Multitemporal polarimetric RADARSAT-2 SAR data for urban land cover mapping through a dictionary-based and a rule-based model selection in a contextual SEM algorithm
This paper presents a dictionary- and rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover classification using high-resolution multitemporal RADARSAT-2 polarimetric SAR (PolSAR) data. Six-date PolSAR data were acquired from June to S...
        Saved in:
      
    
          | Published in | Canadian journal of remote sensing Vol. 39; no. 2; pp. 138 - 151 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Taylor & Francis
    
        01.04.2013
     Canadian Aeronautics and Space Institute  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0703-8992 1712-7971 1712-7971  | 
| DOI | 10.5589/m13-019 | 
Cover
| Abstract | This paper presents a dictionary- and rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover classification using high-resolution multitemporal RADARSAT-2 polarimetric SAR (PolSAR) data. Six-date PolSAR data were acquired from June to September, 2008, over the Greater Toronto Area. Contextual information and the capabilities of different PolSAR distribution models were explored by the spatially variant Finite Mixture Model (FMM) with an adaptive Markov Random Field (MRF) in a Stochastic Expectation-Maximization (SEM) algorithm. This algorithm can obtain homogenous results while preserving shape details in the complex urban environment with high accuracy. Commonly used PolSAR distribution models such as Wishart, G0p, Kp, and KummerU were compared through the proposed approaches for urban land cover mapping. According to a Goodness-of-Fit test based on Mellin transformation, an accurate PolSAR distribution model could be selected with the dictionary-based classification. However, the results showed that improvement from the dictionary-based approach was limited. Therefore, further improvements were expected by exploring expert knowledge. The initial results showed that G0p and KummerU performed better for distinguishing between low density built-up areas and forest. G0p, Kp, and KummerU are better for the low scattering classes. The Wishart model has superior capacity in separating high density built-up areas and the adjacent roads. Based on such knowledge, a set of rules was developed to integrate the advantages of alternative models. Significant improvement on the overall classification accuracy could be observed by this rule-based approach. The biggest improvement was achieved using the HD-Road rule on the G0p model with the best overall classification accuracy at 89.99% (kappa: 0.87). This represented 4.1% (kappa: 0.045) improvement over that of G0p without model selection. | 
    
|---|---|
| AbstractList | This paper presents a dictionary-based and a rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover classification using high-resolution multitemporal RADARSAT-2 polarimetric SAR (PolSAR) data.  Six-date PolSAR data were acquired during June to September, 2008 over the Greater Toronto Area. Contextual information and the capabilities of different PolSAR distribution models were explored by the spatially variant Finite Mixture Model (FMM) with an adaptive Markov Random Field (MRF) in a Stochastic Expectation-Maximization (SEM) algorithm. This algorithm can obtain homogenous results while preserving shape details in the complex urban environment with high accuracy. Commonly used PolSAR distribution models such as Wishart, G0p, Kp and KummerU were compared through the proposed approaches for urban land cover mapping. According to a Goodness-of-fit test based on Mellin transformation, accurate PolSAR distribution model could be selected with the dictionary-based classification. However, the results showed that improvement by the dictionary-based approach was limited. Therefore, further improvements were expected by exploring expert knowledge. The initial results showed that G0p and KummerU performed better for distinguishing between low density built-up areas and forest. G0p, Kp and KummerU are better for the low scattering classes. The Wishart model has superior capacity in separating high density built-up areas and the adjacent roads. Based on such knowledge, a set of rules were developed to integrate the advantages of alternative models. Significant improvement on the overall classification accuracy could be observed by such rule-based approach. The biggest improvement was achieved using HD-Road rule on G0p model with the best overall classification accuracy at 89.99% (kappa: 0.87). This represented 4.1% (kappa: 0.045) improvement over that of G0p without model selection. This paper presents a dictionary- and rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover classification using high-resolution multitemporal RADARSAT-2 polarimetric SAR (PolSAR) data. Six-date PolSAR data were acquired from June to September, 2008, over the Greater Toronto Area. Contextual information and the capabilities of different PolSAR distribution models were explored by the spatially variant Finite Mixture Model (FMM) with an adaptive Markov Random Field (MRF) in a Stochastic Expectation-Maximization (SEM) algorithm. This algorithm can obtain homogenous results while preserving shape details in the complex urban environment with high accuracy. Commonly used PolSAR distribution models such as Wishart, G0p, Kp, and KummerU were compared through the proposed approaches for urban land cover mapping. According to a Goodness-of-Fit test based on Mellin transformation, an accurate PolSAR distribution model could be selected with the dictionary-based classification. However, the results showed that improvement from the dictionary-based approach was limited. Therefore, further improvements were expected by exploring expert knowledge. The initial results showed that G0p and KummerU performed better for distinguishing between low density built-up areas and forest. G0p, Kp, and KummerU are better for the low scattering classes. The Wishart model has superior capacity in separating high density built-up areas and the adjacent roads. Based on such knowledge, a set of rules was developed to integrate the advantages of alternative models. Significant improvement on the overall classification accuracy could be observed by this rule-based approach. The biggest improvement was achieved using the HD-Road rule on the G0p model with the best overall classification accuracy at 89.99% (kappa: 0.87). This represented 4.1% (kappa: 0.045) improvement over that of G0p without model selection.  | 
    
