An Implementation of Actor-Critic Algorithm on Spiking Neural Network Using Temporal Coding Method
Taking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel spiking neural network reinforcement learning method using actor-critic architecture and temporal coding. The simple improved leaky integrate-an...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 12; no. 20; p. 10430 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.10.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app122010430 | 
Cover
| Abstract | Taking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel spiking neural network reinforcement learning method using actor-critic architecture and temporal coding. The simple improved leaky integrate-and-fire (LIF) model was used to describe the behavior of a spike neuron. Then the actor-critic network structure and the update formulas using temporally encoded information were provided. The current model was finally examined in the decision-making task, the gridworld task, the UAV flying through a window task and the avoiding a flying basketball task. In the 5 × 5 grid map, the value function learned was close to the ideal situation and the quickest way from one state to another was found. A UAV trained by this method was able to fly through the window quickly in simulation. An actual flight test of a UAV avoiding a flying basketball was conducted. With this model, the success rate of the test was 96% and the average decision time was 41.3 ms. The results show the effectiveness and accuracy of the temporal coded spiking neural network RL method. In conclusion, an attempt was made to provide insights into developing spiking neural network reinforcement learning methods for decision-making and autonomous control of unmanned systems. | 
    
|---|---|
| AbstractList | Taking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel spiking neural network reinforcement learning method using actor-critic architecture and temporal coding. The simple improved leaky integrate-and-fire (LIF) model was used to describe the behavior of a spike neuron. Then the actor-critic network structure and the update formulas using temporally encoded information were provided. The current model was finally examined in the decision-making task, the gridworld task, the UAV flying through a window task and the avoiding a flying basketball task. In the 5 × 5 grid map, the value function learned was close to the ideal situation and the quickest way from one state to another was found. A UAV trained by this method was able to fly through the window quickly in simulation. An actual flight test of a UAV avoiding a flying basketball was conducted. With this model, the success rate of the test was 96% and the average decision time was 41.3 ms. The results show the effectiveness and accuracy of the temporal coded spiking neural network RL method. In conclusion, an attempt was made to provide insights into developing spiking neural network reinforcement learning methods for decision-making and autonomous control of unmanned systems. Featured ApplicationRapid decision-making on micro drones.AbstractTaking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel spiking neural network reinforcement learning method using actor-critic architecture and temporal coding. The simple improved leaky integrate-and-fire (LIF) model was used to describe the behavior of a spike neuron. Then the actor-critic network structure and the update formulas using temporally encoded information were provided. The current model was finally examined in the decision-making task, the gridworld task, the UAV flying through a window task and the avoiding a flying basketball task. In the 5 × 5 grid map, the value function learned was close to the ideal situation and the quickest way from one state to another was found. A UAV trained by this method was able to fly through the window quickly in simulation. An actual flight test of a UAV avoiding a flying basketball was conducted. With this model, the success rate of the test was 96% and the average decision time was 41.3 ms. The results show the effectiveness and accuracy of the temporal coded spiking neural network RL method. In conclusion, an attempt was made to provide insights into developing spiking neural network reinforcement learning methods for decision-making and autonomous control of unmanned systems.  | 
    
| Author | Wang, Xiangke Wu, Xinning Yu, Huangchao Lu, Junqi Cao, Su  | 
    
| Author_xml | – sequence: 1 givenname: Junqi surname: Lu fullname: Lu, Junqi – sequence: 2 givenname: Xinning orcidid: 0000-0001-9640-4058 surname: Wu fullname: Wu, Xinning – sequence: 3 givenname: Su surname: Cao fullname: Cao, Su – sequence: 4 givenname: Xiangke surname: Wang fullname: Wang, Xiangke – sequence: 5 givenname: Huangchao orcidid: 0000-0003-4715-6267 surname: Yu fullname: Yu, Huangchao  | 
    
