Thermal and hydraulic impacts consideration in refinery crude preheat train cleaning scheduling using recent stochastic optimization methods

[Display omitted] •An improved optimization problem for the cleaning schedule of the heat exchangers in the CPT.•Include the hydraulic impact of fouling through the additional pressure drops.•Utilize recent stochastic methods to provide global optimum solution in MINLP class.•The proposed method was...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 108; pp. 1436 - 1450
Main Authors Biyanto, Totok R., Ramasamy, M., Jameran, Azamuddin B., Fibrianto, Henokh Y.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.09.2016
Subjects
Online AccessGet full text
ISSN1359-4311
DOI10.1016/j.applthermaleng.2016.05.068

Cover

Abstract [Display omitted] •An improved optimization problem for the cleaning schedule of the heat exchangers in the CPT.•Include the hydraulic impact of fouling through the additional pressure drops.•Utilize recent stochastic methods to provide global optimum solution in MINLP class.•The proposed method was applied in two case studies with and without the additional pumping cost term in the objective function.•Ignoring the additional pumping cost in the objective function resulted in less savings. Fouling in heat exchanger network (HEN) in a refinery has been identified as a major obstacle for efficient energy recovery. Fouling causes loss in efficiency over the time, additional pumping cost and loss of production due to additional downtime. A complex crude preheat train (CPT) in a petroleum refinery was chosen in this study to represent an industrial HEN experiencing severe fouling and huge economic losses due to fouling issues. The objective of this study was to develop a realistic cleaning schedule optimization problem. An improved optimization problem for the cleaning schedule of the heat exchangers in the CPT was developed which takes into account the hydraulic impact of fouling through the additional pressure drops. The problem fall into the MINLP class, which is very complex and finding the global optimum is a challenging task. Hence, the recent stochastic methods are proposed and used to solve the MINLP problem without introducing any approximations or simplifying assumptions. Optimizations were performed over an operating period of 44months following crude slate variations and operating conditions of the refinery. The solution provided by recent stochastic algorithms is global optimum solution. The results show that ignoring the additional pumping cost in the objective function resulted in an optimal cleaning schedule that provides a less savings (18.09% of maximum potential savings) in the net loss compared to the optimal cleaning schedule that utilizes the additional pumping cost in the objective function, which increases about 19.34% of maximum potential savings.
AbstractList [Display omitted] •An improved optimization problem for the cleaning schedule of the heat exchangers in the CPT.•Include the hydraulic impact of fouling through the additional pressure drops.•Utilize recent stochastic methods to provide global optimum solution in MINLP class.•The proposed method was applied in two case studies with and without the additional pumping cost term in the objective function.•Ignoring the additional pumping cost in the objective function resulted in less savings. Fouling in heat exchanger network (HEN) in a refinery has been identified as a major obstacle for efficient energy recovery. Fouling causes loss in efficiency over the time, additional pumping cost and loss of production due to additional downtime. A complex crude preheat train (CPT) in a petroleum refinery was chosen in this study to represent an industrial HEN experiencing severe fouling and huge economic losses due to fouling issues. The objective of this study was to develop a realistic cleaning schedule optimization problem. An improved optimization problem for the cleaning schedule of the heat exchangers in the CPT was developed which takes into account the hydraulic impact of fouling through the additional pressure drops. The problem fall into the MINLP class, which is very complex and finding the global optimum is a challenging task. Hence, the recent stochastic methods are proposed and used to solve the MINLP problem without introducing any approximations or simplifying assumptions. Optimizations were performed over an operating period of 44months following crude slate variations and operating conditions of the refinery. The solution provided by recent stochastic algorithms is global optimum solution. The results show that ignoring the additional pumping cost in the objective function resulted in an optimal cleaning schedule that provides a less savings (18.09% of maximum potential savings) in the net loss compared to the optimal cleaning schedule that utilizes the additional pumping cost in the objective function, which increases about 19.34% of maximum potential savings.
Author Ramasamy, M.
Jameran, Azamuddin B.