| Author | Ban, Yifang Niu, Xin  | 
    
| Author_xml | – sequence: 1 givenname: Xin surname: Niu fullname: Niu, Xin email: xin.niu@abe.kth.se – sequence: 2 givenname: Yifang surname: Ban fullname: Ban, Yifang  | 
    
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104761$$DView record from Swedish Publication Index | 
    
| BookMark | eNplkctu1DAUhiNUJKYF8QqWWMAmYMe52MuoLRepFdJMYWudOGdmXBw72A6lD8R74mGKkMrqSD6f7f9yWpw477AoXjL6tmmEfDcxXlImnxQr1rGq7GTHTooV7SgvhZTVs-I0xltKed1WYlX8ul5sMgmn2QewZPYWgpkwBaPJur_o15v-pqzIpl-TERKQrQ9kCQM4YsGNRPsfGMgE82zcjqR98MtuT4CMRifjHYT7coCIIznAQMJi8eFg8iNaEtHiH5IYl_fau4Q_05KVbC6vCdidDybtp-fF0y3YiC8e5lnx5f3lzfnH8urzh0_n_VWpedulUgvGGlkzjShAdqNsW84Eq6uBDm2LvAWJDXBW8UE3ukYqsB1BDrTKIfGx4WdFeXw33uG8DGrOWWQPyoNRF-Zrr3zYqW9prxitu5Zl_s2Rn4P_vmBMajJRo83ZoF-iYnUjmkoISTP66hF665fgsptMVVlk3TDxT4AOPsaAW6VNgkNAKYCx-V91KFnlklUuOfOvH_F_Jf9PVkfSuNzhBHc-2FEluLc-bAM4baLijy_9BmUGuio | 
    
| CitedBy_id | crossref_primary_10_1016_j_rsase_2025_101527 crossref_primary_10_1155_2015_538063 crossref_primary_10_3390_rs71114876 crossref_primary_10_1080_01431161_2015_1054050 crossref_primary_10_1080_01431161_2019_1601285  | 
    
| Cites_doi | 10.1109/TGRS.2007.898446 10.1080/014311699212678 10.1109/TGRS.2009.2019269 10.1109/TGRS.2004.842108 10.1080/01431160701840182 10.1002/0471721182 10.1109/36.214928 10.2528/PIERB11011405 10.1016/S0031-3203(02)00027-4 10.1109/TGRS.2005.859349 10.1109/TGRS.2007.897691 10.1109/TGRS.2010.2104158 10.1016/S0924-2716(03)00017-0 10.1109/TGRS.2003.818762 10.1109/36.789635 10.1016/j.isprsjprs.2008.12.008 10.1109/TIP.2006.875220 10.1109/LGRS.2008.2002024 10.1109/TGRS.2003.813494 10.1109/JSTSP.2010.2103925 10.1016/j.rse.2011.07.020 10.1214/aoms/1177704250 10.5589/m04-013 10.1016/j.rse.2011.11.001 10.1080/01431160601075541 10.1109/LGRS.2008.923262 10.1080/01431161.2012.700133 10.5589/m11-029 10.1002/env.658 10.1109/TGRS.2010.2103945 10.1109/TGRS.2004.839589 10.1109/TGRS.2003.819883 10.1109/TGRS.2003.817196 10.1109/TGRS.2003.814632 10.1109/83.701161 10.1093/ietcom/e90-b.12.3632  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright Canadian Aeronautics and Space Institute Copyright Canadian Aeronautics and Space Institute Apr 2013  | 
    
| Copyright_xml | – notice: Copyright Canadian Aeronautics and Space Institute – notice: Copyright Canadian Aeronautics and Space Institute Apr 2013  | 
    
| DBID | AAYXX CITATION 7ST 7U6 C1K ADTPV AOWAS D8V  | 
    
| DOI | 10.5589/m13-019 | 
    
| DatabaseName | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan  | 
    
| DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Environment Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 1712-7971 | 
    
