Multitemporal polarimetric RADARSAT-2 SAR data for urban land cover mapping through a dictionary-based and a rule-based model selection in a contextual SEM algorithm

This paper presents a dictionary- and rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover classification using high-resolution multitemporal RADARSAT-2 polarimetric SAR (PolSAR) data. Six-date PolSAR data were acquired from June to S...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of remote sensing Vol. 39; no. 2; pp. 138 - 151
Main Authors Niu, Xin, Ban, Yifang
Format Journal Article
LanguageEnglish
Published Taylor & Francis 01.04.2013
Canadian Aeronautics and Space Institute
Subjects
Online AccessGet full text
ISSN0703-8992
1712-7971
1712-7971
DOI10.5589/m13-019

Cover

Abstract This paper presents a dictionary- and rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover classification using high-resolution multitemporal RADARSAT-2 polarimetric SAR (PolSAR) data. Six-date PolSAR data were acquired from June to September, 2008, over the Greater Toronto Area. Contextual information and the capabilities of different PolSAR distribution models were explored by the spatially variant Finite Mixture Model (FMM) with an adaptive Markov Random Field (MRF) in a Stochastic Expectation-Maximization (SEM) algorithm. This algorithm can obtain homogenous results while preserving shape details in the complex urban environment with high accuracy. Commonly used PolSAR distribution models such as Wishart, G0p, Kp, and KummerU were compared through the proposed approaches for urban land cover mapping. According to a Goodness-of-Fit test based on Mellin transformation, an accurate PolSAR distribution model could be selected with the dictionary-based classification. However, the results showed that improvement from the dictionary-based approach was limited. Therefore, further improvements were expected by exploring expert knowledge. The initial results showed that G0p and KummerU performed better for distinguishing between low density built-up areas and forest. G0p, Kp, and KummerU are better for the low scattering classes. The Wishart model has superior capacity in separating high density built-up areas and the adjacent roads. Based on such knowledge, a set of rules was developed to integrate the advantages of alternative models. Significant improvement on the overall classification accuracy could be observed by this rule-based approach. The biggest improvement was achieved using the HD-Road rule on the G0p model with the best overall classification accuracy at 89.99% (kappa: 0.87). This represented 4.1% (kappa: 0.045) improvement over that of G0p without model selection.
AbstractList This paper presents a dictionary-based and a rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover classification using high-resolution multitemporal RADARSAT-2 polarimetric SAR (PolSAR) data.  Six-date PolSAR data were acquired during June to September, 2008 over the Greater Toronto Area. Contextual information and the capabilities of different PolSAR distribution models were explored by the spatially variant Finite Mixture Model (FMM) with an adaptive Markov Random Field (MRF) in a Stochastic Expectation-Maximization (SEM) algorithm. This algorithm can obtain homogenous results while preserving shape details in the complex urban environment with high accuracy. Commonly used PolSAR distribution models such as Wishart, G0p, Kp and KummerU were compared through the proposed approaches for urban land cover mapping. According to a Goodness-of-fit test based on Mellin transformation, accurate PolSAR distribution model could be selected with the dictionary-based classification. However, the results showed that improvement by the dictionary-based approach was limited. Therefore, further improvements were expected by exploring expert knowledge. The initial results showed that G0p and KummerU performed better for distinguishing between low density built-up areas and forest. G0p, Kp and KummerU are better for the low scattering classes. The Wishart model has superior capacity in separating high density built-up areas and the adjacent roads. Based on such knowledge, a set of rules were developed to integrate the advantages of alternative models. Significant improvement on the overall classification accuracy could be observed by such rule-based approach. The biggest improvement was achieved using HD-Road rule on G0p model with the best overall classification accuracy at 89.99% (kappa: 0.87). This represented 4.1% (kappa: 0.045) improvement over that of G0p without model selection.
