An Implementation of Actor-Critic Algorithm on Spiking Neural Network Using Temporal Coding Method

Taking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel spiking neural network reinforcement learning method using actor-critic architecture and temporal coding. The simple improved leaky integrate-an...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 20; p. 10430
Main Authors Lu, Junqi, Wu, Xinning, Cao, Su, Wang, Xiangke, Yu, Huangchao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app122010430

Cover

Abstract Taking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel spiking neural network reinforcement learning method using actor-critic architecture and temporal coding. The simple improved leaky integrate-and-fire (LIF) model was used to describe the behavior of a spike neuron. Then the actor-critic network structure and the update formulas using temporally encoded information were provided. The current model was finally examined in the decision-making task, the gridworld task, the UAV flying through a window task and the avoiding a flying basketball task. In the 5 × 5 grid map, the value function learned was close to the ideal situation and the quickest way from one state to another was found. A UAV trained by this method was able to fly through the window quickly in simulation. An actual flight test of a UAV avoiding a flying basketball was conducted. With this model, the success rate of the test was 96% and the average decision time was 41.3 ms. The results show the effectiveness and accuracy of the temporal coded spiking neural network RL method. In conclusion, an attempt was made to provide insights into developing spiking neural network reinforcement learning methods for decision-making and autonomous control of unmanned systems.
AbstractList Taking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel spiking neural network reinforcement learning method using actor-critic architecture and temporal coding. The simple improved leaky integrate-and-fire (LIF) model was used to describe the behavior of a spike neuron. Then the actor-critic network structure and the update formulas using temporally encoded information were provided. The current model was finally examined in the decision-making task, the gridworld task, the UAV flying through a window task and the avoiding a flying basketball task. In the 5 × 5 grid map, the value function learned was close to the ideal situation and the quickest way from one state to another was found. A UAV trained by this method was able to fly through the window quickly in simulation. An actual flight test of a UAV avoiding a flying basketball was conducted. With this model, the success rate of the test was 96% and the average decision time was 41.3 ms. The results show the effectiveness and accuracy of the temporal coded spiking neural network RL method. In conclusion, an attempt was made to provide insights into developing spiking neural network reinforcement learning methods for decision-making and autonomous control of unmanned systems.
Featured ApplicationRapid decision-making on micro drones.AbstractTaking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel spiking neural network reinforcement learning method using actor-critic architecture and temporal coding. The simple improved leaky integrate-and-fire (LIF) model was used to describe the behavior of a spike neuron. Then the actor-critic network structure and the update formulas using temporally encoded information were provided. The current model was finally examined in the decision-making task, the gridworld task, the UAV flying through a window task and the avoiding a flying basketball task. In the 5 × 5 grid map, the value function learned was close to the ideal situation and the quickest way from one state to another was found. A UAV trained by this method was able to fly through the window quickly in simulation. An actual flight test of a UAV avoiding a flying basketball was conducted. With this model, the success rate of the test was 96% and the average decision time was 41.3 ms. The results show the effectiveness and accuracy of the temporal coded spiking neural network RL method. In conclusion, an attempt was made to provide insights into developing spiking neural network reinforcement learning methods for decision-making and autonomous control of unmanned systems.