| EndPage | 151 | 
    
| ExternalDocumentID | oai_DiVA_org_kth_104761 3055622461 10_5589_m13_019 10824067  | 
    
| Genre | Research Article | 
    
| GeographicLocations | Toronto Ontario Canada Canada, Ontario, Toronto  | 
    
| GeographicLocations_xml | – name: Toronto Ontario Canada – name: Canada, Ontario, Toronto  | 
    
| GroupedDBID | 0BK 0YH 29B 30N 4.4 5GY 5RQ AAGDL AAHBH AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEYOC AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG D8U DGEBU DKSSO EBS ECGQY EJD EM~ GTTXZ H13 HZ~ KYCEM M4Z O9- P2P PQQKQ RNANH ROSJB RTWRZ SNACF TBQAZ TEI TFL TFT TFW TQWBC TTHFI TUROJ ~KM AAYXX CITATION ADYSH 7ST 7U6 C1K AAGME AAOAP ABDPE ABFMO ABTAA ACBBU ACDHJ ACFTK ACQMU ACZPZ ADGTR ADMXK ADOPC ADTPV AFDYB AI. AOWAS APNXG AURDB BFWEY CWRZV D8V DLOXE GROUPED_DOAJ HGUVV IPNFZ JEPSP LJTGL NUSFT OWHGL PCLFJ RIG VH1 VOH  | 
    
| ID | FETCH-LOGICAL-c367t-c8115941cee8a97d966318142b0b66e36a9e5a3123bc5c4e08e6da9b029713d53 | 
    
| ISSN | 0703-8992 1712-7971  | 
    
| IngestDate | Thu Aug 21 06:32:37 EDT 2025 Tue Oct 07 11:13:23 EDT 2025 Mon Jun 30 17:08:33 EDT 2025 Wed Oct 01 04:44:09 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 Mon Oct 20 23:39:46 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c367t-c8115941cee8a97d966318142b0b66e36a9e5a3123bc5c4e08e6da9b029713d53 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 1428144518 | 
    
| PQPubID | 47400 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | crossref_citationtrail_10_5589_m13_019 informaworld_taylorfrancis_310_5589_m13_019 proquest_journals_1428144518 swepub_primary_oai_DiVA_org_kth_104761 proquest_miscellaneous_1458528890 crossref_primary_10_5589_m13_019  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-04-01 | 
    
| PublicationDateYYYYMMDD | 2013-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Canadian journal of remote sensing | 
    
| PublicationYear | 2013 | 
    
| Publisher | Taylor & Francis Canadian Aeronautics and Space Institute  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Canadian Aeronautics and Space Institute  | 
    
| References | Celeux G. (refg11) 1985; 2 refg1 refg3 Zhong P. (refg45) 2009; 45 refg2 refg14 refg36 refg13 refg35 refg12 refg34 refg33 refg10 refg31 Zhang L. (refg44) 2010 Mishra P. (refg30) 2011; 30 refg18 refg17 refg39 refg38 refg15 refg37 Niu X. (refg32) 2012 refg9 refg25 refg8 refg24 refg46 refg22 refg5 refg21 refg43 refg4 refg20 refg42 refg41 refg6 refg40 refg29 refg28 refg26  | 
    