| BookMark | eNp9kE9PJCEQxYnRxH9z8wN0sld7BQobOE4m6k6i7mGdM6EbGBm7m16aycRvL7O9McZEuVTx-NUL9U7RYR96i9AFwT8BJL7Sw0AoxQQzwAfohGJelcAIP_zQH6PZOG5wPpKAIPgE1fO-WHZDazvbJ5186IvginmTQiwX0SffFPN2HXL33BX58c_gX3y_Lh7tNuo2l7QL8aVYjXvxyXZD2MuLYPb3B5uegzlHR063o539r2dodXvztPhV3v--Wy7m92UDFU-lo04awjUABicEc5RLKo0wDGrJdY0t6GvOuXR142opOTcgScZwha-51nCGlpOvCXqjhug7HV9V0F79E0JcKx3zQq1VRlSc2RozSxpGhRGsopYBZZa6hgNkr3Ly2vaDft3ptn03JFjt81Yf8878j4kfYvi7tWNSm7CNfV5XUU4FoxykyBSdqCaGcYzWqcZPoaeoffuV9eWnoW9_8gauyp6O | 
    
| CitedBy_id | crossref_primary_10_1007_s10846_023_01897_0 | 
    
| Cites_doi | 10.1007/s12559-017-9511-3 10.1103/PhysRevE.69.041909 10.3389/fnins.2020.00119 10.1162/neco.2007.19.6.1468 10.1007/s11571-017-9436-2 10.24963/ijcai.2018/221 10.3389/fnbot.2018.00056 10.1162/089976601750541787 10.3389/fnins.2018.00331 10.1016/S0925-2312(01)00658-0 10.1017/CBO9781107447615 10.1016/S0893-6080(97)00011-7 10.1109/ICRA.2018.8460482 10.1162/089976601300014376 10.1146/annurev-neuro-062111-150512 10.2976/1.2732246/10.2976/1 10.1109/ICRAS49812.2020.9134922 10.1002/scj.10645 10.1186/1471-2202-8-S2-P197 10.1016/S0896-6273(03)00761-X 10.1002/(SICI)1098-1063(2000)10:1<1::AID-HIPO1>3.0.CO;2-1 10.2514/2.2505 10.1162/neco.2008.08-07-593 10.1109/LRA.2022.3153987  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/app122010430 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | oai_doaj_org_article_d8674eb04e1c428d8462e4324e2fc733 10.3390/app122010430 10_3390_app122010430  | 
    
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c367t-f2f9d17a3303f884f27929d8d43b97ab0e3a57779fbcfb9977d3914f206057aa3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Fri Oct 03 12:51:30 EDT 2025 Sun Oct 26 02:11:51 EDT 2025 Mon Jun 30 07:31:22 EDT 2025 Thu Oct 16 04:29:12 EDT 2025 Thu Apr 24 23:00:54 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 20 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c367t-f2f9d17a3303f884f27929d8d43b97ab0e3a57779fbcfb9977d3914f206057aa3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-9640-4058 0000-0003-4715-6267  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2728427398?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2728427398 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d8674eb04e1c428d8462e4324e2fc733 unpaywall_primary_10_3390_app122010430 proquest_journals_2728427398 crossref_citationtrail_10_3390_app122010430 crossref_primary_10_3390_app122010430  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-10-01 | 
    
| PublicationDateYYYYMMDD | 2022-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Cao (ref_31) 2022; 7 Rajapakse (ref_18) 2004; Volume 152 Foster (ref_14) 2015; 10 Florian (ref_11) 2007; 19 Maas (ref_4) 1997; 10 ref_32 ref_30 Zhao (ref_16) 2018; 12 Doya (ref_19) 2007; 1 Takita (ref_10) 2010; 36 Mostafa (ref_28) 2016; 29 Zhao (ref_3) 2017; 10 Rao (ref_17) 2001; 13 Hu (ref_8) 2021; 36 Sebastian (ref_9) 2003; 40 Wei (ref_15) 2017; 11 Lee (ref_2) 2012; 35 Mozer (ref_5) 1997; Volume 9 ref_24 Xie (ref_6) 2004; 69 Potjans (ref_22) 2009; 21 Lee (ref_25) 2019; 14 ref_21 ref_20 Baras (ref_12) 2007; 8 Potempa (ref_26) 2021; 33 Suri (ref_13) 2001; 13 Bohte (ref_27) 2002; 48 ref_29 Wu (ref_23) 2018; 12 Virtanen (ref_1) 1999; 36 Zhang (ref_7) 2021; 9  | 
    