Author Wang, Xiangke
Wu, Xinning
Yu, Huangchao
Lu, Junqi
Cao, Su
Author_xml – sequence: 1
  givenname: Junqi
  surname: Lu
  fullname: Lu, Junqi
– sequence: 2
  givenname: Xinning
  orcidid: 0000-0001-9640-4058
  surname: Wu
  fullname: Wu, Xinning
– sequence: 3
  givenname: Su
  surname: Cao
  fullname: Cao, Su
– sequence: 4
  givenname: Xiangke
  surname: Wang
  fullname: Wang, Xiangke
– sequence: 5
  givenname: Huangchao
  orcidid: 0000-0003-4715-6267
  surname: Yu
  fullname: Yu, Huangchao
BookMark eNp9kE9PJCEQxYnRxH9z8wN0sld7BQobOE4m6k6i7mGdM6EbGBm7m16aycRvL7O9McZEuVTx-NUL9U7RYR96i9AFwT8BJL7Sw0AoxQQzwAfohGJelcAIP_zQH6PZOG5wPpKAIPgE1fO-WHZDazvbJ5186IvginmTQiwX0SffFPN2HXL33BX58c_gX3y_Lh7tNuo2l7QL8aVYjXvxyXZD2MuLYPb3B5uegzlHR063o539r2dodXvztPhV3v--Wy7m92UDFU-lo04awjUABicEc5RLKo0wDGrJdY0t6GvOuXR142opOTcgScZwha-51nCGlpOvCXqjhug7HV9V0F79E0JcKx3zQq1VRlSc2RozSxpGhRGsopYBZZa6hgNkr3Ly2vaDft3ptn03JFjt81Yf8878j4kfYvi7tWNSm7CNfV5XUU4FoxykyBSdqCaGcYzWqcZPoaeoffuV9eWnoW9_8gauyp6O
CitedBy_id crossref_primary_10_1007_s10846_023_01897_0
Cites_doi 10.1007/s12559-017-9511-3
10.1103/PhysRevE.69.041909
10.3389/fnins.2020.00119
10.1162/neco.2007.19.6.1468
10.1007/s11571-017-9436-2
10.24963/ijcai.2018/221
10.3389/fnbot.2018.00056
10.1162/089976601750541787
10.3389/fnins.2018.00331
10.1016/S0925-2312(01)00658-0
10.1017/CBO9781107447615
10.1016/S0893-6080(97)00011-7
10.1109/ICRA.2018.8460482
10.1162/089976601300014376
10.1146/annurev-neuro-062111-150512
10.2976/1.2732246/10.2976/1
10.1109/ICRAS49812.2020.9134922
10.1002/scj.10645
10.1186/1471-2202-8-S2-P197
10.1016/S0896-6273(03)00761-X
10.1002/(SICI)1098-1063(2000)10:1<1::AID-HIPO1>3.0.CO;2-1
10.2514/2.2505
10.1162/neco.2008.08-07-593
10.1109/LRA.2022.3153987
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app122010430
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_d8674eb04e1c428d8462e4324e2fc733
10.3390/app122010430
10_3390_app122010430
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c367t-f2f9d17a3303f884f27929d8d43b97ab0e3a57779fbcfb9977d3914f206057aa3
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Fri Oct 03 12:51:30 EDT 2025
Sun Oct 26 02:11:51 EDT 2025
Mon Jun 30 07:31:22 EDT 2025
Thu Oct 16 04:29:12 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-f2f9d17a3303f884f27929d8d43b97ab0e3a57779fbcfb9977d3914f206057aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9640-4058
0000-0003-4715-6267
OpenAccessLink https://www.proquest.com/docview/2728427398?pq-origsite=%requestingapplication%&accountid=15518
PQID 2728427398
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_d8674eb04e1c428d8462e4324e2fc733
unpaywall_primary_10_3390_app122010430
proquest_journals_2728427398
crossref_citationtrail_10_3390_app122010430
crossref_primary_10_3390_app122010430
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cao (ref_31) 2022; 7
Rajapakse (ref_18) 2004; Volume 152
Foster (ref_14) 2015; 10
Florian (ref_11) 2007; 19
Maas (ref_4) 1997; 10
ref_32
ref_30
Zhao (ref_16) 2018; 12
Doya (ref_19) 2007; 1
Takita (ref_10) 2010; 36
Mostafa (ref_28) 2016; 29
Zhao (ref_3) 2017; 10
Rao (ref_17) 2001; 13
Hu (ref_8) 2021; 36
Sebastian (ref_9) 2003; 40
Wei (ref_15) 2017; 11
Lee (ref_2) 2012; 35
Mozer (ref_5) 1997; Volume 9
ref_24
Xie (ref_6) 2004; 69
Potjans (ref_22) 2009; 21
Lee (ref_25) 2019; 14
ref_21
ref_20
Baras (ref_12) 2007; 8
Potempa (ref_26) 2021; 33
Suri (ref_13) 2001; 13
Bohte (ref_27) 2002; 48
ref_29
Wu (ref_23) 2018; 12
Virtanen (ref_1) 1999; 36
Zhang (ref_7) 2021; 9
References_xml – volume: 10
  start-page: 296
  year: 2017
  ident: ref_3
  article-title: A brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous uav explorations
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-017-9511-3
– volume: 69
  start-page: 041909
  year: 2004
  ident: ref_6
  article-title: Learning in neural networks by reinforcement of irregular spiking
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.041909
– ident: ref_24
– volume: 14
  start-page: 119
  year: 2019
  ident: ref_25
  article-title: Enabling spike-based backpropagation for training deep neural network architectures