| References_xml | – ident: refg42 doi: 10.1109/TGRS.2007.898446 – ident: refg17 doi: 10.1080/014311699212678 – ident: refg4 doi: 10.1109/TGRS.2009.2019269 – ident: refg20 doi: 10.1109/TGRS.2004.842108 – year: 2012 ident: refg32 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – ident: refg3 doi: 10.1080/01431160701840182 – ident: refg29 doi: 10.1002/0471721182 – ident: refg8 doi: 10.1109/36.214928 – volume: 30 start-page: 47 year: 2011 ident: refg30 publication-title: Progress In Electromagnetics Research B doi: 10.2528/PIERB11011405 – ident: refg12 doi: 10.1016/S0031-3203(02)00027-4 – ident: refg31 doi: 10.1109/TGRS.2005.859349 – ident: refg34 – ident: refg35 doi: 10.1109/TGRS.2007.897691 – ident: refg5 doi: 10.1109/TGRS.2010.2104158 – ident: refg36 doi: 10.1016/S0924-2716(03)00017-0 – ident: refg37 doi: 10.1109/TGRS.2003.818762 – volume: 2 start-page: 73 issue: 1 year: 1985 ident: refg11 publication-title: Computational Statistics Quarterly – ident: refg26 doi: 10.1109/36.789635 – ident: refg1 doi: 10.1016/j.isprsjprs.2008.12.008 – ident: refg9 doi: 10.1109/TIP.2006.875220 – ident: refg43 doi: 10.1109/LGRS.2008.2002024 – ident: refg13 doi: 10.1109/TGRS.2003.813494 – start-page: 1 year: 2010 ident: refg44 publication-title: EURASIP Journal on Advances in Signal Processing – ident: refg22 doi: 10.1109/JSTSP.2010.2103925 – ident: refg46 doi: 10.1016/j.rse.2011.07.020 – ident: refg18 doi: 10.1214/aoms/1177704250 – ident: refg41 doi: 10.5589/m04-013 – ident: refg38 doi: 10.1016/j.rse.2011.11.001 – volume: 45 start-page: 462 issue: 9 year: 2009 ident: refg45 publication-title: Optical Engineering – ident: refg2 doi: 10.1080/01431160601075541 – ident: refg10 doi: 10.1109/LGRS.2008.923262 – ident: refg33 doi: 10.1080/01431161.2012.700133 – ident: refg40 doi: 10.5589/m11-029 – ident: refg15 doi: 10.1002/env.658 – ident: refg6 doi: 10.1109/TGRS.2010.2103945 – ident: refg14 doi: 10.1109/TGRS.2004.839589 – ident: refg25 doi: 10.1109/TGRS.2003.819883 – ident: refg24 doi: 10.1109/TGRS.2003.817196 – ident: refg28 doi: 10.1109/TGRS.2003.814632 – ident: refg39 doi: 10.1109/83.701161 – ident: refg21 doi: 10.1093/ietcom/e90-b.12.3632  | 
    
| SSID | ssj0034628 | 
    
| Score | 2.0091803 | 
    
| Snippet | This paper presents a dictionary- and rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover... This paper presents a dictionary-based and a rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land...  | 
    
| SourceID | swepub proquest crossref informaworld  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 138 | 
    
| SubjectTerms | Algorithms Dictionary-based Approach Markov Random Field Polarimetric SAR RADARSAT-2 Remote sensing Rule-based Approach Stochastic Expectation-Maximization Studies Urban Land Cover Vegetation mapping  | 
    
| Title | Multitemporal polarimetric RADARSAT-2 SAR data for urban land cover mapping through a dictionary-based and a rule-based model selection in a contextual SEM algorithm | 
    
| URI | https://www.tandfonline.com/doi/abs/10.5589/m13-019 https://www.proquest.com/docview/1428144518 https://www.proquest.com/docview/1458528890 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104761  | 
    
| Volume | 39 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1712-7971 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034628 issn: 1712-7971 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1712-7971 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034628 issn: 1712-7971 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FsoAN4ilCCxokxMYy-DV-LA0tVEjtoklRWFkz9ri1mjiVYy_KZ_AP_Cf3zkwcp2FB2ViRPZqMdY7vw557LiHvPJZ7blECApw5diB8ZnMnLuwyYnnkCJEwB6uRT07D4_Pg24zNRqNfg11LXSs-5D__WlfyP6jCOcAVq2TvgGw_KZyA34AvHAFhOP4Txrp6VotLzbHfAkex_lZtjk8P07NJOrU9a5KeWbgRVO0o7BoBT_RcV7PBDVsLfm1KpnTDHm4Vlap14M2NjT6u0HquVtPNpTmh2udYK9VCx-yV5GrTO1h6LEeZHJ1YfH6xbKr2cjEMf3sthIFgRSOBLRJmq1drN6q-k3SI_qzqyftJv6r9UZXcDDMvK7BxRDB8WTHd6RsyMHdge2zI_rRtltocRy7E_4lu0rK211r8yPDSGxhfV-vEGD_uaiHb2y6CsRgVVhe4NmOst_W2XQiKIMqJ7pH7HngKbAfiO6dr7-5jLa-SdjWr1YXYOOtHM-dWhLOlf7udxQyVaVU0M31MHpk0hKaaU0_ISNZPyYOv0giYPyO_t7hFh9yiG25R4BZFblH4e6q4RZFbVHGLGm5Rwy3K6W1uURzM6YZbVHGL9tyiVQ3XN9yiwC3ac-s5Of9yNP18bJuWHnbuh1Fr5zFkIEngQmgW8yQqINkGp-IGnnBEGEo_5Ilk3IdwSuQsD6QTy7DgicAWa65fMP8F2auXtXxJaCkct5AijLwC0pJIJI5fOjIIeFn4QVmwMXm_hiHLjd49tl2ZZ5D3Il4Z4JUBXmNC-4HXWuJld4g1xDFrFY9LTeHM3xl9sIY5M4_TKkNlQxfVAOMxedtfBluOH-h4LZcdjoHk3YvjxIHFa3r0K0IZ-MPqe5otm4vsqr3MUGMldF_daWX75OHmqTwge23TydcQVLfijWL5Hy0402U | 
    
