Prediction of leptospirosis cases using classification algorithms
Leptospirosis is a potentially life-threatening disease primarily affecting low-income populations, with an estimated annual incidence of 1.03 million infections worldwide. This disease has symptoms often confused with other febrile syndromes, such as dengue fever, influenza and viral hepatitis, oft...
Saved in:
| Published in | IET software Vol. 11; no. 3; pp. 93 - 99 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
The Institution of Engineering and Technology
01.06.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-8806 1751-8814 1751-8814 |
| DOI | 10.1049/iet-sen.2016.0193 |
Cover
| Abstract | Leptospirosis is a potentially life-threatening disease primarily affecting low-income populations, with an estimated annual incidence of 1.03 million infections worldwide. This disease has symptoms often confused with other febrile syndromes, such as dengue fever, influenza and viral hepatitis, often making diagnosis challenging. Improving the accuracy of early diagnosis of patients with leptospirosis will increase the speed of appropriate antibiotic treatment delivery, and both will improve clinical outcomes for this potentially fatal disease. The authors conducted an analysis of clinically and epidemiologically defined leptospirosis cases to predict disease using data mining classification algorithms. They conducted four sets of experiments to evaluate the performance of the algorithms, assessing their predictive accuracy of using different training and test datasets. The JRIP algorithm achieved 84% sensitivity using a dataset of only confirmed leptospirosis cases, and a specificity of 99% using a dataset of only confirmed dengue cases. Therefore, the approach successfully predicted leptospirosis cases, differentiated them from similar febrile illnesses, and may represent a new tool to assist health professionals, particularly in endemic areas for leptospirosis, accelerating targeted treatment and minimising disease exacerbation and mortality. |
|---|---|
| AbstractList | Leptospirosis is a potentially life‐threatening disease primarily affecting low‐income populations, with an estimated annual incidence of 1.03 million infections worldwide. This disease has symptoms often confused with other febrile syndromes, such as dengue fever, influenza and viral hepatitis, often making diagnosis challenging. Improving the accuracy of early diagnosis of patients with leptospirosis will increase the speed of appropriate antibiotic treatment delivery, and both will improve clinical outcomes for this potentially fatal disease. The authors conducted an analysis of clinically and epidemiologically defined leptospirosis cases to predict disease using data mining classification algorithms. They conducted four sets of experiments to evaluate the performance of the algorithms, assessing their predictive accuracy of using different training and test datasets. The JRIP algorithm achieved 84% sensitivity using a dataset of only confirmed leptospirosis cases, and a specificity of 99% using a dataset of only confirmed dengue cases. Therefore, the approach successfully predicted leptospirosis cases, differentiated them from similar febrile illnesses, and may represent a new tool to assist health professionals, particularly in endemic areas for leptospirosis, accelerating targeted treatment and minimising disease exacerbation and mortality. Leptospirosis is a potentially life-threatening disease primarily affecting low-income populations, with an estimated annual incidence of 1.03 million infections worldwide. This disease has symptoms often confused with