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00119
– volume: 19
  start-page: 1468
  year: 2007
  ident: ref_11
  article-title: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.19.6.1468
– volume: 29
  start-page: 3227
  year: 2016
  ident: ref_28
  article-title: Supervised Learning Based on Temporal Coding in Spiking Neural Networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 11
  start-page: 415
  year: 2017
  ident: ref_15
  article-title: A decision-making model based on a spiking neural circuit and synaptic plasticity
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-017-9436-2
– ident: ref_30
  doi: 10.24963/ijcai.2018/221
– volume: 12
  start-page: 56
  year: 2018
  ident: ref_16
  article-title: A Brain-Inspired Decision-Making Spiking Neural Network and Its Application in Unmanned Aerial Vehicle
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2018.00056
– volume: 13
  start-page: 2221
  year: 2001
  ident: ref_17
  article-title: Spike-timing-dependent Hebbian plasticity as temporal difference learning
  publication-title: Neural Comput.
  doi: 10.1162/089976601750541787
– volume: 12
  start-page: 331
  year: 2018
  ident: ref_23
  article-title: Spatio-Temporal Backpropagation for Training HighPerformance Spiking Neural Networks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00331
– volume: Volume 152
  start-page: 238
  year: 2004
  ident: ref_18
  article-title: A Memory-Based Reinforcement Learning Algorithm to Prevent Unlearning in Neural Networks
  publication-title: Neural Information Processings: Research and Development; Studies in Fuzziness and Soft Computing
– volume: 48
  start-page: 17
  year: 2002
  ident: ref_27
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00658-0
– ident: ref_29
  doi: 10.1017/CBO9781107447615
– volume: 10
  start-page: 1659
  year: 1997
  ident: ref_4
  article-title: Networks of spiking neurons: The third generation of neural network models
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(97)00011-7
– volume: Volume 9
  start-page: 211
  year: 1997
  ident: ref_5
  article-title: Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons
  publication-title: Advances in Neural Information Processing Systems
– ident: ref_21
  doi: 10.1109/ICRA.2018.8460482
– volume: 33
  start-page: 5939
  year: 2021
  ident: ref_26
  article-title: Temporal Coding in Spiking Neural Networks With Alpha Synaptic Function: Learning With Backpropagation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 13
  start-page: 841
  year: 2001
  ident: ref_13
  article-title: Temporal Difference Model Reproduces Anticipatory Neural Activity
  publication-title: Neural Comput.
  doi: 10.1162/089976601300014376
– volume: 35
  start-page: 287
  year: 2012
  ident: ref_2
  article-title: Neural basis of reinforcement learning and decision making
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150512
– volume: 36
  start-page: 1
  year: 2021
  ident: ref_8
  article-title: Spiking neural networks: A survey on recent advances and new dirctions
  publication-title: Control Decision
– volume: 1
  start-page: 30
  year: 2007
  ident: ref_19
  article-title: Reinforcement learning: Computational theory and biological mechanisms
  publication-title: HFSP J.
  doi: 10.2976/1.2732246/10.2976/1
– ident: ref_32
  doi: 10.1109/ICRAS49812.2020.9134922
– volume: 36
  start-page: 42
  year: 2010
  ident: ref_10
  article-title: A pulse neural network reinforcement learning algorithm for partially observable Markov decision processes
  publication-title: Syst. Comput. Jpn.
  doi: 10.1002/scj.10645
– volume: 8
  start-page: 197
  year: 2007
  ident: ref_12
  article-title: Direct reinforcement learning, spike-time-dependent plasticity, and the BCM rule
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-8-S2-P197
– volume: 40
  start-page: 1063
  year: 2003
  ident: ref_9
  article-title: Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00761-X
– volume: 9
  start-page: 1767
  year: 2021
  ident: ref_7
  article-title: Research Advances and Perspectives on Spiking Neural Networks
  publication-title: Chin. J. Comput.