| linkProvider | Taylor & Francis | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hcigX3oiUAouEuCCXtdfrx9GirQI0OeSBelvty0nUxKkc-1D-D_-TGduJEnrq1TuWZndnd2bsme8j5HMgTODbHHZACeaFmgtPscR6eSxMzLROBcNu5MEw6k_Dn9fiumsK23RllZhD5y1QRHNX4-HGj9F4woVI0m8rZCRArM_HAsJ75C3gbLi9fzl2Wzbgm4x7kE0Ebavs_osHPugAofQwztzHDm38zeUzMt1q2paZ3JzVlT4zf_4DcXzoVJ6Tp10ASrPWYl6QR654SY47LvT53Svyt-3JbSGrlvQWc9_FCom3DB1l59lonE28gI6zEcXyUgrTonWpVUGxSJIarAmlK4W4DzPa0QBRRe2i6aBQ5Z2HntNSFFa0rJeue9CQ8tBNQ8wDknRRwDiW0oP_qEGT8cWAquVsXS6q-eo1mV5eTL73vY7MwTM8iivPJBB7pqEPTjlRaWwhzYLrxA8DzXQUOR6p1AnFwZFqI0zoWOIiq1KN5Fo-t4K_IUfFunBvCc01863TURxYCEhjnTKeMxeGKrc8zK3okS_b7ZWmQzpHwo2lhIwHV13CqktY9R6hO8HbFtzjvsjXffuQVfMdJW9JTyS_J326NR_Z3QUbiZh2PuLAJT3yaTcMpxh_zajCrWuUgbQtSJKUgfKt2e00QgDw88XvTK7Lmbyp5hLRNSL_5EGafSTH_cngSl79GP56R54EDakH1h-dkqOqrN17CK0q_aE5Sf8AxLUjCg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQIgEX3mgLCwwS4oKyOHGcxzGiWy2PrVDbRXuz_EpbbZtWaXJY_g__E0-SVi172ms8kSb22DMTz3wfIR8DrgPf5G4FJKdeqBj3JE2Ml8dcx1SplFPsRr4YRueX4fcrftX1cW-6skrMofMWKKI5q3Fzr02OG5zzJP2yREIChPq8H-E9GPZt0OH2-GXYbNlgb1LmuWQiaDtl9188cEEHAKWHYeY-dGjjbgZPyGSraFtlcn1aV-pU__kPw_GOX_KUPO7CT8hae3lG7tniOXnYMaHPbl6Qv21HbgtYtYA1Zr7zJdJuaRhl_Ww0ziZeAONsBFhcCu6roC6VLABLJEFjRSgsJaI-TKEjAQIJZt70T8jyxkO_aQCFJZT1wnYPGkoe2DS0PE4S5oUbx0J65z1qp8n47ALkYroq59Vs-ZJcDs4mX8-9jsrB0yyKK08nLvJMQ9-55ESmsXFJljtM_DBQVEWRZZFMLZfMuVGluQ4tTWxkZKqQWstnhrNX5KhYFfaYQK6ob6yK4sC4cDRWKWU5tWEoc8PC3PAe-bRdXaE7nHOk21gIl-_grAs368LNeo_ATnDdQnvcFvm8bx6iav6i5C3liWC3pE-21iO6k2AjENHORxS4pEc-7IbdHsaLGVnYVY0yLmkLkiSlTvnW6nYaIfx3f_47E6tyKq6rmUBsjch_fSfN3pMHv_oD8fPb8Mcb8ihoGD2w-OiEHFVlbd-6uKpS75p99A8q5CGu | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitemporal+polarimetric+RADARSAT-2+SAR+data+for+urban+land+cover+mapping+through+a+dictionary-based+and+a+rule-based+model+selection+in+a+contextual+SEM+algorithm&rft.jtitle=Canadian+journal+of+remote+sensing&rft.au=Niu%2C+Xin&rft.au=Ban%2C+Yifang&rft.date=2013-04-01&rft.pub=Taylor+%26+Francis&rft.issn=0703-8992&rft.eissn=1712-7971&rft.volume=39&rft.issue=2&rft.spage=138&rft.epage=151&rft_id=info:doi/10.5589%2Fm13-019&rft.externalDocID=10824067 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0703-8992&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0703-8992&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0703-8992&client=summon |