Structure-property relationship in fully biobased epoxidized soybean oil thermosets cured by dicarboxyl terminated polyamide 1010 oligomer with different carboxyl/epoxy ratios
Dicarboxyl terminated polyamide 1010 oligomer was used to cure epoxidized soybean oil (ESO) to synthesize fully biobased epoxy thermosets with different chemical structures via changing carboxyl/epoxy equivalent ratio (R-value). The effect of chemical structures of the epoxy thermosets on their cros...
Saved in:
Published in | Polymer testing Vol. 79; p. 106057 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0142-9418 1873-2348 |
DOI | 10.1016/j.polymertesting.2019.106057 |
Cover
Abstract | Dicarboxyl terminated polyamide 1010 oligomer was used to cure epoxidized soybean oil (ESO) to synthesize fully biobased epoxy thermosets with different chemical structures via changing carboxyl/epoxy equivalent ratio (R-value). The effect of chemical structures of the epoxy thermosets on their crosslink density, swelling property, crystallization behavior, dynamic and static mechanical properties, as well as thermal stability was studied systematically. The crosslink density of the epoxy thermosets increased obviously, the gel fraction almost kept unchanged, and the swelling ratio decreased gradually with increasing R-value. The crystallization capability and degree of crystallinity were enhanced meanwhile melting temperature shifted to higher temperature range with increasing R-value, due to the increased concentration of polyamide 1010 segments in the thermoset. Consequently, the stiffness and heat resistance of the epoxy thermosets were enhanced. The Young's modulus increased gradually and the break stress as well as the break strain first increased and then decreased with increasing R-value. This investigation provides a new strategy to regulate physical properties of soybean oil-based epoxy thermosets, which would be valuable for other plant oil-based polymers design.
•Fully biobased epoxy thermosets were prepared by curing epoxidized soybean oil with dicarboxyl terminated polyamide 1010 oligomer.•The chemical structure and crosslink density of the epoxy thermosets were regulated by carboxyl/epoxy equivalent ratio.•The crystallization and Young's modulus of the epoxy thermosets were enhanced with increasing carboxyl/epoxy equivalent ratio.•The break strength and elongation at break first increased and then decreased with increasing carboxyl/epoxy equivalent ratio.•The fully biobased epoxy thermosets showed good thermal stability. |
---|---|
AbstractList | Dicarboxyl terminated polyamide 1010 oligomer was used to cure epoxidized soybean oil (ESO) to synthesize fully biobased epoxy thermosets with different chemical structures via changing carboxyl/epoxy equivalent ratio (R-value). The effect of chemical structures of the epoxy thermosets on their crosslink density, swelling property, crystallization behavior, dynamic and static mechanical properties, as well as thermal stability was studied systematically. The crosslink density of the epoxy thermosets increased obviously, the gel fraction almost kept unchanged, and the swelling ratio decreased gradually with increasing R-value. The crystallization capability and degree of crystallinity were enhanced meanwhile melting temperature shifted to higher temperature range with increasing R-value, due to the increased concentration of polyamide 1010 segments in the thermoset. Consequently, the stiffness and heat resistance of the epoxy thermosets were enhanced. The Young's modulus increased gradually and the break stress as well as the break strain first increased and then decreased with increasing R-value. This investigation provides a new strategy to regulate physical properties of soybean oil-based epoxy thermosets, which would be valuable for other plant oil-based polymers design.
•Fully biobased epoxy thermosets were prepared by curing epoxidized soybean oil with dicarboxyl terminated polyamide 1010 oligomer.•The chemical structure and crosslink density of the epoxy thermosets were regulated by carboxyl/epoxy equivalent ratio.•The crystallization and Young's modulus of the epoxy thermosets were enhanced with increasing carboxyl/epoxy equivalent ratio.•The break strength and elongation at break first increased and then decreased with increasing carboxyl/epoxy equivalent ratio.•The fully biobased epoxy thermosets showed good thermal stability. |
ArticleNumber | 106057 |
Author | Weng, Yun-Xuan He, Jia Zeng, Jian-Bing Wang, Xiang-Zhao Li, Yi-Dong |
Author_xml | – sequence: 1 givenname: Xiang-Zhao surname: Wang fullname: Wang, Xiang-Zhao organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China – sequence: 2 givenname: Jia surname: He fullname: He, Jia organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China – sequence: 3 givenname: Yun-Xuan surname: Weng fullname: Weng, Yun-Xuan email: wyxuan@th.btbu.edu.cn organization: Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, 100048, China – sequence: 4 givenname: Jian-Bing surname: Zeng fullname: Zeng, Jian-Bing organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China – sequence: 5 givenname: Yi-Dong surname: Li fullname: Li, Yi-Dong email: liyidong@swu.edu.cn organization: Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China |
