Fusing Nature with Computational Science for Optimal Signal Extraction
Fusing nature with computational science has been proved paramount importance and researchers have also shown growing enthusiasm on inventing and developing nature inspired algorithms for solving complex problems across subjects. Inevitably, these advancements have rapidly promoted the development o...
        Saved in:
      
    
          | Published in | Stats (Basel, Switzerland) Vol. 4; no. 1; pp. 71 - 85 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.03.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2571-905X 2571-905X  | 
| DOI | 10.3390/stats4010006 | 
Cover
| Abstract | Fusing nature with computational science has been proved paramount importance and researchers have also shown growing enthusiasm on inventing and developing nature inspired algorithms for solving complex problems across subjects. Inevitably, these advancements have rapidly promoted the development of data science, where nature inspired algorithms are changing the traditional way of data processing. This paper proposes the hybrid approach, namely SSA-GA, which incorporates the optimization merits of genetic algorithm (GA) for the advancements of Singular Spectrum Analysis (SSA). This approach further boosts the performance of SSA forecasting via better and more efficient grouping. Given the performances of SSA-GA on 100 real time series data across various subjects, this newly proposed SSA-GA approach is proved to be computationally efficient and robust with improved forecasting performance. | 
    
|---|---|
| AbstractList | Fusing nature with computational science has been proved paramount importance and researchers have also shown growing enthusiasm on inventing and developing nature inspired algorithms for solving complex problems across subjects. Inevitably, these advancements have rapidly promoted the development of data science, where nature inspired algorithms are changing the traditional way of data processing. This paper proposes the hybrid approach, namely SSA-GA, which incorporates the optimization merits of genetic algorithm (GA) for the advancements of Singular Spectrum Analysis (SSA). This approach further boosts the performance of SSA forecasting via better and more efficient grouping. Given the performances of SSA-GA on 100 real time series data across various subjects, this newly proposed SSA-GA approach is proved to be computationally efficient and robust with improved forecasting performance. | 
    
| Author | Hassani, Hossein Huang, Xu Yeganegi, Mohammad Reza  | 
    
| Author_xml | – sequence: 1 givenname: Hossein orcidid: 0000-0003-0897-8663 surname: Hassani fullname: Hassani, Hossein – sequence: 2 givenname: Mohammad Reza orcidid: 0000-0003-4109-0690 surname: Yeganegi fullname: Yeganegi, Mohammad Reza – sequence: 3 givenname: Xu orcidid: 0000-0002-8387-9238 surname: Huang fullname: Huang, Xu  | 
    
| BookMark | eNp9kE1LxDAQhoMo-HnzBxS8Wp18tdujLK4KogcVvIXZJF2z1KYmKeq_t7UiIuhpwuSZh5d3l2y2vrWEHFI44byC05gwRQEUAIoNssNkSfMK5OPmj_c2OYhxPRCsLCoxEztkseija1fZDaY-2OzVpads7p-7frA532KT3WlnW22z2ofstkvuedy51fh1_pYC6pHbJ1s1NtEefM098rA4v59f5te3F1fzs-tc86JM-dLWNa8Nw4KVyGcWUKJgBVijlzWjAgpdAgc0hhUVCK0LxmsBFVBrJKWS75GryWs8rlUXhjThXXl06nPhw0phSE43VnGjtdFCzAC1oGyJRgjJAWbCIDcAgyufXH3b4fsrNs23kIIaO1U_Ox34o4nvgn_pbUxq7fsw9BAVk0N4IWU5UmyidPAxBlsr7aYuh65c85f6-NfRv0k-AMgDl_s | 
    