Biyanto, Totok R.
Fibrianto, Henokh Y.
Author_xml – sequence: 1
  givenname: Totok R.
  surname: Biyanto
  fullname: Biyanto, Totok R.
  email: trb@ep.its.ac.id, trbiyanto@gmail.com
  organization: Engineering Physics Department, Institut Teknologi Sepuluh Nopember (ITS), Indonesia
– sequence: 2
  givenname: M.
  surname: Ramasamy
  fullname: Ramasamy, M.
  organization: Chemical Engineering Department, Universiti Teknologi PETRONAS, Malaysia
– sequence: 3
  givenname: Azamuddin B.
  surname: Jameran
  fullname: Jameran, Azamuddin B.
  organization: Technology Department, PETRONAS Penapisan (Melaka) Sdn Bhd, Malaysia
– sequence: 4
  givenname: Henokh Y.
  surname: Fibrianto
  fullname: Fibrianto, Henokh Y.
  organization: Engineering Physics Department, Institut Teknologi Sepuluh Nopember (ITS), Indonesia
BookMark eNqNkMtOxCAUhllo4nh5BxZup0IvtCZu1HhLTNzompweTqdMWtoAYzI-gw8t47jRlRsgwP-d_N8xO3CTI8bOpcikkOpincE8D7EnP8JAbpXl6TYTVSZUc8AWsqgul2Uh5RE7DmEthMybulywz9d9goMzvN8aD5vBIrfjDBgDx8kFa8hDtJPj1nFPnXXktxz9xhCfPfUEkUcP6REHAmfdigfsySRQOm7CbvWE5CIPccIeQkwTpjna0X7swSPFfjLhlB12MAQ6-9lP2Nv93evt4_L55eHp9vp5iYWq47KFtuywlK3I87wpSyAFRkrVkmpyBbLpBFCtOgktmkJi19SdSp-qqqwVdqY4YVd7LvophFRJz96O4LdaCr2zqdf6t029s6lFpZPNFL_5E0cbv4vsNAz_hdzvIZSKvlvyOqAlh2RskhW1mez_QF_cUqgo
CitedBy_id crossref_primary_10_22517_23447214_23621
crossref_primary_10_1016_j_rser_2022_113072
crossref_primary_10_1109_JSEN_2023_3317936
crossref_primary_10_1016_j_cherd_2020_10_023
crossref_primary_10_1016_j_applthermaleng_2020_116103
crossref_primary_10_1016_j_cherd_2018_09_024
crossref_primary_10_3390_app13010604
crossref_primary_10_1016_j_cherd_2024_11_029
crossref_primary_10_1080_01457632_2021_1963537
crossref_primary_10_1016_j_procs_2017_12_142
crossref_primary_10_1080_09617353_2018_1468657
crossref_primary_10_4018_IJCAC_332408
crossref_primary_10_1007_s13202_019_0669_y
crossref_primary_10_1080_01457632_2021_1963542
crossref_primary_10_1021_acs_iecr_7b01569
crossref_primary_10_1051_matecconf_201815607001
crossref_primary_10_4108_ew_3498
crossref_primary_10_1088_1755_1315_207_1_012004
Cites_doi 10.1080/01457630902751486
10.1016/S0098-1354(99)80050-7
10.1016/j.applthermaleng.2004.06.025
10.1205/096030899532312
10.1115/1.1571078
10.1021/ie034178g
10.1021/ie990166c
10.1205/026387604772803070
10.1063/1.4949304
10.1016/j.enconman.2006.12.006
10.1016/S0098-1354(00)00653-0
10.1016/j.apenergy.2012.08.038
10.1080/01457630590890139
10.1021/ef010052p
10.1021/ie901275z
10.1016/S1359-4311(01)00035-7
10.1016/j.applthermaleng.2010.04.027
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2016.05.068
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1450
ExternalDocumentID 10_1016_j_applthermaleng_2016_05_068
S1359431116307256
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