BookMark | eNqNkcFu3CAYhFGVSN0kfQcOvXoDeL3GUi9tlDSVVuohyRlh-Mn-Ky9YwDZxXqqvGNxtD80pJ5BG8zHDnJETHzwQ8pmzJWd8fblbjmGY9hAzpIz-cSkY74q0Zk37gSy4bOtK1Ct5QhaMr0TVrbj8SM5S2jHGmkJYkN93OR5MPkSoxhjGgppohEFnDD5tcaToqTsMw0R7DL1OYCmM4RktvpRrClMP2tOAA81biPuQICdqCs7SfqIWjY59eJ6KXFT0OhdhDq33aIGWFoyGAR9DKUGfMG-LxTmI4DP9Z72cHyyp5kzpgpw6PST49Pc8Jw831_dXt9Xm5_cfV183lanXba6caIVYAYPGNUYYIYRzxvKWNbIGsEKKVkupnWRM866TremsZaax1uiOrV19Tr4duSaGlCI4ZTD_-ZUcNQ6KMzVPoHbq_wnUPIE6TlAgX95Axoh7Haf32m-OdihFfyFElQyCN2AxgsnKBnwf6BUya7b5 |
CitedBy_id | crossref_primary_10_1016_j_compscitech_2023_110253 crossref_primary_10_1016_j_ijbiomac_2023_125202 crossref_primary_10_1016_j_polymertesting_2022_107657 crossref_primary_10_1016_j_porgcoat_2024_108410 crossref_primary_10_1016_j_cej_2023_144633 crossref_primary_10_1002_mabi_202300458 crossref_primary_10_1016_j_envres_2025_121446 crossref_primary_10_1016_j_cej_2022_138564 crossref_primary_10_1016_j_coco_2020_100445 crossref_primary_10_1016_j_supflu_2020_105070 crossref_primary_10_1021_acssuschemeng_4c01475 crossref_primary_10_1021_acssuschemeng_9b03956 crossref_primary_10_1016_j_heliyon_2023_e13538 crossref_primary_10_1016_j_indcrop_2022_115615 crossref_primary_10_1002_admi_202200145 crossref_primary_10_1016_j_indcrop_2020_112576 crossref_primary_10_1016_j_polymertesting_2019_106208 crossref_primary_10_1016_j_ijbiomac_2023_127760 crossref_primary_10_1039_D0GC01738H |
Cites_doi | 10.1002/aic.15486 10.1016/j.compositesb.2018.07.022 10.1016/j.coco.2017.11.006 10.1016/j.apsusc.2012.03.095 10.1021/acs.iecr.8b01189 10.1021/acssuschemeng.8b00439 10.1039/C5GC00912J 10.1002/marc.201700009 10.1021/sc5003853 10.1016/j.compscitech.2019.107709 10.1021/acssuschemeng.6b02684 10.1021/acssuschemeng.8b02419 10.1016/j.cej.2017.06.039 10.1016/j.compositesb.2017.08.015 10.1021/acs.chemrev.5b00264 10.1080/15583724.2017.1287726 10.1021/acs.macromol.8b00103 10.1002/pc.22318 10.1002/pi.4236 10.1016/j.coco.2018.04.006 10.1016/S0032-3861(00)00256-1 10.1002/pi.5621 10.1016/j.polymertesting.2016.12.007 10.1021/acssuschemeng.8b03331 10.1021/acssuschemeng.8b06073 10.1016/j.apsusc.2018.12.127 10.1021/acssuschemeng.6b00479 10.1039/C5TA02939B 10.1021/acs.macromol.8b01010 10.1007/s40843-017-9192-8 10.1021/cr3001274 10.1007/s11746-012-2102-2 10.1016/j.eurpolymj.2008.04.039 10.1016/j.polymer.2017.11.051 10.1016/j.polymer.2018.04.013 10.1021/acssuschemeng.8b05025 10.1016/j.apsusc.2018.10.017 10.3390/molecules23112739 10.1016/j.eurpolymj.2015.03.062 10.1021/acssuschemeng.5b01283 10.1016/j.coco.2018.04.008 10.1021/bm200188u 10.1021/acs.biomac.5b00014 10.1016/j.polymertesting.2018.10.010 10.1016/j.polymer.2018.06.021 10.1080/03602559.2016.1253742 10.1039/c3gc41384e 10.1039/C7NR05011A 10.1016/j.apsusc.2018.03.229 10.1021/acssuschemeng.8b01212 10.1021/acs.macromol.7b01068 10.1021/acs.macromol.6b01261 10.1002/app.44103 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.polymertesting.2019.106057 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2348 |
ExternalDocumentID | 10_1016_j_polymertesting_2019_106057 S0142941819312140 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c367t-f27224e0e5f5c2c222ffcd170583eed2827a88af800a19987c9dd0c5ddca906f3 |
IEDL.DBID | AIKHN |
ISSN | 0142-9418 |
IngestDate | Thu Apr 24 22:58:24 EDT 2025 Tue Jul 01 04:26:39 EDT 2025 Fri Feb 23 02:49:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biobased polyamide Epoxidized soybean oil Crosslink density Mechanical property Crystallization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-f27224e0e5f5c2c222ffcd170583eed2827a88af800a19987c9dd0c5ddca906f3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_polymertesting_2019_106057 crossref_primary_10_1016_j_polymertesting_2019_106057 elsevier_sciencedirect_doi_10_1016_j_polymertesting_2019_106057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Polymer testing |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Huang, Cao, Yuan, Chen (bib6) 2019; 7 Savonnet, Grau, Grelier, Defoort, Cramail (bib25) 2018; 6 Wang, Yuan, Ganewatta, Lamm, Rahman, Wang, Liu, Tang (bib33) 2017; 38 Yan, Yang (bib50) 2012; 33 Pojanavaraphan, Magaraphan (bib49) 2008; 44 Li, Nawaz, Wu, Zhang, Wan, Mi, Yu, Zhang (bib2) 2018; 9 Zhao, Yuan, Li, Weng, Zeng (bib7) 2018; 51 Cao, Yuan, Xu, Chen (bib53) 2017; 9 Jian, An, Li, Chen, Wang, Zeng (bib46) 2017; 50 Espana, Sanchez-Nacher, Boronat, Fombuena, Balart (bib40) 2012; 89 Cao, Huang, Chen (bib9) 2018; 6 Yan, Liu, Liu, Zhang, Zhao, Sun, Hu, Zhang (bib16) 2018; 10 Salama, Diab, Abou-Zeid, Aljohani, Shoueir (bib4) 2018; 7 Boquillon, Fringant (bib43) 2000; 41 Gandini, Lacerda, Carvalho, Trovatti (bib1) 2016; 116 Yue, Maiorana, Khelifa, Patel, Raquez, Bonnaud, Gross, Dubois, Manas-Zloczower (bib23) 2018; 134 Liu, Hao, Zhang, Yang, Wang, Han, Li, Xin, Zhang (bib27) 2018; 51 Patel, Maiorana, Yue, Gross, Manas-Zloczower (bib48) 2016; 49 Miao, Yuan, Guan, Liang, Gu (bib29) 2018; 67 Ding, Shuttleworth, Makin, Clark, Matharu (bib35) 2015; 17 Wang, Wu, Li, Zeng (bib3) 2017; 57 Chen, Xi, Zhao (bib32) 