| CitedBy_id | crossref_primary_10_1002_for_2982 | 
    
| Cites_doi | 10.1016/j.procs.2013.05.281 10.1007/978-3-030-12127-3_5 10.1016/j.apenergy.2014.12.045 10.1080/02664763.2017.1401050 10.3390/econometrics3030590 10.1016/j.energy.2019.116408 10.1016/j.tourman.2005.12.018 10.1016/j.asoc.2014.10.022 10.1016/j.jocs.2020.101104 10.1016/j.matpr.2015.07.219 10.1016/j.eswa.2018.12.020 10.1371/journal.pone.0122827 10.1016/j.energy.2016.12.033 10.1016/j.annals.2018.11.006 10.1016/j.jhydrol.2018.03.047 10.7551/mitpress/1090.001.0001 10.1016/j.ijforecast.2019.03.021 10.1002/er.1092 10.3390/en11071636 10.1016/j.asoc.2019.105566 10.1016/j.neucom.2020.04.086 10.1016/j.asoc.2017.01.033 10.6339/JDS.2007.05(2).396 10.1007/978-1-4615-0835-9_2 10.1016/j.eap.2019.08.002 10.1142/S0219477516500097 10.1016/j.ins.2018.11.053 10.1016/j.eswa.2012.05.023 10.1016/j.sigpro.2003.07.019 10.1016/j.dsp.2016.01.002 10.1016/j.jocs.2015.08.004 10.1016/j.eswa.2007.08.033 10.3390/signals1010002 10.1080/00207540500143199 10.1016/j.renene.2013.08.011 10.1016/j.apenergy.2019.114139 10.1016/j.eswa.2017.07.025 10.1016/S0957-4174(02)00051-9 10.1016/j.asoc.2010.06.003 10.1016/j.enconman.2017.05.008 10.1016/S0731-9053(04)19008-7 10.1109/8.558650 10.1016/j.ijforecast.2008.09.007 10.1142/S0219477520500108 10.1016/j.asoc.2017.03.014 10.1016/j.knosys.2010.11.001  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/stats4010006 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics | 
    
| EISSN | 2571-905X | 
    
| EndPage | 85 | 
    
| ExternalDocumentID | oai_doaj_org_article_3dccdc4480ac412bad44530084da3d00 10.3390/stats4010006 10_3390_stats4010006  | 
    
| GroupedDBID | 7WY 8FL AADQD AAFWJ AAYXX ABUWG AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BEZIV CCPQU CITATION DWQXO FRNLG GROUPED_DOAJ IAO M0C MODMG M~E OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA 3V. 7XB 8FK AZQEC K60 K6~ L.- PKEHL PQEST PQQKQ PQUKI Q9U ADTOC AMVHM ARCSS INS ITC UNPAY  | 
    
| ID | FETCH-LOGICAL-c367t-beff3fd2a627a38e0a5a4260edcbf21406c7030add26904cc623f40901ed51153 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2571-905X | 
    
| IngestDate | Fri Oct 03 12:45:06 EDT 2025 Tue Aug 19 19:32:58 EDT 2025 Mon Jun 30 13:15:04 EDT 2025 Thu Oct 16 04:23:40 EDT 2025 Thu Apr 24 22:57:59 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c367t-beff3fd2a627a38e0a5a4260edcbf21406c7030add26904cc623f40901ed51153 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0897-8663 0000-0003-4109-0690 0000-0002-8387-9238  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2521445576?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2521445576 | 
    
| PQPubID | 5046856 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3dccdc4480ac412bad44530084da3d00 unpaywall_primary_10_3390_stats4010006 proquest_journals_2521445576 crossref_citationtrail_10_3390_stats4010006 crossref_primary_10_3390_stats4010006  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-03-01 | 
    