| References_xml | – volume: 10 start-page: 296 year: 2017 ident: ref_3 article-title: A brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous uav explorations publication-title: Cogn. Comput. doi: 10.1007/s12559-017-9511-3 – volume: 69 start-page: 041909 year: 2004 ident: ref_6 article-title: Learning in neural networks by reinforcement of irregular spiking publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.041909 – ident: ref_24 – volume: 14 start-page: 119 year: 2019 ident: ref_25 article-title: Enabling spike-based backpropagation for training deep neural network architectures publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00119 – volume: 19 start-page: 1468 year: 2007 ident: ref_11 article-title: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity publication-title: Neural Comput. doi: 10.1162/neco.2007.19.6.1468 – volume: 29 start-page: 3227 year: 2016 ident: ref_28 article-title: Supervised Learning Based on Temporal Coding in Spiking Neural Networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 11 start-page: 415 year: 2017 ident: ref_15 article-title: A decision-making model based on a spiking neural circuit and synaptic plasticity publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-017-9436-2 – ident: ref_30 doi: 10.24963/ijcai.2018/221 – volume: 12 start-page: 56 year: 2018 ident: ref_16 article-title: A Brain-Inspired Decision-Making Spiking Neural Network and Its Application in Unmanned Aerial Vehicle publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2018.00056 – volume: 13 start-page: 2221 year: 2001 ident: ref_17 article-title: Spike-timing-dependent Hebbian plasticity as temporal difference learning publication-title: Neural Comput. doi: 10.1162/089976601750541787 – volume: 12 start-page: 331 year: 2018 ident: ref_23 article-title: Spatio-Temporal Backpropagation for Training HighPerformance Spiking Neural Networks publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00331 – volume: Volume 152 start-page: 238 year: 2004 ident: ref_18 article-title: A Memory-Based Reinforcement Learning Algorithm to Prevent Unlearning in Neural Networks publication-title: Neural Information Processings: Research and Development; Studies in Fuzziness and Soft Computing – volume: 48 start-page: 17 year: 2002 ident: ref_27 article-title: Error-backpropagation in temporally encoded networks of spiking neurons publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00658-0 – ident: ref_29 doi: 10.1017/CBO9781107447615 – volume: 10 start-page: 1659 year: 1997 ident: ref_4 article-title: Networks of spiking neurons: The third generation of neural network models publication-title: Neural Netw. doi: 10.1016/S0893-6080(97)00011-7 – volume: Volume 9 start-page: 211 year: 1997 ident: ref_5 article-title: Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons publication-title: Advances in Neural Information Processing Systems – ident: ref_21 doi: 10.1109/ICRA.2018.8460482 – volume: 33 start-page: 5939 year: 2021 ident: ref_26 article-title: Temporal Coding in Spiking Neural Networks With Alpha Synaptic Function: Learning With Backpropagation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 13 start-page: 841 year: 2001 ident: ref_13 article-title: Temporal Difference Model Reproduces Anticipatory Neural Activity publication-title: Neural Comput. doi: 10.1162/089976601300014376 – volume: 35 start-page: 287 year: 2012 ident: ref_2 article-title: Neural basis of reinforcement learning and decision making publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150512 – volume: 36 start-page: 1 year: 2021 ident: ref_8 article-title: Spiking neural networks: A survey on recent advances and new dirctions publication-title: Control Decision – volume: 1 start-page: 30 year: 2007 ident: ref_19 article-title: Reinforcement learning: Computational theory and biological mechanisms publication-title: HFSP J. doi: 10.2976/1.2732246/10.2976/1 – ident: ref_32 doi: 10.1109/ICRAS49812.2020.9134922 – volume: 36 start-page: 42 year: 2010 ident: ref_10 article-title: A pulse neural network reinforcement learning algorithm for partially observable Markov decision processes publication-title: Syst. Comput. Jpn. doi: 10.1002/scj.10645 – volume: 8 start-page: 197 year: 2007 ident: ref_12 article-title: Direct reinforcement learning, spike-time-dependent plasticity, and the BCM rule publication-title: BMC Neurosci. doi: 10.1186/1471-2202-8-S2-P197 – volume: 40 start-page: 1063 year: 2003 ident: ref_9 article-title: Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission publication-title: Neuron doi: 10.1016/S0896-6273(03)00761-X – volume: 9 start-page: 1767 year: 2021 ident: ref_7 article-title: Research Advances and Perspectives on Spiking Neural Networks publication-title: Chin. J. Comput. – volume: 10 start-page: 1 year: 2015 ident: ref_14 article-title: A model of hippocampally dependent navigation, using the temporal difference learning rule publication-title: Hippocampus doi: 10.1002/(SICI)1098-1063(2000)10:1<1::AID-HIPO1>3.0.CO;2-1 – ident: ref_20 – volume: 36 start-page: 632 year: 1999 ident: ref_1 article-title: Decision theoretical approach to pilot simulation publication-title: J. Aircr. doi: 10.2514/2.2505 – volume: 21 start-page: 301 year: 2009 ident: ref_22 article-title: A Spiking Neural Network Model of an Actor-Critic Learning Agent publication-title: Neural Comput. doi: 10.1162/neco.2008.08-07-593 – volume: 7 start-page: 5771 year: 2022 ident: ref_31 article-title: From Demonstration to Flight: Realization of Autonomous Aerobatic Maneuvers for Fast, Miniature Fixed-Wing UAVs publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3153987  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.2625499 | 
    