HZ~
R2-
SEW
~HD
ID FETCH-LOGICAL-c367t-bab4fc41b0222844ae6ad116be6826a18f0ae76f1abcd31cf87f6ae655476cfd3
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Thu Apr 24 22:51:51 EDT 2025
Wed Oct 01 03:08:38 EDT 2025
Fri Feb 23 02:36:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fouling
Thermal and hydraulic impact
Optimization of cleaning schedule
Heat exchanger network
Recent stochastic algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-bab4fc41b0222844ae6ad116be6826a18f0ae76f1abcd31cf87f6ae655476cfd3
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2016_05_068
crossref_citationtrail_10_1016_j_applthermaleng_2016_05_068
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_05_068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-05
PublicationDateYYYYMMDD 2016-09-05
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-05
  day: 05
PublicationDecade 2010
PublicationTitle Applied thermal engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Smaïli, Angadi, Hatch, Herbert (b0110) 1999; 77
Smaïli, Vassiliadis, Wilson (b0005) 2001; 15
Biyanto (b0095) 2013
Watkinson, Panchal (b0165) 1990
Georgiadis, Papageorgiou (b0105) 2001; 21
ESDU (b0030) 2000
Kennedy, Eberhart (b0130) 2007
Yeap, Wilson, Polley, Pugh (b0045) 2005; 26
Georgiadis, Papageorgiou, Macchietto (b0060) 1999; 23
Lakshaman, McBrien, Zhang, Dhole (b0145) 2014
Ishiyama, Paterson, Wilson (b0170) 2009; 30
Atashpaz-Gargari, Lucas (b0135) 2007
Markowski, Urbaniec (b0020) 2005; 25
Yeap, Wilson, Polley, Pugh (b0040) 2004; 82
Totok R. Biyanto, Fouling resistance prediction using neural network nonlinear auto regressive with exogenous input model base on operating condition and fluid properties correlations, in: AIP Conf. Proc., vol. 1737, 19–20 November 2015, Yogyakarta, Indonesia, 2016, p. 050001
Totok R. Biyanto, Henokh Yernias Fibrianto, Duelist algorithm: An algorithm in stochastic optimization method, in: Advances in Swarm Intelligence, The Seventh International Conference on Swarm Intelligence, June 25–30, Bali, 2016.
Fakheri (b0160) 2003; 125
Biyanto, Suganda, Matraji, Susatio, Justiono, Sarwono (b0100) 2014
W. Ebert, C.B. Panchal, Analysis of Exxon crude-oil-slip stream coking data, Fouling mitigation of industrial heat exchangers, San Luis Obispo, CA, United States, 18–23 Jun 1995, 1995.
Georgiadis, Papageorgiou, Macchietto (b0010) 2000; 39
Goldberg (b0125) 1989
Malayeri, Muller-Steinhagen (b0085) 2004
Tavares, Queiroz, Costa (b0175) 2010; 49
Lavaja, Bagajewicz (b0015) 2004; 43
Kuppan (b0155) 2000
Sanaye, Niroomand (b0055) 2007; 48
Malayeri, Muller-Steinhagen (b0080) 2001
Biyanto, Khairansyah, Bayuaji (b0090) 2015; vol. 72
Costa, Oliveira (b0180) 2001; 25
Markowski, Trafczynski, Urbaniec (b0025) 2013; 102
Schwefel (b0115) 1993
.
Ishiyama, Heins, Paterson, Spinelli, Wilson (b0065) 2010; 30
Yeap (b0035) 2001
Epstein (b0070) 1994; vol. 4
TEMA (b0150) 1999
Costa (b0120) 2006
Costa (10.1016/j.applthermaleng.2016.05.068_b0120) 2006
Atashpaz-Gargari (10.1016/j.applthermaleng.2016.05.068_b0135) 2007
Georgiadis (10.1016/j.applthermaleng.2016.05.068_b0060) 1999; 23
Kennedy (10.1016/j.applthermaleng.2016.05.068_b0130) 2007
Epstein (10.1016/j.applthermaleng.2016.05.068_b0070) 1994; vol. 4
Costa (10.1016/j.applthermaleng.2016.05.068_b0180) 2001; 25
Smaïli (10.1016/j.applthermaleng.2016.05.068_b0110) 1999; 77
Tavares (10.1016/j.applthermaleng.2016.05.068_b0175) 2010; 49
Markowski (10.1016/j.applthermaleng.2016.05.068_b0025) 2013; 102
Biyanto (10.1016/j.applthermaleng.2016.05.068_b0090) 2015; vol. 72
Malayeri (10.1016/j.applthermaleng.2016.05.068_b0080) 2001
Yeap (10.1016/j.applthermaleng.2016.05.068_b0040) 2004; 82
10.1016/j.applthermaleng.2016.05.068_b0075
Schwefel (10.1016/j.applthermaleng.2016.05.068_b0115) 1993
Georgiadis (10.1016/j.applthermaleng.2016.05.068_b0010) 2000; 39
Sanaye (10.1016/j.applthermaleng.2016.05.068_b0055) 2007; 48
Ishiyama (10.1016/j.applthermaleng.2016.05.068_b0065) 2010; 30
10.1016/j.applthermaleng.2016.05.068_b0050
Goldberg (10.1016/j.applthermaleng.2016.05.068_b0125) 1989
Markowski (10.1016/j.applthermaleng.2016.05.068_b0020) 2005; 25
Yeap (10.1016/j.applthermaleng.2016.05.068_b0045) 2005; 26
Malayeri (10.1016/j.applthermaleng.2016.05.068_b0085) 2004
Ishiyama (10.1016/j.applthermaleng.2016.05.068_b0170) 2009; 30
Yeap (10.1016/j.applthermaleng.2016.05.068_b0035) 2001
Smaïli (10.1016/j.applthermaleng.2016.05.068_b0005) 2001; 15
TEMA (10.1016/j.applthermaleng.2016.05.068_b0150) 1999
Kuppan (10.1016/j.applthermaleng.2016.05.068_b0155) 2000
Lavaja (10.1016/j.applthermaleng.2016.05.068_b0015) 2004; 43
Georgiadis (10.1016/j.applthermaleng.2016.05.068_b0105) 2001; 21
10.1016/j.applthermaleng.2016.05.068_b0140
Lakshaman (10.1016/j.applthermaleng.2016.05.068_b0145) 2014
ESDU (10.1016/j.applthermaleng.2016.05.068_b0030) 2000
Biyanto (10.1016/j.applthermaleng.2016.05.068_b0095) 2013
Fakheri (10.1016/j.applthermaleng.2016.05.068_b0160) 2003; 125
Biyanto (10.1016/j.applthermaleng.2016.05.068_b0100) 2014
Watkinson (10.1016/j.applthermaleng.2016.05.068_b0165) 1990
References_xml – year: 1999
  ident: b0150
  article-title: Standard for Tubular Exchanger Manufacturers Association
– year: 1993
  ident: b0115
  article-title: Evolution and Optimum Seeking: The Sixth Generation
– year: 2007
  ident: b0130
  article-title: Particle Swarm Optimization
– volume: 23
  start-page: S203
  year: 1999
  end-page: S206
  ident: b0060
  article-title: Optimal cyclic cleaning scheduling in heat exchanger networks under fouling
  publication-title: Comput. Chem. Eng.
– year: 2013
  ident: b0095
  article-title: Optimal Cleaning Schedule for Crude Pre Heat Train Affected by Fouling Using Genetic Algorithm
– reference: Totok R. Biyanto, Henokh Yernias Fibrianto, Duelist algorithm: An algorithm in stochastic optimization method, in: Advances in Swarm Intelligence, The Seventh International Conference on Swarm Intelligence, June 25–30, Bali, 2016.
– volume: 82
  start-page: 53
  year: 2004
  end-page: 71
  ident: b0040
  article-title: Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models
  publication-title: Chem. Eng. Res. Des.
– volume: vol. 4
  start-page: 225
  year: 1994
  end-page: 229
  ident: b0070
  article-title: A model of the initial chemical reaction fouling rate for flow within a heated tube and its verification
  publication-title: Proc. 10th Int. Heat Trans. Conf. Inst. of Chem. Engrs., Rugby
– volume: 48
  start-page: 1450
  year: 2007
  end-page: 1461
  ident: b0055
  article-title: Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule
  publication-title: Energy Convers. Manage.
– volume: 15
  start-page: 1038
  year: 2001
  end-page: 1056
  ident: b0005
  article-title: Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning
  publication-title: Energy Fuels
– volume: vol. 72
  start-page: 5
  year: 2015
  end-page: 12
  ident: b0090
  article-title: Imperialist competitive algorithm (ICA) for heat exchanger network (HEN) cleaning schedule optimization
  publication-title: Procedia Computer Science
– volume: 39
  start-page: 441
  year: 2000
  end-page: 454
  ident: b0010
  article-title: Optimal cleaning policies in heat exchanger networks under rapid fouling
  publication-title: Ind. Eng. Chem. Res.
– volume: 26
  start-page: 23
  year: 2005
  end-page: 34
  ident: b0045
  article-title: Retrofitting crude oil refinery heat exchanger networks to minimize fouling while maximizing heat recovery
  publication-title: Heat Transfer Eng.
– reference: W. Ebert, C.B. Panchal, Analysis of Exxon crude-oil-slip stream coking data, Fouling mitigation of industrial heat exchangers, San Luis Obispo, CA, United States, 18–23 Jun 1995, 1995.
– start-page: 4661
  year: 2007
  end-page: 4667
  ident: b0135
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
  publication-title: 2007 IEEE Congress on Evolutionary Computation, CEC 2007
– year: 1989
  ident: b0125
  article-title: Genetic Algorithms in Search, Optimization, and Machine Learning
– volume: 43
  start-page: 3924
  year: 2004
  end-page: 3938
  ident: b0015
  article-title: On a new MILP model for the planning of heat-exchanger network cleaning
  publication-title: Ind. Eng. Chem. Res.
– start-page: 622
  year: 2006
  end-page: 627
  ident: b0120
  article-title: A parameter-less evolution strategy for global optimization
  publication-title: 6th WSEAS International Conference on Simulation, Modelling and Optimization
– volume: 25
  start-page: 1019
  year: 2005
  end-page: 1032
  ident: b0020
  article-title: Optimal cleaning schedule for heat exchangers in a heat exchanger network
  publication-title: Appl. Therm. Eng.
– start-page: 145
  year: 2001
  end-page: 150
  ident: b0080
  article-title: Neural network analysis of heat transfer fouling data
  publication-title: The 4th United Engineering Foundation Conference on Heat Exchanger Fouling: Fundamental Approaches & Technical Solutions
– year: 2014
  ident: b0145
  article-title: Transformation of process engineering – a software perspective
  publication-title: Proceeding of the 8th International Conference of Foundation of Computer-Aided Process Design
– volume: 49
  start-page: 4756
  year: 2010
  end-page: 4765
  ident: b0175
  article-title: Thermohydraulic simulation of heat exchanger networks
  publication-title: Ind. Eng. Chem. Res.
– volume: 30
  start-page: 805
  year: 2009
  end-page: 814
  ident: b0170
  article-title: The effect of fouling on heat transfer, pressure drop, and throughput in refinery preheat trains: optimization of cleaning schedules
  publication-title: Heat Transfer Eng.
– volume: 125
  start-page: 527
  year: 2003
  ident: b0160
  article-title: A general expression for the determination of the log mean temperature correction factor for shell and tube heat exchangers
  publication-title: J. Heat Transfer
– reference: .
– year: 2000
  ident: b0155
  article-title: Heat Exchanger Design Handbook
– volume: 102
  start-page: 755
  year: 2013
  end-page: 764
  ident: b0025
  article-title: Identification of the influence of fouling on the heat recovery in a network of shell and tube heat exchangers
  publication-title: Appl. Energy
– volume: 21
  start-page: 1675
  year: 2001
  end-page: 1697
  ident: b0105
  article-title: Optimal scheduling of heat-integrated multipurpose plants under fouling conditions
  publication-title: Appl. Therm. Eng.