| PublicationDateYYYYMMDD | 2021-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Stats (Basel, Switzerland) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Oreski (ref_16) 2012; 39 Silva (ref_38) 2019; 479 Kolidakis (ref_44) 2019; 64 Silva (ref_40) 2019; 74 Zubaidi (ref_46) 2018; 561 Yuan (ref_24) 2015; 11 Yang (ref_1) 2020; 46 Liu (ref_30) 2014; 62 Chou (ref_14) 2017; 56 Ghodsi (ref_47) 2018; 45 ref_12 ref_11 Sulandari (ref_45) 2020; 190 Hassani (ref_35) 2016; 21 Shen (ref_3) 2011; 24 Yu (ref_42) 2017; 147 Hassani (ref_48) 2015; 3 Markou (ref_2) 2003; 83 Cai (ref_25) 2013; 18 Kalantari (ref_37) 2016; 15 Weile (ref_7) 1997; 45 Ma (ref_41) 2017; 54 Wang (ref_43) 2020; 259 Hassani (ref_36) 2020; 1 Shin (ref_13) 2002; 23 Hassani (ref_34) 2019; 35 Zelenkov (ref_15) 2017; 88 Chiroma (ref_19) 2015; 142 Nasseri (ref_31) 2008; 35 Kalantari (ref_39) 2020; 19 Deng (ref_20) 2019; 82 Panapakidis (ref_27) 2017; 118 ref_29 Ozturk (ref_28) 2005; 29 Zhang (ref_17) 2019; 121 ref_26 ref_9 Hassani (ref_33) 2009; 25 Chaudhry (ref_10) 2005; 43 ref_5 Leardi (ref_6) 2001; 15 Mirmirani (ref_18) 2004; 19 Chen (ref_23) 2015; 26 ref_4 Hong (ref_22) 2011; 11 Bhoskar (ref_8) 2015; 2 Chen (ref_21) 2007; 28 Hassani (ref_32) 2007; 5  | 
    