2017; 63 Liu, Qiu, Fei, Qiu, Sakai (bib8) 2018; 57 Jiang, Zhang, Yan, Jiang (bib31) 2012; 258 Liu, Qiu, Chen, Fei, Qiu, Sakai (bib10) 2019; 181 Wan, Gan, Li, Molina-Aldareguia, Li, Wang, Wang (bib52) 2015; 3 Maiorana, Spinella, Gross (bib17) 2015; 16 Jia, Deng, Luo, Qing, Yan, Wu (bib13) 2019; 466 Baroncini, Yadav, Palmese, Stanzione (bib39) 2016; 133 Altuna, Pettarin, Williams (bib34) 2013; 15 Li, Sung, Sun (bib42) 2016; 4 Zhao, Wu, Li, Wang, Zeng (bib38) 2017; 5 Liu, Qiu, Zhu, Fei, Qiu, Sakai, Ito, Song, Tang (bib5) 2018; 148 Wang, Wan, Zeng, Zhou, Zhang (bib51) 2012; 61 Kumar, Samal, Mohanty, Nayak (bib24) 2018; 57 Dai, Peng, Teng, Liu, Liu, Shen, Mahmud, Zhu, Liu (bib22) 2018; 6 Chen, Hu, Li, Meng, Zhu, Zeng (bib45) 2018; 143 An, Chen, Li, Zhu, Zeng (bib44) 2018; 61 Kim, Heo, Park, Min, Rhee, Park (bib15) 2018; 153 Kim, Mittal, Kim, Kim, Yop Rhee (bib14) 2019; 473 Li, Fan, Aziz, Bittencourt, Wu, Wang, Dubois (bib21) 2018; 6 Ahn, Kraft, Wang, Sun (bib41) 2011; 12 Li, Jian, Zhu, Du, Zeng (bib47) 2018; 72 Stemmelen, Lapinte, Habas, Robin (bib30) 2015; 68 Li, Li (bib36) 2014; 2 Zeng, Wu, Li, Wang, Zeng (bib37) 2017; 57 Fan, Miao, Yuan, Guan, Gu, Liang (bib19) 2018; 447 Yue, Liu, Mekala, Patel, Gross, Manas-Zloczower (bib26) 2019; 7 Auvergne, Caillol, David, Boutevin, Pascault (bib12) 2014; 114 Cicala, Pergolizzi, Piscopo, Carbone, Recca (bib20) 2018; 132 Jian, He, Li, Wang, Zeng (bib18) 2017; 326 Wan, Zhao, Gan, Li, Molina-Aldareguia, Zhao, Pan, Wang (bib11) 2016; 4 Couture, Granado, Fanget, Boutevin, Caillol (bib28) 2018; 23 Li (10.1016/j.polymertesting.2019.106057_bib21) 2018; 6 Chen (10.1016/j.polymertesting.2019.106057_bib32) 2017; 63 Chen (10.1016/j.polymertesting.2019.106057_bib45) 2018; 143 Savonnet (10.1016/j.polymertesting.2019.106057_bib25) 2018; 6 Yue (10.1016/j.polymertesting.2019.106057_bib26) 2019; 7 Cao (10.1016/j.polymertesting.2019.106057_bib53) 2017; 9 Jia (10.1016/j.polymertesting.2019.106057_bib13) 2019; 466 Couture (10.1016/j.polymertesting.2019.106057_bib28) 2018; 23 Liu (10.1016/j.polymertesting.2019.106057_bib8) 2018; 57 Li (10.1016/j.polymertesting.2019.106057_bib36) 2014; 2 Huang (10.1016/j.polymertesting.2019.106057_bib6) 2019; 7 Wang (10.1016/j.polymertesting.2019.106057_bib33) 2017; 38 Boquillon (10.1016/j.polymertesting.2019.106057_bib43) 2000; 41 Miao (10.1016/j.polymertesting.2019.106057_bib29) 2018; 67 Kumar (10.1016/j.polymertesting.2019.106057_bib24) 2018; 57 Kim (10.1016/j.polymertesting.2019.106057_bib15) 2018; 153 Li (10.1016/j.polymertesting.2019.106057_bib47) 2018; 72 Zeng (10.1016/j.polymertesting.2019.106057_bib37) 2017; 57 Yan (10.1016/j.polymertesting.2019.106057_bib16) 2018; 10 Gandini (10.1016/j.polymertesting.2019.106057_bib1) 2016; 116 An (10.1016/j.polymertesting.2019.106057_bib44) 2018; 61 Liu (10.1016/j.polymertesting.2019.106057_bib5) 2018; 148 Yue (10.1016/j.polymertesting.2019.106057_bib23) 2018; 134 Liu (10.1016/j.polymertesting.2019.106057_bib10) 2019; 181 Cao (10.1016/j.polymertesting.2019.106057_bib9) 2018; 6 Altuna (10.1016/j.polymertesting.2019.106057_bib34) 2013; 15 Wang (10.1016/j.polymertesting.2019.106057_bib51) 2012; 61 Fan (10.1016/j.polymertesting.2019.106057_bib19) 2018; 447 Baroncini (10.1016/j.polymertesting.2019.106057_bib39) 2016; 133 Patel (10.1016/j.polymertesting.2019.106057_bib48) 2016; 49 Maiorana (10.1016/j.polymertesting.2019.106057_bib17) 2015; 16 Zhao (10.1016/j.polymertesting.2019.106057_bib7) 2018; 51 Li (10.1016/j.polymertesting.2019.106057_bib42) 2016; 4 Cicala (10.1016/j.polymertesting.2019.106057_bib20) 2018; 132 Jian (10.1016/j.polymertesting.2019.106057_bib18) 2017; 326 Ahn (10.1016/j.polymertesting.2019.106057_bib41) 2011; 12 Jian (10.1016/j.polymertesting.2019.106057_bib46) 2017; 50 Stemmelen (10.1016/j.polymertesting.2019.106057_bib30) 2015; 68 Li (10.1016/j.polymertesting.2019.106057_bib2) 2018; 9 Wan (10.1016/j.polymertesting.2019.106057_bib52) 2015; 3 Kim (10.1016/j.polymertesting.2019.106057_bib14) 2019; 473 Jiang (10.1016/j.polymertesting.2019.106057_bib31) 2012; 258 Liu (10.1016/j.polymertesting.2019.106057_bib27) 2018; 51 Salama (10.1016/j.polymertesting.2019.106057_bib4) 2018; 7 Auvergne (10.1016/j.polymertesting.2019.106057_bib12) 2014; 114 Ding (10.1016/j.polymertesting.2019.106057_bib35) 2015; 17 Espana (10.1016/j.polymertesting.2019.106057_bib40) 2012; 89 Pojanavaraphan (10.1016/j.polymertesting.2019.106057_bib49) 2008; 44 Dai (10.1016/j.polymertesting.2019.106057_bib22) 2018; 6 Wan (10.1016/j.polymertesting.2019.106057_bib11) 2016; 4 Yan (10.1016/j.polymertesting.2019.106057_bib50) 2012; 33 Wang (10.1016/j.polymertesting.2019.106057_bib3) 2017; 57 Zhao (10.1016/j.polymertesting.2019.106057_bib38) 2017; 5 |
References_xml | – volume: 148 start-page: 109 year: 2018 end-page: 118 ident: bib5 article-title: Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly(lactic acid) via dynamic vulcanization publication-title: Polymer – volume: 61 start-page: 1462 year: 2012 end-page: 1469 ident: bib51 article-title: Crystallization and morphology of polyamide 1010/single-walled carbon nanotube nanocomposites under elevated pressure publication-title: Polym. Int. – volume: 9 start-page: 42 year: 2018 end-page: 53 ident: bib2 article-title: All-cellulose composites based on the self-reinforced effect publication-title: Compos. Commum. – volume: 15 start-page: 3360 year: 2013 end-page: 3366 ident: bib34 article-title: Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution publication-title: Green Chem. – volume: 38 start-page: 1700009 year: 2017 ident: bib33 article-title: Plant oil-derived epoxy polymers toward sustainable biobased thermosets publication-title: Macromol. Rapid Commun. – volume: 3 start-page: 21907 year: 2015 end-page: 21921 ident: bib52 article-title: A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties publication-title: J. Mater. Chem. A – volume: 2 start-page: 2090 year: 2014 end-page: 2096 ident: bib36 article-title: Pressure-sensitive adhesives based on epoxidized soybean oil and dicarboxylic acids publication-title: ACS Sustain. Chem. Eng. – volume: 9 start-page: 15696 year: 2017 end-page: 15706 ident: bib53 article-title: Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals publication-title: Nanoscale – volume: 4 start-page: 2869 year: 2016 end-page: 2880 ident: bib11 article-title: Ultrastiff biobased epoxy resin with high T-g and low permittivity: from synthesis to properties publication-title: ACS Sustain. Chem. Eng. – volume: 6 start-page: 8856 year: 2018 end-page: 8867 ident: bib21 article-title: Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties publication-title: ACS Sustain. Chem. Eng. – volume: 17 start-page: 4000 year: 2015 end-page: 4008 ident: bib35 article-title: New insights into the curing of epoxidized linseed oil with dicarboxylic acids publication-title: Green Chem. – volume: 61 start-page: 993 year: 2018 end-page: 1000 ident: bib44 article-title: Rational design of sustainable polyurethanes from castor oil: towards simultaneous reinforcement and toughening publication-title: Sci. China Mater. – volume: 181 start-page: 107709 year: 2019 ident: bib10 article-title: Regulating tannic acid-crosslinked epoxidized soybean oil oligomers for strengthening and toughening bamboo fibers-reinforced poly(lactic acid) biocomposites publication-title: Compos. Sci. Technol. – volume: 49 start-page: 5315 year: 2016 end-page: 5324 ident: bib48 article-title: Curing kinetics of biobased epoxies for tailored applications publication-title: Macromolecules – volume: 7 start-page: 5986 year: 2019 end-page: 5992 ident: bib26 article-title: High performance biobased epoxy nanocomposite reinforced with a bacterial cellulose nanofiber network publication-title: ACS Sustain. Chem. Eng. – volume: 473 start-page: 55 year: 2019 end-page: 58 ident: bib14 article-title: Surface modification of MMT and its effect on fatigue and fracture behavior of basalt/epoxy based composites in a seawater environment publication-title: Appl. Surf. Sci. – volume: 68 start-page: 536 year: 2015 end-page: 545 ident: bib30 article-title: Plant oil-based epoxy resins from fatty diamines and epoxidized vegetable oil publication-title: Eur. Polym. J. – volume: 116 start-page: 1637 year: 2016 end-page: 1669 ident: bib1 article-title: Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides publication-title: Chem. Rev. – volume: 57 start-page: 7516 year: 2018 end-page: 7524 ident: bib8 article-title: Manufacturing of thermally remoldable blends from epoxidized soybean oil and poly(lactic acid) via dynamic cross-linking in a twin-screw extruder publication-title: Ind. Eng. Chem. Res. – volume: 44 start-page: 1968 year: 2008 end-page: 1977 ident: bib49 article-title: Prevulcanized natural rubber latex/clay aerogel nanocomposites publication-title: Eur. Polym. J. – volume: 6 start-page: 7589 year: 2018 end-page: 7599 ident: bib22 article-title: High-performing and fire-resistant biobased epoxy resin from renewable sources publication-title: ACS Sustain. Chem. Eng. – volume: 258 start-page: 6637 year: 2012 end-page: 6642 ident: bib31 article-title: Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes publication-title: Appl. Surf. Sci. – volume: 23 start-page: 2739 year: 2018 ident: bib28 article-title: Limonene-based epoxy: anhydride thermoset reaction study publication-title: Molecules – volume: 72 start-page: 140 year: 2018 end-page: 146 ident: bib47 article-title: Fully biobased and high performance epoxy thermosets from epoxidized soybean oil and diamino terminated polyamide 1010 oligomers publication-title: Polym. Test. – volume: 114 start-page: 1082 year: 2014 end-page: 1115 ident: bib12 article-title: Biobased thermosetting epoxy: present and future publication-title: Chem. Rev. – volume: 4 start-page: 1231 year: 2016 end-page: 1239 ident: bib42 article-title: Network from dihydrocoumarin via solvent-free metal-mediated pathway: a potential structure for substantial toughness improvement of epoxidized plant oil materials publication-title: ACS Sustain. Chem. Eng. – volume: 7 start-page: 2304 year: 2019 end-page: 2315 ident: bib6 article-title: Design of multi-stimuli responsive shape memory biobased PLA/ENR/Fe publication-title: ACS Sustain. Chem. Eng. – volume: 51 start-page: 2027 year: 2018 end-page: 2037 ident: bib7 article-title: Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends publication-title: Macromolecules – volume: 10 start-page: 52 year: 2018 end-page: 56 ident: bib16 article-title: Improved performance of dual-cured organosolv lignin-based epoxy acrylate coatings publication-title: Compos. Commun. – volume: 67 start-page: 1194 year: 2018 end-page: 1202 ident: bib29 article-title: Biobased epoxy resin derived from eugenol with excellent integrated performance and high renewable carbon content publication-title: Polym. Int. – volume: 6 start-page: 11008 year: 2018 end-page: 11017 ident: bib25 article-title: Divanillin-based epoxy precursors as DGEBA substitutes for biobased epoxy thermosets publication-title: ACS Sustain. Chem. Eng. – volume: 326 start-page: 875 year: 2017 end-page: 885 ident: bib18 article-title: Curing of epoxidized soybean oil with crystalline oligomeric poly (butylene succinate) towards high performance and sustainable epoxy resins publication-title: Chem. Eng. J. – volume: 133 start-page: 44103 year: 2016 ident: bib39 article-title: Recent advances in bio-based epoxy resins and bio-based epoxy curing agents publication-title: J. Appl. Polym. Sci. – volume: 57 start-page: 557 year: 2017 end-page: 593 ident: bib3 article-title: Progress in toughening poly(lactic acid) with renewable polymers publication-title: Polym. Rev. – volume: 33 start-page: 1770 year: 2012 end-page: 1776 ident: bib50 article-title: Improvement of polyamide 1010 with silica nanospheres via in situ melt polycondensation publication-title: Polym. Compos. – volume: 57 start-page: 281 year: 2017 end-page: 287 ident: bib37 article-title: Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids publication-title: Polym. Test. – volume: 63 start-page: 147 year: 2017 end-page: 153 ident: bib32 article-title: Curing kinetics of bio-based epoxy resin based on epoxidized soybean oil and green curing agent publication-title: AIChE J. – volume: 153 start-page: 9 year: 2018 end-page: 16 ident: bib15 article-title: Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites publication-title: Compos. B Eng. – volume: 51 start-page: 5577 year: 2018 end-page: 5585 ident: bib27 article-title: A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry publication-title: Macromolecules – volume: 466 start-page: 84 year: 2019 end-page: 91 ident: bib13 article-title: Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings publication-title: Appl. Surf. Sci. – volume: 143 start-page: 79 year: 2018 end-page: 86 ident: bib45 article-title: Castor oil derived poly(urethane urea) networks with reprocessibility and enhanced mechanical properties publication-title: Polymer – volume: 41 start-page: 8603 year: 2000 end-page: 8613 ident: bib43 article-title: Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners publication-title: Polymer – volume: 5 start-page: 1938 year: 2017 end-page: 1947 ident: bib38 article-title: High performance and thermal processable dicarboxylic acid cured epoxidized plant oil resins through dynamic vulcanization with poly(lactic acid) publication-title: ACS Sustain. Chem. Eng. – volume: 50 start-page: 5729 year: 2017 end-page: 5738 ident: bib46 article-title: All plant oil derived epoxy thermosets with excellent comprehensive properties publication-title: Macromolecules – volume: 134 start-page: 155 year: 2018 end-page: 162 ident: bib23 article-title: Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites publication-title: Polymer – volume: 57 start-page: 133 year: 2018 end-page: 155 ident: bib24 article-title: Recent development of biobased epoxy resins: a review publication-title: Polym. Plast. Technol. Eng. – volume: 89 start-page: 2067 year: 2012 end-page: 2075 ident: bib40 article-title: Properties of biobased epoxy resins from epoxidized soybean oil (ESBO) cured with Maleic anhydride (MA) publication-title: J. Am. Oil Chem. Soc. – volume: 16 start-page: 1021 year: 2015 end-page: 1031 ident: bib17 article-title: Bio-based alternative to the diglycidyl ether of bisphenol a with controlled materials properties publication-title: Biomacromolecules – volume: 12 start-page: 1839 year: 2011 end-page: 1843 ident: bib41 article-title: Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil publication-title: Biomacromolecules – volume: 132 start-page: 69 year: 2018 end-page: 76 ident: bib20 article-title: Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin publication-title: Compos. B Eng. – volume: 447 start-page: 315 year: 2018 end-page: 324 ident: bib19 article-title: Preparation and origin of thermally resistant biobased epoxy resin with low internal stress and good UV resistance based on SiO2 hybridized cellulose for light emitting diode encapsulation publication-title: Appl. Surf. Sci. – volume: 6 start-page: 14802 year: 2018 end-page: 14811 ident: bib9 article-title: Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility publication-title: ACS Sustain. Chem. Eng. – volume: 7 start-page: 7 year: 2018 end-page: 11 ident: bib4 article-title: Crosslinked alginate/silica/zinc oxide nanocomposite: a sustainable material with antibacterial properties publication-title: Compos. Commum. – volume: 63 start-page: 147 year: 2017 ident: 10.1016/j.polymertesting.2019.106057_bib32 article-title: Curing kinetics of bio-based epoxy resin based on epoxidized soybean oil and green curing agent publication-title: AIChE J. doi: 10.1002/aic.15486 – volume: 153 start-page: 9 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib15 article-title: Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.07.022 – volume: 7 start-page: 7 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib4 article-title: Crosslinked alginate/silica/zinc oxide nanocomposite: a sustainable material with antibacterial properties publication-title: Compos. Commum. doi: 10.1016/j.coco.2017.11.006 – volume: 258 start-page: 6637 year: 2012 ident: 10.1016/j.polymertesting.2019.106057_bib31 article-title: Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.03.095 – volume: 57 start-page: 7516 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib8 article-title: Manufacturing of thermally remoldable blends from epoxidized soybean oil and poly(lactic acid) via dynamic cross-linking in a twin-screw extruder publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b01189 – volume: 6 start-page: 7589 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib22 article-title: High-performing and fire-resistant biobased epoxy resin from renewable sources publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b00439 – volume: 17 start-page: 4000 year: 2015 ident: 10.1016/j.polymertesting.2019.106057_bib35 article-title: New insights into the curing of epoxidized linseed oil with dicarboxylic acids publication-title: Green Chem. doi: 10.1039/C5GC00912J – volume: 38 start-page: 1700009 year: 2017 ident: 10.1016/j.polymertesting.2019.106057_bib33 article-title: Plant oil-derived epoxy polymers toward sustainable biobased thermosets publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201700009 – volume: 2 start-page: 2090 year: 2014 ident: 10.1016/j.polymertesting.2019.106057_bib36 article-title: Pressure-sensitive adhesives based on epoxidized soybean oil and dicarboxylic acids publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc5003853 – volume: 181 start-page: 107709 year: 2019 ident: 10.1016/j.polymertesting.2019.106057_bib10 article-title: Regulating tannic acid-crosslinked epoxidized soybean oil oligomers for strengthening and toughening bamboo fibers-reinforced poly(lactic acid) biocomposites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107709 – volume: 5 start-page: 1938 year: 2017 ident: 10.1016/j.polymertesting.2019.106057_bib38 article-title: High performance and thermal processable dicarboxylic acid cured epoxidized plant oil resins through dynamic vulcanization with poly(lactic acid) publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02684 – volume: 6 start-page: 11008 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib25 article-title: Divanillin-based epoxy precursors as DGEBA substitutes for biobased epoxy thermosets publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02419 – volume: 326 start-page: 875 year: 2017 ident: 10.1016/j.polymertesting.2019.106057_bib18 article-title: Curing of epoxidized soybean oil with crystalline oligomeric poly (butylene succinate) towards high performance and sustainable epoxy resins publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.039 – volume: 132 start-page: 69 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib20 article-title: Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2017.08.015 – volume: 116 start-page: 1637 year: 2016 ident: 10.1016/j.polymertesting.2019.106057_bib1 article-title: Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00264 – volume: 57 start-page: 557 year: 2017 ident: 10.1016/j.polymertesting.2019.106057_bib3 article-title: Progress in toughening poly(lactic acid) with renewable polymers publication-title: Polym. Rev. doi: 10.1080/15583724.2017.1287726 – volume: 51 start-page: 2027 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib7 article-title: Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00103 – volume: 33 start-page: 1770 year: 2012 ident: 10.1016/j.polymertesting.2019.106057_bib50 article-title: Improvement of polyamide 1010 with silica nanospheres via in situ melt polycondensation publication-title: Polym. Compos. doi: 10.1002/pc.22318 – volume: 61 start-page: 1462 year: 2012 ident: 10.1016/j.polymertesting.2019.106057_bib51 article-title: Crystallization and morphology of polyamide 1010/single-walled carbon nanotube nanocomposites under elevated pressure publication-title: Polym. Int. doi: 10.1002/pi.4236 – volume: 10 start-page: 52 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib16 article-title: Improved performance of dual-cured organosolv lignin-based epoxy acrylate coatings publication-title: Compos. Commun. doi: 10.1016/j.coco.2018.04.006 – volume: 41 start-page: 8603 year: 2000 ident: 10.1016/j.polymertesting.2019.106057_bib43 article-title: Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners publication-title: Polymer doi: 10.1016/S0032-3861(00)00256-1 – volume: 67 start-page: 1194 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib29 