other febrile syndromes, such as dengue fever, influenza and viral hepatitis, often making diagnosis challenging. Improving the accuracy of early diagnosis of patients with leptospirosis will increase the speed of appropriate antibiotic treatment delivery, and both will improve clinical outcomes for this potentially fatal disease. The authors conducted an analysis of clinically and epidemiologically defined leptospirosis cases to predict disease using data mining classification algorithms. They conducted four sets of experiments to evaluate the performance of the algorithms, assessing their predictive accuracy of using different training and test datasets. The JRIP algorithm achieved 84% sensitivity using a dataset of only confirmed leptospirosis cases, and a specificity of 99% using a dataset of only confirmed dengue cases. Therefore, the approach successfully predicted leptospirosis cases, differentiated them from similar febrile illnesses, and may represent a new tool to assist health professionals, particularly in endemic areas for leptospirosis, accelerating targeted treatment and minimising disease exacerbation and mortality. |
| Author | Claro, Daniela Barreiro Nery, Nivison Ruy Rocha Lindow, Janet C |
| Author_xml | – sequence: 1 givenname: Nivison Ruy Rocha surname: Nery fullname: Nery, Nivison Ruy Rocha organization: 2Semantic Formalisms and Applications Research Group (FORMAS), Computer Science Department, Federal University of Bahia (UFBA), Salvador, Brazil – sequence: 2 givenname: Daniela Barreiro surname: Claro fullname: Claro, Daniela Barreiro email: dclaro@ufba.br organization: 2Semantic Formalisms and Applications Research Group (FORMAS), Computer Science Department, Federal University of Bahia (UFBA), Salvador, Brazil – sequence: 3 givenname: Janet C surname: Lindow fullname: Lindow, Janet C organization: 3Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA |
| BookMark | eNqFkF1PwjAUhhuDiYD-AO9268XwnI12nXdIQEmImoDxsimlxZKxLe2I4d-7MWOM8aM3pxfv077n6ZFOXuSakEuEAcIwvba6Cr3OBxEgGwCm8QnpYkIx5ByHnc87sDPS834LQCmN0y4ZPTm9tqqyRR4UJsh0WRW-tK7w1gdKeu2Dvbf5JlCZ9N4aq-QxK7NN4Wz1uvPn5NTIzOuLj9knz9PJcnwfzh_vZuPRPFQx4xBy5KuUJRLjZMVSJZteKVtJBiZKGVDOUDEdgaIxpTo2iiuqGa8P41qjifsE23dVXc47bUTp7E66g0AQjQNROxC1A9E4EI2Dmkm-McpWxwUqJ232J3nTkm8204f_vxKL6Ut0OwVAhBq-auEmti32Lq_FiNlkKRaThy9MuW7WCn_I_l7sHYg2lGc |
| CitedBy_id | crossref_primary_10_1038_s41598_024_62254_1 crossref_primary_10_3389_feart_2020_00377 |
| Cites_doi | 10.1016/j.eswa.2011.01.114 10.1093/bioinformatics/16.5.412 10.1371/journal.pntd.0003898 10.1007/978-0-387-09823-4_66 10.1109/ICEEI.2011.6021830 10.1016/j.compbiomed.2015.02.006 10.1590/S0100-736X2013000100013 10.1145/1656274.1656278 10.1016/S0140-6736(99)80012-9 10.1016/j.dss.2010.11.001 10.1145/240455.240464 10.1371/journal.pntd.0000228 10.1093/bjaceaccp/mkn041 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2017 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2017 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-sen.2016.0193 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1751-8814 |
| EndPage | 99 |
| ExternalDocumentID | 10_1049_iet_sen_2016_0193 SFW2BF00110 |
| Genre | article |
| GroupedDBID | 0R 24P 29I 3V. 4.4 4IJ 5GY 6IK 8AL 8FE 8FG 8VB AAJGR ABJCF ABPTK ABUWG ACDCL ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BFFAM BGLVJ BPHCQ CS3 DU5 DWQXO EBS EJD ESX GNUQQ GOZPB GRPMH HCIFZ HZ IFIPE IPLJI JAVBF K6V K7- L6V LAI LOTEE LXI M0N M43 M7S MS NADUK NXXTH O9- OCL P62 PQEST PQQKQ PQUKI PROAC PTHSS QWB RIE RNS RUI U5U UNMZH UNR ZL0 .DC 0R~ 0ZK 1OC 2QL 96U AAHJG AAMMB ABMDY ABQXS ACCMX ACESK ACGFO ACXQS ADEYR AEFGJ AEGXH AFAZI AGXDD AIDQK AIDYY ALUQN AVUZU CCPQU F8P GROUPED_DOAJ HZ~ IAO IDLOA ITC K1G MCNEO MS~ OK1 PHGZM PHGZT PQGLB PUEGO WIN AAYXX AFFHD CITATION |