| References_xml | – volume: 18 start-page: 1155 year: 2013 ident: ref_25 article-title: A novel stock forecasting model based on fuzzy time series and genetic algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2013.05.281 – ident: ref_9 doi: 10.1007/978-3-030-12127-3_5 – volume: 142 start-page: 266 year: 2015 ident: ref_19 article-title: Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.12.045 – volume: 45 start-page: 1872 year: 2018 ident: ref_47 article-title: Vector and recurrent singular spectrum analysis: Which is better at forecasting? publication-title: J. Appl. Stat. doi: 10.1080/02664763.2017.1401050 – volume: 3 start-page: 590 year: 2015 ident: ref_48 article-title: A Kolmogorov-Smirnov based test for comparing the predictive accuracy of two sets of forecasts publication-title: Econometrics doi: 10.3390/econometrics3030590 – volume: 190 start-page: 116408 year: 2020 ident: ref_45 article-title: Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks publication-title: Energy doi: 10.1016/j.energy.2019.116408 – volume: 28 start-page: 215 year: 2007 ident: ref_21 article-title: Support vector regression with genetic algorithms in forecasting tourism demand publication-title: Tour. Manag. doi: 10.1016/j.tourman.2005.12.018 – volume: 26 start-page: 435 year: 2015 ident: ref_23 article-title: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.10.022 – volume: 46 start-page: 101104 year: 2020 ident: ref_1 article-title: Nature-inspired optimization algorithms: Challenges and open problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2020.101104 – volume: 2 start-page: 2624 year: 2015 ident: ref_8 article-title: Genetic algorithm and its applications to mechanical engineering: A review publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2015.07.219 – volume: 121 start-page: 221 year: 2019 ident: ref_17 article-title: A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: An application in credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.020 – ident: ref_11 – ident: ref_4 doi: 10.1371/journal.pone.0122827 – volume: 118 start-page: 231 year: 2017 ident: ref_27 article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model publication-title: Energy doi: 10.1016/j.energy.2016.12.033 – volume: 74 start-page: 134 year: 2019 ident: ref_40 article-title: Forecasting tourism demand with denoised neural networks publication-title: Ann. Tour. Res. doi: 10.1016/j.annals.2018.11.006 – volume: 561 start-page: 136 year: 2018 ident: ref_46 article-title: A Novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.03.047 – ident: ref_5 doi: 10.7551/mitpress/1090.001.0001 – volume: 35 start-page: 1263 year: 2019 ident: ref_34 article-title: Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2019.03.021 – volume: 29 start-page: 829 year: 2005 ident: ref_28 article-title: Forecasting total and industrial sector electricity demand based on genetic algorithm approach: Turkey case study publication-title: Int. J. Energy Res. doi: 10.1002/er.1092 – ident: ref_29 doi: 10.3390/en11071636 – volume: 82 start-page: 105566 year: 2019 ident: ref_20 article-title: A hybrid method for crude oil price direction forecasting using multiple timeframes dynamic time wrapping and genetic algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105566 – ident: ref_26 doi: 10.1016/j.neucom.2020.04.086 – volume: 54 start-page: 296 year: 2017 ident: ref_41 article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.033 – volume: 5 start-page: 239 year: 2007 ident: ref_32 article-title: Singular Spectrum Analysis: Methodology and Comparison publication-title: J. Data Sci. doi: 10.6339/JDS.2007.05(2).396 – ident: ref_12 doi: 10.1007/978-1-4615-0835-9_2 – volume: 64 start-page: 159 year: 2019 ident: ref_44 article-title: Road traffic forecasting—A hybrid approach combining Artificial Neural Network with Singular Spectrum Analysis publication-title: Econ. Anal. Policy doi: 10.1016/j.eap.2019.08.002 – volume: 15 start-page: 1650009 year: 2016 ident: ref_37 article-title: Singular spectrum analysis based on L 1-norm publication-title: Fluct. Noise Lett. doi: 10.1142/S0219477516500097 – volume: 479 start-page: 214 year: 2019 ident: ref_38 article-title: Forecasting with auxiliary information in forecasts using multivariate singular spectrum analysis publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.11.053 – volume: 39 start-page: 12605 year: 2012 ident: ref_16 article-title: Hybrid system with genetic algorithm and artificial neural networks and its application to retail credit risk assessment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.05.023 – volume: 83 start-page: 2499 year: 2003 ident: ref_2 article-title: Novelty detection: A review—Part 2: Neural network based approaches publication-title: Signal Process. doi: 10.1016/j.sigpro.2003.07.019 – volume: 21 start-page: 101 year: 2016 ident: ref_35 article-title: From nature to maths: Improving forecasting performance in subspace-based methods using genetics Colonial Theory publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2016.01.002 – volume: 11 start-page: 26 year: 2015 ident: ref_24 article-title: Using least square support vector regression with genetic algorithm to forecast beta systematic risk publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2015.08.004 – volume: 15 start-page: 559 year: 2001 ident: ref_6 article-title: Genetic algorithms in chemometrics and chemistry: A review publication-title: J. Chemom. J. Chemom. Soc. – volume: 35 start-page: 1415 year: 2008 ident: ref_31 article-title: Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.033 – volume: 1 start-page: 4 year: 2020 ident: ref_36 article-title: The effect of data transformation on Singular Spectrum Analysis for forecasting publication-title: Signals doi: 10.3390/signals1010002 – volume: 43 start-page: 4083 year: 2005 ident: ref_10 article-title: Application of genetic algorithms in production and operations management: A review publication-title: Int. J. Prod. Res. doi: 10.1080/00207540500143199 – volume: 62 start-page: 592 year: 2014 ident: ref_30 article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2013.08.011 – volume: 259 start-page: 114139 year: 2020 ident: ref_43 article-title: Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114139 – volume: 88 start-page: 393 year: 2017 ident: ref_15 article-title: Two-step classification method based on genetic algorithm for bankruptcy forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.07.025 – volume: 23 start-page: 321 year: 2002 ident: ref_13 article-title: A genetic algorithm application in bankruptcy prediction modeling publication-title: Expert Syst. Appl. doi: 10.1016/S0957-4174(02)00051-9 – volume: 11 start-page: 1881 year: 2011 ident: ref_22 article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.003 – volume: 147 start-page: 75 year: 2017 ident: ref_42 article-title: Comparative study on three new hybrid models using Elman Neural Network and Empirical Mode Decomposition based technologies improved by Singular Spectrum Analysis for hour-ahead wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.05.008 – volume: 19 start-page: 203 year: 2004 ident: ref_18 article-title: A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil publication-title: Adv. Econom. doi: 10.1016/S0731-9053(04)19008-7 – volume: 45 start-page: 343 year: 1997 ident: ref_7 article-title: Genetic algorithm optimization applied to electromagnetics: A review publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.558650 – volume: 25 start-page: 103 year: 2009 ident: ref_33 article-title: Forecasting European industrial production with singular spectrum analysis publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2008.09.007 – volume: 19 start-page: 2050010 year: 2020 ident: ref_39 article-title: Weighted Linear Recurrent Forecasting in Singular Spectrum Analysis publication-title: Fluct. Noise Lett. doi: 10.1142/S0219477520500108 – volume: 56 start-page: 298 year: 2017 ident: ref_14 article-title: Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.014 – volume: 24 start-page: 378 year: 2011 ident: ref_3 article-title: Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2010.11.001  | 
    
| SSID | ssj0002769484 | 
    
| Score | 2.153865 | 
    
| Snippet | Fusing nature with computational science has been proved paramount importance and researchers have also shown growing enthusiasm on inventing and developing... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 71 | 
    
| SubjectTerms | Chromosomes Crude oil prices Decomposition Eigenvalues Forecasting genetic algorithm Genetic algorithms Interdisciplinary aspects Neural networks Noise Operations management Optimization Population Principal components analysis Singular Spectrum Analysis Spectrum analysis Time series Tourism  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF7ogPkWgIA_AgqKmsZMmI6BGCImyUKlb5K9UoBKqNhXw77mz0yodgIXVsSzrzva955zfEXLBNINlm0o_ibnyeV8zX-iA-akSUSILw4S90H8cxvcj_jCOxo1SX5gT5uSBneG6TCulFZCIQCjeC6XQnEcMZeC1YDqwbD1I0gaZerW_0-KUJ9xlujPg9V18n7MAMoHn80YMslL9G_hye1nOxNeHmE4boSbbJTs1RqQ3bm57ZMuU-6SNsNCpKh-QLMN89QkdWllOipep1NVnqO_2aL1nKWBS-gTHwhu2vUzw0-CzmrvnDIdklA2e7-79uiKCr1jcr3xpioIVOhRx2BcsMYGIBErMG61kEQJXihXuYDizQmC9XCkANwUwuKBnNCCriB2RVvlemmNCAXoZU0RcywSCOAwJkV7GCUSyVBqIWB65XtkoV7VcOFatmOZAG9CiedOiHrlc9545mYwf-t2iudd9UNzaNoDL89rl-V8u90hn5ay83nGLPIxQ_C0C-uSRq7UDf53MyX9M5pS0Q0xzsWlpHdKq5ktzBjilkud2SX4DaQHl5Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-NAEB60PuiL5_kD66nkQX2RmDS7m6b4ICoWEaw-WKgghP2VItZaaqp3_vXOJJuiwh1yr8kmbJjZme_bzH4DsMMMQ7dtKT-JufZ50zBfmpD5LS1FojLLZLGhf9mJz7v8oid6M3BYnYWhskqk4vdFkEZ3ovoB0Qt40AjiYGSyoxe3jYRIhf7RRa3mLMzFAoF4Dea6nevjW2onVz1YlrozJPYBHdB5RjZBAfpTEiq0-j8BzPnJcCT_vMrB4EOuaf-Au2qWZYnJw8EkVwf67YuA439-xhIsOgzqHZdO8xNm7HAZFgh2lqrNK9BuUz183-sUsp8ebdZ6Zf8Ht3fouZjgIeb1rjDsPNK1-z7dOvudj8vjEqvQbZ_dnJ77ruOCr1nczH1ls4xlJpJx1JQssaEUkiTsrdEqi5CLxZoiBMbECFk11xrBU4YMMWxYg8hNsDWoDZ-Gdh08hHbWZoIblSBIwFciklBxgpmypSxmxDrsVyZItZMjp64YgxRpCRks_WiwOuxOR49KGY6_jDsha07HkHh2ceFp3E_dWkyZ0dpo5KWh1BxnJQ3nglFnASOZCcM6bFa-kLoV_ZxGgsTlBNKzOuxN_eOfk9n47sBfsBBRqUxR2rYJtXw8sVuIdXK17Xz6HTs9-qA priority: 102 providerName: Unpaywall  | 
    
| Title | Fusing Nature with Computational Science for Optimal Signal Extraction | 
    
| URI | https://www.proquest.com/docview/2521445576 https://www.mdpi.com/2571-905X/4/1/6/pdf?version=1612870297 https://doaj.org/article/3dccdc4480ac412bad44530084da3d00  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2571-905X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769484 issn: 2571-905X databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2571-905X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769484 issn: 2571-905X databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2571-905X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769484 issn: 2571-905X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gHORi_Iwokh7Ui2mo3baUgzFgIMTESowkeGq2u1tigoBQov57Z9otwkGO3W6azezM7Jvp7BuASyYZqm0zMn3PEabTkMzk0mJmU3DXj2LFeJrQfwq83sB5HLrDAgT5XRgqq8x9Yuqo5VRQjrxuu0Tu5SI8vp99mtQ1iv6u5i00uG6tIO9SirEdKNnEjFWEUrsT9F9WWRcb1-X4TlYBzzDer9O9nQUGGeS3N86mlMJ_A3fuLicz_vPFx-O1I6i7D3saOxqtbLMPoKAmh1AmuJixLR9Bt0t17CMjSOk6DUqyGlnfBp3zM7QtG4hVjWd0Fx809j6iV53vZJ5dcziGQbfz-tAzdacEUzCvkZiRimMWS5t7doMzX1nc5UQ9r6SIYpSb5QmybPRlNkbDjhAIemKM7KxbJRFxuewEipPpRJ2CgZBMqdh1ZOTj4Y6fRAQQeT6KsxkpPMkqcJPLKBSaRpy6WYxDDCdIouG6RCtwtZo9y-gz_pnXJnGv5hDpdTownY9CbUMhk0JIgfGkxYWDq-ISFYJRRwDJmbSsClTzzQq1JS7CP72pwPVqA7cu5mz7d86hbFNhS1qIVoViMl-qC0QmSVTT6lZLI3t8GgT91tsvpeDmWQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQHMYF8RTjmQNwQRWlSbv2gBCPTRuPgRCTditpkk5IYxvbEPDn-G3YbTrgADeuaZRWjmN_dh1_ADtcc1TbKHHCQChHVDR3pHa5Eynph0lquMwS-tfNoN4SF22_PQUfxV0YKqssbGJmqHVfUY78wPOpuZeP8Ph48OwQaxT9XS0oNKSlVtBHWYsxe7Hj0ry_Ygg3Omqc437vel6ten9WdyzLgKN4UBk7iUlTnmpPBl5F8tC40pfUtt1olaT4TjdQdCrQDngYSQqlEDCkGBW5h0YjWiHWCHQBM4KLCIO_mdNq8_ZukuXxUA4iFHnFPeeRe0D3hEYY1JCf-OELM8qAHzi39NIbyPdX2e1-c3m1eZizWJWd5Mq1AFOmtwizBE_z7s5LUKtR3XyHNbP2oIySuiznibA5RmZtB0NszG7QPD3R2GOHHlXfxsP8WsUytP5FZisw3ev3zCowhIDGpL7QSYhgApdExJEEIXrUKDHoOcuwX8goVrZtObFndGMMX0ii8XeJlmF3MnuQt-v4Zd4piXsyh5psZwP9YSe2ZzbmWimtMH51pRL4VVKjAnJiINCSa9ctw0axWbE9-aP4S0_LsDfZwD8_Zu3vdbahVL-_voqvGs3LdZj1qKgmK4LbgOnx8MVsIioaJ1tW9Rg8_Le2fwJ0mSCX | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQSMAF8RSDATkAF1StNG3XHSbEY9VgMCYEEreSJumENLaxDcH-Ir8Ku03HOMCNaxq1kePanx3HH8A-VxzVthJbge9Kyy0rbgllc6sihRfEieYiTejfNP36g3v16D3OwGd-F4bKKnObmBpq1ZOUIy85HjX38hAelxJTFtG6CE_6rxYxSNFJa06nIQzNgqqm7cbMJY-GHr9jODesXl7g3h84Tli7P69bhnHAktwvj6xYJwlPlCN8pyx4oG3hCWrhrpWME_y-7Uv6Q9AmOBhVulIieEgwQrKPtULkQgwS6A7m6PALjcTcWa3ZuptkfByUiRu4WfU95xW7RHeGhhjgkM_44RdT-oAfmHfhrdsX43fR6Uy5v3AZlgxuZaeZoq3AjO6uwiJB1azT8xqEIdXQt1kzbRXKKMHLMs4Ik29kxo4wxMnsFk3VC409t-lR7WM0yK5YrMPDv8hsA2a7va7eBIZwUOvEc1UcILDAVyL6iP0AvWsl1uhFC3CUyyiSpoU5MWl0IgxlSKLRtEQLcDCZ3c9ad_wy74zEPZlDDbfTgd6gHZn_N-JKSiUxlrWFdHFVQqEycmIjUIIr2y5AMd-syFiBYfStswU4nGzgn4vZ-vs9ezCPWh9dXzYb27DoUH1NWg9XhNnR4E3vIEAaxbtG8xg8_beyfwGcJCTG | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-NAEB60PuiL5_kD66nkQX2RmDS7m6b4ICoWEaw-WKgghP2VItZaaqp3_vXOJJuiwh1yr8kmbJjZme_bzH4DsMMMQ7dtKT-JufZ50zBfmpD5LS1FojLLZLGhf9mJz7v8oid6M3BYnYWhskqk4vdFkEZ3ovoB0Qt40AjiYGSyoxe3jYRIhf7RRa3mLMzFAoF4Dea6nevjW2onVz1YlrozJPYBHdB5RjZBAfpTEiq0-j8BzPnJcCT_vMrB4EOuaf-Au2qWZYnJw8EkVwf67YuA439-xhIsOgzqHZdO8xNm7HAZFgh2lqrNK9BuUz183-sUsp8ebdZ6Zf8Ht3fouZjgIeb1rjDsPNK1-z7dOvudj8vjEqvQbZ_dnJ77ruOCr1nczH1ls4xlJpJx1JQssaEUkiTsrdEqi5CLxZoiBMbECFk11xrBU4YMMWxYg8hNsDWoDZ-Gdh08hHbWZoIblSBIwFciklBxgpmypSxmxDrsVyZItZMjp64YgxRpCRks_WiwOuxOR49KGY6_jDsha07HkHh2ceFp3E_dWkyZ0dpo5KWh1BxnJQ3nglFnASOZCcM6bFa-kLoV_ZxGgsTlBNKzOuxN_eOfk9n47sBfsBBRqUxR2rYJtXw8sVuIdXK17Xz6HTs9-qA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Nature+with+Computational+Science+for+Optimal+Signal+Extraction&rft.jtitle=Stats+%28Basel%2C+Switzerland%29&rft.au=Hassani%2C+Hossein&rft.au=Yeganegi%2C+Mohammad+Reza&rft.au=Huang%2C+Xu&rft.date=2021-03-01&rft.issn=2571-905X&rft.eissn=2571-905X&rft.volume=4&rft.issue=1&rft.spage=71&rft.epage=85&rft_id=info:doi/10.3390%2Fstats4010006&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_stats4010006 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-905X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-905X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-905X&client=summon |