– volume: 10
  start-page: 1
  year: 2015
  ident: ref_14
  article-title: A model of hippocampally dependent navigation, using the temporal difference learning rule
  publication-title: Hippocampus
  doi: 10.1002/(SICI)1098-1063(2000)10:1<1::AID-HIPO1>3.0.CO;2-1
– ident: ref_20
– volume: 36
  start-page: 632
  year: 1999
  ident: ref_1
  article-title: Decision theoretical approach to pilot simulation
  publication-title: J. Aircr.
  doi: 10.2514/2.2505
– volume: 21
  start-page: 301
  year: 2009
  ident: ref_22
  article-title: A Spiking Neural Network Model of an Actor-Critic Learning Agent
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.08-07-593
– volume: 7
  start-page: 5771
  year: 2022
  ident: ref_31
  article-title: From Demonstration to Flight: Realization of Autonomous Aerobatic Maneuvers for Fast, Miniature Fixed-Wing UAVs
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3153987
SSID ssj0000913810
Score 2.2625499
Snippet Taking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel...
Featured ApplicationRapid decision-making on micro drones.AbstractTaking advantage of faster speed, less resource consumption and better biological...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 10430
SubjectTerms actor-critic algorithm
Decision making
Neural networks
Neurons
spiking neural network
temporal coding
UAV
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRT2IT1xf5KCiSLFps01yXEVZBPeigreSpIkK3e7i7iL-e2fSutSDevFW0iENmUm_mWTyDSFHSltvPXNR4ngccZ9lkclMEcXOcgMIg5UyMdtikPUf-e1T96lV6gtzwmp64HriLgqZCe5MzB2z4CoXgJfQLbgBLvFWpIHnM5aqFUyFf7BiSF1VZ7qnENfjeTBL8OiXY8JzC4MCVf83_3JpVo31x7suyxbU3KyR1cZHpL16bOtkwVUbZKXFHLhB1ps1OaGnDXH02SYxvYoGtt9hc6GooiNPe7gtH9UlDWivfB7B08uQwsv78StulFMk6IDvDeqMcBqyCOhDzVlV0qsRwhu9C6Wmt8jjzfXDVT9qaihENs3ENPKJVwUTOgWo8lJyj4SBqpAFT40S2sQu1V0hhPLGeqPAGyxSxUAshjhHaJ1uk8VqVLkdQrVQThovhWGGG2mVU8zIbiZdoaBX1iHnX7Oa24ZgHOtclDkEGqiDvK2DDjmeS49rYo0f5C5RQXMZpMMODWAkeWMk-V9G0iH7X-rNmzU6yRMB0Azem5IdcjJX-a-D2f2PweyR5QTvUISMwH2yOH2buQPwbKbmMBjxJwnN8_o