| Snippet | Taking advantage of faster speed, less resource consumption and better biological interpretability of spiking neural networks, this paper developed a novel... Featured ApplicationRapid decision-making on micro drones.AbstractTaking advantage of faster speed, less resource consumption and better biological...  | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 10430 | 
    
| SubjectTerms | actor-critic algorithm Decision making Neural networks Neurons spiking neural network temporal coding UAV Unmanned aerial vehicles  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRT2IT1xf5KCiSLFps01yXEVZBPeigreSpIkK3e7i7iL-e2fSutSDevFW0iENmUm_mWTyDSFHSltvPXNR4ngccZ9lkclMEcXOcgMIg5UyMdtikPUf-e1T96lV6gtzwmp64HriLgqZCe5MzB2z4CoXgJfQLbgBLvFWpIHnM5aqFUyFf7BiSF1VZ7qnENfjeTBL8OiXY8JzC4MCVf83_3JpVo31x7suyxbU3KyR1cZHpL16bOtkwVUbZKXFHLhB1ps1OaGnDXH02SYxvYoGtt9hc6GooiNPe7gtH9UlDWivfB7B08uQwsv78StulFMk6IDvDeqMcBqyCOhDzVlV0qsRwhu9C6Wmt8jjzfXDVT9qaihENs3ENPKJVwUTOgWo8lJyj4SBqpAFT40S2sQu1V0hhPLGeqPAGyxSxUAshjhHaJ1uk8VqVLkdQrVQThovhWGGG2mVU8zIbiZdoaBX1iHnX7Oa24ZgHOtclDkEGqiDvK2DDjmeS49rYo0f5C5RQXMZpMMODWAkeWMk-V9G0iH7X-rNmzU6yRMB0Azem5IdcjJX-a-D2f2PweyR5QTvUISMwH2yOH2buQPwbKbmMBjxJwnN8_o priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7o9kF9sLYqrrYyDyqKpE0ys5mZpxKLpQgugl3QpzDXWkyTpbur6K_vmWSyrIIi-JbLyY05M-c7M1--A_BMKuONz1ySO5YmzBdFogttk9QZpjHChEqZgW0xLU5n7N2nycAmXERaJabiF90gnWOSneAwyw-zHHewhzOaHs6tP_oWJ5PColchgkzXTdgqJgjHR7A1m34oP4eicsPlPeGdYnofloWzPKwAs8B73ghFnWL_LzDz1qqZqx_fVV1vRJyTbdDDu_ZEk68Hq6U-MD9_k3H8r4-5B3cjHiVl70A7cMM1u3BnQ6VwF3Zi_1-Ql1Gk-tV90GVDOmXhy_jzUkNaT8qwBJD05RNIWZ-3uPXlkuDJj_OLMClPghgIPm_as89Jx1ggZ70-Vk2O2xBKyfuurPUDmJ28PTs-TWK9hsTQgi8Tn3tpM64ohkUvBPNBnFBaYRnVkiudOqomnHPptfFaIvK0VGZolmJOxZWiD2HUtI17BERx6YT2gutMMy2MdDLTYlIIZyXeNRvD66HpKhPFzENNjbrCpCY0dLXZ0GN4vrae9yIef7B7E7xgbROkt7sD7dV5FXtyZUXBmdMpc5nB3M0igEM_R1zqcm84pWPYG3yoiuPBoso5wgBEilKM4cXar_76Mo__1fAJ3M7DPxkdw3APRsurldtHpLTUT2NfuAZApgr9 priority: 102 providerName: Unpaywall  | 
    
| Title | An Implementation of Actor-Critic Algorithm on Spiking Neural Network Using Temporal Coding Method | 
    
| URI | https://www.proquest.com/docview/2728427398 https://www.mdpi.com/2076-3417/12/20/10430/pdf?version=1666682408 https://doaj.org/article/d8674eb04e1c428d8462e4324e2fc733  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wP0gNoCYktZ-QAIhCLy8Mb2AaG06lIhEVXQlcop8rNUSpNtuxXi3-NJnO1yoMckIyfO2J6Hx98H8FpI7bRLbJRaGkfU5XmkcmWi2GqqvIVBpkystijzkzn9ej4934ByOAuDZZXDmtgt1KbVmCP_mDK_kHpbK_jnxXWErFG4uzpQaMhArWA-dRBjm7CVIjLWCLYOj8vT76usC6Jg8iTuK-AzH-_jPnGS4pYwxULoNdvUQfj_43c-umsW8s9vWddrJmi2A0-C70iKXtm7sGGbPdheQxTcg90wV2_JuwAo_f4pqKIhHQrwVTho1JDWkQLT9VFPdUCK-sJ3dvnriviHPxaXmEAnCNzh31f2leKkqy4gZz2WVU2OWjR75FtHQf0M5rPjs6OTKHArRDrL2TJyqRMmYTLzJsxxTh0CCQrDDc2UYFLFNpNTxphwSjslvJdoMpF4sdjHP0zK7DmMmraxL4BIJixXjjOVKKq4FlYkik9zbo3wrSZj-DD81UoH4HHkv6grH4CgDqp1HYzhzUp60QNu_EfuEBW0kkGY7O5Ge3NRhVlXGZ4zalVMbaJ9nGW8s-XHpPchbeo0y7IxHAzqrcLcva3uR9oY3q5U_uDH7D_czkt4nOKpia4G8ABGy5s7-8r7Mks1gU0--zIJw3TSZQT81bw8LX7-BTrx9jo | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFG4QDujBCGpcRO1BjMZMnJl2p-2BmAUhi8DG6JJwG9pOiyTDzMouIfxz_m2-N9NZ14PcuM40nUlf-370vfd9hLxV2nrrExeljscR91kWmcwUUewsN2BhkCkTqy1G2fCEfz3tny6R310vDJZVdjqxUdRFbfGO_FMqQJGCrVXy8-RXhKxRmF3tKDR0oFYothuIsdDYcehubyCEm24ffAF5b6Xp_t54dxgFloHIskzMIp96VSRCQ2DPvJTcI6SeKmTBmVFCm9gx3RdCKG-sNwr8pYKpBIbFEAkIrRnM-4CscMYVBH8rO3ujb9_ntzyIuimTuK24Z0zFmJdOUkxBcyy8XrCFDWXAP37u6nU10bc3uiwXTN7-E_I4-Kp00G6uNbLkqnXyaAHBcJ2sBd0wpe8DgPWHp8QMKtqgDl-GxqaK1p4OMD0QtdQKdFCew-LOfl5SePljcoEX9hSBQuB7o7YynTbVDHTcYmeVdLdGM0uPG8rrZ-TkXlb5OVmu6sq9IFQL5aTxUpjEcCOtcioxsp9JVyiYNemRj92q5jYAnSPfRplDwIMyyBdl0CNb89GTFuDjP-N2UEDzMQjL3Tyor87zcMrzQmaCOxNzl1iI6wpw7uAMgM_qUm8FYz2y2Yk3D7pimv_d2T3ybi7yO39m4-553pDV4fj4KD86GB2-JA9T7Nho6g83yfLs6tq9Aj9qZl6HzUrJ2X2fjz9ucy8G | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IFpALBTwgSIQiprE3tg-ILS0LC2FFRKt1FtqO3ZBSpOlu1XVv8avYyaPZTnQW6_JyIk843l4Zr4BeKmNCy4kPkq9iCMRsiyymS2i2Dth0cLQpEyqtphku4fi89HwaAV-970wVFbZ68RGURe1ozvyrVSiIkVbq9VW6Moivu2M309_RTRBijKt_TiNVkT2_eUFhm-zd3s7yOvNNB1_PNjejboJA5HjmZxHIQ26SKTBoJ4HpUQgOD1dqEJwq6WxsedmKKXUwbpgNfpKBdcJksUYBUhjOK57A25KQnGnLvXxp8X9DuFtqiRua-051zFlpJOUks-CSq6XrGAzLOAfD_f2eTU1lxemLJeM3fg-3Ou8VDZqxWoNVny1DneXsAvXYa3TCjP2uoOufvMA7KhiDd7wadfSVLE6sBElBqJ2qAIblSe4lfMfpwxffp_-pKt6RhAh-L1JW5POmjoGdtCiZpVsuyYDy742w64fwuG17PEjWK3qyj8GZqT2ygYlbWKFVU57nVg1zJQvNK6aDOBtv6u56yDOadJGmWOoQzzIl3kwgM0F9bSF9vgP3Qdi0IKGALmbB_XZSd6d77xQmRTexsInDiO6At06lH70Vn0anOR8ABs9e_NOS8zyvzI9gFcLll_5M0-uXucF3MJTkX_Zm-w_hTsptWo0hYcbsDo_O_fP0IGa2-eNpDI4vu6j8Qcc2Cyg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7o9kF9sLYqrrYyDyqKpE0ys5mZpxKLpQgugl3QpzDXWkyTpbur6K_vmWSyrIIi-JbLyY05M-c7M1--A_BMKuONz1ySO5YmzBdFogttk9QZpjHChEqZgW0xLU5n7N2nycAmXERaJabiF90gnWOSneAwyw-zHHewhzOaHs6tP_oWJ5PColchgkzXTdgqJgjHR7A1m34oP4eicsPlPeGdYnofloWzPKwAs8B73ghFnWL_LzDz1qqZqx_fVV1vRJyTbdDDu_ZEk68Hq6U-MD9_k3H8r4-5B3cjHiVl70A7cMM1u3BnQ6VwF3Zi_1-Ql1Gk-tV90GVDOmXhy_jzUkNaT8qwBJD05RNIWZ-3uPXlkuDJj_OLMClPghgIPm_as89Jx1ggZ70-Vk2O2xBKyfuurPUDmJ28PTs-TWK9hsTQgi8Tn3tpM64ohkUvBPNBnFBaYRnVkiudOqomnHPptfFaIvK0VGZolmJOxZWiD2HUtI17BERx6YT2gutMMy2MdDLTYlIIZyXeNRvD66HpKhPFzENNjbrCpCY0dLXZ0GN4vrae9yIef7B7E7xgbROkt7sD7dV5FXtyZUXBmdMpc5nB3M0igEM_R1zqcm84pWPYG3yoiuPBoso5wgBEilKM4cXar_76Mo__1fAJ3M7DPxkdw3APRsurldtHpLTUT2NfuAZApgr9 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Implementation+of+Actor-Critic+Algorithm+on+Spiking+Neural+Network+Using+Temporal+Coding+Method&rft.jtitle=Applied+sciences&rft.au=Lu%2C+Junqi&rft.au=Wu%2C+Xinning&rft.au=Cao%2C+Su&rft.au=Wang%2C+Xiangke&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=20&rft.spage=10430&rft_id=info:doi/10.3390%2Fapp122010430&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |