Structure-property relationship in fully biobased epoxidized soybean oil thermosets cured by dicarboxyl terminated polyamide 1010 oligomer with different carboxyl/epoxy ratios

Dicarboxyl terminated polyamide 1010 oligomer was used to cure epoxidized soybean oil (ESO) to synthesize fully biobased epoxy thermosets with different chemical structures via changing carboxyl/epoxy equivalent ratio (R-value). The effect of chemical structures of the epoxy thermosets on their cros...

Full description

Saved in:
Bibliographic Details
Published inPolymer testing Vol. 79; p. 106057
Main Authors Wang, Xiang-Zhao, He, Jia, Weng, Yun-Xuan, Zeng, Jian-Bing, Li, Yi-Dong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2019
Subjects
Online AccessGet full text
ISSN0142-9418
1873-2348
DOI10.1016/j.polymertesting.2019.106057

Cover

Abstract Dicarboxyl terminated polyamide 1010 oligomer was used to cure epoxidized soybean oil (ESO) to synthesize fully biobased epoxy thermosets with different chemical structures via changing carboxyl/epoxy equivalent ratio (R-value). The effect of chemical structures of the epoxy thermosets on their crosslink density, swelling property, crystallization behavior, dynamic and static mechanical properties, as well as thermal stability was studied systematically. The crosslink density of the epoxy thermosets increased obviously, the gel fraction almost kept unchanged, and the swelling ratio decreased gradually with increasing R-value. The crystallization capability and degree of crystallinity were enhanced meanwhile melting temperature shifted to higher temperature range with increasing R-value, due to the increased concentration of polyamide 1010 segments in the thermoset. Consequently, the stiffness and heat resistance of the epoxy thermosets were enhanced. The Young's modulus increased gradually and the break stress as well as the break strain first increased and then decreased with increasing R-value. This investigation provides a new strategy to regulate physical properties of soybean oil-based epoxy thermosets, which would be valuable for other plant oil-based polymers design. •Fully biobased epoxy thermosets were prepared by curing epoxidized soybean oil with dicarboxyl terminated polyamide 1010 oligomer.•The chemical structure and crosslink density of the epoxy thermosets were regulated by carboxyl/epoxy equivalent ratio.•The crystallization and Young's modulus of the epoxy thermosets were enhanced with increasing carboxyl/epoxy equivalent ratio.•The break strength and elongation at break first increased and then decreased with increasing carboxyl/epoxy equivalent ratio.•The fully biobased epoxy thermosets showed good thermal stability.
AbstractList Dicarboxyl terminated polyamide 1010 oligomer was used to cure epoxidized soybean oil (ESO) to synthesize fully biobased epoxy thermosets with different chemical structures via changing carboxyl/epoxy equivalent ratio (R-value). The effect of chemical structures of the epoxy thermosets on their crosslink density, swelling property, crystallization behavior, dynamic and static mechanical properties, as well as thermal stability was studied systematically. The crosslink density of the epoxy thermosets increased obviously, the gel fraction almost kept unchanged, and the swelling ratio decreased gradually with increasing R-value. The crystallization capability and degree of crystallinity were enhanced meanwhile melting temperature shifted to higher temperature range with increasing R-value, due to the increased concentration of polyamide 1010 segments in the thermoset. Consequently, the stiffness and heat resistance of the epoxy thermosets were enhanced. The Young's modulus increased gradually and the break stress as well as the break strain first increased and then decreased with increasing R-value. This investigation provides a new strategy to regulate physical properties of soybean oil-based epoxy thermosets, which would be valuable for other plant oil-based polymers design. •Fully biobased epoxy thermosets were prepared by curing epoxidized soybean oil with dicarboxyl terminated polyamide 1010 oligomer.•The chemical structure and crosslink density of the epoxy thermosets were regulated by carboxyl/epoxy equivalent ratio.•The crystallization and Young's modulus of the epoxy thermosets were enhanced with increasing carboxyl/epoxy equivalent ratio.•The break strength and elongation at break first increased and then decreased with increasing carboxyl/epoxy equivalent ratio.•The fully biobased epoxy thermosets showed good thermal stability.