This paper presents a dictionary- and rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover classification using high-resolution multitemporal RADARSAT-2 polarimetric SAR (PolSAR) data. Six-date PolSAR data were acquired from June to September, 2008, over the Greater Toronto Area. Contextual information and the capabilities of different PolSAR distribution models were explored by the spatially variant Finite Mixture Model (FMM) with an adaptive Markov Random Field (MRF) in a Stochastic Expectation-Maximization (SEM) algorithm. This algorithm can obtain homogenous results while preserving shape details in the complex urban environment with high accuracy. Commonly used PolSAR distribution models such as Wishart, G0p, Kp, and KummerU were compared through the proposed approaches for urban land cover mapping. According to a Goodness-of-Fit test based on Mellin transformation, an accurate PolSAR distribution model could be selected with the dictionary-based classification. However, the results showed that improvement from the dictionary-based approach was limited. Therefore, further improvements were expected by exploring expert knowledge. The initial results showed that G0p and KummerU performed better for distinguishing between low density built-up areas and forest. G0p, Kp, and KummerU are better for the low scattering classes. The Wishart model has superior capacity in separating high density built-up areas and the adjacent roads. Based on such knowledge, a set of rules was developed to integrate the advantages of alternative models. Significant improvement on the overall classification accuracy could be observed by this rule-based approach. The biggest improvement was achieved using the HD-Road rule on the G0p model with the best overall classification accuracy at 89.99% (kappa: 0.87). This represented 4.1% (kappa: 0.045) improvement over that of G0p without model selection.
Author Ban, Yifang
Niu, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Niu
  fullname: Niu, Xin
  email: xin.niu@abe.kth.se
– sequence: 2
  givenname: Yifang
  surname: Ban
  fullname: Ban, Yifang
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104761$$DView record from Swedish Publication Index
BookMark eNplkctu1DAUhiNUJKYF8QqWWMAmYMe52MuoLRepFdJMYWudOGdmXBw72A6lD8R74mGKkMrqSD6f7f9yWpw477AoXjL6tmmEfDcxXlImnxQr1rGq7GTHTooV7SgvhZTVs-I0xltKed1WYlX8ul5sMgmn2QewZPYWgpkwBaPJur_o15v-pqzIpl-TERKQrQ9kCQM4YsGNRPsfGMgE82zcjqR98MtuT4CMRifjHYT7coCIIznAQMJi8eFg8iNaEtHiH5IYl_fau4Q_05KVbC6vCdidDybtp-fF0y3YiC8e5lnx5f3lzfnH8urzh0_n_VWpedulUgvGGlkzjShAdqNsW84Eq6uBDm2LvAWJDXBW8UE3ukYqsB1BDrTKIfGx4WdFeXw33uG8DGrOWWQPyoNRF-Zrr3zYqW9prxitu5Zl_s2Rn4P_vmBMajJRo83ZoF-iYnUjmkoISTP66hF665fgsptMVVlk3TDxT4AOPsaAW6VNgkNAKYCx-V91KFnlklUuOfOvH_F_Jf9PVkfSuNzhBHc-2FEluLc-bAM4baLijy_9BmUGuio
CitedBy_id crossref_primary_10_1016_j_rsase_2025_101527
crossref_primary_10_1155_2015_538063
crossref_primary_10_3390_rs71114876
crossref_primary_10_1080_01431161_2015_1054050
crossref_primary_10_1080_01431161_2019_1601285
Cites_doi 10.1109/TGRS.2007.898446
10.1080/014311699212678
10.1109/TGRS.2009.2019269
10.1109/TGRS.2004.842108
10.1080/01431160701840182
10.1002/0471721182
10.1109/36.214928
10.2528/PIERB11011405
10.1016/S0031-3203(02)00027-4
10.1109/TGRS.2005.859349
10.1109/TGRS.2007.897691
10.1109/TGRS.2010.2104158
10.1016/S0924-2716(03)00017-0
10.1109/TGRS.2003.818762
10.1109/36.789635
10.1016/j.isprsjprs.2008.12.008
10.1109/TIP.2006.875220
10.1109/LGRS.2008.2002024
10.1109/TGRS.2003.813494
10.1109/JSTSP.2010.2103925
10.1016/j.rse.2011.07.020
10.1214/aoms/1177704250
10.5589/m04-013
10.1016/j.rse.2011.11.001
10.1080/01431160601075541
10.1109/LGRS.2008.923262
10.1080/01431161.2012.700133
10.5589/m11-029
10.1002/env.658
10.1109/TGRS.2010.2103945
10.1109/TGRS.2004.839589
10.1109/TGRS.2003.819883
10.1109/TGRS.2003.817196
10.1109/TGRS.2003.814632
10.1109/83.701161
10.1093/ietcom/e90-b.12.3632
ContentType Journal Article
Copyright Copyright Canadian Aeronautics and Space Institute
Copyright Canadian Aeronautics and Space Institute Apr 2013
Copyright_xml – notice: Copyright Canadian Aeronautics and Space Institute
– notice: Copyright Canadian Aeronautics and Space Institute Apr 2013
DBID AAYXX
CITATION
7ST
7U6
C1K
ADTPV
AOWAS
D8V
DOI 10.5589/m13-019
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1712-7971
EndPage 151
ExternalDocumentID oai_DiVA_org_kth_104761
3055622461
10_5589_m13_019
10824067
Genre Research Article
GeographicLocations Toronto Ontario Canada
Canada, Ontario, Toronto
GeographicLocations_xml – name: Toronto Ontario Canada
– name: Canada, Ontario, Toronto
GroupedDBID 0BK
0YH
29B
30N
4.4
5GY
5RQ
AAGDL
AAHBH
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
D8U
DGEBU
DKSSO
EBS
ECGQY
EJD
EM~
GTTXZ
H13
HZ~
KYCEM
M4Z
O9-
P2P
PQQKQ
RNANH
ROSJB
RTWRZ
SNACF
TBQAZ
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
~KM
AAYXX
CITATION
ADYSH
7ST
7U6
C1K
AAGME
AAOAP
ABDPE
ABFMO
ABTAA
ACBBU
ACDHJ
ACFTK
ACQMU
ACZPZ
ADGTR
ADMXK
ADOPC
ADTPV
AFDYB
AI.
AOWAS
APNXG
AURDB
BFWEY
CWRZV
D8V
DLOXE
GROUPED_DOAJ
HGUVV
IPNFZ
JEPSP
LJTGL
NUSFT
OWHGL
PCLFJ
RIG
VH1
VOH
ID FETCH-LOGICAL-c367t-c8115941cee8a97d966318142b0b66e36a9e5a3123bc5c4e08e6da9b029713d53
ISSN 0703-8992
1712-7971
IngestDate Thu Aug 21 06:32:37 EDT 2025
Tue Oct 07 11:13:23 EDT 2025
Mon Jun 30 17:08:33 EDT 2025
Wed Oct 01 04:44:09 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
Mon Oct 20 23:39:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-c8115941cee8a97d966318142b0b66e36a9e5a3123bc5c4e08e6da9b029713d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1428144518
PQPubID 47400
PageCount 14
ParticipantIDs crossref_citationtrail_10_5589_m13_019
informaworld_taylorfrancis_310_5589_m13_019
proquest_journals_1428144518
swepub_primary_oai_DiVA_org_kth_104761
proquest_miscellaneous_1458528890
crossref_primary_10_5589_m13_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Canadian journal of remote sensing
PublicationYear 2013
Publisher Taylor & Francis
Canadian Aeronautics and Space Institute
Publisher_xml – name: Taylor & Francis
– name: Canadian Aeronautics and Space Institute
References Celeux G. (refg11) 1985; 2
refg1
refg3
Zhong P. (refg45) 2009; 45
refg2
refg14
refg36
refg13
refg35
refg12
refg34
refg33
refg10
refg31
Zhang L. (refg44) 2010
Mishra P. (refg30) 2011; 30
refg18
refg17
refg39
refg38
refg15
refg37
Niu X. (refg32) 2012
refg9
refg25
refg8
refg24
refg46
refg22
refg5
refg21
refg43
refg4
refg20
refg42
refg41
refg6
refg40
refg29
refg28
refg26
References_xml – ident: refg42
  doi: 10.1109/TGRS.2007.898446
– ident: refg17
  doi: 10.1080/014311699212678
– ident: refg4
  doi: 10.1109/TGRS.2009.2019269
– ident: refg20
  doi: 10.1109/TGRS.2004.842108
– year: 2012
  ident: refg32
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– ident: refg3
  doi: 10.1080/01431160701840182
– ident: refg29
  doi: 10.1002/0471721182
– ident: refg8
  doi: 10.1109/36.214928
– volume: 30
  start-page: 47
  year: 2011
  ident: refg30
  publication-title: Progress In Electromagnetics Research B
  doi: 10.2528/PIERB11011405
– ident: refg12
  doi: 10.1016/S0031-3203(02)00027-4
– ident: refg31
  doi: 10.1109/TGRS.2005.859349
– ident: refg34
– ident: refg35
  doi: 10.1109/TGRS.2007.897691
– ident: refg5
  doi: 10.1109/TGRS.2010.2104158
– ident: refg36
  doi: 10.1016/S0924-2716(03)00017-0
– ident: refg37
  doi: 10.1109/TGRS.2003.818762
– volume: 2
  start-page: 73
  issue: 1
  year: 1985
  ident: refg11
  publication-title: Computational Statistics Quarterly
– ident: refg26
  doi: 10.1109/36.789635
– ident: refg1
  doi: 10.1016/j.isprsjprs.2008.12.008
– ident: refg9
  doi: 10.1109/TIP.2006.875220
– ident: refg43
  doi: 10.1109/LGRS.2008.2002024
– ident: refg13
  doi: 10.1109/TGRS.2003.813494
– start-page: 1
  year: 2010
  ident: refg44
  publication-title: EURASIP Journal on Advances in Signal Processing
– ident: refg22
  doi: 10.1109/JSTSP.2010.2103925
– ident: refg46
  doi: 10.1016/j.rse.2011.07.020
– ident: refg18
  doi: 10.1214/aoms/1177704250
– ident: refg41
  doi: 10.5589/m04-013
– ident: refg38
  doi: 10.1016/j.rse.2011.11.001
– volume: 45
  start-page: 462
  issue: 9
  year: 2009
  ident: refg45
  publication-title: Optical Engineering
– ident: refg2
  doi: 10.1080/01431160601075541
– ident: refg10
  doi: 10.1109/LGRS.2008.923262
– ident: refg33
  doi: 10.1080/01431161.2012.700133
– ident: refg40
  doi: 10.5589/m11-029
– ident: refg15
  doi: 10.1002/env.658
– ident: refg6
  doi: 10.1109/TGRS.2010.2103945
– ident: refg14
  doi: 10.1109/TGRS.2004.839589
– ident: refg25
  doi: 10.1109/TGRS.2003.819883
– ident: refg24
  doi: 10.1109/TGRS.2003.817196
– ident: refg28
  doi: 10.1109/TGRS.2003.814632
– ident: refg39
  doi: 10.1109/83.701161
– ident: refg21
  doi: 10.1093/ietcom/e90-b.12.3632
SSID ssj0034628
Score 2.0091803
Snippet This paper presents a dictionary- and rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land cover...
This paper presents a dictionary-based and a rule-based model selection approach in an adaptive contextual semi-supervised algorithm for improving urban land...
SourceID swepub
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 138
SubjectTerms Algorithms
Dictionary-based Approach
Markov Random Field
Polarimetric SAR
RADARSAT-2
Remote sensing
Rule-based Approach
Stochastic Expectation-Maximization
Studies
Urban Land Cover
Vegetation mapping
Title Multitemporal polarimetric RADARSAT-2 SAR data for urban land cover mapping through a dictionary-based and a rule-based model selection in a contextual SEM algorithm
URI https://www.tandfonline.com/doi/abs/10.5589/m13-019
https://www.proquest.com/docview/1428144518
https://www.proquest.com/docview/1458528890
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104761
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1712-7971
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034628
  issn: 1712-7971
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1712-7971
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034628
  issn: 1712-7971
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FsoAN4ilCCxokxMYy-DV-LA0tVEjtoklRWFkz9ri1mjiVYy_KZ_AP_Cf3zkwcp2FB2ViRPZqMdY7vw557LiHvPJZ7blECApw5diB8ZnMnLuwyYnnkCJEwB6uRT07D4_Pg24zNRqNfg11LXSs-5D__WlfyP6jCOcAVq2TvgGw_KZyA34AvHAFhOP4Txrp6VotLzbHfAkex_lZtjk8P07NJOrU9a5KeWbgRVO0o7BoBT_RcV7PBDVsLfm1KpnTDHm4Vlap14M2NjT6u0HquVtPNpTmh2udYK9VCx-yV5GrTO1h6LEeZHJ1YfH6xbKr2cjEMf3sthIFgRSOBLRJmq1drN6q-k3SI_qzqyftJv6r9UZXcDDMvK7BxRDB8WTHd6RsyMHdge2zI_rRtltocRy7E_4lu0rK211r8yPDSGxhfV-vEGD_uaiHb2y6CsRgVVhe4NmOst_W2XQiKIMqJ7pH7HngKbAfiO6dr7-5jLa-SdjWr1YXYOOtHM-dWhLOlf7udxQyVaVU0M31MHpk0hKaaU0_ISNZPyYOv0giYPyO_t7hFh9yiG25R4BZFblH4e6q4RZFbVHGLGm5Rwy3K6W1uURzM6YZbVHGL9tyiVQ3XN9yiwC3ac-s5Of9yNP18bJuWHnbuh1Fr5zFkIEngQmgW8yQqINkGp-IGnnBEGEo_5Ilk3IdwSuQsD6QTy7DgicAWa65fMP8F2auXtXxJaCkct5AijLwC0pJIJI5fOjIIeFn4QVmwMXm_hiHLjd49tl2ZZ5D3Il4Z4JUBXmNC-4HXWuJld4g1xDFrFY9LTeHM3xl9sIY5M4_TKkNlQxfVAOMxedtfBluOH-h4LZcdjoHk3YvjxIHFa3r0K0IZ-MPqe5otm4vsqr3MUGMldF_daWX75OHmqTwge23TydcQVLfijWL5Hy0402U
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hcigX3oiUAouEuCCXtdfrx9GirQI0OeSBelvty0nUxKkc-1D-D_-TGduJEnrq1TuWZndnd2bsme8j5HMgTODbHHZACeaFmgtPscR6eSxMzLROBcNu5MEw6k_Dn9fiumsK23RllZhD5y1QRHNX4-HGj9F4woVI0m8rZCRArM_HAsJ75C3gbLi9fzl2Wzbgm4x7kE0Ebavs_osHPugAofQwztzHDm38zeUzMt1q2paZ3JzVlT4zf_4DcXzoVJ6Tp10ASrPWYl6QR654SY47LvT53Svyt-3JbSGrlvQWc9_FCom3DB1l59lonE28gI6zEcXyUgrTonWpVUGxSJIarAmlK4W4DzPa0QBRRe2i6aBQ5Z2HntNSFFa0rJeue9CQ8tBNQ8wDknRRwDiW0oP_qEGT8cWAquVsXS6q-eo1mV5eTL73vY7MwTM8iivPJBB7pqEPTjlRaWwhzYLrxA8DzXQUOR6p1AnFwZFqI0zoWOIiq1KN5Fo-t4K_IUfFunBvCc01863TURxYCEhjnTKeMxeGKrc8zK3okS_b7ZWmQzpHwo2lhIwHV13CqktY9R6hO8HbFtzjvsjXffuQVfMdJW9JTyS_J326NR_Z3QUbiZh2PuLAJT3yaTcMpxh_zajCrWuUgbQtSJKUgfKt2e00QgDw88XvTK7Lmbyp5hLRNSL_5EGafSTH_cngSl79GP56R54EDakH1h-dkqOqrN17CK0q_aE5Sf8AxLUjCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQIgEX3mgLCwwS4oKyOHGcxzGiWy2PrVDbRXuz_EpbbZtWaXJY_g__E0-SVi172ms8kSb22DMTz3wfIR8DrgPf5G4FJKdeqBj3JE2Ml8dcx1SplFPsRr4YRueX4fcrftX1cW-6skrMofMWKKI5q3Fzr02OG5zzJP2yREIChPq8H-E9GPZt0OH2-GXYbNlgb1LmuWQiaDtl9188cEEHAKWHYeY-dGjjbgZPyGSraFtlcn1aV-pU__kPw_GOX_KUPO7CT8hae3lG7tniOXnYMaHPbl6Qv21HbgtYtYA1Zr7zJdJuaRhl_Ww0ziZeAONsBFhcCu6roC6VLABLJEFjRSgsJaI-TKEjAQIJZt70T8jyxkO_aQCFJZT1wnYPGkoe2DS0PE4S5oUbx0J65z1qp8n47ALkYroq59Vs-ZJcDs4mX8-9jsrB0yyKK08nLvJMQ9-55ESmsXFJljtM_DBQVEWRZZFMLZfMuVGluQ4tTWxkZKqQWstnhrNX5KhYFfaYQK6ob6yK4sC4cDRWKWU5tWEoc8PC3PAe-bRdXaE7nHOk21gIl-_grAs368LNeo_ATnDdQnvcFvm8bx6iav6i5C3liWC3pE-21iO6k2AjENHORxS4pEc-7IbdHsaLGVnYVY0yLmkLkiSlTvnW6nYaIfx3f_47E6tyKq6rmUBsjch_fSfN3pMHv_oD8fPb8Mcb8ihoGD2w-OiEHFVlbd-6uKpS75p99A8q5CGu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitemporal+polarimetric+RADARSAT-2+SAR+data+for+urban+land+cover+mapping+through+a+dictionary-based+and+a+rule-based+model+selection+in+a+contextual+SEM+algorithm&rft.jtitle=Canadian+journal+of+remote+sensing&rft.au=Niu%2C+Xin&rft.au=Ban%2C+Yifang&rft.date=2013-04-01&rft.pub=Taylor+%26+Francis&rft.issn=0703-8992&rft.eissn=1712-7971&rft.volume=39&rft.issue=2&rft.spage=138&rft.epage=151&rft_id=info:doi/10.5589%2Fm13-019&rft.externalDocID=10824067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0703-8992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0703-8992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0703-8992&client=summon