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7o9kF9sLYqrrYyDyqKpE0ys5mZpxKLpQgugl3QpzDXWkyTpbur6K_vmWSyrIIi-JbLyY05M-c7M1--A_BMKuONz1ySO5YmzBdFogttk9QZpjHChEqZgW0xLU5n7N2nycAmXERaJabiF90gnWOSneAwyw-zHHewhzOaHs6tP_oWJ5PColchgkzXTdgqJgjHR7A1m34oP4eicsPlPeGdYnofloWzPKwAs8B73ghFnWL_LzDz1qqZqx_fVV1vRJyTbdDDu_ZEk68Hq6U-MD9_k3H8r4-5B3cjHiVl70A7cMM1u3BnQ6VwF3Zi_1-Ql1Gk-tV90GVDOmXhy_jzUkNaT8qwBJD05RNIWZ-3uPXlkuDJj_OLMClPghgIPm_as89Jx1ggZ70-Vk2O2xBKyfuurPUDmJ28PTs-TWK9hsTQgi8Tn3tpM64ohkUvBPNBnFBaYRnVkiudOqomnHPptfFaIvK0VGZolmJOxZWiD2HUtI17BERx6YT2gutMMy2MdDLTYlIIZyXeNRvD66HpKhPFzENNjbrCpCY0dLXZ0GN4vrae9yIef7B7E7xgbROkt7sD7dV5FXtyZUXBmdMpc5nB3M0igEM_R1zqcm84pWPYG3yoiuPBoso5wgBEilKM4cXar_76Mo__1fAJ3M7DPxkdw3APRsurldtHpLTUT2NfuAZApgr9
  priority: 102
  providerName: Unpaywall
Title An Implementation of Actor-Critic Algorithm on Spiking Neural Network Using Temporal Coding Method
URI https://www.proquest.com/docview/2728427398
https://www.mdpi.com/2076-3417/12/20/10430/pdf?version=1666682408
https://doaj.org/article/d8674eb04e1c428d8462e4324e2fc733
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wP0gNoCYktZ-QAIhCLy8Mb2AaG06lIhEVXQlcop8rNUSpNtuxXi3-NJnO1yoMckIyfO2J6Hx98H8FpI7bRLbJRaGkfU5XmkcmWi2GqqvIVBpkystijzkzn9ej4934ByOAuDZZXDmtgt1KbVmCP_mDK_kHpbK_jnxXWErFG4uzpQaMhArWA-dRBjm7CVIjLWCLYOj8vT76usC6Jg8iTuK-AzH-_jPnGS4pYwxULoNdvUQfj_43c-umsW8s9vWddrJmi2A0-C70iKXtm7sGGbPdheQxTcg90wV2_JuwAo_f4pqKIhHQrwVTho1JDWkQLT9VFPdUCK-sJ3dvnriviHPxaXmEAnCNzh31f2leKkqy4gZz2WVU2OWjR75FtHQf0M5rPjs6OTKHArRDrL2TJyqRMmYTLzJsxxTh0CCQrDDc2UYFLFNpNTxphwSjslvJdoMpF4sdjHP0zK7DmMmraxL4BIJixXjjOVKKq4FlYkik9zbo3wrSZj-DD81UoH4HHkv6grH4CgDqp1HYzhzUp60QNu_EfuEBW0kkGY7O5Ge3NRhVlXGZ4zalVMbaJ9nGW8s-XHpPchbeo0y7IxHAzqrcLcva3uR9oY3q5U_uDH7D_czkt4nOKpia4G8ABGy5s7-8r7Mks1gU0--zIJw3TSZQT81bw8LX7-BTrx9jo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFG4QDujBCGpcRO1BjMZMnJl2p-2BmAUhi8DG6JJwG9pOiyTDzMouIfxz_m2-N9NZ14PcuM40nUlf-370vfd9hLxV2nrrExeljscR91kWmcwUUewsN2BhkCkTqy1G2fCEfz3tny6R310vDJZVdjqxUdRFbfGO_FMqQJGCrVXy8-RXhKxRmF3tKDR0oFYothuIsdDYcehubyCEm24ffAF5b6Xp_t54dxgFloHIskzMIp96VSRCQ2DPvJTcI6SeKmTBmVFCm9gx3RdCKG-sNwr8pYKpBIbFEAkIrRnM-4CscMYVBH8rO3ujb9_ntzyIuimTuK24Z0zFmJdOUkxBcyy8XrCFDWXAP37u6nU10bc3uiwXTN7-E_I4-Kp00G6uNbLkqnXyaAHBcJ2sBd0wpe8DgPWHp8QMKtqgDl-GxqaK1p4OMD0QtdQKdFCew-LOfl5SePljcoEX9hSBQuB7o7YynTbVDHTcYmeVdLdGM0uPG8rrZ-TkXlb5OVmu6sq9IFQL5aTxUpjEcCOtcioxsp9JVyiYNemRj92q5jYAnSPfRplDwIMyyBdl0CNb89GTFuDjP-N2UEDzMQjL3Tyor87zcMrzQmaCOxNzl1iI6wpw7uAMgM_qUm8FYz2y2Yk3D7pimv_d2T3ybi7yO39m4-553pDV4fj4KD86GB2-JA9T7Nho6g83yfLs6tq9Aj9qZl6HzUrJ2X2fjz9ucy8G