ArticleNumber 106057
Author Weng, Yun-Xuan
He, Jia
Zeng, Jian-Bing
Wang, Xiang-Zhao
Li, Yi-Dong
Author_xml – sequence: 1
  givenname: Xiang-Zhao
  surname: Wang
  fullname: Wang, Xiang-Zhao
  organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
– sequence: 2
  givenname: Jia
  surname: He
  fullname: He, Jia
  organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
– sequence: 3
  givenname: Yun-Xuan
  surname: Weng
  fullname: Weng, Yun-Xuan
  email: wyxuan@th.btbu.edu.cn
  organization: Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, 100048, China
– sequence: 4
  givenname: Jian-Bing
  surname: Zeng
  fullname: Zeng, Jian-Bing
  organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
– sequence: 5
  givenname: Yi-Dong
  surname: Li
  fullname: Li, Yi-Dong
  email: liyidong@swu.edu.cn
  organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
BookMark eNqNkcFu3CAYhFGVSN0kfQcOvXoDeL3GUi9tlDSVVuohyRlh-Mn-Ky9YwDZxXqqvGNxtD80pJ5BG8zHDnJETHzwQ8pmzJWd8fblbjmGY9hAzpIz-cSkY74q0Zk37gSy4bOtK1Ct5QhaMr0TVrbj8SM5S2jHGmkJYkN93OR5MPkSoxhjGgppohEFnDD5tcaToqTsMw0R7DL1OYCmM4RktvpRrClMP2tOAA81biPuQICdqCs7SfqIWjY59eJ6KXFT0OhdhDq33aIGWFoyGAR9DKUGfMG-LxTmI4DP9Z72cHyyp5kzpgpw6PST49Pc8Jw831_dXt9Xm5_cfV183lanXba6caIVYAYPGNUYYIYRzxvKWNbIGsEKKVkupnWRM866TremsZaax1uiOrV19Tr4duSaGlCI4ZTD_-ZUcNQ6KMzVPoHbq_wnUPIE6TlAgX95Axoh7Haf32m-OdihFfyFElQyCN2AxgsnKBnwf6BUya7b5
CitedBy_id crossref_primary_10_1016_j_compscitech_2023_110253
crossref_primary_10_1016_j_ijbiomac_2023_125202
crossref_primary_10_1016_j_polymertesting_2022_107657
crossref_primary_10_1016_j_porgcoat_2024_108410
crossref_primary_10_1016_j_cej_2023_144633
crossref_primary_10_1002_mabi_202300458
crossref_primary_10_1016_j_envres_2025_121446
crossref_primary_10_1016_j_cej_2022_138564
crossref_primary_10_1016_j_coco_2020_100445
crossref_primary_10_1016_j_supflu_2020_105070
crossref_primary_10_1021_acssuschemeng_4c01475
crossref_primary_10_1021_acssuschemeng_9b03956
crossref_primary_10_1016_j_heliyon_2023_e13538
crossref_primary_10_1016_j_indcrop_2022_115615
crossref_primary_10_1002_admi_202200145
crossref_primary_10_1016_j_indcrop_2020_112576
crossref_primary_10_1016_j_polymertesting_2019_106208
crossref_primary_10_1016_j_ijbiomac_2023_127760
crossref_primary_10_1039_D0GC01738H
Cites_doi 10.1002/aic.15486
10.1016/j.compositesb.2018.07.022
10.1016/j.coco.2017.11.006
10.1016/j.apsusc.2012.03.095
10.1021/acs.iecr.8b01189
10.1021/acssuschemeng.8b00439
10.1039/C5GC00912J
10.1002/marc.201700009
10.1021/sc5003853
10.1016/j.compscitech.2019.107709
10.1021/acssuschemeng.6b02684
10.1021/acssuschemeng.8b02419
10.1016/j.cej.2017.06.039
10.1016/j.compositesb.2017.08.015
10.1021/acs.chemrev.5b00264
10.1080/15583724.2017.1287726
10.1021/acs.macromol.8b00103
10.1002/pc.22318
10.1002/pi.4236
10.1016/j.coco.2018.04.006
10.1016/S0032-3861(00)00256-1
10.1002/pi.5621
10.1016/j.polymertesting.2016.12.007
10.1021/acssuschemeng.8b03331
10.1021/acssuschemeng.8b06073
10.1016/j.apsusc.2018.12.127
10.1021/acssuschemeng.6b00479
10.1039/C5TA02939B
10.1021/acs.macromol.8b01010
10.1007/s40843-017-9192-8
10.1021/cr3001274
10.1007/s11746-012-2102-2
10.1016/j.eurpolymj.2008.04.039
10.1016/j.polymer.2017.11.051
10.1016/j.polymer.2018.04.013
10.1021/acssuschemeng.8b05025
10.1016/j.apsusc.2018.10.017
10.3390/molecules23112739
10.1016/j.eurpolymj.2015.03.062
10.1021/acssuschemeng.5b01283
10.1016/j.coco.2018.04.008
10.1021/bm200188u
10.1021/acs.biomac.5b00014
10.1016/j.polymertesting.2018.10.010
10.1016/j.polymer.2018.06.021
10.1080/03602559.2016.1253742
10.1039/c3gc41384e
10.1039/C7NR05011A
10.1016/j.apsusc.2018.03.229
10.1021/acssuschemeng.8b01212
10.1021/acs.macromol.7b01068
10.1021/acs.macromol.6b01261
10.1002/app.44103
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.polymertesting.2019.106057
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2348
ExternalDocumentID 10_1016_j_polymertesting_2019_106057
S0142941819312140
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c367t-f27224e0e5f5c2c222ffcd170583eed2827a88af800a19987c9dd0c5ddca906f3
IEDL.DBID AIKHN
ISSN 0142-9418
IngestDate Thu Apr 24 22:58:24 EDT 2025
Tue Jul 01 04:26:39 EDT 2025
Fri Feb 23 02:49:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biobased polyamide
Epoxidized soybean oil
Crosslink density
Mechanical property
Crystallization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-f27224e0e5f5c2c222ffcd170583eed2827a88af800a19987c9dd0c5ddca906f3
ParticipantIDs crossref_citationtrail_10_1016_j_polymertesting_2019_106057
crossref_primary_10_1016_j_polymertesting_2019_106057
elsevier_sciencedirect_doi_10_1016_j_polymertesting_2019_106057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Polymer testing