article-title: Biobased epoxy resin derived from eugenol with excellent integrated performance and high renewable carbon content publication-title: Polym. Int. doi: 10.1002/pi.5621 – volume: 57 start-page: 281 year: 2017 ident: 10.1016/j.polymertesting.2019.106057_bib37 article-title: Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2016.12.007 – volume: 6 start-page: 14802 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib9 article-title: Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03331 – volume: 7 start-page: 5986 year: 2019 ident: 10.1016/j.polymertesting.2019.106057_bib26 article-title: High performance biobased epoxy nanocomposite reinforced with a bacterial cellulose nanofiber network publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06073 – volume: 473 start-page: 55 year: 2019 ident: 10.1016/j.polymertesting.2019.106057_bib14 article-title: Surface modification of MMT and its effect on fatigue and fracture behavior of basalt/epoxy based composites in a seawater environment publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.12.127 – volume: 4 start-page: 2869 year: 2016 ident: 10.1016/j.polymertesting.2019.106057_bib11 article-title: Ultrastiff biobased epoxy resin with high T-g and low permittivity: from synthesis to properties publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00479 – volume: 3 start-page: 21907 year: 2015 ident: 10.1016/j.polymertesting.2019.106057_bib52 article-title: A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02939B – volume: 51 start-page: 5577 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib27 article-title: A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01010 – volume: 61 start-page: 993 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib44 article-title: Rational design of sustainable polyurethanes from castor oil: towards simultaneous reinforcement and toughening publication-title: Sci. China Mater. doi: 10.1007/s40843-017-9192-8 – volume: 114 start-page: 1082 year: 2014 ident: 10.1016/j.polymertesting.2019.106057_bib12 article-title: Biobased thermosetting epoxy: present and future publication-title: Chem. Rev. doi: 10.1021/cr3001274 – volume: 89 start-page: 2067 year: 2012 ident: 10.1016/j.polymertesting.2019.106057_bib40 article-title: Properties of biobased epoxy resins from epoxidized soybean oil (ESBO) cured with Maleic anhydride (MA) publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-012-2102-2 – volume: 44 start-page: 1968 year: 2008 ident: 10.1016/j.polymertesting.2019.106057_bib49 article-title: Prevulcanized natural rubber latex/clay aerogel nanocomposites publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2008.04.039 – volume: 134 start-page: 155 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib23 article-title: Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites publication-title: Polymer doi: 10.1016/j.polymer.2017.11.051 – volume: 143 start-page: 79 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib45 article-title: Castor oil derived poly(urethane urea) networks with reprocessibility and enhanced mechanical properties publication-title: Polymer doi: 10.1016/j.polymer.2018.04.013 – volume: 7 start-page: 2304 year: 2019 ident: 10.1016/j.polymertesting.2019.106057_bib6 article-title: Design of multi-stimuli responsive shape memory biobased PLA/ENR/Fe3O4 TPVs with balanced stiffness-toughness based on selective distribution of Fe3O4 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05025 – volume: 466 start-page: 84 year: 2019 ident: 10.1016/j.polymertesting.2019.106057_bib13 article-title: Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.017 – volume: 23 start-page: 2739 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib28 article-title: Limonene-based epoxy: anhydride thermoset reaction study publication-title: Molecules doi: 10.3390/molecules23112739 – volume: 68 start-page: 536 year: 2015 ident: 10.1016/j.polymertesting.2019.106057_bib30 article-title: Plant oil-based epoxy resins from fatty diamines and epoxidized vegetable oil publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2015.03.062 – volume: 4 start-page: 1231 year: 2016 ident: 10.1016/j.polymertesting.2019.106057_bib42 article-title: Network from dihydrocoumarin via solvent-free metal-mediated pathway: a potential structure for substantial toughness improvement of epoxidized plant oil materials publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01283 – volume: 9 start-page: 42 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib2 article-title: All-cellulose composites based on the self-reinforced effect publication-title: Compos. Commum. doi: 10.1016/j.coco.2018.04.008 – volume: 12 start-page: 1839 year: 2011 ident: 10.1016/j.polymertesting.2019.106057_bib41 article-title: Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil publication-title: Biomacromolecules doi: 10.1021/bm200188u – volume: 16 start-page: 1021 year: 2015 ident: 10.1016/j.polymertesting.2019.106057_bib17 article-title: Bio-based alternative to the diglycidyl ether of bisphenol a with controlled materials properties publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00014 – volume: 72 start-page: 140 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib47 article-title: Fully biobased and high performance epoxy thermosets from epoxidized soybean oil and diamino terminated polyamide 1010 oligomers publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.10.010 – volume: 148 start-page: 109 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib5 article-title: Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly(lactic acid) via dynamic vulcanization publication-title: Polymer doi: 10.1016/j.polymer.2018.06.021 – volume: 57 start-page: 133 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib24 article-title: Recent development of biobased epoxy resins: a review publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602559.2016.1253742 – volume: 15 start-page: 3360 year: 2013 ident: 10.1016/j.polymertesting.2019.106057_bib34 article-title: Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution publication-title: Green Chem. doi: 10.1039/c3gc41384e – volume: 9 start-page: 15696 year: 2017 ident: 10.1016/j.polymertesting.2019.106057_bib53 article-title: Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals publication-title: Nanoscale doi: 10.1039/C7NR05011A – volume: 447 start-page: 315 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib19 article-title: Preparation and origin of thermally resistant biobased epoxy resin with low internal stress and good UV resistance based on SiO2 hybridized cellulose for light emitting diode encapsulation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.229 – volume: 6 start-page: 8856 year: 2018 ident: 10.1016/j.polymertesting.2019.106057_bib21 article-title: Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01212 – volume: 50 start-page: 5729 year: 2017 ident: 10.1016/j.polymertesting.2019.106057_bib46 article-title: All plant oil derived epoxy thermosets with excellent comprehensive properties publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01068 – volume: 49 start-page: 5315 year: 2016 ident: 10.1016/j.polymertesting.2019.106057_bib48 article-title: Curing kinetics of biobased epoxies for tailored applications publication-title: Macromolecules doi: 10.1021/acs.macromol.6b01261 – volume: 133 start-page: 44103 year: 2016 ident: 10.1016/j.polymertesting.2019.106057_bib39 article-title: Recent advances in bio-based epoxy resins and bio-based epoxy curing agents publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.44103 |
SSID | ssj0005016 |
Score | 2.3795798 |
Snippet | Dicarboxyl terminated polyamide 1010 oligomer was used to cure epoxidized soybean oil (ESO) to synthesize fully biobased epoxy thermosets with different... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106057 |
SubjectTerms | Biobased polyamide Crosslink density Crystallization Epoxidized soybean oil Mechanical property |
Title | Structure-property relationship in fully biobased epoxidized soybean oil thermosets cured by dicarboxyl terminated polyamide 1010 oligomer with different carboxyl/epoxy ratios |
URI | https://dx.doi.org/10.1016/j.polymertesting.2019.106057 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61WwnoAUEB0UIrH3o1m02clzigakW1gOgFKvUWxa_iajeOskFqOPCX-IvMbBLaSj1U4paXHTsz8vfZ-TwDcJxkWqDzKi5sLjkiVMAl0iIe5CojeNRW0t7hr2fJ4lx8vogvtmA-7oUhWeUw9vdj-ma0Hq5Mh685rZ2bkiwpzAUiVB7NQpwnbMNOiGifTWDn5NOXxdmN0iPYZECl5zkVeATHNzKv2i-7lWlaimlRXZLWK8dbSPLT-5HqFvqcPoOnA21kJ33LnsOWqfbg8XzM1rYHu7cCC76AP982YWF_NobXtNretB1rRtnbD1czVzFaeO-YdJ6ATDMk4tdOu194uPadNGXFvFsy4ocrvzbtmimsTjPZMfq100h_3eHtXkuDtJVRF8uV04ZhnwPml-7SY5cZrfSyMQ9Ly8aiU3ohtoratH4J56cfv88XfEjNwFWUpC23YYrYbwIT21iFCkmGtUpTaJ4sQtTFeVxaZllpkY6WtIsvVbnWgYq1VmUeJDZ6BZPKV-Y1MCHLUOlImERIEZgss4mIU5tbPZupUET78H40Q6GGuOWUPmNZjAK1q-KuEQsyYtEbcR_if6XrPn7HA8t9GC1e3PHHAqHmQTUc_HcNb-AJnfXSwbcwQc8xh0iBWnkE2-9-z44GR_8LAuMP7A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRSrtAbW0VWlp6wNXa7OJ86UeKrQCLQX2UpC4RfEXuNpNomyQCH-qf7Ezm6SAxAGptyiOHTsz8nt2nmcA9qNEC3RexYVNJUeE8rhEWsS9VCUEj9pKOjt8No9mF-LnZXi5AdPhLAzJKvu5v5vT17N1f2fcf81x5dyYZEl-KhCh0mDi4zrhBWwKSmo9gs2D45PZ_F7p4a0zoNLznCq8hP17mVdVLtqlqRuKaVFckdYrxSIk-fHTSPUAfY7ewHZPG9lB17O3sGGKHdiaDtnaduD1g8CC7-DPr3VY2Jva8Ip22-umZfUge7t2FXMFo433lklXEpBphkT81ml3h5erspUmL1jpFoz44bJcmWbFFDanmWwZ_dqpZXnbYnGnpUHaymiI-dJpw3DMHisX7qrEITPa6WVDHpaGDVXH9ELsFfVp9R4ujg7PpzPep2bgKojihls_Ruw3ngltqHyFJMNapSk0TxIg6uI6Ls6TJLdIR3M6xRerVGtPhVqrPPUiG3yAUVEW5iMwIXNf6UCYSEjhmSSxkQhjm1o9mShfBLvwfTBDpvq45ZQ-Y5ENArXf2WMjZmTErDPiLoT_aldd_I5n1vsxWDx75I8ZQs2zWvj03y18g63Z-dlpdno8P_kMr6ikkxHuwQi9yHxBOtTIr727_wVpiRHS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-property+relationship+in+fully+biobased+epoxidized+soybean+oil+thermosets+cured+by+dicarboxyl+terminated+polyamide+1010+oligomer+with+different+carboxyl%2Fepoxy+ratios&rft.jtitle=Polymer+testing&rft.au=Wang%2C+Xiang-Zhao&rft.au=He%2C+Jia&rft.au=Weng%2C+Yun-Xuan&rft.au=Zeng%2C+Jian-Bing&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9418&rft.eissn=1873-2348&rft.volume=79&rft_id=info:doi/10.1016%2Fj.polymertesting.2019.106057&rft.externalDocID=S0142941819312140 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9418&client=summon |