Faster Algorithms for Multivariate Interpolation With Multiplicities and Simultaneous Polynomial Approximations

The interpolation step in the Guruswami-Sudan algorithm is a bivariate interpolation problem with multiplicities commonly solved in the literature using either structured linear algebra or basis reduction of polynomial lattices. This problem has been extended to three or more variables; for this gen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 61; no. 5; pp. 2370 - 2387
Main Authors Chowdhury, Muhammad F. I., Jeannerod, Claude-Pierre, Neiger, Vincent, Schost, Eric, Villard, Gilles
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
1557-9654
DOI10.1109/TIT.2015.2416068

Cover

Abstract The interpolation step in the Guruswami-Sudan algorithm is a bivariate interpolation problem with multiplicities commonly solved in the literature using either structured linear algebra or basis reduction of polynomial lattices. This problem has been extended to three or more variables; for this generalization, all fast algorithms proposed so far rely on the lattice approach. In this paper, we reduce this multivariate interpolation problem to a problem of simultaneous polynomial approximations, which we solve using fast structured linear algebra. This improves the best known complexity bounds for the interpolation step of the list-decoding of Reed-Solomon codes, Parvaresh-Vardy codes, and folded Reed-Solomon codes. In particular, for Reed-Solomon list-decoding with re-encoding, our approach has complexity O ~ (ℓ ω-1 m 2 (n - k)), where ℓ, m, n, and k are the list size, the multiplicity, the number of sample points, and the dimension of the code, and ω is the exponent of linear algebra; this accelerates the previously fastest known algorithm by a factor of ℓ/m.
AbstractList The interpolation step in the Guruswami-Sudan algorithm is a bivariate interpolation problem with multiplicities commonly solved in the literature using either structured linear algebra or basis reduction of polynomial lattices. This problem has been extended to three or more variables; for this generalization, all fast algorithms proposed so far rely on the lattice approach. In this paper, we reduce this multivariate interpolation problem to a problem of simultaneous polynomial approximations, which we solve using fast structured linear algebra. This improves the best known complexity bounds for the interpolation step of the list-decoding of Reed-Solomon codes, Parvaresh-Vardy codes, and folded Reed-Solomon codes. In particular, for Reed-Solomon list-decoding with re-encoding, our approach has complexity O ~ (ℓ ω-1 m 2 (n - k)), where ℓ, m, n, and k are the list size, the multiplicity, the number of sample points, and the dimension of the code, and ω is the exponent of linear algebra; this accelerates the previously fastest known algorithm by a factor of ℓ/m.
The interpolation step in the Guruswami-Sudan algorithm is a bivariate interpolation problem with multiplicities commonly solved in the literature using either structured linear algebra or basis reduction of polynomial lattices. This problem has been extended to three or more variables; for this generalization, all fast algorithms proposed so far rely on the lattice approach. In this paper, we reduce this multivariate interpolation problem to a problem of simultaneous polynomial approximations, which we solve using fast structured linear algebra. This improves the best known complexity bounds for the interpolation step of the list-decoding of Reed-Solomon codes, Parvaresh-Vardy codes, and folded Reed-Solomon codes. In particular, for Reed-Solomon list-decoding with re-encoding, our approach has complexity ..., where ..., and k are the list size, the multiplicity, the number of sample points, and the dimension of the code, and \omega is the exponent of linear algebra; this accelerates the previously fastest known algorithm by a factor of ... (ProQuest: ... denotes formulae/symbols omitted.)
The interpolation step in the Guruswami-Sudan algorithm is a bivariateinterpolation problem with multiplicities commonly solved in the literatureusing either structured linear algebra or basis reduction of polynomiallattices. This problem has been extended to three or more variables; for thisgeneralization, all fast algorithms proposed so far rely on the latticeapproach. In this paper, we reduce this multivariate interpolation problem to aproblem of simultaneous polynomial approximations, which we solve using faststructured linear algebra. This improves the best known complexity bounds forthe interpolation step of the list-decoding of Reed-Solomon codes,Parvaresh-Vardy codes, and folded Reed-Solomon codes. In particular, forReed-Solomon list-decoding with re-encoding, our approach has complexity$\mathcal{O}\tilde{~}(\ell^{\omega-1}m^2(n-k))$, where $\ell,m,n,k$ are thelist size, the multiplicity, the number of sample points and the dimension ofthe code, and $\omega$ is the exponent of linear algebra; this accelerates thepreviously fastest known algorithm by a factor of $\ell / m$.
Author Jeannerod, Claude-Pierre
Schost, Eric
Neiger, Vincent
Chowdhury, Muhammad F. I.
Villard, Gilles
Author_xml – sequence: 1
  givenname: Muhammad F. I.
  surname: Chowdhury
  fullname: Chowdhury, Muhammad F. I.
  email: mchowdh3@csd.uwo.ca
  organization: Department of Computer Science, University of Western Ontario, London, ON, Canada
– sequence: 2
  givenname: Claude-Pierre
  surname: Jeannerod
  fullname: Jeannerod, Claude-Pierre
  email: claude-pierre.jeannerod@inria.fr
  organization: Laboratoire de l’Informatique du Parallélisme, (CNRS, ENS de Lyon, Inria, UCBL), Université de Lyon, Lyon, France
– sequence: 3
  givenname: Vincent
  surname: Neiger
  fullname: Neiger, Vincent
  email: vincent.neiger@ens-lyon.fr
  organization: Department of Computer Science, University of Western Ontario, London, ON, Canada
– sequence: 4
  givenname: Eric
  surname: Schost
  fullname: Schost, Eric
  email: eschost@uwo.ca
  organization: Department of Computer Science, University of Western Ontario, London, ON, Canada
– sequence: 5
  givenname: Gilles
  surname: Villard
  fullname: Villard, Gilles
  email: gilles.villard@ens-lyon.fr
  organization: Laboratoire de l’Informatique du Parallélisme, (CNRS, ENS de Lyon, Inria, UCBL), Université de Lyon, Lyon, France
BackLink https://inria.hal.science/hal-00941435$$DView record in HAL
BookMark eNptkc9rHCEYhqWkkE3ae6AXoaceZqvjj9HjEppmYUsL2dCjOBNtDK5O1Um6_33dTEhh6UnU55H3ez0DJyEGA8AFRkuMkfy8XW-XLcJs2VLMERdvwAIz1jWSM3oCFghh0UhKxSk4y_mhbinD7QLEK52LSXDlf8Xkyv0uQxsT_Db54h51croYuA6VGKPXxcUAf1Zqvh-9G1xxJkMd7uCN29VDHUycMvwR_T7EndMersYxxT9u92znd-Ct1T6b9y_rObi9-rK9vG4237-uL1ebZiC8K41lVAspNLG8FVYiTlBv7TBQ2lNhqewN6ztuSG_EHTGYWyYlbqmlHGNhMCPnAM_vTmHU-yftvRpTDZH2CiN1aEwVV9ShMfXSWHU-zc69_kdH7dT1aqMOZwhJiilhj21lP85sHe73ZHJRD3FKoY6kMO845R1pSaX4TA0p5pyMVbWw5yJK0s6_RqmfdxwFHYnH6f-jfJgVZ4x5xTvEWdtx8hdxWKbO
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2022_3140678
crossref_primary_10_3390_wevj14090245
crossref_primary_10_1016_j_jsc_2016_11_015
crossref_primary_10_1016_j_jco_2021_101574
crossref_primary_10_1109_TCOMM_2019_2927207
crossref_primary_10_1109_TCOMM_2022_3215998
crossref_primary_10_2197_ipsjjip_27_245
crossref_primary_10_1109_TCOMM_2020_3011991
crossref_primary_10_1137_16M1062855
crossref_primary_10_1109_TIT_2022_3188843
crossref_primary_10_3934_amc_2015_9_311
Cites_doi 10.1109/TIT.2007.911222
10.1007/3-540-11607-9_3
10.1145/1993886.1993931
10.1016/0020-0190(78)90067-4
10.1007/978-3-642-25405-5_13
10.1016/j.jsc.2008.01.002
10.1007/BF01178683
10.1109/TIT.2003.819332
10.1016/0377-0427(92)90039-Z
10.1515/crll.1936.175.50
10.1145/190347.190431
10.1016/j.tcs.2008.05.014
10.1109/18.490540
10.1016/j.jsc.2011.09.006
10.1109/TIT.2010.2096034
10.1145/322217.322225
10.1109/18.133246
10.1145/120694.120697
10.1145/860854.860889
10.1109/TIT.2011.2162160
10.1109/ITW.2003.1216682
10.1109/TIT.2005.850097
10.1017/CBO9781139856065
10.1007/978-1-4612-0129-8
10.1145/2608628.2608664
10.1109/ISIT.2006.261691
10.1145/2213977.2214056
10.1109/TIT.2008.926355
10.1109/18.817522
10.1109/SFCS.2005.29
10.1145/301250.301311
10.1007/978-3-642-57189-3_20
10.2140/obs.2013.1.271
10.1109/TIT.2010.2053901
10.1109/ICASSP.1980.1171074
10.1016/0024-3795(80)90161-5
10.1007/3-540-54522-0_93
10.1109/18.782097
10.1109/TIT.2013.2243800
10.1006/jcom.1997.0439
10.1016/j.jsc.2010.03.010
10.1007/3-540-09519-5_73
10.1016/S0747-7171(08)80013-2
10.1137/S0895479892230031
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ADTOC
UNPAY
DOI 10.1109/TIT.2015.2416068
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
EISSN 1557-9654
EndPage 2387
ExternalDocumentID oai:HAL:hal-00941435v2
3669037341
10_1109_TIT_2015_2416068
7065276
Genre orig-research
Feature
GrantInformation_xml – fundername: International Mobility Grant Explo’ra Doc through the Région Rhône-Alpes
– fundername: Canada Research Chairs; Canada Research Chairs Program
  funderid: 10.13039/501100001804
– fundername: ANR through the HPAC project
  grantid: ANR 11 BS02 013
– fundername: Natural Sciences and Engineering Research Council of Canada; NSERC
  funderid: 10.13039/501100000038
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c367t-f54a898a3f628f90630bffcc44b48f49be5b76e3be8d3e16f599124f46118e153
IEDL.DBID UNPAY
ISSN 0018-9448
1557-9654
IngestDate Wed Aug 20 00:21:13 EDT 2025
Sat Oct 25 11:16:31 EDT 2025
Sun Oct 05 00:24:30 EDT 2025
Wed Oct 01 02:55:10 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Aug 27 08:31:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Reed-Solomon codes
structured matrix
Multivariate polynomial interpolation
polynomial approximation
list decoding
Multivariate interpolation
List-decoding
Structured matrices
Fast algorithms
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-f54a898a3f628f90630bffcc44b48f49be5b76e3be8d3e16f599124f46118e153
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0003-1936-7155
0000-0002-8311-9490
OpenAccessLink https://proxy.k.utb.cz/login?url=https://inria.hal.science/hal-00941435v2/file/MultivariateInterpolation-PolyApprox_v2.pdf
PQID 1676467323
PQPubID 36024
PageCount 18
ParticipantIDs unpaywall_primary_10_1109_tit_2015_2416068
proquest_journals_1676467323
hal_primary_oai_HAL_hal_00941435v2
crossref_citationtrail_10_1109_TIT_2015_2416068
crossref_primary_10_1109_TIT_2015_2416068
ieee_primary_7065276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref15
reinhard (ref41) 2003
ref14
ref52
ref11
ref54
ref17
chowdhury (ref12) 0
ref16
storjohann (ref47) 2006
ref19
ref18
zeh (ref53) 2013
cohn (ref13) 2011
nielsen (ref36) 2013
ref51
ref50
bernstein (ref6) 2011; 7071
ref46
ref45
ref44
ref43
ref49
ref8
ref7
ref4
ref3
ref5
mceliece (ref33) 2003
ref40
roth (ref42) 2007
ref35
ref37
ref31
ref30
ref32
zippel (ref55) 1979; 72
ref2
ref1
ref39
brander (ref9) 2010
ref38
busse (ref10) 2008
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
hasse (ref24) 1936; 1936
ref29
stothers (ref48) 2010
möller (ref34) 1982; 144
References_xml – ident: ref22
  doi: 10.1109/TIT.2007.911222
– volume: 144
  start-page: 24
  year: 1982
  ident: ref34
  article-title: The construction of multivariate polynomials with preassigned zeros
  publication-title: Computer Algebra
  doi: 10.1007/3-540-11607-9_3
– ident: ref44
  doi: 10.1145/1993886.1993931
– ident: ref16
  doi: 10.1016/0020-0190(78)90067-4
– volume: 7071
  start-page: 200
  year: 2011
  ident: ref6
  article-title: Simplified high-speed high-distance list decoding for alternant codes
  publication-title: Post-Quantum Cryptography
  doi: 10.1007/978-3-642-25405-5_13
– ident: ref32
  doi: 10.1016/j.jsc.2008.01.002
– ident: ref11
  doi: 10.1007/BF01178683
– ident: ref28
  doi: 10.1109/TIT.2003.819332
– ident: ref2
  doi: 10.1016/0377-0427(92)90039-Z
– year: 2003
  ident: ref41
  article-title: Algorithme LLL polynomial et applications
– year: 2007
  ident: ref42
  publication-title: Introduction to Coding Theory
– volume: 1936
  start-page: 50
  year: 1936
  ident: ref24
  article-title: Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik
  publication-title: J reine angew Math
  doi: 10.1515/crll.1936.175.50
– ident: ref25
  doi: 10.1145/190347.190431
– ident: ref8
  doi: 10.1016/j.tcs.2008.05.014
– ident: ref30
  doi: 10.1109/18.490540
– start-page: 6271
  year: 2006
  ident: ref47
  article-title: Notes on computing minimal approximant bases
  publication-title: Proc Challenges Symbolic Comput Softw
– ident: ref21
  doi: 10.1016/j.jsc.2011.09.006
– year: 2010
  ident: ref9
  article-title: Interpolation and list decoding of algebraic codes
– ident: ref27
  doi: 10.1109/TIT.2010.2096034
– ident: ref45
  doi: 10.1145/322217.322225
– ident: ref17
  doi: 10.1109/18.133246
– ident: ref46
  doi: 10.1145/120694.120697
– ident: ref20
  doi: 10.1145/860854.860889
– ident: ref54
  doi: 10.1109/TIT.2011.2162160
– ident: ref29
  doi: 10.1109/ITW.2003.1216682
– year: 2010
  ident: ref48
  article-title: On the complexity of matrix multiplication
– ident: ref1
  doi: 10.1109/TIT.2005.850097
– ident: ref19
  doi: 10.1017/CBO9781139856065
– ident: ref39
  doi: 10.1007/978-1-4612-0129-8
– ident: ref31
  doi: 10.1145/2608628.2608664
– year: 2013
  ident: ref36
  article-title: List decoding of algebraic codes
– ident: ref18
  doi: 10.1109/ISIT.2006.261691
– year: 2008
  ident: ref10
  article-title: Multivariate list decoding of evaluation codes with a Gröbner basis perspective
– ident: ref51
  doi: 10.1145/2213977.2214056
– ident: ref52
  doi: 10.1109/TIT.2008.926355
– ident: ref43
  doi: 10.1109/18.817522
– ident: ref40
  doi: 10.1109/SFCS.2005.29
– year: 2003
  ident: ref33
  article-title: The Guruswami-Sudan decoding algorithm for Reed-Solomon codes
– ident: ref38
  doi: 10.1145/301250.301311
– ident: ref37
  doi: 10.1007/978-3-642-57189-3_20
– ident: ref14
  doi: 10.2140/obs.2013.1.271
– ident: ref50
  doi: 10.1109/TIT.2010.2053901
– ident: ref35
  doi: 10.1109/ICASSP.1980.1171074
– ident: ref7
  doi: 10.1016/0024-3795(80)90161-5
– year: 0
  ident: ref12
  article-title: On the complexity of multivariate interpolation with multiplicities and of simultaneous polynomial approximations
– ident: ref26
  doi: 10.1007/3-540-54522-0_93
– year: 2013
  ident: ref53
  article-title: Algebraic soft- and hard-decision decoding of generalized Reed-Solomon and cyclic codes
– ident: ref23
  doi: 10.1109/18.782097
– ident: ref5
  doi: 10.1109/TIT.2013.2243800
– ident: ref49
  doi: 10.1006/jcom.1997.0439
– start-page: 298
  year: 2011
  ident: ref13
  article-title: Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding
  publication-title: Proc of Innovations in Computer Science
– ident: ref4
  doi: 10.1016/j.jsc.2010.03.010
– volume: 72
  start-page: 216
  year: 1979
  ident: ref55
  article-title: Probabilistic algorithms for sparse polynomials
  publication-title: Symbolic and Algebraic Computation
  doi: 10.1007/3-540-09519-5_73
– ident: ref15
  doi: 10.1016/S0747-7171(08)80013-2
– ident: ref3
  doi: 10.1137/S0895479892230031
SSID ssj0014512
Score 2.3498924
Snippet The interpolation step in the Guruswami-Sudan algorithm is a bivariate interpolation problem with multiplicities commonly solved in the literature using either...
The interpolation step in the Guruswami-Sudan algorithm is a bivariateinterpolation problem with multiplicities commonly solved in the literatureusing either...
SourceID unpaywall
hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2370
SubjectTerms Algorithms
Computer Science
Context
Information Theory
Interpolation
Lattice theory
Linear algebra
Linear systems
list decoding
Mathematical problems
Mathematics
multivariate polynomial interpolation
Polynomials
Reed-Solomon codes
structured matrix
Symbolic Computation
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6tewEeGGygZWzIQryASNskjpM8VhNVQQwh0Ym9RXZib9VCMq3Jxvj13MVJtAJCvFXtVXV19t13ue8-A7zWJvM01smujmTucmOkqyJuXBki1sBqTElBA84nn8XilH88C8-24N0wC6O1bslnekwv215-XmUNPSqbUEvOj8QIRlEs7KzW0DHgoWeVwT08wFhz9C3JaTJZflgShyscY7ZCvB5vpKDRBREg25tVNkDmg6a8kne3siju5Zv5Dpz0K7U0k8txU6tx9vM3Ecf__StP4HEHPNnM7pSnsKXLXdjpL3Vg3RnfhUf3FAr3oJpLUlJgs-K8ul7VF9_XDFEua8d2b7DMRqTKLG-xsqQ69g2t7OfUGW_1Wpksc_Z1RdxFWeqqWbMvVXFH89C0IBI1_7GyE5TrZ3A6f788XrjdHQ1uFoiodk3IZZzEMjDCj01CCl7KmCzjXPHY8ETpUEVCB0rHeaA9YUIEpD43XGBlozHcPoftsir1PrBE57nB5JiEJuEY9mKMJXnuR1M1VbnWkQOT3m1p1gmY0z0aRdoWMtMkRUen5Oi0c7QDb4ZvXFnxjn_YvsKdMJiR6vZi9iml94h9SbDyxndgj1w5WHVedOCw3zhpFwLWqScigVko8AMH3g6b6Y91YEzYWMfB33_iBTwkK0u1PITt-rrRRwiHavWyPQe_ACM1B4c
  priority: 102
  providerName: IEEE
Title Faster Algorithms for Multivariate Interpolation With Multiplicities and Simultaneous Polynomial Approximations
URI https://ieeexplore.ieee.org/document/7065276
https://www.proquest.com/docview/1676467323
https://inria.hal.science/hal-00941435
https://inria.hal.science/hal-00941435v2/file/MultivariateInterpolation-PolyApprox_v2.pdf
UnpaywallVersion submittedVersion
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 1557-9654
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB616QF6oNCCcCnVCnEBafOw12v7aCGigKCqRCLak7Vr7zYRxq6apKj99cz4RQISEgducTyWx97xzDfamW8AXhubjgzmydwEKuPCWsV1ICxXPmINzMa0ktTg_PlMTmbi44V_sQOXXS9Mge-9P0fc2USAAf7mVP9Ggf3WHRBd0aBqTr3FZBLxWF2cV9aVY_y8zO9iYuNGU8CUMbO7sCd9hOk92JudnceXtWfGj1xUk7UwnAY8kr5otzCHEc0dopovv4_RDfF9uBWydudUMFlNYtkCpQ_WxbW6-6HyfCM-jQ_gvn2yuizlW3-90v30_jfSx__y6I_hUYNqWVyb4RPYMcUhHLQTI1jjQA5hf4P-8AjKsSKaBhbnV-XNYjX_vmQIodnmvdnWzdlXlKrP07Z7RQbLVJGxLwsqjFSFKddLRhpSszUpVCm6qNszl09hNn4_fTfhzQAInnoyWHHrCxVGofKsdEMbET2YtjZNhdAitCLSxteBNJ42YeaZkbQ-ol1XWCExbTLoy59BrygL8xxYZLLMYuSNfBsJ9KkhOqosc4OhHurMmMCBQbvGSdqwo9OQjjypsqRhlEw_TBOyiqSxCgfedFdc18wgf5F9hWvZiRGl9yT-lNB_v9bXgSOyqk6KNqDdQDpw0lpZ0viXZTKSgcQQ57meA287y_tDD7TkLT2O_0X4BTykw7q68wR6q5u1eYkIbKVPqzbJ0-aL-gklhDLf
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t42HsgcEGIjDAQryASNsktpM8Voiqg3ZCohN7i-zEZhVZMq3pYPz13OWXVkCIt6ixVVdn333X--4zwCtjU89gnuyaUGUut1a5OuTWVQKxBmZjWklqcJ6fyOkp_3Amzrbgbd8LY4ypyWdmQI91LT8r0zX9VTakkpwfym24IzjnounW6msGXHiNNriHRxizjq4oOYqHi-MFsbjEAOMVIvZoIwhtnxMFsr5bZQNm7q6LS3XzXeX5rYgz2Yd5t9aGaPJtsK70IP35m4zj__6Y-3CvhZ5s3OyVB7BligPY7651YO0pP4C9WxqFh1BOFGkpsHH-tbxaVucXK4Y4l9WNu9eYaCNWZQ1zsWxodewLjmreU228VmxlqsjY5yWxF1VhyvWKfSrzG-qIpgWRrPmPZdNDuXoIp5P3i3dTt72lwU0DGVauFVxFcaQCK_3IxqThpa1NU841jyyPtRE6lCbQJsoC40krEJL63HKJuY1Bh_sIdoqyMI-BxSbLLIbHWNiYo-OL0JtkmR-O9EhnxoQODDuzJWkrYU43aeRJncqM4gQNnZChk9bQDrzuZ1w28h3_GPsSd0I_jHS3p-NZQp8R_5KA5bXvwCGZsh_VWtGBo27jJK0TWCWeDCXGocAPHHjTb6Y_1oFeYWMdT_7-FS9gd7qYz5LZ8cnHp3CXZjTEyyPYqa7W5hmCo0o_r8_ELwzsCtQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB616QE4UGhBGApaIS4gbR72em0fLUQUEFSVSER7snbtXRJh7Kpxitpfz4xfJCAhceAWx2N57B3PfKOd-QbglbHpxGCezE2gMi6sVVwHwnLlI9bAbEwrSQ3On07lbCE-nPvne3DR98IU-N6HS8SdbQQY4W9O9W8U2K_dEdEVjerm1GtMJhGPNcV5ZVM5xs_K_CYmNm40BUwZM7sPB9JHmD6Ag8XpWXzReGb8yEU9WQvDacAj6YtuC3Mc0dwhqvnyhxjdEN-HOyFrf0kFk_Uklh1QemdTXKqbHyrPt-LT9BBuuydrylK-DTeVHqa3v5E-_pdHfwD3W1TL4sYMH8KeKY7gsJsYwVoHcgT3tugPj6GcKqJpYHH-tbxaVcvva4YQmm3fm-3cnH1BqeY8bbvXZLBMFRn7vKLCSFWYcrNmpCE1W5NCtaKrpj1z_QgW03fztzPeDoDgqSeDiltfqDAKlWelG9qI6MG0tWkqhBahFZE2vg6k8bQJM89MpPUR7brCColpk0Ff_hgGRVmYJ8Aik2UWI2_k20igTw3RUWWZG4z1WGfGBA6MujVO0pYdnYZ05EmdJY2jZP5-npBVJK1VOPC6v-KyYQb5i-xLXMtejCi9Z_HHhP77tb4OHJNV9VK0Ae0G0oGTzsqS1r-sk4kMJIY4z_UceNNb3h96oCXv6PH0X4SfwV06bKo7T2BQXW3Mc0RglX7Rfks_Afm9Md4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faster+Algorithms+for+Multivariate+Interpolation+with+Multiplicities+and+Simultaneous+Polynomial+Approximations&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Chowdhury%2C+Muhammad+Foizul+Islam&rft.au=Jeannerod%2C+Claude-Pierre&rft.au=Neiger%2C+Vincent&rft.au=Schost%2C+Eric&rft.date=2015-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9448&rft.spage=2370&rft.epage=2387&rft_id=info:doi/10.1109%2FTIT.2015.2416068&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00941435v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon