Fusing Nature with Computational Science for Optimal Signal Extraction

Fusing nature with computational science has been proved paramount importance and researchers have also shown growing enthusiasm on inventing and developing nature inspired algorithms for solving complex problems across subjects. Inevitably, these advancements have rapidly promoted the development o...

Full description

Saved in:
Bibliographic Details
Published inStats (Basel, Switzerland) Vol. 4; no. 1; pp. 71 - 85
Main Authors Hassani, Hossein, Yeganegi, Mohammad Reza, Huang, Xu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2021
Subjects
Online AccessGet full text
ISSN2571-905X
2571-905X
DOI10.3390/stats4010006

Cover

Abstract Fusing nature with computational science has been proved paramount importance and researchers have also shown growing enthusiasm on inventing and developing nature inspired algorithms for solving complex problems across subjects. Inevitably, these advancements have rapidly promoted the development of data science, where nature inspired algorithms are changing the traditional way of data processing. This paper proposes the hybrid approach, namely SSA-GA, which incorporates the optimization merits of genetic algorithm (GA) for the advancements of Singular Spectrum Analysis (SSA). This approach further boosts the performance of SSA forecasting via better and more efficient grouping. Given the performances of SSA-GA on 100 real time series data across various subjects, this newly proposed SSA-GA approach is proved to be computationally efficient and robust with improved forecasting performance.
AbstractList Fusing nature with computational science has been proved paramount importance and researchers have also shown growing enthusiasm on inventing and developing nature inspired algorithms for solving complex problems across subjects. Inevitably, these advancements have rapidly promoted the development of data science, where nature inspired algorithms are changing the traditional way of data processing. This paper proposes the hybrid approach, namely SSA-GA, which incorporates the optimization merits of genetic algorithm (GA) for the advancements of Singular Spectrum Analysis (SSA). This approach further boosts the performance of SSA forecasting via better and more efficient grouping. Given the performances of SSA-GA on 100 real time series data across various subjects, this newly proposed SSA-GA approach is proved to be computationally efficient and robust with improved forecasting performance.
Author Hassani, Hossein
Huang, Xu
Yeganegi, Mohammad Reza
Author_xml – sequence: 1
  givenname: Hossein
  orcidid: 0000-0003-0897-8663
  surname: Hassani
  fullname: Hassani, Hossein
– sequence: 2
  givenname: Mohammad Reza
  orcidid: 0000-0003-4109-0690
  surname: Yeganegi
  fullname: Yeganegi, Mohammad Reza
– sequence: 3
  givenname: Xu
  orcidid: 0000-0002-8387-9238
  surname: Huang
  fullname: Huang, Xu
BookMark eNp9kE1LxDAQhoMo-HnzBxS8Wp18tdujLK4KogcVvIXZJF2z1KYmKeq_t7UiIuhpwuSZh5d3l2y2vrWEHFI44byC05gwRQEUAIoNssNkSfMK5OPmj_c2OYhxPRCsLCoxEztkseija1fZDaY-2OzVpads7p-7frA532KT3WlnW22z2ofstkvuedy51fh1_pYC6pHbJ1s1NtEefM098rA4v59f5te3F1fzs-tc86JM-dLWNa8Nw4KVyGcWUKJgBVijlzWjAgpdAgc0hhUVCK0LxmsBFVBrJKWS75GryWs8rlUXhjThXXl06nPhw0phSE43VnGjtdFCzAC1oGyJRgjJAWbCIDcAgyufXH3b4fsrNs23kIIaO1U_Ox34o4nvgn_pbUxq7fsw9BAVk0N4IWU5UmyidPAxBlsr7aYuh65c85f6-NfRv0k-AMgDl_s
CitedBy_id crossref_primary_10_1002_for_2982
Cites_doi 10.1016/j.procs.2013.05.281
10.1007/978-3-030-12127-3_5
10.1016/j.apenergy.2014.12.045
10.1080/02664763.2017.1401050
10.3390/econometrics3030590
10.1016/j.energy.2019.116408
10.1016/j.tourman.2005.12.018
10.1016/j.asoc.2014.10.022
10.1016/j.jocs.2020.101104
10.1016/j.matpr.2015.07.219
10.1016/j.eswa.2018.12.020
10.1371/journal.pone.0122827
10.1016/j.energy.2016.12.033
10.1016/j.annals.2018.11.006
10.1016/j.jhydrol.2018.03.047
10.7551/mitpress/1090.001.0001
10.1016/j.ijforecast.2019.03.021
10.1002/er.1092
10.3390/en11071636
10.1016/j.asoc.2019.105566
10.1016/j.neucom.2020.04.086
10.1016/j.asoc.2017.01.033
10.6339/JDS.2007.05(2).396
10.1007/978-1-4615-0835-9_2
10.1016/j.eap.2019.08.002
10.1142/S0219477516500097
10.1016/j.ins.2018.11.053
10.1016/j.eswa.2012.05.023
10.1016/j.sigpro.2003.07.019
10.1016/j.dsp.2016.01.002
10.1016/j.jocs.2015.08.004
10.1016/j.eswa.2007.08.033
10.3390/signals1010002
10.1080/00207540500143199
10.1016/j.renene.2013.08.011
10.1016/j.apenergy.2019.114139
10.1016/j.eswa.2017.07.025
10.1016/S0957-4174(02)00051-9
10.1016/j.asoc.2010.06.003
10.1016/j.enconman.2017.05.008
10.1016/S0731-9053(04)19008-7
10.1109/8.558650
10.1016/j.ijforecast.2008.09.007
10.1142/S0219477520500108
10.1016/j.asoc.2017.03.014
10.1016/j.knosys.2010.11.001
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/stats4010006
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2571-905X
EndPage 85
ExternalDocumentID oai_doaj_org_article_3dccdc4480ac412bad44530084da3d00
10.3390/stats4010006
10_3390_stats4010006
GroupedDBID 7WY
8FL
AADQD
AAFWJ
AAYXX
ABUWG
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BEZIV
CCPQU
CITATION
DWQXO
FRNLG
GROUPED_DOAJ
IAO
M0C
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
3V.
7XB
8FK
AZQEC
K60
K6~
L.-
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
ADTOC
AMVHM
ARCSS
INS
ITC
UNPAY
ID FETCH-LOGICAL-c367t-beff3fd2a627a38e0a5a4260edcbf21406c7030add26904cc623f40901ed51153
IEDL.DBID BENPR
ISSN 2571-905X
IngestDate Fri Oct 03 12:45:06 EDT 2025
Tue Aug 19 19:32:58 EDT 2025
Mon Jun 30 13:15:04 EDT 2025
Thu Oct 16 04:23:40 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-beff3fd2a627a38e0a5a4260edcbf21406c7030add26904cc623f40901ed51153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0897-8663
0000-0003-4109-0690
0000-0002-8387-9238
OpenAccessLink https://www.proquest.com/docview/2521445576?pq-origsite=%requestingapplication%&accountid=15518
PQID 2521445576
PQPubID 5046856
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_3dccdc4480ac412bad44530084da3d00
unpaywall_primary_10_3390_stats4010006
proquest_journals_2521445576
crossref_citationtrail_10_3390_stats4010006
crossref_primary_10_3390_stats4010006
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Stats (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Oreski (ref_16) 2012; 39
Silva (ref_38) 2019; 479
Kolidakis (ref_44) 2019; 64
Silva (ref_40) 2019; 74
Zubaidi (ref_46) 2018; 561
Yuan (ref_24) 2015; 11
Yang (ref_1) 2020; 46
Liu (ref_30) 2014; 62
Chou (ref_14) 2017; 56
Ghodsi (ref_47) 2018; 45
ref_12
ref_11
Sulandari (ref_45) 2020; 190
Hassani (ref_35) 2016; 21
Shen (ref_3) 2011; 24
Yu (ref_42) 2017; 147
Hassani (ref_48) 2015; 3
Markou (ref_2) 2003; 83
Cai (ref_25) 2013; 18
Kalantari (ref_37) 2016; 15
Weile (ref_7) 1997; 45
Ma (ref_41) 2017; 54
Wang (ref_43) 2020; 259
Hassani (ref_36) 2020; 1
Shin (ref_13) 2002; 23
Hassani (ref_34) 2019; 35
Zelenkov (ref_15) 2017; 88
Chiroma (ref_19) 2015; 142
Nasseri (ref_31) 2008; 35
Kalantari (ref_39) 2020; 19
Deng (ref_20) 2019; 82
Panapakidis (ref_27) 2017; 118
ref_29
Ozturk (ref_28) 2005; 29
Zhang (ref_17) 2019; 121
ref_26
ref_9
Hassani (ref_33) 2009; 25
Chaudhry (ref_10) 2005; 43
ref_5
Leardi (ref_6) 2001; 15
Mirmirani (ref_18) 2004; 19
Chen (ref_23) 2015; 26
ref_4
Hong (ref_22) 2011; 11
Bhoskar (ref_8) 2015; 2
Chen (ref_21) 2007; 28
Hassani (ref_32) 2007; 5
References_xml – volume: 18
  start-page: 1155
  year: 2013
  ident: ref_25
  article-title: A novel stock forecasting model based on fuzzy time series and genetic algorithm
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.05.281
– ident: ref_9
  doi: 10.1007/978-3-030-12127-3_5
– volume: 142
  start-page: 266
  year: 2015
  ident: ref_19
  article-title: Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.12.045
– volume: 45
  start-page: 1872
  year: 2018
  ident: ref_47
  article-title: Vector and recurrent singular spectrum analysis: Which is better at forecasting?
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2017.1401050
– volume: 3
  start-page: 590
  year: 2015
  ident: ref_48
  article-title: A Kolmogorov-Smirnov based test for comparing the predictive accuracy of two sets of forecasts
  publication-title: Econometrics
  doi: 10.3390/econometrics3030590
– volume: 190
  start-page: 116408
  year: 2020
  ident: ref_45
  article-title: Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116408
– volume: 28
  start-page: 215
  year: 2007
  ident: ref_21
  article-title: Support vector regression with genetic algorithms in forecasting tourism demand
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2005.12.018
– volume: 26
  start-page: 435
  year: 2015
  ident: ref_23
  article-title: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.10.022
– volume: 46
  start-page: 101104
  year: 2020
  ident: ref_1
  article-title: Nature-inspired optimization algorithms: Challenges and open problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2020.101104
– volume: 2
  start-page: 2624
  year: 2015
  ident: ref_8
  article-title: Genetic algorithm and its applications to mechanical engineering: A review
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2015.07.219
– volume: 121
  start-page: 221
  year: 2019
  ident: ref_17
  article-title: A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: An application in credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.020
– ident: ref_11
– ident: ref_4
  doi: 10.1371/journal.pone.0122827
– volume: 118
  start-page: 231
  year: 2017
  ident: ref_27
  article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.033
– volume: 74
  start-page: 134
  year: 2019
  ident: ref_40
  article-title: Forecasting tourism demand with denoised neural networks
  publication-title: Ann. Tour. Res.
  doi: 10.1016/j.annals.2018.11.006
– volume: 561
  start-page: 136
  year: 2018
  ident: ref_46
  article-title: A Novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.03.047
– ident: ref_5
  doi: 10.7551/mitpress/1090.001.0001
– volume: 35
  start-page: 1263
  year: 2019
  ident: ref_34
  article-title: Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2019.03.021
– volume: 29
  start-page: 829
  year: 2005
  ident: ref_28
  article-title: Forecasting total and industrial sector electricity demand based on genetic algorithm approach: Turkey case study
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1092
– ident: ref_29
  doi: 10.3390/en11071636
– volume: 82
  start-page: 105566
  year: 2019
  ident: ref_20
  article-title: A hybrid method for crude oil price direction forecasting using multiple timeframes dynamic time wrapping and genetic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105566
– ident: ref_26
  doi: 10.1016/j.neucom.2020.04.086
– volume: 54
  start-page: 296
  year: 2017
  ident: ref_41
  article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.033
– volume: 5
  start-page: 239
  year: 2007
  ident: ref_32
  article-title: Singular Spectrum Analysis: Methodology and Comparison
  publication-title: J. Data Sci.
  doi: 10.6339/JDS.2007.05(2).396
– ident: ref_12
  doi: 10.1007/978-1-4615-0835-9_2
– volume: 64
  start-page: 159
  year: 2019
  ident: ref_44
  article-title: Road traffic forecasting—A hybrid approach combining Artificial Neural Network with Singular Spectrum Analysis
  publication-title: Econ. Anal. Policy
  doi: 10.1016/j.eap.2019.08.002
– volume: 15
  start-page: 1650009
  year: 2016
  ident: ref_37
  article-title: Singular spectrum analysis based on L 1-norm
  publication-title: Fluct. Noise Lett.
  doi: 10.1142/S0219477516500097
– volume: 479
  start-page: 214
  year: 2019
  ident: ref_38
  article-title: Forecasting with auxiliary information in forecasts using multivariate singular spectrum analysis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.11.053
– volume: 39
  start-page: 12605
  year: 2012
  ident: ref_16
  article-title: Hybrid system with genetic algorithm and artificial neural networks and its application to retail credit risk assessment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.023
– volume: 83
  start-page: 2499
  year: 2003
  ident: ref_2
  article-title: Novelty detection: A review—Part 2: Neural network based approaches
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2003.07.019
– volume: 21
  start-page: 101
  year: 2016
  ident: ref_35
  article-title: From nature to maths: Improving forecasting performance in subspace-based methods using genetics Colonial Theory
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2016.01.002
– volume: 11
  start-page: 26
  year: 2015
  ident: ref_24
  article-title: Using least square support vector regression with genetic algorithm to forecast beta systematic risk
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2015.08.004
– volume: 15
  start-page: 559
  year: 2001
  ident: ref_6
  article-title: Genetic algorithms in chemometrics and chemistry: A review
  publication-title: J. Chemom. J. Chemom. Soc.
– volume: 35
  start-page: 1415
  year: 2008
  ident: ref_31
  article-title: Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.033
– volume: 1
  start-page: 4
  year: 2020
  ident: ref_36
  article-title: The effect of data transformation on Singular Spectrum Analysis for forecasting
  publication-title: Signals
  doi: 10.3390/signals1010002
– volume: 43
  start-page: 4083
  year: 2005
  ident: ref_10
  article-title: Application of genetic algorithms in production and operations management: A review
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540500143199
– volume: 62
  start-page: 592
  year: 2014
  ident: ref_30
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.08.011
– volume: 259
  start-page: 114139
  year: 2020
  ident: ref_43
  article-title: Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114139
– volume: 88
  start-page: 393
  year: 2017
  ident: ref_15
  article-title: Two-step classification method based on genetic algorithm for bankruptcy forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.025
– volume: 23
  start-page: 321
  year: 2002
  ident: ref_13
  article-title: A genetic algorithm application in bankruptcy prediction modeling
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(02)00051-9
– volume: 11
  start-page: 1881
  year: 2011
  ident: ref_22
  article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.003
– volume: 147
  start-page: 75
  year: 2017
  ident: ref_42
  article-title: Comparative study on three new hybrid models using Elman Neural Network and Empirical Mode Decomposition based technologies improved by Singular Spectrum Analysis for hour-ahead wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.05.008
– volume: 19
  start-page: 203
  year: 2004
  ident: ref_18
  article-title: A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil
  publication-title: Adv. Econom.
  doi: 10.1016/S0731-9053(04)19008-7
– volume: 45
  start-page: 343
  year: 1997
  ident: ref_7
  article-title: Genetic algorithm optimization applied to electromagnetics: A review
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.558650
– volume: 25
  start-page: 103
  year: 2009
  ident: ref_33
  article-title: Forecasting European industrial production with singular spectrum analysis
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2008.09.007
– volume: 19
  start-page: 2050010
  year: 2020
  ident: ref_39
  article-title: Weighted Linear Recurrent Forecasting in Singular Spectrum Analysis
  publication-title: Fluct. Noise Lett.
  doi: 10.1142/S0219477520500108
– volume: 56
  start-page: 298
  year: 2017
  ident: ref_14
  article-title: Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.014
– volume: 24
  start-page: 378
  year: 2011
  ident: ref_3
  article-title: Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2010.11.001
SSID ssj0002769484
Score 2.153865
Snippet Fusing nature with computational science has been proved paramount importance and researchers have also shown growing enthusiasm on inventing and developing...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 71
SubjectTerms Chromosomes
Crude oil prices
Decomposition
Eigenvalues
Forecasting
genetic algorithm
Genetic algorithms
Interdisciplinary aspects
Neural networks
Noise
Operations management
Optimization
Population
Principal components analysis
Singular Spectrum Analysis
Spectrum analysis
Time series
Tourism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF7ogPkWgIA_AgqKmsZMmI6BGCImyUKlb5K9UoBKqNhXw77mz0yodgIXVsSzrzva955zfEXLBNINlm0o_ibnyeV8zX-iA-akSUSILw4S90H8cxvcj_jCOxo1SX5gT5uSBneG6TCulFZCIQCjeC6XQnEcMZeC1YDqwbD1I0gaZerW_0-KUJ9xlujPg9V18n7MAMoHn80YMslL9G_hye1nOxNeHmE4boSbbJTs1RqQ3bm57ZMuU-6SNsNCpKh-QLMN89QkdWllOipep1NVnqO_2aL1nKWBS-gTHwhu2vUzw0-CzmrvnDIdklA2e7-79uiKCr1jcr3xpioIVOhRx2BcsMYGIBErMG61kEQJXihXuYDizQmC9XCkANwUwuKBnNCCriB2RVvlemmNCAXoZU0RcywSCOAwJkV7GCUSyVBqIWB65XtkoV7VcOFatmOZAG9CiedOiHrlc9545mYwf-t2iudd9UNzaNoDL89rl-V8u90hn5ay83nGLPIxQ_C0C-uSRq7UDf53MyX9M5pS0Q0xzsWlpHdKq5ktzBjilkud2SX4DaQHl5Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-NAEB60PuiL5_kD66nkQX2RmDS7m6b4ICoWEaw-WKgghP2VItZaaqp3_vXOJJuiwh1yr8kmbJjZme_bzH4DsMMMQ7dtKT-JufZ50zBfmpD5LS1FojLLZLGhf9mJz7v8oid6M3BYnYWhskqk4vdFkEZ3ovoB0Qt40AjiYGSyoxe3jYRIhf7RRa3mLMzFAoF4Dea6nevjW2onVz1YlrozJPYBHdB5RjZBAfpTEiq0-j8BzPnJcCT_vMrB4EOuaf-Au2qWZYnJw8EkVwf67YuA439-xhIsOgzqHZdO8xNm7HAZFgh2lqrNK9BuUz183-sUsp8ebdZ6Zf8Ht3fouZjgIeb1rjDsPNK1-z7dOvudj8vjEqvQbZ_dnJ77ruOCr1nczH1ls4xlJpJx1JQssaEUkiTsrdEqi5CLxZoiBMbECFk11xrBU4YMMWxYg8hNsDWoDZ-Gdh08hHbWZoIblSBIwFciklBxgpmypSxmxDrsVyZItZMjp64YgxRpCRks_WiwOuxOR49KGY6_jDsha07HkHh2ceFp3E_dWkyZ0dpo5KWh1BxnJQ3nglFnASOZCcM6bFa-kLoV_ZxGgsTlBNKzOuxN_eOfk9n47sBfsBBRqUxR2rYJtXw8sVuIdXK17Xz6HTs9-qA
  priority: 102
  providerName: Unpaywall
Title Fusing Nature with Computational Science for Optimal Signal Extraction
URI https://www.proquest.com/docview/2521445576
https://www.mdpi.com/2571-905X/4/1/6/pdf?version=1612870297
https://doaj.org/article/3dccdc4480ac412bad44530084da3d00
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2571-905X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769484
  issn: 2571-905X
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2571-905X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769484
  issn: 2571-905X
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2571-905X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769484
  issn: 2571-905X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gHORi_Iwokh7Ui2mo3baUgzFgIMTESowkeGq2u1tigoBQov57Z9otwkGO3W6azezM7Jvp7BuASyYZqm0zMn3PEabTkMzk0mJmU3DXj2LFeJrQfwq83sB5HLrDAgT5XRgqq8x9Yuqo5VRQjrxuu0Tu5SI8vp99mtQ1iv6u5i00uG6tIO9SirEdKNnEjFWEUrsT9F9WWRcb1-X4TlYBzzDer9O9nQUGGeS3N86mlMJ_A3fuLicz_vPFx-O1I6i7D3saOxqtbLMPoKAmh1AmuJixLR9Bt0t17CMjSOk6DUqyGlnfBp3zM7QtG4hVjWd0Fx809j6iV53vZJ5dcziGQbfz-tAzdacEUzCvkZiRimMWS5t7doMzX1nc5UQ9r6SIYpSb5QmybPRlNkbDjhAIemKM7KxbJRFxuewEipPpRJ2CgZBMqdh1ZOTj4Y6fRAQQeT6KsxkpPMkqcJPLKBSaRpy6WYxDDCdIouG6RCtwtZo9y-gz_pnXJnGv5hDpdTownY9CbUMhk0JIgfGkxYWDq-ISFYJRRwDJmbSsClTzzQq1JS7CP72pwPVqA7cu5mz7d86hbFNhS1qIVoViMl-qC0QmSVTT6lZLI3t8GgT91tsvpeDmWQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQHMYF8RTjmQNwQRWlSbv2gBCPTRuPgRCTditpkk5IYxvbEPDn-G3YbTrgADeuaZRWjmN_dh1_ADtcc1TbKHHCQChHVDR3pHa5Eynph0lquMwS-tfNoN4SF22_PQUfxV0YKqssbGJmqHVfUY78wPOpuZeP8Ph48OwQaxT9XS0oNKSlVtBHWYsxe7Hj0ry_Ygg3Omqc437vel6ten9WdyzLgKN4UBk7iUlTnmpPBl5F8tC40pfUtt1olaT4TjdQdCrQDngYSQqlEDCkGBW5h0YjWiHWCHQBM4KLCIO_mdNq8_ZukuXxUA4iFHnFPeeRe0D3hEYY1JCf-OELM8qAHzi39NIbyPdX2e1-c3m1eZizWJWd5Mq1AFOmtwizBE_z7s5LUKtR3XyHNbP2oIySuiznibA5RmZtB0NszG7QPD3R2GOHHlXfxsP8WsUytP5FZisw3ev3zCowhIDGpL7QSYhgApdExJEEIXrUKDHoOcuwX8goVrZtObFndGMMX0ii8XeJlmF3MnuQt-v4Zd4piXsyh5psZwP9YSe2ZzbmWimtMH51pRL4VVKjAnJiINCSa9ctw0axWbE9-aP4S0_LsDfZwD8_Zu3vdbahVL-_voqvGs3LdZj1qKgmK4LbgOnx8MVsIioaJ1tW9Rg8_Le2fwJ0mSCX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQSMAF8RSDATkAF1StNG3XHSbEY9VgMCYEEreSJumENLaxDcH-Ir8Ku03HOMCNaxq1kePanx3HH8A-VxzVthJbge9Kyy0rbgllc6sihRfEieYiTejfNP36g3v16D3OwGd-F4bKKnObmBpq1ZOUIy85HjX38hAelxJTFtG6CE_6rxYxSNFJa06nIQzNgqqm7cbMJY-GHr9jODesXl7g3h84Tli7P69bhnHAktwvj6xYJwlPlCN8pyx4oG3hCWrhrpWME_y-7Uv6Q9AmOBhVulIieEgwQrKPtULkQgwS6A7m6PALjcTcWa3ZuptkfByUiRu4WfU95xW7RHeGhhjgkM_44RdT-oAfmHfhrdsX43fR6Uy5v3AZlgxuZaeZoq3AjO6uwiJB1azT8xqEIdXQt1kzbRXKKMHLMs4Ik29kxo4wxMnsFk3VC409t-lR7WM0yK5YrMPDv8hsA2a7va7eBIZwUOvEc1UcILDAVyL6iP0AvWsl1uhFC3CUyyiSpoU5MWl0IgxlSKLRtEQLcDCZ3c9ad_wy74zEPZlDDbfTgd6gHZn_N-JKSiUxlrWFdHFVQqEycmIjUIIr2y5AMd-syFiBYfStswU4nGzgn4vZ-vs9ezCPWh9dXzYb27DoUH1NWg9XhNnR4E3vIEAaxbtG8xg8_beyfwGcJCTG
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-NAEB60PuiL5_kD66nkQX2RmDS7m6b4ICoWEaw-WKgghP2VItZaaqp3_vXOJJuiwh1yr8kmbJjZme_bzH4DsMMMQ7dtKT-JufZ50zBfmpD5LS1FojLLZLGhf9mJz7v8oid6M3BYnYWhskqk4vdFkEZ3ovoB0Qt40AjiYGSyoxe3jYRIhf7RRa3mLMzFAoF4Dea6nevjW2onVz1YlrozJPYBHdB5RjZBAfpTEiq0-j8BzPnJcCT_vMrB4EOuaf-Au2qWZYnJw8EkVwf67YuA439-xhIsOgzqHZdO8xNm7HAZFgh2lqrNK9BuUz183-sUsp8ebdZ6Zf8Ht3fouZjgIeb1rjDsPNK1-z7dOvudj8vjEqvQbZ_dnJ77ruOCr1nczH1ls4xlJpJx1JQssaEUkiTsrdEqi5CLxZoiBMbECFk11xrBU4YMMWxYg8hNsDWoDZ-Gdh08hHbWZoIblSBIwFciklBxgpmypSxmxDrsVyZItZMjp64YgxRpCRks_WiwOuxOR49KGY6_jDsha07HkHh2ceFp3E_dWkyZ0dpo5KWh1BxnJQ3nglFnASOZCcM6bFa-kLoV_ZxGgsTlBNKzOuxN_eOfk9n47sBfsBBRqUxR2rYJtXw8sVuIdXK17Xz6HTs9-qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Nature+with+Computational+Science+for+Optimal+Signal+Extraction&rft.jtitle=Stats+%28Basel%2C+Switzerland%29&rft.au=Hassani%2C+Hossein&rft.au=Yeganegi%2C+Mohammad+Reza&rft.au=Huang%2C+Xu&rft.date=2021-03-01&rft.issn=2571-905X&rft.eissn=2571-905X&rft.volume=4&rft.issue=1&rft.spage=71&rft.epage=85&rft_id=info:doi/10.3390%2Fstats4010006&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_stats4010006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-905X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-905X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-905X&client=summon