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Cao, Yuan, Chen (bib6) 2019; 7
Savonnet, Grau, Grelier, Defoort, Cramail (bib25) 2018; 6
Wang, Yuan, Ganewatta, Lamm, Rahman, Wang, Liu, Tang (bib33) 2017; 38
Yan, Yang (bib50) 2012; 33
Pojanavaraphan, Magaraphan (bib49) 2008; 44
Li, Nawaz, Wu, Zhang, Wan, Mi, Yu, Zhang (bib2) 2018; 9
Zhao, Yuan, Li, Weng, Zeng (bib7) 2018; 51
Cao, Yuan, Xu, Chen (bib53) 2017; 9
Jian, An, Li, Chen, Wang, Zeng (bib46) 2017; 50
Espana, Sanchez-Nacher, Boronat, Fombuena, Balart (bib40) 2012; 89
Cao, Huang, Chen (bib9) 2018; 6
Yan, Liu, Liu, Zhang, Zhao, Sun, Hu, Zhang (bib16) 2018; 10
Salama, Diab, Abou-Zeid, Aljohani, Shoueir (bib4) 2018; 7
Boquillon, Fringant (bib43) 2000; 41
Gandini, Lacerda, Carvalho, Trovatti (bib1) 2016; 116
Yue, Maiorana, Khelifa, Patel, Raquez, Bonnaud, Gross, Dubois, Manas-Zloczower (bib23) 2018; 134
Liu, Hao, Zhang, Yang, Wang, Han, Li, Xin, Zhang (bib27) 2018; 51
Patel, Maiorana, Yue, Gross, Manas-Zloczower (bib48) 2016; 49
Miao, Yuan, Guan, Liang, Gu (bib29) 2018; 67
Ding, Shuttleworth, Makin, Clark, Matharu (bib35) 2015; 17
Wang, Wu, Li, Zeng (bib3) 2017; 57
Chen, Xi, Zhao (bib32) 2017; 63
Liu, Qiu, Fei, Qiu, Sakai (bib8) 2018; 57
Jiang, Zhang, Yan, Jiang (bib31) 2012; 258
Liu, Qiu, Chen, Fei, Qiu, Sakai (bib10) 2019; 181
Wan, Gan, Li, Molina-Aldareguia, Li, Wang, Wang (bib52) 2015; 3
Maiorana, Spinella, Gross (bib17) 2015; 16
Jia, Deng, Luo, Qing, Yan, Wu (bib13) 2019; 466
Baroncini, Yadav, Palmese, Stanzione (bib39) 2016; 133
Altuna, Pettarin, Williams (bib34) 2013; 15
Li, Sung, Sun (bib42) 2016; 4
Zhao, Wu, Li, Wang, Zeng (bib38) 2017; 5
Liu, Qiu, Zhu, Fei, Qiu, Sakai, Ito, Song, Tang (bib5) 2018; 148
Wang, Wan, Zeng, Zhou, Zhang (bib51) 2012; 61
Kumar, Samal, Mohanty, Nayak (bib24) 2018; 57
Dai, Peng, Teng, Liu, Liu, Shen, Mahmud, Zhu, Liu (bib22) 2018; 6
Chen, Hu, Li, Meng, Zhu, Zeng (bib45) 2018; 143
An, Chen, Li, Zhu, Zeng (bib44) 2018; 61
Kim, Heo, Park, Min, Rhee, Park (bib15) 2018; 153
Kim, Mittal, Kim, Kim, Yop Rhee (bib14) 2019; 473
Li, Fan, Aziz, Bittencourt, Wu, Wang, Dubois (bib21) 2018; 6
Ahn, Kraft, Wang, Sun (bib41) 2011; 12
Li, Jian, Zhu, Du, Zeng (bib47) 2018; 72
Stemmelen, Lapinte, Habas, Robin (bib30) 2015; 68
Li, Li (bib36) 2014; 2
Zeng, Wu, Li, Wang, Zeng (bib37) 2017; 57
Fan, Miao, Yuan, Guan, Gu, Liang (bib19) 2018; 447
Yue, Liu, Mekala, Patel, Gross, Manas-Zloczower (bib26) 2019; 7
Auvergne, Caillol, David, Boutevin, Pascault (bib12) 2014; 114
Cicala, Pergolizzi, Piscopo, Carbone, Recca (bib20) 2018; 132
Jian, He, Li, Wang, Zeng (bib18) 2017; 326
Wan, Zhao, Gan, Li, Molina-Aldareguia, Zhao, Pan, Wang (bib11) 2016; 4
Couture, Granado, Fanget, Boutevin, Caillol (bib28) 2018; 23
Li (10.1016/j.polymertesting.2019.106057_bib21) 2018; 6
Chen (10.1016/j.polymertesting.2019.106057_bib32) 2017; 63
Chen (10.1016/j.polymertesting.2019.106057_bib45) 2018; 143
Savonnet (10.1016/j.polymertesting.2019.106057_bib25) 2018; 6
Yue (10.1016/j.polymertesting.2019.106057_bib26) 2019; 7
Cao (10.1016/j.polymertesting.2019.106057_bib53) 2017; 9
Jia (10.1016/j.polymertesting.2019.106057_bib13) 2019; 466
Couture (10.1016/j.polymertesting.2019.106057_bib28) 2018; 23
Liu (10.1016/j.polymertesting.2019.106057_bib8) 2018; 57
Li (10.1016/j.polymertesting.2019.106057_bib36) 2014; 2
Huang (10.1016/j.polymertesting.2019.106057_bib6) 2019; 7
Wang (10.1016/j.polymertesting.2019.106057_bib33) 2017; 38
Boquillon (10.1016/j.polymertesting.2019.106057_bib43) 2000; 41
Miao (10.1016/j.polymertesting.2019.106057_bib29) 2018; 67
Kumar (10.1016/j.polymertesting.2019.106057_bib24) 2018; 57
Kim (10.1016/j.polymertesting.2019.106057_bib15) 2018; 153
Li (10.1016/j.polymertesting.2019.106057_bib47) 2018; 72
Zeng (10.1016/j.polymertesting.2019.106057_bib37) 2017; 57
Yan (10.1016/j.polymertesting.2019.106057_bib16) 2018; 10
Gandini (10.1016/j.polymertesting.2019.106057_bib1) 2016; 116
An (10.1016/j.polymertesting.2019.106057_bib44) 2018; 61
Liu (10.1016/j.polymertesting.2019.106057_bib5) 2018; 148
Yue (10.1016/j.polymertesting.2019.106057_bib23) 2018; 134
Liu (10.1016/j.polymertesting.2019.106057_bib10) 2019; 181
Cao (10.1016/j.polymertesting.2019.106057_bib9) 2018; 6
Altuna (10.1016/j.polymertesting.2019.106057_bib34) 2013; 15
Wang (10.1016/j.polymertesting.2019.106057_bib51) 2012; 61
Fan (10.1016/j.polymertesting.2019.106057_bib19) 2018; 447
Baroncini (10.1016/j.polymertesting.2019.106057_bib39) 2016; 133
Patel (10.1016/j.polymertesting.2019.106057_bib48) 2016; 49
Maiorana (10.1016/j.polymertesting.2019.106057_bib17) 2015; 16
Zhao (10.1016/j.polymertesting.2019.106057_bib7) 2018; 51