| ID | FETCH-LOGICAL-c3680-818b967a137b69ca881496ba60f29605861c6e20c5355e3fc8c5e6888868ee1f3 |
| IEDL.DBID | IDLOA |
| ISSN | 1751-8806 1751-8814 |
| IngestDate | Wed Oct 29 21:13:30 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Tue Sep 09 05:09:50 EDT 2025 Tue Jan 05 21:45:55 EST 2021 Thu May 09 18:04:54 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | febrile illnesses pattern classification data mining diseases data mining classification algorithms JRIP algorithm leptospirosis cases antibiotic treatment delivery life-threatening disease dengue cases patient diagnosis health care health professionals assistance |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3680-818b967a137b69ca881496ba60f29605861c6e20c5355e3fc8c5e6888868ee1f3 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1049_iet_sen_2016_0193 iet_journals_10_1049_iet_sen_2016_0193 wiley_primary_10_1049_iet_sen_2016_0193_SFW2BF00110 crossref_primary_10_1049_iet_sen_2016_0193 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 20170600 June 2017 2017-06-00 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 6 year: 2017 text: 20170600 |
| PublicationDecade | 2010 |
| PublicationTitle | IET software |
| PublicationYear | 2017 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Yeh, J.Y.; Wu, T.H.; Tsao, C.W. (C5) 2011; 50 Costa, F.; Hagan, J.E.; Calcagno, J. (C22) 2015; 9 Hall, M.; Frank, E.; Holmes, G. (C15) 2009; 11 Lalkhen, A.G.; McCluskey, A. (C21) 2008; 8 Reis, R.B.; Ribeiro, G.S.; Felzemburgh, R.D. (C1) 2008; 2 Sahle, G.; Meshesha, M. (C9) 2013; 8 Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. (C8) 1996; 39 Yeh, D.Y.; Cheng, C.H.; Chen, Y.W. (C6) 2011; 38 Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. (C7) 1996; 17 Ko, A.I.; Reis, M.G.; Dourado, C.M.R. (C17) 1999; 354 Baldi, P.; Brunak, S.; Chauvin, Y. (C20) 2000; 16 Oguntimilehin, A.; Adetunmbi, A.O.; Abiola, O.B. (C13) 2015; 4 García-Laencina, P.J.; Abreu, P.H.; Abreu, M.H. (C4) 2015; 59 2009; 11 2015; 59 1996; 17 1996; 39 2015; 4 2000; 16 2012 2011 2010 2011; 50 2009 2008; 8 2016 2015 2014 2002 2013 1999; 354 2008; 2 2011; 38 2013; 8 2015; 9 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 Rocha N. (e_1_2_8_17_1) 2016 e_1_2_8_24_1 e_1_2_8_15_1 e_1_2_8_16_1 Dean A.G. (e_1_2_8_25_1) 2002 Fayyad U. (e_1_2_8_8_1) 1996; 17 e_1_2_8_3_1 e_1_2_8_2_1 Oguntimilehin A. (e_1_2_8_14_1) 2015; 4 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 e_1_2_8_23_1 Sahle G. (e_1_2_8_10_1) 2013; 8 |
| References_xml | – volume: 59 start-page: 125 year: 2015 end-page: 133 ident: C4 article-title: Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values publication-title: Comput. Biol. Med. – volume: 50 start-page: 439 issue: 2 year: 2011 end-page: 448 ident: C5 article-title: Using data mining techniques to predict hospitalization of hemodialysis patients publication-title: Decis. Support Syst. – volume: 8 start-page: 221 issue: 6 year: 2008 end-page: 223 ident: C21 article-title: Clinical tests: sensitivity and specificity publication-title: Contin. Educ. Anaesth. Crit. Care Pain – volume: 8 start-page: 7 issue: 1 year: 2013 ident: C9 article-title: Uncovering knowledge that supports malaria prevention and control intervention program in Ethiopia publication-title: Electron. J. Health Inform. – volume: 9 start-page: e0003898 issue: 9), p year: 2015 ident: C22 article-title: Global morbidity and mortality of leptospirosis: a systematic review publication-title: PLoS Negl. Trop. Dis. – volume: 17 start-page: 37 issue: 3 year: 1996 ident: C7 article-title: From data mining to knowledge discovery in databases publication-title: AI Mag. – volume: 39 start-page: 27 issue: 11 year: 1996 end-page: 34 ident: C8 article-title: The KDD process for extracting useful knowledge from volumes of data publication-title: Commun. ACM – volume: 2 start-page: e228 issue: 4), p year: 2008 ident: C1 article-title: Impact of environment and social gradient on Leptospira infection in urban slums publication-title: PLoS Negl. Trop. Dis. – volume: 11 start-page: 10 issue: 1 year: 2009 end-page: 18 ident: C15 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explorations Newsletter – volume: 16 start-page: 412 issue: 5 year: 2000 end-page: 424 ident: C20 article-title: Assessing the accuracy of prediction algorithms for classification: an overview publication-title: Bioinformatics – volume: 4 start-page: 1087 year: 2015 end-page: 1093 ident: C13 article-title: A review of predictive models on diagnosis and treatment of malaria fever publication-title: Int. J. Comput. Sci. Mobile Comput. – volume: 354 start-page: 820 issue: 9181 year: 1999 end-page: 825 ident: C17 article-title: Urban epidemic of severe leptospirosis in Brazil publication-title: The Lancet – volume: 38 start-page: 8970 issue: 7 year: 2011 end-page: 8977 ident: C6 article-title: A predictive model for cerebrovascular disease using data mining publication-title: Expert Syst. Appl. – volume: 8 start-page: 7 issue: 1 year: 2013 article-title: Uncovering knowledge that supports malaria prevention and control intervention program in Ethiopia publication-title: Electron. J. Health Inform. – start-page: 1 year: 2011 end-page: 6 article-title: Predictive models for dengue outbreak using multiple rule base classifiers – volume: 4 start-page: 1087 year: 2015 end-page: 1093 article-title: A review of predictive models on diagnosis and treatment of malaria fever publication-title: Int. J. Comput. Sci. Mobile Comput. – volume: 50 start-page: 439 issue: 2 year: 2011 end-page: 448 article-title: Using data mining techniques to predict hospitalization of hemodialysis patients publication-title: Decis. Support Syst. – start-page: 151 year: 2013 end-page: 158 article-title: The application of machine learning technique for malaria diagnosis – volume: 59 start-page: 125 year: 2015 end-page: 133 article-title: Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values publication-title: Comput. Biol. Med. – year: 2002 – volume: 11 start-page: 10 issue: 1 year: 2009 end-page: 18 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explorations Newsletter – start-page: 966 year: 2016 end-page: 971 article-title: Classification model analysis for the prediction of leptospirosis cases publication-title: Actas de la 11ª Conferencia Ibérica de Sistemas y Tecnologías de Información, Gran Canaria, España – volume: 9 issue: 9 year: 2015 article-title: Global morbidity and mortality of leptospirosis: a systematic review publication-title: PLoS Negl. Trop. Dis. – volume: 17 start-page: 37 issue: 3 year: 1996 article-title: From data mining to knowledge discovery in databases publication-title: AI Mag. – start-page: 1269 year: 2009 end-page: 1277 article-title: Weka-a machine learning workbench for data mining – volume: 39 start-page: 27 issue: 11 year: 1996 end-page: 34 article-title: The KDD process for extracting useful knowledge from volumes of data publication-title: Commun. ACM – volume: 8 start-page: 221 issue: 6 year: 2008 end-page: 223 article-title: Clinical tests: sensitivity and specificity publication-title: Contin. Educ. Anaesth. Crit. Care Pain – volume: 16 start-page: 412 issue: 5 year: 2000 end-page: 424 article-title: Assessing the accuracy of prediction algorithms for classification: an overview publication-title: Bioinformatics – start-page: 816 year: 2009 – year: 2014 – volume: 38 start-page: 8970 issue: 7 year: 2011 end-page: 8977 article-title: A predictive model for cerebrovascular disease using data mining publication-title: Expert Syst. Appl. – year: 2015 – year: 2010 – volume: 2 issue: 4 year: 2008 article-title: Impact of environment and social gradient on Leptospira infection in urban slums publication-title: PLoS Negl. Trop. Dis. – year: 2012 – volume: 354 start-page: 820 issue: 9181 year: 1999 end-page: 825 article-title: Urban epidemic of severe leptospirosis in Brazil publication-title: The Lancet – volume: 8 start-page: 7 issue: 1 year: 2013 ident: e_1_2_8_10_1 article-title: Uncovering knowledge that supports malaria prevention and control intervention program in Ethiopia publication-title: Electron. J. Health Inform. – ident: e_1_2_8_24_1 – ident: e_1_2_8_7_1 doi: 10.1016/j.eswa.2011.01.114 – ident: e_1_2_8_21_1 doi: 10.1093/bioinformatics/16.5.412 – ident: e_1_2_8_23_1 doi: 10.1371/journal.pntd.0003898 – ident: e_1_2_8_19_1 – volume: 17 start-page: 37 issue: 3 year: 1996 ident: e_1_2_8_8_1 article-title: From data mining to knowledge discovery in databases publication-title: AI Mag. – volume: 4 start-page: 1087 year: 2015 ident: e_1_2_8_14_1 article-title: A review of predictive models on diagnosis and treatment of malaria fever publication-title: Int. J. Comput. Sci. Mobile Comput. – ident: e_1_2_8_20_1 doi: 10.1007/978-0-387-09823-4_66 – ident: e_1_2_8_3_1 – start-page: 966 year: 2016 ident: e_1_2_8_17_1 article-title: Classification model analysis for the prediction of leptospirosis cases publication-title: Actas de la 11ª Conferencia Ibérica de Sistemas y Tecnologías de Información, Gran Canaria, España – ident: e_1_2_8_11_1 doi: 10.1109/ICEEI.2011.6021830 – ident: e_1_2_8_5_1 doi: 10.1016/j.compbiomed.2015.02.006 – ident: e_1_2_8_15_1 – ident: e_1_2_8_12_1 doi: 10.1590/S0100-736X2013000100013 – volume-title: Epi Info 2002, a database and statistics program for public health professionals for use on Windows 95, 98, ME, NT, 2000 and XP computers year: 2002 ident: e_1_2_8_25_1 – ident: e_1_2_8_16_1 doi: 10.1145/1656274.1656278 – ident: e_1_2_8_18_1 doi: 10.1016/S0140-6736(99)80012-9 – ident: e_1_2_8_6_1 doi: 10.1016/j.dss.2010.11.001 – ident: e_1_2_8_4_1 – ident: e_1_2_8_13_1 – ident: e_1_2_8_9_1 doi: 10.1145/240455.240464 – ident: e_1_2_8_2_1 doi: 10.1371/journal.pntd.0000228 – ident: e_1_2_8_22_1 doi: 10.1093/bjaceaccp/mkn041 |
| SSID | ssj0055539 |
| Score | 2.1137347 |
| Snippet | Leptospirosis is a potentially life-threatening disease primarily affecting low-income populations, with an estimated annual incidence of 1.03 million... Leptospirosis is a potentially life‐threatening disease primarily affecting low‐income populations, with an estimated annual incidence of 1.03 million... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 93 |
| SubjectTerms | antibiotic treatment delivery data mining data mining classification algorithms dengue cases diseases febrile illnesses health care health professionals assistance JRIP algorithm leptospirosis cases life-threatening disease patient diagnosis pattern classification Special Issue: Advances in Knowledge and Information Software Management |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9zvvjitzi_CCI-CNWmbdLkccrGFByCDn0LbZboYG5jrf-_d1k3GcIEH9teGnKXy_0ul9wRcsGirC_7VgWJtOCgcGsD6UIXOJdyw61I-xwvOD92RaeXPLzxtxq5m9-FmeWHWGy4oWb49RoVPMtnVUgA1IIQB7YMCospTJm4BqASr5F1BngGp3mUPM2XY865LycGZpIFUrJkEdpUN79-sWSc1uDzMmT1Nqe9TTYrsEibM-nukJod7ZKteSEGWunlHmk-TTHegjymY0eHdlJiORDoY1BQA3aqoHi-_Z0axMp4OMjLg2bD9_F0UH58Fvuk12693HWCqjZCYGIhwwDsbK5EmrE4zYUyGY5MiTwToYsUhjoFM8JGoeEAKGzsjETOg7srhbSWufiA1EfjkT0kVJjQOgd-F3p74E5K5nJ4domTXIUqbZBwzhRtqsThWL9iqH0AO1EaGKWBjxr5qJGPDXK1aDKZZc1YRXyJ7yrdKVYRni8R3rde9HOr-0OgJ33XILGX2N_96uf2a3Tb9lnzjv7V6phsRGjl_abMCamX0y97ChilzM_8HPwGMoPetg priority: 102 providerName: Wiley-Blackwell |
| Title | Prediction of leptospirosis cases using classification algorithms |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2016.0193 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-sen.2016.0193 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library (Open Access) customDbUrl: eissn: 1751-8814 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055539 issn: 1751-8806 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8814 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055539 issn: 1751-8806 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8814 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055539 issn: 1751-8806 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7R9sJlea62PCoLrTggecnLjnMs0AoQi5CgLNqLlTh2qVTaqi3_n5kkpaqEgGOSSWzNOJ7v89gzAL_9IM1VbhMeKYsERVjLlfMcdy4WRlgZ54IOOP-9lZe96PpJPC2PR-eDPtXK4IsVN1ott-XJA9q6jfPwaaXjsiAJ4ttTFOAzS7lMffkHEUtYg0aA7DyoQ-Pq4oYoVjkzCyGKymLoMX2O41a-Rzk_-MiKn6rh41X0Wrif7ib8qHAja5eG3oI1O9qGjUVNBlb9ojvQvptS6IXUzcaODe1kTpVBsI3BjBl0WTNGW937zBBspn1ChWlYOuyPp4P588tsF3rdzsP5Ja_KJHATSuVxdLlZIuPUD-NMJiZVClmPzFLpuSChqKf0jbSBZwRiCxs6o8gIyHyVVNb6LvwJ9dF4ZH8Bk8azziEFI-KHzFL5LsNrFzklEi-Jm-AtlKJNlUOcSlkMdRHLjhKNitKoR0161KTHJpy8vzIpE2h8JnxM9xYm_kzwaEXwqvOg7zu3SwE9yV0TwsJiX7er77v_grNukUBv77t92If1gHx8sSRzAPX59NUeIkKZZy2oBdFdCxrtx97_Xqsahm-TOuM1 |
| linkProvider | Institution of Engineering and Technology |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9owED4BfehetrXdNLZ1taqqD5XSxkns2I90A9EfICSo1jcrMXaHxACR7P-fzwQqVIlKfUxyjpXPOd99PvsO4IxG2ViMjQwSYRxBYcYEwoY2sDZlmhmejhkecO71efchuX1kjzX4tT4Ls8oPsVlwQ83w8zUqOC5IrwhngkkyJ6YMCoM5TCm_dJ5KXIe9hFOOFCxKBuv5mDHm64k5O0kDIWiyiW3Kqxev2LJOdfd422f1RqfzEd5X3iJprYb3AGpmdggf1pUYSKWYR9AaLDHggiCTuSVTsyixHojrY1IQ7QxVQXCD-xPR6Czj7iA_ICSbPs2Xk_LP3-ITPHTao5_doCqOEOiYizBwhjaXPM1onOZc6gy_TPI846GNJMY6OdXcRKFmzqMwsdUCoXd8V3BhDLXxZ2jM5jPzBQjXobHWES-ke45PCmpzd20TK5gMZdqEcA2K0lXmcCxgMVU-gp1I5YBSDkeFOCrEsQkXmyaLVdqMXcLneK9SnmKX4OmW4E17pIbt_rOAWoxtE2I_Yq_3q4ad39F1x6fN-_qmView3x317tX9Tf_uG7yL0OT7FZrv0CiX_8yxc1jK_If_H_8DRV3iIg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5tnYR4gTFAFNhmoYkHpEB-2bEfu63RBls1aStMvFiJex6VSls14f_nLk07VUhD2mOSc6J89vm789l3AEdRXIz0CE2QaiQHRSIG2oc-8D6TTqLKRpIPOF8O1Nkw_Xorb7fgdHUWZpkfYr3gxprRzNes4Dgf-aXDmXKSzDHWQYWcwzRSn8lSSbZhh_g8TDuw0_s-_DlczchSyqaiGDFlFGgdpevopvnyz0s2-GmbHm9arQ3t5LvwrLUXRW_ZwS9gC6d78HxVi0G0qvkSelcLDrkwzGLmxQTnNVcEoW-MK-GIqirBW9zvhGNzmfcHNV0iisndbDGuf_2uXsEw79-cnAVteYTAJUqHAVFtaVRWRElWKuMK_jOjykKFPjYc7VSRUxiHTpJNgYl3msEnj1crjRj55DV0prMpvgGhXIjek-vFDh95lDryJV371GtpQpN1IVyBYl2bO5xLWExsE8NOjSWgLOFoGUfLOHbh07rJfJk44yHhj3yvVZ_qIcEPG4Ln_Rt73R_cC1gaI11Imh77_3ftdf4jPs6bxHlvH9XqEJ5cneb24nzw7R08jZnzmyWa99CpF39wnyyWujxoB-Rfb9Ljdg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+leptospirosis+cases+using+classification+algorithms&rft.jtitle=IET+software&rft.au=Nery%2C+Nivison+Ruy+Rocha&rft.au=Claro%2C+Daniela+Barreiro&rft.au=Lindow%2C+Janet+C.&rft.date=2017-06-01&rft.issn=1751-8806&rft.volume=11&rft.issue=3&rft.spage=93&rft.epage=99&rft_id=info:doi/10.1049%2Fiet-sen.2016.0193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_sen_2016_0193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8806&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8806&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8806&client=summon |