– year: 2014
  ident: b0100
  article-title: A cleaning schedule optimization of heat exchanger networks using particle swarm optimization
  publication-title: Proceeding of the 3rd Applied Science for Technology Innovation, International Energy Conference, ASTECHNOVA
– year: 2001
  ident: b0035
  article-title: Design of heat exchanger networks with fouling mitigation
– volume: 30
  start-page: 1852
  year: 2010
  end-page: 1862
  ident: b0065
  article-title: Scheduling cleaning in a crude oil preheat train subject to fouling: incorporating desalter control
  publication-title: Appl. Therm. Eng.
– year: 1990
  ident: b0165
  article-title: A Critical Review of Organic Fluid Fouling
– volume: 77
  start-page: 159
  year: 1999
  end-page: 164
  ident: b0110
  article-title: Optimization of scheduling of cleaning in heat exchanger networks subject to fouling: sugar industry case study
  publication-title: Food Bioprod. Process.
– year: 2000
  ident: b0030
  article-title: Heat Exchanger Fouling in the Preheat Train of a Crude Oil Distillation Unit
– reference: Totok R. Biyanto, Fouling resistance prediction using neural network nonlinear auto regressive with exogenous input model base on operating condition and fluid properties correlations, in: AIP Conf. Proc., vol. 1737, 19–20 November 2015, Yogyakarta, Indonesia, 2016, p. 050001,
– start-page: 20
  year: 2004
  ident: b0085
  article-title: Analysis of fouling data based on prior knowledge
  publication-title: Heat Exchanger Fouling and Cleaning: Fundamentals and Applications
– volume: 25
  start-page: 257
  year: 2001
  end-page: 266
  ident: b0180
  article-title: Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems
  publication-title: Comput. Chem. Eng.
– volume: 30
  start-page: 805
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.05.068_b0170
  article-title: The effect of fouling on heat transfer, pressure drop, and throughput in refinery preheat trains: optimization of cleaning schedules
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630902751486
– start-page: 4661
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.05.068_b0135
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
– volume: 23
  start-page: S203
  year: 1999
  ident: 10.1016/j.applthermaleng.2016.05.068_b0060
  article-title: Optimal cyclic cleaning scheduling in heat exchanger networks under fouling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(99)80050-7
– volume: 25
  start-page: 1019
  year: 2005
  ident: 10.1016/j.applthermaleng.2016.05.068_b0020
  article-title: Optimal cleaning schedule for heat exchangers in a heat exchanger network
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.06.025
– year: 1999
  ident: 10.1016/j.applthermaleng.2016.05.068_b0150
– volume: 77
  start-page: 159
  year: 1999
  ident: 10.1016/j.applthermaleng.2016.05.068_b0110
  article-title: Optimization of scheduling of cleaning in heat exchanger networks subject to fouling: sugar industry case study
  publication-title: Food Bioprod. Process.
  doi: 10.1205/096030899532312
– volume: 125
  start-page: 527
  year: 2003
  ident: 10.1016/j.applthermaleng.2016.05.068_b0160
  article-title: A general expression for the determination of the log mean temperature correction factor for shell and tube heat exchangers
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1571078
– volume: 43
  start-page: 3924
  year: 2004
  ident: 10.1016/j.applthermaleng.2016.05.068_b0015
  article-title: On a new MILP model for the planning of heat-exchanger network cleaning
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie034178g
– volume: 39
  start-page: 441
  year: 2000
  ident: 10.1016/j.applthermaleng.2016.05.068_b0010
  article-title: Optimal cleaning policies in heat exchanger networks under rapid fouling
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990166c
– year: 2014
  ident: 10.1016/j.applthermaleng.2016.05.068_b0100
  article-title: A cleaning schedule optimization of heat exchanger networks using particle swarm optimization
– year: 1990
  ident: 10.1016/j.applthermaleng.2016.05.068_b0165
– year: 2013
  ident: 10.1016/j.applthermaleng.2016.05.068_b0095
– volume: 82
  start-page: 53
  year: 2004
  ident: 10.1016/j.applthermaleng.2016.05.068_b0040
  article-title: Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/026387604772803070
– ident: 10.1016/j.applthermaleng.2016.05.068_b0075
  doi: 10.1063/1.4949304
– volume: 48
  start-page: 1450
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.05.068_b0055
  article-title: Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2006.12.006
– volume: 25
  start-page: 257
  year: 2001
  ident: 10.1016/j.applthermaleng.2016.05.068_b0180
  article-title: Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00653-0
– ident: 10.1016/j.applthermaleng.2016.05.068_b0050
– year: 1993
  ident: 10.1016/j.applthermaleng.2016.05.068_b0115
– start-page: 622
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.05.068_b0120
  article-title: A parameter-less evolution strategy for global optimization
– year: 2000
  ident: 10.1016/j.applthermaleng.2016.05.068_b0155
– volume: 102
  start-page: 755
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.05.068_b0025
  article-title: Identification of the influence of fouling on the heat recovery in a network of shell and tube heat exchangers
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.08.038
– start-page: 145
  year: 2001
  ident: 10.1016/j.applthermaleng.2016.05.068_b0080
  article-title: Neural network analysis of heat transfer fouling data
– start-page: 20
  year: 2004
  ident: 10.1016/j.applthermaleng.2016.05.068_b0085
  article-title: Analysis of fouling data based on prior knowledge
– ident: 10.1016/j.applthermaleng.2016.05.068_b0140
– year: 2014
  ident: 10.1016/j.applthermaleng.2016.05.068_b0145
  article-title: Transformation of process engineering – a software perspective
– volume: vol. 4
  start-page: 225
  year: 1994
  ident: 10.1016/j.applthermaleng.2016.05.068_b0070
  article-title: A model of the initial chemical reaction fouling rate for flow within a heated tube and its verification
– volume: 26
  start-page: 23
  year: 2005
  ident: 10.1016/j.applthermaleng.2016.05.068_b0045
  article-title: Retrofitting crude oil refinery heat exchanger networks to minimize fouling while maximizing heat recovery
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630590890139
– year: 2000
  ident: 10.1016/j.applthermaleng.2016.05.068_b0030
– year: 1989
  ident: 10.1016/j.applthermaleng.2016.05.068_b0125
– volume: 15
  start-page: 1038
  year: 2001
  ident: 10.1016/j.applthermaleng.2016.05.068_b0005
  article-title: Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning
  publication-title: Energy Fuels
  doi: 10.1021/ef010052p
– year: 2007
  ident: 10.1016/j.applthermaleng.2016.05.068_b0130
– volume: 49
  start-page: 4756
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.05.068_b0175
  article-title: Thermohydraulic simulation of heat exchanger networks
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901275z
– year: 2001
  ident: 10.1016/j.applthermaleng.2016.05.068_b0035
– volume: vol. 72
  start-page: 5
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.05.068_b0090
  article-title: Imperialist competitive algorithm (ICA) for heat exchanger network (HEN) cleaning schedule optimization
– volume: 21
  start-page: 1675
  year: 2001
  ident: 10.1016/j.applthermaleng.2016.05.068_b0105
  article-title: Optimal scheduling of heat-integrated multipurpose plants under fouling conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(01)00035-7
– volume: 30
  start-page: 1852
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.05.068_b0065
  article-title: Scheduling cleaning in a crude oil preheat train subject to fouling: incorporating desalter control
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.04.027
SSID ssj0012874
Score 2.280262
Snippet [Display omitted] •An improved optimization problem for the cleaning schedule of the heat exchangers in the CPT.•Include the hydraulic impact of fouling...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1436
SubjectTerms Fouling
Heat exchanger network
Optimization of cleaning schedule
Recent stochastic algorithms
Thermal and hydraulic impact
Title Thermal and hydraulic impacts consideration in refinery crude preheat train cleaning scheduling using recent stochastic optimization methods
URI https://dx.doi.org/10.1016/j.applthermaleng.2016.05.068
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1359-4311
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1359-4311
  databaseCode: ACRLP
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1359-4311
  databaseCode: AIKHN
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 1359-4311
  databaseCode: .~1
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1359-4311
  databaseCode: AKRWK
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfOKzzMFrbLbZ7DZ4kFKUqtiLLXgLu5uNrdRYanvoxV_gj3YmSasFDwWPCftIdpZ57H7zDWMXgXKpM0p7ps61J6Ig8rRwwtMYDznppC8SOtB_7Mh2T9w_h88V1prnwhCsstT9hU7PtXX5plauZm00GNSeeBBGaP44ehS-QstNGexCEqzv8nMB8-DE554HXWHkUesNdvGD8aJLYvKz3jSVLSGgl8x5PIl49S8z9cv03O6w7dJnhGbxWbus4rI9tvWLSXCffXWL8UFnCfRnyVhPhwMLRQ7kB9iyLGcuBhhkgBNS1t8M7HiaOBiNHSllyAtGAE6i6bgEMPJFS0QJ60D4-BfsRmBOQIfR9jUxPMM7qpy3MpcTinLUHwesd3vTbbW9stCCZwOpJp7RRqRWcEPRX0MI7aROcF2Nkxh9aN5Ife2UTLk2Ngm4TRsqldgIXRElbZoEh2wte8_cEYN61PBVFAZKJUpI3xifm5Aob7Qv60YGx-xqvq6xLVnI6d-G8Rxu9hovSyUmqcR-GKNUjlm46D0q2DhW7Hc9F2G8tLtiNBwrjXDy7xFO2SY95fi08IytTcZTd44OzcRU8x1bZevNu4d25xu0c_17
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RINFyQKVQFUrLHLhaseN9xOJQIQQKBXJpkLitdtdrCAITheTAf-iPZsbeUJA4IPVqe9b2zmoeu998A7CX61AFp23ieplNRJEXiRVBJJbyoaCCSkXJG_rnQzW4EL8v5eUSHC5qYRhWGW1_a9Mbax2vdONsdifjcfdPlsuC3F9GEUWqyXN_gGUhySZ3YPng5HQwfD5MYEr3Ju-SRcICK7D3D-bF58Qcat1Z7lzCWC_VUHky9-pbnuqF9zn-DGsxbMSD9svWYSnUX2D1BZngBvwdteOjrUu8fiyndn479tiWQT6gj505G03guEZ6IRf-PaKfzsuAk2lgu4xNzwikl1jeMUFKfskZcc06MkT-isQYz4kUM_pryyTPeE9W5y6Wc2LbkfphEy6Oj0aHgyT2Wkh8rvQscdaJyovMcQLYF8IGZUuaWhcUJSA261epDVpVmXW-zDNf9XWl6CGKRrTyVZl_hU59X4dvgL2in-pC5lqXWqjUuTRzkllvbKp6TuVbsL-YV-MjETn_261ZIM5uzGutGNaKSaUhrWyBfJaetIQc75T7tVChebXADPmOd42w_d8j7MLHwej8zJydDE-_wye-08DV5A50ZtN5-EHxzcz9jOv3CTw8ADU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+and+hydraulic+impacts+consideration+in+refinery+crude+preheat+train+cleaning+scheduling+using+recent+stochastic+optimization+methods&rft.jtitle=Applied+thermal+engineering&rft.au=Biyanto%2C+Totok+R.&rft.au=Ramasamy%2C+M.&rft.au=Jameran%2C+Azamuddin+B.&rft.au=Fibrianto%2C+Henokh+Y.&rft.date=2016-09-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=108&rft.spage=1436&rft.epage=1450&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.05.068&rft.externalDocID=S1359431116307256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon