year: 1996
  end-page: 34
  article-title: The KDD process for extracting useful knowledge from volumes of data
  publication-title: Commun. ACM
– volume: 8
  start-page: 221
  issue: 6
  year: 2008
  end-page: 223
  article-title: Clinical tests: sensitivity and specificity
  publication-title: Contin. Educ. Anaesth. Crit. Care Pain
– volume: 16
  start-page: 412
  issue: 5
  year: 2000
  end-page: 424
  article-title: Assessing the accuracy of prediction algorithms for classification: an overview
  publication-title: Bioinformatics
– start-page: 816
  year: 2009
– year: 2014
– volume: 38
  start-page: 8970
  issue: 7
  year: 2011
  end-page: 8977
  article-title: A predictive model for cerebrovascular disease using data mining
  publication-title: Expert Syst. Appl.
– year: 2015
– year: 2010
– volume: 2
  issue: 4
  year: 2008
  article-title: Impact of environment and social gradient on Leptospira infection in urban slums
  publication-title: PLoS Negl. Trop. Dis.
– year: 2012
– volume: 354
  start-page: 820
  issue: 9181
  year: 1999
  end-page: 825
  article-title: Urban epidemic of severe leptospirosis in Brazil
  publication-title: The Lancet
– volume: 8
  start-page: 7
  issue: 1
  year: 2013
  ident: e_1_2_8_10_1
  article-title: Uncovering knowledge that supports malaria prevention and control intervention program in Ethiopia
  publication-title: Electron. J. Health Inform.
– ident: e_1_2_8_24_1
– ident: e_1_2_8_7_1
  doi: 10.1016/j.eswa.2011.01.114
– ident: e_1_2_8_21_1
  doi: 10.1093/bioinformatics/16.5.412
– ident: e_1_2_8_23_1
  doi: 10.1371/journal.pntd.0003898
– ident: e_1_2_8_19_1
– volume: 17
  start-page: 37
  issue: 3
  year: 1996
  ident: e_1_2_8_8_1
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Mag.
– volume: 4
  start-page: 1087
  year: 2015
  ident: e_1_2_8_14_1
  article-title: A review of predictive models on diagnosis and treatment of malaria fever
  publication-title: Int. J. Comput. Sci. Mobile Comput.
– ident: e_1_2_8_20_1
  doi: 10.1007/978-0-387-09823-4_66
– ident: e_1_2_8_3_1
– start-page: 966
  year: 2016
  ident: e_1_2_8_17_1
  article-title: Classification model analysis for the prediction of leptospirosis cases
  publication-title: Actas de la 11ª Conferencia Ibérica de Sistemas y Tecnologías de Información, Gran Canaria, España
– ident: e_1_2_8_11_1
  doi: 10.1109/ICEEI.2011.6021830
– ident: e_1_2_8_5_1
  doi: 10.1016/j.compbiomed.2015.02.006
– ident: e_1_2_8_15_1
– ident: e_1_2_8_12_1
  doi: 10.1590/S0100-736X2013000100013
– volume-title: Epi Info 2002, a database and statistics program for public health professionals for use on Windows 95, 98, ME, NT, 2000 and XP computers
  year: 2002
  ident: e_1_2_8_25_1
– ident: e_1_2_8_16_1
  doi: 10.1145/1656274.1656278
– ident: e_1_2_8_18_1
  doi: 10.1016/S0140-6736(99)80012-9
– ident: e_1_2_8_6_1
  doi: 10.1016/j.dss.2010.11.001
– ident: e_1_2_8_4_1
– ident: e_1_2_8_13_1
– ident: e_1_2_8_9_1
  doi: 10.1145/240455.240464
– ident: e_1_2_8_2_1
  doi: 10.1371/journal.pntd.0000228
– ident: e_1_2_8_22_1
  doi: 10.1093/bjaceaccp/mkn041
SSID ssj0055539
Score 2.1137347
Snippet Leptospirosis is a potentially life-threatening disease primarily affecting low-income populations, with an estimated annual incidence of 1.03 million...
Leptospirosis is a potentially life‐threatening disease primarily affecting low‐income populations, with an estimated annual incidence of 1.03 million...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms antibiotic treatment delivery
data mining
data mining classification algorithms
dengue cases
diseases
febrile illnesses
health care
health professionals assistance
JRIP algorithm
leptospirosis cases
life-threatening disease
patient diagnosis
pattern classification
Special Issue: Advances in Knowledge and Information Software Management
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9zvvjitzi_CCI-CNWmbdLkccrGFByCDn0LbZboYG5jrf-_d1k3GcIEH9teGnKXy_0ul9wRcsGirC_7VgWJtOCgcGsD6UIXOJdyw61I-xwvOD92RaeXPLzxtxq5m9-FmeWHWGy4oWb49RoVPMtnVUgA1IIQB7YMCospTJm4BqASr5F1BngGp3mUPM2XY865LycGZpIFUrJkEdpUN79-sWSc1uDzMmT1Nqe9TTYrsEibM-nukJod7ZKteSEGWunlHmk-TTHegjymY0eHdlJiORDoY1BQA3aqoHi-_Z0axMp4OMjLg2bD9_F0UH58Fvuk12693HWCqjZCYGIhwwDsbK5EmrE4zYUyGY5MiTwToYsUhjoFM8JGoeEAKGzsjETOg7srhbSWufiA1EfjkT0kVJjQOgd-F3p74E5K5nJ4domTXIUqbZBwzhRtqsThWL9iqH0AO1EaGKWBjxr5qJGPDXK1aDKZZc1YRXyJ7yrdKVYRni8R3rde9HOr-0OgJ33XILGX2N_96uf2a3Tb9lnzjv7V6phsRGjl_abMCamX0y97ChilzM_8HPwGMoPetg
  priority: 102
  providerName: Wiley-Blackwell
Title Prediction of leptospirosis cases using classification algorithms
URI http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2016.0193
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-sen.2016.0193
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library (Open Access)
  customDbUrl:
  eissn: 1751-8814
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055539
  issn: 1751-8806
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8814
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055539
  issn: 1751-8806
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8814
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055539
  issn: 1751-8806
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7R9sJlea62PCoLrTggecnLjnMs0AoQi5CgLNqLlTh2qVTaqi3_n5kkpaqEgGOSSWzNOJ7v89gzAL_9IM1VbhMeKYsERVjLlfMcdy4WRlgZ54IOOP-9lZe96PpJPC2PR-eDPtXK4IsVN1ott-XJA9q6jfPwaaXjsiAJ4ttTFOAzS7lMffkHEUtYg0aA7DyoQ-Pq4oYoVjkzCyGKymLoMX2O41a-Rzk_-MiKn6rh41X0Wrif7ib8qHAja5eG3oI1O9qGjUVNBlb9ojvQvptS6IXUzcaODe1kTpVBsI3BjBl0WTNGW937zBBspn1ChWlYOuyPp4P588tsF3rdzsP5Ja_KJHATSuVxdLlZIuPUD-NMJiZVClmPzFLpuSChqKf0jbSBZwRiCxs6o8gIyHyVVNb6LvwJ9dF4ZH8Bk8azziEFI-KHzFL5LsNrFzklEi-Jm-AtlKJNlUOcSlkMdRHLjhKNitKoR0161KTHJpy8vzIpE2h8JnxM9xYm_kzwaEXwqvOg7zu3SwE9yV0TwsJiX7er77v_grNukUBv77t92If1gHx8sSRzAPX59NUeIkKZZy2oBdFdCxrtx97_Xqsahm-TOuM1
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9owED4BfehetrXdNLZ1taqqD5XSxkns2I90A9EfICSo1jcrMXaHxACR7P-fzwQqVIlKfUxyjpXPOd99PvsO4IxG2ViMjQwSYRxBYcYEwoY2sDZlmhmejhkecO71efchuX1kjzX4tT4Ls8oPsVlwQ83w8zUqOC5IrwhngkkyJ6YMCoM5TCm_dJ5KXIe9hFOOFCxKBuv5mDHm64k5O0kDIWiyiW3Kqxev2LJOdfd422f1RqfzEd5X3iJprYb3AGpmdggf1pUYSKWYR9AaLDHggiCTuSVTsyixHojrY1IQ7QxVQXCD-xPR6Czj7iA_ICSbPs2Xk_LP3-ITPHTao5_doCqOEOiYizBwhjaXPM1onOZc6gy_TPI846GNJMY6OdXcRKFmzqMwsdUCoXd8V3BhDLXxZ2jM5jPzBQjXobHWES-ke45PCmpzd20TK5gMZdqEcA2K0lXmcCxgMVU-gp1I5YBSDkeFOCrEsQkXmyaLVdqMXcLneK9SnmKX4OmW4E17pIbt_rOAWoxtE2I_Yq_3q4ad39F1x6fN-_qmView3x317tX9Tf_uG7yL0OT7FZrv0CiX_8yxc1jK_If_H_8DRV3iIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5tnYR4gTFAFNhmoYkHpEB-2bEfu63RBls1aStMvFiJex6VSls14f_nLk07VUhD2mOSc6J89vm789l3AEdRXIz0CE2QaiQHRSIG2oc-8D6TTqLKRpIPOF8O1Nkw_Xorb7fgdHUWZpkfYr3gxprRzNes4Dgf-aXDmXKSzDHWQYWcwzRSn8lSSbZhh_g8TDuw0_s-_DlczchSyqaiGDFlFGgdpevopvnyz0s2-GmbHm9arQ3t5LvwrLUXRW_ZwS9gC6d78HxVi0G0qvkSelcLDrkwzGLmxQTnNVcEoW-MK-GIqirBW9zvhGNzmfcHNV0iisndbDGuf_2uXsEw79-cnAVteYTAJUqHAVFtaVRWRElWKuMK_jOjykKFPjYc7VSRUxiHTpJNgYl3msEnj1crjRj55DV0prMpvgGhXIjek-vFDh95lDryJV371GtpQpN1IVyBYl2bO5xLWExsE8NOjSWgLOFoGUfLOHbh07rJfJk44yHhj3yvVZ_qIcEPG4Ln_Rt73R_cC1gaI11Imh77_3ftdf4jPs6bxHlvH9XqEJ5cneb24nzw7R08jZnzmyWa99CpF39wnyyWujxoB-Rfb9Ljdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+leptospirosis+cases+using+classification+algorithms&rft.jtitle=IET+software&rft.au=Nery%2C+Nivison+Ruy+Rocha&rft.au=Claro%2C+Daniela+Barreiro&rft.au=Lindow%2C+Janet+C.&rft.date=2017-06-01&rft.issn=1751-8806&rft.volume=11&rft.issue=3&rft.spage=93&rft.epage=99&rft_id=info:doi/10.1049%2Fiet-sen.2016.0193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_sen_2016_0193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8806&client=summon