Li (10.1016/j.polymertesting.2019.106057_bib42) 2016; 4
Cicala (10.1016/j.polymertesting.2019.106057_bib20) 2018; 132
Jian (10.1016/j.polymertesting.2019.106057_bib18) 2017; 326
Ahn (10.1016/j.polymertesting.2019.106057_bib41) 2011; 12
Jian (10.1016/j.polymertesting.2019.106057_bib46) 2017; 50
Stemmelen (10.1016/j.polymertesting.2019.106057_bib30) 2015; 68
Li (10.1016/j.polymertesting.2019.106057_bib2) 2018; 9
Wan (10.1016/j.polymertesting.2019.106057_bib52) 2015; 3
Kim (10.1016/j.polymertesting.2019.106057_bib14) 2019; 473
Jiang (10.1016/j.polymertesting.2019.106057_bib31) 2012; 258
Liu (10.1016/j.polymertesting.2019.106057_bib27) 2018; 51
Salama (10.1016/j.polymertesting.2019.106057_bib4) 2018; 7
Auvergne (10.1016/j.polymertesting.2019.106057_bib12) 2014; 114
Ding (10.1016/j.polymertesting.2019.106057_bib35) 2015; 17
Espana (10.1016/j.polymertesting.2019.106057_bib40) 2012; 89
Pojanavaraphan (10.1016/j.polymertesting.2019.106057_bib49) 2008; 44
Dai (10.1016/j.polymertesting.2019.106057_bib22) 2018; 6
Wan (10.1016/j.polymertesting.2019.106057_bib11) 2016; 4
Yan (10.1016/j.polymertesting.2019.106057_bib50) 2012; 33
Wang (10.1016/j.polymertesting.2019.106057_bib3) 2017; 57
Zhao (10.1016/j.polymertesting.2019.106057_bib38) 2017; 5
References_xml – volume: 148
  start-page: 109
  year: 2018
  end-page: 118
  ident: bib5
  article-title: Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly(lactic acid) via dynamic vulcanization
  publication-title: Polymer
– volume: 61
  start-page: 1462
  year: 2012
  end-page: 1469
  ident: bib51
  article-title: Crystallization and morphology of polyamide 1010/single-walled carbon nanotube nanocomposites under elevated pressure
  publication-title: Polym. Int.
– volume: 9
  start-page: 42
  year: 2018
  end-page: 53
  ident: bib2
  article-title: All-cellulose composites based on the self-reinforced effect
  publication-title: Compos. Commum.
– volume: 15
  start-page: 3360
  year: 2013
  end-page: 3366
  ident: bib34
  article-title: Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution
  publication-title: Green Chem.
– volume: 38
  start-page: 1700009
  year: 2017
  ident: bib33
  article-title: Plant oil-derived epoxy polymers toward sustainable biobased thermosets
  publication-title: Macromol. Rapid Commun.
– volume: 3
  start-page: 21907
  year: 2015
  end-page: 21921
  ident: bib52
  article-title: A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 2090
  year: 2014
  end-page: 2096
  ident: bib36
  article-title: Pressure-sensitive adhesives based on epoxidized soybean oil and dicarboxylic acids
  publication-title: ACS Sustain. Chem. Eng.
– volume: 9
  start-page: 15696
  year: 2017
  end-page: 15706
  ident: bib53
  article-title: Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals
  publication-title: Nanoscale
– volume: 4
  start-page: 2869
  year: 2016
  end-page: 2880
  ident: bib11
  article-title: Ultrastiff biobased epoxy resin with high T-g and low permittivity: from synthesis to properties
  publication-title: ACS Sustain. Chem. Eng.
– volume: 6
  start-page: 8856
  year: 2018
  end-page: 8867
  ident: bib21
  article-title: Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties
  publication-title: ACS Sustain. Chem. Eng.
– volume: 17
  start-page: 4000
  year: 2015
  end-page: 4008
  ident: bib35
  article-title: New insights into the curing of epoxidized linseed oil with dicarboxylic acids
  publication-title: Green Chem.
– volume: 61
  start-page: 993
  year: 2018
  end-page: 1000
  ident: bib44
  article-title: Rational design of sustainable polyurethanes from castor oil: towards simultaneous reinforcement and toughening
  publication-title: Sci. China Mater.
– volume: 181
  start-page: 107709
  year: 2019
  ident: bib10
  article-title: Regulating tannic acid-crosslinked epoxidized soybean oil oligomers for strengthening and toughening bamboo fibers-reinforced poly(lactic acid) biocomposites
  publication-title: Compos. Sci. Technol.
– volume: 49
  start-page: 5315
  year: 2016
  end-page: 5324
  ident: bib48
  article-title: Curing kinetics of biobased epoxies for tailored applications
  publication-title: Macromolecules
– volume: 7
  start-page: 5986
  year: 2019
  end-page: 5992
  ident: bib26
  article-title: High performance biobased epoxy nanocomposite reinforced with a bacterial cellulose nanofiber network
  publication-title: ACS Sustain. Chem. Eng.
– volume: 473
  start-page: 55
  year: 2019
  end-page: 58
  ident: bib14
  article-title: Surface modification of MMT and its effect on fatigue and fracture behavior of basalt/epoxy based composites in a seawater environment
  publication-title: Appl. Surf. Sci.
– volume: 68
  start-page: 536
  year: 2015
  end-page: 545
  ident: bib30
  article-title: Plant oil-based epoxy resins from fatty diamines and epoxidized vegetable oil
  publication-title: Eur. Polym. J.
– volume: 116
  start-page: 1637
  year: 2016
  end-page: 1669
  ident: bib1
  article-title: Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides
  publication-title: Chem. Rev.
– volume: 57
  start-page: 7516
  year: 2018
  end-page: 7524
  ident: bib8
  article-title: Manufacturing of thermally remoldable blends from epoxidized soybean oil and poly(lactic acid) via dynamic cross-linking in a twin-screw extruder
  publication-title: Ind. Eng. Chem. Res.
– volume: 44
  start-page: 1968
  year: 2008
  end-page: 1977
  ident: bib49
  article-title: Prevulcanized natural rubber latex/clay aerogel nanocomposites
  publication-title: Eur. Polym. J.
– volume: 6
  start-page: 7589
  year: 2018
  end-page: 7599
  ident: bib22
  article-title: High-performing and fire-resistant biobased epoxy resin from renewable sources
  publication-title: ACS Sustain. Chem. Eng.
– volume: 258
  start-page: 6637
  year: 2012
  end-page: 6642
  ident: bib31
  article-title: Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes
  publication-title: Appl. Surf. Sci.
– volume: 23
  start-page: 2739
  year: 2018
  ident: bib28
  article-title: Limonene-based epoxy: anhydride thermoset reaction study
  publication-title: Molecules
– volume: 72
  start-page: 140
  year: 2018
  end-page: 146
  ident: bib47
  article-title: Fully biobased and high performance epoxy thermosets from epoxidized soybean oil and diamino terminated polyamide 1010 oligomers
  publication-title: Polym. Test.
– volume: 114
  start-page: 1082
  year: 2014
  end-page: 1115
  ident: bib12
  article-title: Biobased thermosetting epoxy: present and future
  publication-title: Chem. Rev.
– volume: 4
  start-page: 1231
  year: 2016
  end-page: 1239
  ident: bib42
  article-title: Network from dihydrocoumarin via solvent-free metal-mediated pathway: a potential structure for substantial toughness improvement of epoxidized plant oil materials
  publication-title: ACS Sustain. Chem. Eng.
– volume: 7
  start-page: 2304
  year: 2019
  end-page: 2315
  ident: bib6
  article-title: Design of multi-stimuli responsive shape memory biobased PLA/ENR/Fe
  publication-title: ACS Sustain. Chem. Eng.
– volume: 51
  start-page: 2027
  year: 2018
  end-page: 2037
  ident: bib7
  article-title: Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends
  publication-title: Macromolecules
– volume: 10
  start-page: 52
  year: 2018
  end-page: 56
  ident: bib16
  article-title: Improved performance of dual-cured organosolv lignin-based epoxy acrylate coatings
  publication-title: Compos. Commun.
– volume: 67
  start-page: 1194
  year: 2018
  end-page: 1202
  ident: bib29
  article-title: Biobased epoxy resin derived from eugenol with excellent integrated performance and high renewable carbon content
  publication-title: Polym. Int.
– volume: 6
  start-page: 11008
  year: 2018
  end-page: 11017
  ident: bib25
  article-title: Divanillin-based epoxy precursors as DGEBA substitutes for biobased epoxy thermosets
  publication-title: ACS Sustain. Chem. Eng.
– volume: 326
  start-page: 875
  year: 2017
  end-page: 885
  ident: bib18
  article-title: Curing of epoxidized soybean oil with crystalline oligomeric poly (butylene succinate) towards high performance and sustainable epoxy resins
  publication-title: Chem. Eng. J.
– volume: 133
  start-page: 44103
  year: 2016
  ident: bib39
  article-title: Recent advances in bio-based epoxy resins and bio-based epoxy curing agents
  publication-title: J. Appl. Polym. Sci.
– volume: 57
  start-page: 557
  year: 2017
  end-page: 593
  ident: bib3
  article-title: Progress in toughening poly(lactic acid) with renewable polymers
  publication-title: Polym. Rev.
– volume: 33
  start-page: 1770
  year: 2012
  end-page: 1776
  ident: bib50
  article-title: Improvement of polyamide 1010 with silica nanospheres via in situ melt polycondensation
  publication-title: Polym. Compos.
– volume: 57
  start-page: 281
  year: 2017
  end-page: 287
  ident: bib37
  article-title: Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids
  publication-title: Polym. Test.
– volume: 63
  start-page: 147
  year: 2017
  end-page: 153
  ident: bib32
  article-title: Curing kinetics of bio-based epoxy resin based on epoxidized soybean oil and green curing agent
  publication-title: AIChE J.
– volume: 153
  start-page: 9
  year: 2018
  end-page: 16
  ident: bib15
  article-title: Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites
  publication-title: Compos. B Eng.
– volume: 51
  start-page: 5577
  year: 2018
  end-page: 5585
  ident: bib27
  article-title: A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry
  publication-title: Macromolecules
– volume: 466
  start-page: 84
  year: 2019
  end-page: 91
  ident: bib13
  article-title: Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings
  publication-title: Appl. Surf. Sci.
– volume: 143
  start-page: 79
  year: 2018
  end-page: 86
  ident: bib45
  article-title: Castor oil derived poly(urethane urea) networks with reprocessibility and enhanced mechanical properties
  publication-title: Polymer
– volume: 41
  start-page: 8603
  year: 2000
  end-page: 8613
  ident: bib43
  article-title: Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners
  publication-title: Polymer
– volume: 5
  start-page: 1938
  year: 2017
  end-page: 1947
  ident: bib38
  article-title: High performance and thermal processable dicarboxylic acid cured epoxidized plant oil resins through dynamic vulcanization with poly(lactic acid)
  publication-title: ACS Sustain. Chem. Eng.
– volume: 50
  start-page: 5729
  year: 2017
  end-page: 5738
  ident: bib46
  article-title: All plant oil derived epoxy thermosets with excellent comprehensive properties
  publication-title: Macromolecules
– volume: 134
  start-page: 155
  year: 2018
  end-page: 162
  ident: bib23
  article-title: Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites
  publication-title: Polymer
– volume: 57
  start-page: 133
  year: 2018
  end-page: 155
  ident: bib24
  article-title: Recent development of biobased epoxy resins: a review
  publication-title: Polym. Plast. Technol. Eng.
– volume: 89
  start-page: 2067
  year: 2012
  end-page: 2075
  ident: bib40
  article-title: Properties of biobased epoxy resins from epoxidized soybean oil (ESBO) cured with Maleic anhydride (MA)
  publication-title: J. Am. Oil Chem. Soc.
– volume: 16
  start-page: 1021
  year: 2015
  end-page: 1031
  ident: bib17
  article-title: Bio-based alternative to the diglycidyl ether of bisphenol a with controlled materials properties
  publication-title: Biomacromolecules
– volume: 12
  start-page: 1839
  year: 2011
  end-page: 1843
  ident: bib41
  article-title: Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil
  publication-title: Biomacromolecules
– volume: 132
  start-page: 69
  year: 2018
  end-page: 76
  ident: bib20
  article-title: Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin
  publication-title: Compos. B Eng.
– volume: 447
  start-page: 315
  year: 2018
  end-page: 324
  ident: bib19
  article-title: Preparation and origin of thermally resistant biobased epoxy resin with low internal stress and good UV resistance based on SiO2 hybridized cellulose for light emitting diode encapsulation
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 14802
  year: 2018
  end-page: 14811
  ident: bib9
  article-title: Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility
  publication-title: ACS Sustain. Chem. Eng.
– volume: 7
  start-page: 7
  year: 2018
  end-page: 11
  ident: bib4
  article-title: Crosslinked alginate/silica/zinc oxide nanocomposite: a sustainable material with antibacterial properties
  publication-title: Compos. Commum.
– volume: 63
  start-page: 147
  year: 2017
  ident: 10.1016/j.polymertesting.2019.106057_bib32
  article-title: Curing kinetics of bio-based epoxy resin based on epoxidized soybean oil and green curing agent
  publication-title: AIChE J.
  doi: 10.1002/aic.15486
– volume: 153
  start-page: 9
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib15
  article-title: Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.07.022
– volume: 7
  start-page: 7
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib4
  article-title: Crosslinked alginate/silica/zinc oxide nanocomposite: a sustainable material with antibacterial properties
  publication-title: Compos. Commum.
  doi: 10.1016/j.coco.2017.11.006
– volume: 258
  start-page: 6637
  year: 2012
  ident: 10.1016/j.polymertesting.2019.106057_bib31
  article-title: Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.03.095
– volume: 57
  start-page: 7516
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib8
  article-title: Manufacturing of thermally remoldable blends from epoxidized soybean oil and poly(lactic acid) via dynamic cross-linking in a twin-screw extruder
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b01189
– volume: 6
  start-page: 7589
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib22
  article-title: High-performing and fire-resistant biobased epoxy resin from renewable sources
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00439
– volume: 17
  start-page: 4000
  year: 2015
  ident: 10.1016/j.polymertesting.2019.106057_bib35
  article-title: New insights into the curing of epoxidized linseed oil with dicarboxylic acids
  publication-title: Green Chem.
  doi: 10.1039/C5GC00912J
– volume: 38
  start-page: 1700009
  year: 2017
  ident: 10.1016/j.polymertesting.2019.106057_bib33
  article-title: Plant oil-derived epoxy polymers toward sustainable biobased thermosets
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201700009
– volume: 2
  start-page: 2090
  year: 2014
  ident: 10.1016/j.polymertesting.2019.106057_bib36
  article-title: Pressure-sensitive adhesives based on epoxidized soybean oil and dicarboxylic acids
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/sc5003853
– volume: 181
  start-page: 107709
  year: 2019
  ident: 10.1016/j.polymertesting.2019.106057_bib10
  article-title: Regulating tannic acid-crosslinked epoxidized soybean oil oligomers for strengthening and toughening bamboo fibers-reinforced poly(lactic acid) biocomposites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107709
– volume: 5
  start-page: 1938
  year: 2017
  ident: 10.1016/j.polymertesting.2019.106057_bib38
  article-title: High performance and thermal processable dicarboxylic acid cured epoxidized plant oil resins through dynamic vulcanization with poly(lactic acid)
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02684
– volume: 6
  start-page: 11008
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib25
  article-title: Divanillin-based epoxy precursors as DGEBA substitutes for biobased epoxy thermosets
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02419
– volume: 326
  start-page: 875
  year: 2017
  ident: 10.1016/j.polymertesting.2019.106057_bib18
  article-title: Curing of epoxidized soybean oil with crystalline oligomeric poly (butylene succinate) towards high performance and sustainable epoxy resins
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.06.039
– volume: 132
  start-page: 69
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib20
  article-title: Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2017.08.015
– volume: 116
  start-page: 1637
  year: 2016
  ident: 10.1016/j.polymertesting.2019.106057_bib1
  article-title: Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00264
– volume: 57
  start-page: 557
  year: 2017
  ident: 10.1016/j.polymertesting.2019.106057_bib3
  article-title: Progress in toughening poly(lactic acid) with renewable polymers
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2017.1287726
– volume: 51
  start-page: 2027
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib7
  article-title: Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00103
– volume: 33
  start-page: 1770
  year: 2012
  ident: 10.1016/j.polymertesting.2019.106057_bib50
  article-title: Improvement of polyamide 1010 with silica nanospheres via in situ melt polycondensation
  publication-title: Polym. Compos.
  doi: 10.1002/pc.22318
– volume: 61
  start-page: 1462
  year: 2012
  ident: 10.1016/j.polymertesting.2019.106057_bib51
  article-title: Crystallization and morphology of polyamide 1010/single-walled carbon nanotube nanocomposites under elevated pressure
  publication-title: Polym. Int.
  doi: 10.1002/pi.4236
– volume: 10
  start-page: 52
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib16
  article-title: Improved performance of dual-cured organosolv lignin-based epoxy acrylate coatings
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2018.04.006
– volume: 41
  start-page: 8603
  year: 2000
  ident: 10.1016/j.polymertesting.2019.106057_bib43
  article-title: Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00256-1
– volume: 67
  start-page: 1194
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib29
  article-title: Biobased epoxy resin derived from eugenol with excellent integrated performance and high renewable carbon content
  publication-title: Polym. Int.
  doi: 10.1002/pi.5621
– volume: 57
  start-page: 281
  year: 2017
  ident: 10.1016/j.polymertesting.2019.106057_bib37
  article-title: Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2016.12.007
– volume: 6
  start-page: 14802
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib9
  article-title: Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03331
– volume: 7
  start-page: 5986
  year: 2019
  ident: 10.1016/j.polymertesting.2019.106057_bib26
  article-title: High performance biobased epoxy nanocomposite reinforced with a bacterial cellulose nanofiber network
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06073
– volume: 473
  start-page: 55
  year: 2019
  ident: 10.1016/j.polymertesting.2019.106057_bib14
  article-title: Surface modification of MMT and its effect on fatigue and fracture behavior of basalt/epoxy based composites in a seawater environment
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.12.127
– volume: 4
  start-page: 2869
  year: 2016
  ident: 10.1016/j.polymertesting.2019.106057_bib11
  article-title: Ultrastiff biobased epoxy resin with high T-g and low permittivity: from synthesis to properties
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00479
– volume: 3
  start-page: 21907
  year: 2015
  ident: 10.1016/j.polymertesting.2019.106057_bib52
  article-title: A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02939B
– volume: 51
  start-page: 5577
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib27
  article-title: A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01010
– volume: 61
  start-page: 993
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib44
  article-title: Rational design of sustainable polyurethanes from castor oil: towards simultaneous reinforcement and toughening
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9192-8
– volume: 114
  start-page: 1082
  year: 2014
  ident: 10.1016/j.polymertesting.2019.106057_bib12
  article-title: Biobased thermosetting epoxy: present and future
  publication-title: Chem. Rev.
  doi: 10.1021/cr3001274
– volume: 89
  start-page: 2067
  year: 2012
  ident: 10.1016/j.polymertesting.2019.106057_bib40
  article-title: Properties of biobased epoxy resins from epoxidized soybean oil (ESBO) cured with Maleic anhydride (MA)
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-012-2102-2
– volume: 44
  start-page: 1968
  year: 2008
  ident: 10.1016/j.polymertesting.2019.106057_bib49
  article-title: Prevulcanized natural rubber latex/clay aerogel nanocomposites
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2008.04.039
– volume: 134
  start-page: 155
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib23
  article-title: Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.11.051
– volume: 143
  start-page: 79
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib45
  article-title: Castor oil derived poly(urethane urea) networks with reprocessibility and enhanced mechanical properties
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.04.013
– volume: 7
  start-page: 2304
  year: 2019
  ident: 10.1016/j.polymertesting.2019.106057_bib6
  article-title: Design of multi-stimuli responsive shape memory biobased PLA/ENR/Fe3O4 TPVs with balanced stiffness-toughness based on selective distribution of Fe3O4
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05025
– volume: 466
  start-page: 84
  year: 2019
  ident: 10.1016/j.polymertesting.2019.106057_bib13
  article-title: Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.017
– volume: 23
  start-page: 2739
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib28
  article-title: Limonene-based epoxy: anhydride thermoset reaction study
  publication-title: Molecules
  doi: 10.3390/molecules23112739
– volume: 68
  start-page: 536
  year: 2015
  ident: 10.1016/j.polymertesting.2019.106057_bib30
  article-title: Plant oil-based epoxy resins from fatty diamines and epoxidized vegetable oil
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2015.03.062
– volume: 4
  start-page: 1231
  year: 2016
  ident: 10.1016/j.polymertesting.2019.106057_bib42
  article-title: Network from dihydrocoumarin via solvent-free metal-mediated pathway: a potential structure for substantial toughness improvement of epoxidized plant oil materials
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01283
– volume: 9
  start-page: 42
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib2
  article-title: All-cellulose composites based on the self-reinforced effect
  publication-title: Compos. Commum.
  doi: 10.1016/j.coco.2018.04.008
– volume: 12
  start-page: 1839
  year: 2011
  ident: 10.1016/j.polymertesting.2019.106057_bib41
  article-title: Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil
  publication-title: Biomacromolecules
  doi: 10.1021/bm200188u
– volume: 16
  start-page: 1021
  year: 2015
  ident: 10.1016/j.polymertesting.2019.106057_bib17
  article-title: Bio-based alternative to the diglycidyl ether of bisphenol a with controlled materials properties
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00014
– volume: 72
  start-page: 140
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib47
  article-title: Fully biobased and high performance epoxy thermosets from epoxidized soybean oil and diamino terminated polyamide 1010 oligomers
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2018.10.010
– volume: 148
  start-page: 109
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib5
  article-title: Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly(lactic acid) via dynamic vulcanization
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.06.021
– volume: 57
  start-page: 133
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib24
  article-title: Recent development of biobased epoxy resins: a review
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602559.2016.1253742
– volume: 15
  start-page: 3360
  year: 2013
  ident: 10.1016/j.polymertesting.2019.106057_bib34
  article-title: Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution
  publication-title: Green Chem.
  doi: 10.1039/c3gc41384e
– volume: 9
  start-page: 15696
  year: 2017
  ident: 10.1016/j.polymertesting.2019.106057_bib53
  article-title: Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals
  publication-title: Nanoscale
  doi: 10.1039/C7NR05011A
– volume: 447
  start-page: 315
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib19
  article-title: Preparation and origin of thermally resistant biobased epoxy resin with low internal stress and good UV resistance based on SiO2 hybridized cellulose for light emitting diode encapsulation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.229
– volume: 6
  start-page: 8856
  year: 2018
  ident: 10.1016/j.polymertesting.2019.106057_bib21
  article-title: Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01212
– volume: 50
  start-page: 5729
  year: 2017
  ident: 10.1016/j.polymertesting.2019.106057_bib46
  article-title: All plant oil derived epoxy thermosets with excellent comprehensive properties
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b01068
– volume: 49
  start-page: 5315
  year: 2016
  ident: 10.1016/j.polymertesting.2019.106057_bib48
  article-title: Curing kinetics of biobased epoxies for tailored applications
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b01261
– volume: 133
  start-page: 44103
  year: 2016
  ident: 10.1016/j.polymertesting.2019.106057_bib39
  article-title: Recent advances in bio-based epoxy resins and bio-based epoxy curing agents
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.44103
SSID ssj0005016
Score 2.3795798
Snippet Dicarboxyl terminated polyamide 1010 oligomer was used to cure epoxidized soybean oil (ESO) to synthesize fully biobased epoxy thermosets with different...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106057
SubjectTerms Biobased polyamide
Crosslink density
Crystallization
Epoxidized soybean oil
Mechanical property
Title Structure-property relationship in fully biobased epoxidized soybean oil thermosets cured by dicarboxyl terminated polyamide 1010 oligomer with different carboxyl/epoxy ratios
URI https://dx.doi.org/10.1016/j.polymertesting.2019.106057
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61WwnoAUEB0UIrH3o1m02clzigakW1gOgFKvUWxa_iajeOskFqOPCX-IvMbBLaSj1U4paXHTsz8vfZ-TwDcJxkWqDzKi5sLjkiVMAl0iIe5CojeNRW0t7hr2fJ4lx8vogvtmA-7oUhWeUw9vdj-ma0Hq5Mh685rZ2bkiwpzAUiVB7NQpwnbMNOiGifTWDn5NOXxdmN0iPYZECl5zkVeATHNzKv2i-7lWlaimlRXZLWK8dbSPLT-5HqFvqcPoOnA21kJ33LnsOWqfbg8XzM1rYHu7cCC76AP982YWF_NobXtNretB1rRtnbD1czVzFaeO-YdJ6ATDMk4tdOu194uPadNGXFvFsy4ocrvzbtmimsTjPZMfq100h_3eHtXkuDtJVRF8uV04ZhnwPml-7SY5cZrfSyMQ9Ly8aiU3ohtoratH4J56cfv88XfEjNwFWUpC23YYrYbwIT21iFCkmGtUpTaJ4sQtTFeVxaZllpkY6WtIsvVbnWgYq1VmUeJDZ6BZPKV-Y1MCHLUOlImERIEZgss4mIU5tbPZupUET78H40Q6GGuOWUPmNZjAK1q-KuEQsyYtEbcR_if6XrPn7HA8t9GC1e3PHHAqHmQTUc_HcNb-AJnfXSwbcwQc8xh0iBWnkE2-9-z44GR_8LAuMP7A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRSrtAbW0VWlp6wNXa7OJ86UeKrQCLQX2UpC4RfEXuNpNomyQCH-qf7Ezm6SAxAGptyiOHTsz8nt2nmcA9qNEC3RexYVNJUeE8rhEWsS9VCUEj9pKOjt8No9mF-LnZXi5AdPhLAzJKvu5v5vT17N1f2fcf81x5dyYZEl-KhCh0mDi4zrhBWwKSmo9gs2D45PZ_F7p4a0zoNLznCq8hP17mVdVLtqlqRuKaVFckdYrxSIk-fHTSPUAfY7ewHZPG9lB17O3sGGKHdiaDtnaduD1g8CC7-DPr3VY2Jva8Ip22-umZfUge7t2FXMFo433lklXEpBphkT81ml3h5erspUmL1jpFoz44bJcmWbFFDanmWwZ_dqpZXnbYnGnpUHaymiI-dJpw3DMHisX7qrEITPa6WVDHpaGDVXH9ELsFfVp9R4ujg7PpzPep2bgKojihls_Ruw3ngltqHyFJMNapSk0TxIg6uI6Ls6TJLdIR3M6xRerVGtPhVqrPPUiG3yAUVEW5iMwIXNf6UCYSEjhmSSxkQhjm1o9mShfBLvwfTBDpvq45ZQ-Y5ENArXf2WMjZmTErDPiLoT_aldd_I5n1vsxWDx75I8ZQs2zWvj03y18g63Z-dlpdno8P_kMr6ikkxHuwQi9yHxBOtTIr727_wVpiRHS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-property+relationship+in+fully+biobased+epoxidized+soybean+oil+thermosets+cured+by+dicarboxyl+terminated+polyamide+1010+oligomer+with+different+carboxyl%2Fepoxy+ratios&rft.jtitle=Polymer+testing&rft.au=Wang%2C+Xiang-Zhao&rft.au=He%2C+Jia&rft.au=Weng%2C+Yun-Xuan&rft.au=Zeng%2C+Jian-Bing&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9418&rft.eissn=1873-2348&rft.volume=79&rft_id=info:doi/10.1016%2Fj.polymertesting.2019.106057&rft.externalDocID=S0142941819312140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9418&client=summon