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IFpALBTwgSIQiprE3tg-ILS0LC2FFRKt1FtqO3ZBSpOlu1XVv8avYyaPZTnQW6_JyIk843l4Zr4BeKmNCy4kPkq9iCMRsiyymS2i2Dth0cLQpEyqtphku4fi89HwaAV-970wVFbZ68RGURe1ozvyrVSiIkVbq9VW6Moivu2M309_RTRBijKt_TiNVkT2_eUFhm-zd3s7yOvNNB1_PNjejboJA5HjmZxHIQ26SKTBoJ4HpUQgOD1dqEJwq6WxsedmKKXUwbpgNfpKBdcJksUYBUhjOK57A25KQnGnLvXxp8X9DuFtqiRua-051zFlpJOUks-CSq6XrGAzLOAfD_f2eTU1lxemLJeM3fg-3Ou8VDZqxWoNVny1DneXsAvXYa3TCjP2uoOufvMA7KhiDd7wadfSVLE6sBElBqJ2qAIblSe4lfMfpwxffp_-pKt6RhAh-L1JW5POmjoGdtCiZpVsuyYDy742w64fwuG17PEjWK3qyj8GZqT2ygYlbWKFVU57nVg1zJQvNK6aDOBtv6u56yDOadJGmWOoQzzIl3kwgM0F9bSF9vgP3Qdi0IKGALmbB_XZSd6d77xQmRTexsInDiO6At06lH70Vn0anOR8ABs9e_NOS8zyvzI9gFcLll_5M0-uXucF3MJTkX_Zm-w_hTsptWo0hYcbsDo_O_fP0IGa2-eNpDI4vu6j8Qcc2Cyg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7o9kF9sLYqrrYyDyqKpE0ys5mZpxKLpQgugl3QpzDXWkyTpbur6K_vmWSyrIIi-JbLyY05M-c7M1--A_BMKuONz1ySO5YmzBdFogttk9QZpjHChEqZgW0xLU5n7N2nycAmXERaJabiF90gnWOSneAwyw-zHHewhzOaHs6tP_oWJ5PColchgkzXTdgqJgjHR7A1m34oP4eicsPlPeGdYnofloWzPKwAs8B73ghFnWL_LzDz1qqZqx_fVV1vRJyTbdDDu_ZEk68Hq6U-MD9_k3H8r4-5B3cjHiVl70A7cMM1u3BnQ6VwF3Zi_1-Ql1Gk-tV90GVDOmXhy_jzUkNaT8qwBJD05RNIWZ-3uPXlkuDJj_OLMClPghgIPm_as89Jx1ggZ70-Vk2O2xBKyfuurPUDmJ28PTs-TWK9hsTQgi8Tn3tpM64ohkUvBPNBnFBaYRnVkiudOqomnHPptfFaIvK0VGZolmJOxZWiD2HUtI17BERx6YT2gutMMy2MdDLTYlIIZyXeNRvD66HpKhPFzENNjbrCpCY0dLXZ0GN4vrae9yIef7B7E7xgbROkt7sD7dV5FXtyZUXBmdMpc5nB3M0igEM_R1zqcm84pWPYG3yoiuPBoso5wgBEilKM4cXar_76Mo__1fAJ3M7DPxkdw3APRsurldtHpLTUT2NfuAZApgr9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Implementation+of+Actor-Critic+Algorithm+on+Spiking+Neural+Network+Using+Temporal+Coding+Method&rft.jtitle=Applied+sciences&rft.au=Lu%2C+Junqi&rft.au=Wu%2C+Xinning&rft.au=Cao%2C+Su&rft.au=Wang%2C+Xiangke&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=20&rft.spage=10430&rft_id=info:doi/10.3390%2Fapp122010430&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon