Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications

A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's indications are subject to random errors. The water temperature is determined by solving the inverse problem for a thermometer in the form of a so...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 239; p. 122771
Main Authors Taler, Dawid, Sobota, Tomasz, Jaremkiewicz, Magdalena, Taler, Jan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.01.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2021.122771

Cover

Abstract A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's indications are subject to random errors. The water temperature is determined by solving the inverse problem for a thermometer in the form of a solid cylinder inside which the temperature is measured. The water temperature is determined using a first or second-order thermometer model. The use of differential quotients to calculate the first or second derivative after time causes the controller to be unstable. To increase the stability of the PID system operation, digital filters were used to eliminate the influence of random disturbances of the temperature indicated by the thermometer. This ensures stable, much faster, and more accurate operation of the controller. The operation of the PID controller with the proposed technique for determining the medium temperature was illustrated by using the example of an electric storage heater in which the water temperature should be equal to the pre-set temperature. The novelty of the presented PID control system is the determination of the fluid temperature based on the solution of the inverse problem of heat conduction formulated for a thermometer. As a result, the speed and accuracy of the PID controller are significantly improved. •The random errors in thermometer indication can make the PID controller inaccurate.•A novel inverse method for fluid temperature determination was developed.•A digital PID controller is resistant to random errors in thermometer indications.•A mathematical model of the hot water tank-thermometer system was developed.•The operation of the PID controller was tested for disturbed thermometer data.
AbstractList A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's indications are subject to random errors. The water temperature is determined by solving the inverse problem for a thermometer in the form of a solid cylinder inside which the temperature is measured. The water temperature is determined using a first or second-order thermometer model. The use of differential quotients to calculate the first or second derivative after time causes the controller to be unstable. To increase the stability of the PID system operation, digital filters were used to eliminate the influence of random disturbances of the temperature indicated by the thermometer. This ensures stable, much faster, and more accurate operation of the controller. The operation of the PID controller with the proposed technique for determining the medium temperature was illustrated by using the example of an electric storage heater in which the water temperature should be equal to the pre-set temperature. The novelty of the presented PID control system is the determination of the fluid temperature based on the solution of the inverse problem of heat conduction formulated for a thermometer. As a result, the speed and accuracy of the PID controller are significantly improved.
A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's indications are subject to random errors. The water temperature is determined by solving the inverse problem for a thermometer in the form of a solid cylinder inside which the temperature is measured. The water temperature is determined using a first or second-order thermometer model. The use of differential quotients to calculate the first or second derivative after time causes the controller to be unstable. To increase the stability of the PID system operation, digital filters were used to eliminate the influence of random disturbances of the temperature indicated by the thermometer. This ensures stable, much faster, and more accurate operation of the controller. The operation of the PID controller with the proposed technique for determining the medium temperature was illustrated by using the example of an electric storage heater in which the water temperature should be equal to the pre-set temperature. The novelty of the presented PID control system is the determination of the fluid temperature based on the solution of the inverse problem of heat conduction formulated for a thermometer. As a result, the speed and accuracy of the PID controller are significantly improved. •The random errors in thermometer indication can make the PID controller inaccurate.•A novel inverse method for fluid temperature determination was developed.•A digital PID controller is resistant to random errors in thermometer indications.•A mathematical model of the hot water tank-thermometer system was developed.•The operation of the PID controller was tested for disturbed thermometer data.
ArticleNumber 122771
Author Taler, Jan
Taler, Dawid
Sobota, Tomasz
Jaremkiewicz, Magdalena
Author_xml – sequence: 1
  givenname: Dawid
  surname: Taler
  fullname: Taler, Dawid
  email: dtaler@pk.edu.pl
  organization: Department of Thermal Processes, Air Protection, and Waste Utilization, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Ul. Warszawska 24, 31-155, Cracow, Poland
– sequence: 2
  givenname: Tomasz
  surname: Sobota
  fullname: Sobota, Tomasz
  email: tomasz.sobota@pk.edu.pl
  organization: Department of Thermal Processes, Air Protection, and Waste Utilization, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Ul. Warszawska 24, 31-155, Cracow, Poland
– sequence: 3
  givenname: Magdalena
  surname: Jaremkiewicz
  fullname: Jaremkiewicz, Magdalena
  email: mjaremkiewicz@pk.edu.pl
  organization: Department of Thermal Processes, Air Protection, and Waste Utilization, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Ul. Warszawska 24, 31-155, Cracow, Poland
– sequence: 4
  givenname: Jan
  orcidid: 0000-0002-6717-5599
  surname: Taler
  fullname: Taler, Jan
  email: jan.taler@pk.edu.pl
  organization: Department of Energy, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Al. Jana Pawła II 37, 31-864, Cracow, Poland
BookMark eNqFkc1u1DAUhS3USkxb3oCFJTZsMthO4iQskNDwV6lSu4C15dg3Mx4Se3rtIM1b8Mg4BLHoAla2rPMd33vOFbnwwQMhLznbcsblm-MWPOD-vBVM8C0Xomn4M7LhbVMWsmnrC7JhpWRFXVXiObmK8cgYq9uu25Cfu-AThpGGgaYD0ATTCVCnGYE6__vpEBId3ePsLE3af6f9mc7R-T3V1Lq9S3qkD7cfqFmNRsDlGp0FXESLA2pvw0QBMWD8-9MBcAoTpAw4b53RyWXuhlwOeozw4s95Tb59-vh196W4u_98u3t_V5hSNqnQtbWmNFXV9poPWve2r4eu6biFXnLW13VlK5O3HGzVgGiFNiKnY1sOum6Aldfk9ep7wvA4Q0xqctHAOGoPYY5KyFK2Qsi6zdJXT6THMKPP02WVqLpWim5RvV1VBkOMCIMyOZtlp4TajYoztZSljmotSy1lqbWsDFdP4BO6SeP5f9i7FYOc1A8HqKJx4A1Yh2CSssH92-AX-Q-1eQ
CitedBy_id crossref_primary_10_3390_pr10010139
crossref_primary_10_1016_j_energy_2023_129035
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125622
crossref_primary_10_1002_ep_14530
crossref_primary_10_1016_j_jfranklin_2024_106806
crossref_primary_10_3390_en15062032
crossref_primary_10_1088_1742_6596_2711_1_012011
crossref_primary_10_3390_en15166085
crossref_primary_10_1016_j_applthermaleng_2022_119240
crossref_primary_10_1016_j_energy_2022_124042
crossref_primary_10_1016_j_energy_2025_134729
crossref_primary_10_1016_j_measurement_2024_115605
crossref_primary_10_1016_j_ijhydene_2023_04_049
crossref_primary_10_1016_j_applthermaleng_2024_124600
crossref_primary_10_1177_01423312241260107
crossref_primary_10_3390_app14146080
crossref_primary_10_1016_j_applthermaleng_2025_125864
crossref_primary_10_1016_j_jobe_2022_105809
crossref_primary_10_3390_pr12102137
crossref_primary_10_1016_j_eswa_2023_120752
crossref_primary_10_1016_j_mssp_2022_106516
crossref_primary_10_34088_kojose_1278657
crossref_primary_10_1016_j_jiec_2024_07_018
Cites_doi 10.1016/j.applthermaleng.2021.117234
10.1016/j.energy.2020.117951
10.1016/j.ifacol.2020.12.002
10.1016/j.energy.2021.120560
10.1007/BF02333307
10.1016/j.ijthermalsci.2020.106395
10.1016/j.energy.2017.07.109
10.3390/en12020222
10.1134/S0020441218030120
10.1016/j.energy.2021.121325
10.3390/en13154039
10.1016/j.measurement.2021.109679
10.1016/j.rser.2020.110623
10.1016/j.pnucene.2019.103214
10.1016/j.energy.2021.120906
10.1016/j.energy.2020.118527
10.1016/j.enconman.2015.03.015
10.1016/j.energy.2020.118528
10.1016/j.applthermaleng.2009.05.013
10.1016/j.applthermaleng.2019.03.055
10.1016/j.isatra.2021.02.011
10.1016/j.pnucene.2020.103431
10.1016/j.energy.2021.121490
10.1016/j.renene.2021.03.129
10.1016/j.ijthermalsci.2014.09.002
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 15, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 15, 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2021.122771
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2021_122771
S0360544221030206
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-a5ddc3c448ba1faabdb5f9791deb610b554d4c005fd47e282ac2202d81ea57e03
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Thu Oct 02 21:41:42 EDT 2025
Wed Aug 13 03:19:29 EDT 2025
Wed Oct 01 00:59:35 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Sat Nov 16 15:58:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fluid temperature control
Fluid temperature measurement
A mathematical model of the thermometer
Digital smoothing of thermometer readings
Domestic water heater
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-a5ddc3c448ba1faabdb5f9791deb610b554d4c005fd47e282ac2202d81ea57e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6717-5599
PQID 2624986298
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2636822658
proquest_journals_2624986298
crossref_citationtrail_10_1016_j_energy_2021_122771
crossref_primary_10_1016_j_energy_2021_122771
elsevier_sciencedirect_doi_10_1016_j_energy_2021_122771
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References (bib13) 2010
Zarei (bib34) 2020; 127
Ingham, Dunn, Heinzle, Přenosil, Snape (bib36) 2007
Taler, Sobota, Jaremkiewicz, Taler (bib23) 2020; 13
Díaz-Rodríguez, Han, Bhattacharyya (bib25) 2019
Zeng, Jiang, Xie, Yu (bib33) 2020; 121
Wang P, Chen Z, Wan J, Wu S. A multiple-model based internal model control method for power control of small pressurized water reactors. Energy; 210: 118527.
Dietmann, Wienand, inventors (bib22) 1996 Jan 18
Sung, Lee, Lee (bib37) 2009
Seborg, Edgar, Mellichamp, Doyle (bib39) 2011
Kalogirou (bib1) 2014
Tan, Ramachandaramurthy, Yong, Tariq (bib7) 2021; 228
Taler (bib24) 2015; 96
Çetin, Özkaraca, Keçebaş (bib32) 2021; 137
Liang, Sang, Wua, Zhang, Zhao (bib30) 2021; 195
Taler, Taler, Jaremkiewicz, Sobota (bib20) 2016 May 30
Soni, Dutt, Das (bib8) 2021; 231
Wan, Xu, Wang, Yang, Li (bib27) 2020; 153
Li, Cui, Jin, Yu, Wang (bib15) 2021; 182
Wang, Liu, Li, Zhou, Wu (bib5) 2020; 204
Wang (bib26) 2020
Lakshmanan, Sæle, Degefa (bib2) 2021; 236
Wang, Tan, Cui (bib29) 2021; 118
Michalski, Eckersdorf, Kucharski, McGhee (bib10) 2001
Taler (bib40) 1996; 31
Araújo, Pereira (bib6) 2017; 138
.
Jaremkiewicz, Taler, Dzierwa, Taler (bib19) 2019; 12
Baerts Ch, Van Gerwen P, inventors; Heraeus Electro-Nite Int., assignee. Method for decreasing the response time of a temperature sensor. European patent EP 1 069 416 A1. 2001 Jan 17. Germany.
Zhang, Guo (bib28) 2020; 53–2
Jaremkiewicz, Taler, Sobota (bib17) 2015; 87
Yu, Yang, Yu, Zhang, Tian (bib31) 2021; 173
Jaremkiewicz, Taler, Sobota (bib18) 2009; 29
Childs (bib11) 2001
Yao, Cai, Zhang, Zhang, Yang, Lyu (bib14) 2019; 153
Ogata (bib38) 2004
McMillan (bib12) 2010
Behzadi, Arabkoohsar (bib4) 2020; 210
Yildiz, Bilbao, Roberts, Heslop, Dore, Bruce, MacGill, Egan, Sproul (bib3) 2021; 235
Golub, Zhilin, Rylov (bib16) 2018; 61
Press, Teukolsky, Vetterling, Flannery (bib35) 2007
Jaremkiewicz (10.1016/j.energy.2021.122771_bib17) 2015; 87
Zhang (10.1016/j.energy.2021.122771_bib28) 2020; 53–2
Golub (10.1016/j.energy.2021.122771_bib16) 2018; 61
Tan (10.1016/j.energy.2021.122771_bib7) 2021; 228
Ingham (10.1016/j.energy.2021.122771_bib36) 2007
Wang (10.1016/j.energy.2021.122771_bib5) 2020; 204
Jaremkiewicz (10.1016/j.energy.2021.122771_bib18) 2009; 29
Taler (10.1016/j.energy.2021.122771_bib20) 2016
Wan (10.1016/j.energy.2021.122771_bib27) 2020; 153
10.1016/j.energy.2021.122771_bib9
Taler (10.1016/j.energy.2021.122771_bib40) 1996; 31
Wang (10.1016/j.energy.2021.122771_bib26) 2020
Li (10.1016/j.energy.2021.122771_bib15) 2021; 182
Jaremkiewicz (10.1016/j.energy.2021.122771_bib19) 2019; 12
Taler (10.1016/j.energy.2021.122771_bib23) 2020; 13
Araújo (10.1016/j.energy.2021.122771_bib6) 2017; 138
Ogata (10.1016/j.energy.2021.122771_bib38) 2004
Sung (10.1016/j.energy.2021.122771_bib37) 2009
Díaz-Rodríguez (10.1016/j.energy.2021.122771_bib25) 2019
Press (10.1016/j.energy.2021.122771_bib35) 2007
Çetin (10.1016/j.energy.2021.122771_bib32) 2021; 137
Seborg (10.1016/j.energy.2021.122771_bib39) 2011
Soni (10.1016/j.energy.2021.122771_bib8) 2021; 231
Kalogirou (10.1016/j.energy.2021.122771_bib1) 2014
McMillan (10.1016/j.energy.2021.122771_bib12) 2010
Zeng (10.1016/j.energy.2021.122771_bib33) 2020; 121
Lakshmanan (10.1016/j.energy.2021.122771_bib2) 2021; 236
Behzadi (10.1016/j.energy.2021.122771_bib4) 2020; 210
Childs (10.1016/j.energy.2021.122771_bib11) 2001
10.1016/j.energy.2021.122771_bib21
Yildiz (10.1016/j.energy.2021.122771_bib3) 2021; 235
Dietmann (10.1016/j.energy.2021.122771_bib22) 1996
Liang (10.1016/j.energy.2021.122771_bib30) 2021; 195
Zarei (10.1016/j.energy.2021.122771_bib34) 2020; 127
(10.1016/j.energy.2021.122771_bib13) 2010
Michalski (10.1016/j.energy.2021.122771_bib10) 2001
Wang (10.1016/j.energy.2021.122771_bib29) 2021; 118
Yu (10.1016/j.energy.2021.122771_bib31) 2021; 173
Yao (10.1016/j.energy.2021.122771_bib14) 2019; 153
Taler (10.1016/j.energy.2021.122771_bib24) 2015; 96
References_xml – year: 2010
  ident: bib13
  publication-title: ASME PTC 19.3 TW-2016 (Revision of ASME PTC 19.3 TW-2010). Thermowells. An American National standard
– start-page: 51
  year: 2007
  end-page: 92
  ident: bib36
  article-title: Chemical Engineering dynamics: an introduction to modelling and computer simulation
– volume: 12
  start-page: 1
  year: 2019
  end-page: 21
  ident: bib19
  article-title: Determination of transient fluid temperature and thermal stresses in pressure thick-walled elements using a new design thermometer
  publication-title: Energies
– volume: 235
  start-page: 121325
  year: 2021
  ident: bib3
  article-title: Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation
  publication-title: Energy
– start-page: 779
  year: 2007
  end-page: 839
  ident: bib35
  article-title: Numerical Recipes: the Art of Scientific computing
– volume: 236
  start-page: 121490
  year: 2021
  ident: bib2
  article-title: Electric water heater flexibility potential and activation impact in system operator perspective-Norwegian scenario case study
  publication-title: Energy
– volume: 87
  start-page: 241
  year: 2015
  end-page: 250
  ident: bib17
  article-title: Measurement of transient fluid temperature
  publication-title: Int J Therm Sci
– volume: 182
  start-page: 109679
  year: 2021
  ident: bib15
  article-title: Dynamic temperature measurement with a dual-thermocouple sensor based on a dual-head one-dimensional convolutional neural network
  publication-title: Measurement
– year: 2016 May 30
  ident: bib20
  article-title: inventors; Inthersoft Ltd., assignee. Thermocouple sensor for measuring rapidly changing fluid temperatures. Polish patent 225720
– volume: 96
  start-page: 452
  year: 2015
  end-page: 462
  ident: bib24
  article-title: Mathematical modeling and control of plate fin and tube heat exchangers
  publication-title: Energy Convers Manag
– volume: 138
  start-page: 668
  year: 2017
  end-page: 681
  ident: bib6
  article-title: Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: proportional flow rate control
  publication-title: Energy
– volume: 13
  start-page: 4039
  year: 2020
  ident: bib23
  article-title: Influence of the thermometer inertia on the quality of temperature control in a hot liquid tank heated with electric energy
  publication-title: Energies
– volume: 118
  start-page: 83
  year: 2021
  end-page: 89
  ident: bib29
  article-title: Tuning of linear active disturbance rejection controllers for second-order underdamped systems with time delay
  publication-title: ISA T
– volume: 127
  start-page: 103431
  year: 2020
  ident: bib34
  article-title: A physically based PID controller for the power manoeuvring of nuclear reactors
  publication-title: Prog Nucl Energy
– volume: 121
  start-page: 103214
  year: 2020
  ident: bib33
  article-title: Core outlet fuel temperature control of liquid molten salt reactor during load following operation
  publication-title: Prog Nucl Energy
– volume: 61
  start-page: 453
  year: 2018
  end-page: 458
  ident: bib16
  article-title: A platinum thin-film resistance thermometer
  publication-title: Instrum and Exper Tech-U
– year: 2010
  ident: bib12
  article-title: Advanced temperature measurement and control
– volume: 231
  start-page: 120906
  year: 2021
  ident: bib8
  article-title: Dynamic behavior and stability of energy efficient electro-magnetic suspension of rotors involving time delay
  publication-title: Energy
– volume: 153
  start-page: 106395
  year: 2020
  ident: bib27
  article-title: Real-time estimation of thermal boundary of unsteady heat conduction system using PID algorithm
  publication-title: Int J Therm Sci
– volume: 173
  start-page: 342
  year: 2021
  end-page: 350
  ident: bib31
  article-title: Direct approach to optimize PID controller parameters of hydropower plants
  publication-title: Renew Energy
– volume: 31
  start-page: 105
  year: 1996
  end-page: 111
  ident: bib40
  article-title: A semi-numerical method for solving inverse heat conduction problems
  publication-title: Heat Mass Tran
– year: 2020
  ident: bib26
  article-title: PID control system design and automatic tuning using Matlab/Simulink
– volume: 53–2
  start-page: 2189
  year: 2020
  end-page: 2194
  ident: bib28
  article-title: PID control of nonlinear stochastic systems with structural uncertainties
  publication-title: IFAC PapersOnLine
– volume: 204
  start-page: 117951
  year: 2020
  ident: bib5
  article-title: Optimal scheduling of gas and electricity consumption in a smart home with a hybrid gas boiler and electric heating system
  publication-title: Energy
– start-page: 566
  year: 2004
  end-page: 607
  ident: bib38
  article-title: System dynamics
– year: 2014
  ident: bib1
  article-title: Solar energy Engineering processes and systems
– start-page: 151
  year: 2009
  end-page: 168
  ident: bib37
  article-title: Process identification and PID control
– volume: 210
  start-page: 118528
  year: 2020
  ident: bib4
  article-title: Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit
  publication-title: Energy
– volume: 195
  start-page: 117234
  year: 2021
  ident: bib30
  article-title: High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions
  publication-title: Appl Therm Eng
– volume: 228
  start-page: 120560
  year: 2021
  ident: bib7
  article-title: Experimental verification of a vehicle-to-grid charger for power grid load variance reduction
  publication-title: Energy
– reference: .
– year: 1996 Jan 18
  ident: bib22
  article-title: Heraeus Sensor GmbH, assignee. Fast response temperature probe especially for measuring temperature in range minus forty to plus one thousand degrees centigrade
– start-page: 217
  year: 2011
  end-page: 232
  ident: bib39
  article-title: Process dynamics and control
– volume: 153
  start-page: 493
  year: 2019
  end-page: 500
  ident: bib14
  article-title: A method to measure the tube-wall temperature in CFB boilers
  publication-title: Appl Therm Eng
– year: 2001
  ident: bib10
  article-title: Temperature measurement
– volume: 29
  start-page: 3374
  year: 2009
  end-page: 3379
  ident: bib18
  article-title: Measuring transient temperature of the medium in power engineering machines and installations
  publication-title: Appl Therm Eng
– year: 2019
  ident: bib25
  article-title: Analytical design of PID controllers
– reference: Wang P, Chen Z, Wan J, Wu S. A multiple-model based internal model control method for power control of small pressurized water reactors. Energy; 210: 118527.
– reference: Baerts Ch, Van Gerwen P, inventors; Heraeus Electro-Nite Int., assignee. Method for decreasing the response time of a temperature sensor. European patent EP 1 069 416 A1. 2001 Jan 17. Germany.
– year: 2001
  ident: bib11
  article-title: Practical temperature measurement
– volume: 137
  start-page: 110623
  year: 2021
  ident: bib32
  article-title: Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant
  publication-title: Renew Sustain Energy Rev
– year: 1996
  ident: 10.1016/j.energy.2021.122771_bib22
– volume: 195
  start-page: 117234
  year: 2021
  ident: 10.1016/j.energy.2021.122771_bib30
  article-title: High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117234
– volume: 204
  start-page: 117951
  year: 2020
  ident: 10.1016/j.energy.2021.122771_bib5
  article-title: Optimal scheduling of gas and electricity consumption in a smart home with a hybrid gas boiler and electric heating system
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117951
– start-page: 217
  year: 2011
  ident: 10.1016/j.energy.2021.122771_bib39
– year: 2016
  ident: 10.1016/j.energy.2021.122771_bib20
– volume: 53–2
  start-page: 2189
  year: 2020
  ident: 10.1016/j.energy.2021.122771_bib28
  article-title: PID control of nonlinear stochastic systems with structural uncertainties
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2020.12.002
– year: 2001
  ident: 10.1016/j.energy.2021.122771_bib10
– volume: 228
  start-page: 120560
  year: 2021
  ident: 10.1016/j.energy.2021.122771_bib7
  article-title: Experimental verification of a vehicle-to-grid charger for power grid load variance reduction
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120560
– volume: 31
  start-page: 105
  year: 1996
  ident: 10.1016/j.energy.2021.122771_bib40
  article-title: A semi-numerical method for solving inverse heat conduction problems
  publication-title: Heat Mass Tran
  doi: 10.1007/BF02333307
– volume: 153
  start-page: 106395
  year: 2020
  ident: 10.1016/j.energy.2021.122771_bib27
  article-title: Real-time estimation of thermal boundary of unsteady heat conduction system using PID algorithm
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2020.106395
– volume: 138
  start-page: 668
  year: 2017
  ident: 10.1016/j.energy.2021.122771_bib6
  article-title: Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: proportional flow rate control
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.109
– start-page: 51
  year: 2007
  ident: 10.1016/j.energy.2021.122771_bib36
– volume: 12
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2021.122771_bib19
  article-title: Determination of transient fluid temperature and thermal stresses in pressure thick-walled elements using a new design thermometer
  publication-title: Energies
  doi: 10.3390/en12020222
– volume: 61
  start-page: 453
  issue: 3
  year: 2018
  ident: 10.1016/j.energy.2021.122771_bib16
  article-title: A platinum thin-film resistance thermometer
  publication-title: Instrum and Exper Tech-U
  doi: 10.1134/S0020441218030120
– year: 2010
  ident: 10.1016/j.energy.2021.122771_bib12
– volume: 235
  start-page: 121325
  year: 2021
  ident: 10.1016/j.energy.2021.122771_bib3
  article-title: Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121325
– start-page: 779
  year: 2007
  ident: 10.1016/j.energy.2021.122771_bib35
– volume: 13
  start-page: 4039
  issue: 15
  year: 2020
  ident: 10.1016/j.energy.2021.122771_bib23
  article-title: Influence of the thermometer inertia on the quality of temperature control in a hot liquid tank heated with electric energy
  publication-title: Energies
  doi: 10.3390/en13154039
– volume: 182
  start-page: 109679
  year: 2021
  ident: 10.1016/j.energy.2021.122771_bib15
  article-title: Dynamic temperature measurement with a dual-thermocouple sensor based on a dual-head one-dimensional convolutional neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109679
– year: 2010
  ident: 10.1016/j.energy.2021.122771_bib13
– year: 2019
  ident: 10.1016/j.energy.2021.122771_bib25
– volume: 137
  start-page: 110623
  year: 2021
  ident: 10.1016/j.energy.2021.122771_bib32
  article-title: Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110623
– volume: 121
  start-page: 103214
  year: 2020
  ident: 10.1016/j.energy.2021.122771_bib33
  article-title: Core outlet fuel temperature control of liquid molten salt reactor during load following operation
  publication-title: Prog Nucl Energy
  doi: 10.1016/j.pnucene.2019.103214
– start-page: 151
  year: 2009
  ident: 10.1016/j.energy.2021.122771_bib37
– start-page: 566
  year: 2004
  ident: 10.1016/j.energy.2021.122771_bib38
– volume: 231
  start-page: 120906
  year: 2021
  ident: 10.1016/j.energy.2021.122771_bib8
  article-title: Dynamic behavior and stability of energy efficient electro-magnetic suspension of rotors involving time delay
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120906
– ident: 10.1016/j.energy.2021.122771_bib9
  doi: 10.1016/j.energy.2020.118527
– volume: 96
  start-page: 452
  year: 2015
  ident: 10.1016/j.energy.2021.122771_bib24
  article-title: Mathematical modeling and control of plate fin and tube heat exchangers
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.03.015
– year: 2001
  ident: 10.1016/j.energy.2021.122771_bib11
– volume: 210
  start-page: 118528
  year: 2020
  ident: 10.1016/j.energy.2021.122771_bib4
  article-title: Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118528
– volume: 29
  start-page: 3374
  issue: 16
  year: 2009
  ident: 10.1016/j.energy.2021.122771_bib18
  article-title: Measuring transient temperature of the medium in power engineering machines and installations
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2009.05.013
– year: 2014
  ident: 10.1016/j.energy.2021.122771_bib1
– volume: 153
  start-page: 493
  year: 2019
  ident: 10.1016/j.energy.2021.122771_bib14
  article-title: A method to measure the tube-wall temperature in CFB boilers
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.03.055
– year: 2020
  ident: 10.1016/j.energy.2021.122771_bib26
– ident: 10.1016/j.energy.2021.122771_bib21
– volume: 118
  start-page: 83
  year: 2021
  ident: 10.1016/j.energy.2021.122771_bib29
  article-title: Tuning of linear active disturbance rejection controllers for second-order underdamped systems with time delay
  publication-title: ISA T
  doi: 10.1016/j.isatra.2021.02.011
– volume: 127
  start-page: 103431
  year: 2020
  ident: 10.1016/j.energy.2021.122771_bib34
  article-title: A physically based PID controller for the power manoeuvring of nuclear reactors
  publication-title: Prog Nucl Energy
  doi: 10.1016/j.pnucene.2020.103431
– volume: 236
  start-page: 121490
  year: 2021
  ident: 10.1016/j.energy.2021.122771_bib2
  article-title: Electric water heater flexibility potential and activation impact in system operator perspective-Norwegian scenario case study
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121490
– volume: 173
  start-page: 342
  year: 2021
  ident: 10.1016/j.energy.2021.122771_bib31
  article-title: Direct approach to optimize PID controller parameters of hydropower plants
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.03.129
– volume: 87
  start-page: 241
  year: 2015
  ident: 10.1016/j.energy.2021.122771_bib17
  article-title: Measurement of transient fluid temperature
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2014.09.002
SSID ssj0005899
Score 2.4842687
Snippet A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122771
SubjectTerms A mathematical model of the thermometer
Conduction heating
Conductive heat transfer
Control stability
Control systems
Controllers
Digital filters
Digital smoothing of thermometer readings
Domestic water heater
Electric filters
energy
Fluid filters
Fluid temperature control
Fluid temperature measurement
heat transfer
Inverse problems
liquids
Proportional integral derivative
Quotients
Random errors
thermometers
Water temperature
Title Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications
URI https://dx.doi.org/10.1016/j.energy.2021.122771
https://www.proquest.com/docview/2624986298
https://www.proquest.com/docview/2636822658
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAXRAsVC21lJK7ubhw73j1W21ZbEBUSVOrN8isldDcp2d1DL_0N_GRmHGd5SKgSt8gZO5HHnvnGngch76wHrmamZOOilExIBXsO1ACbqImRpXCgkvFA_-NlMbsS76_l9RaZ9rEw6FaZZH8n06O0Ti3DNJvDu6oafgbZC3hDcI6VsnhMuy2EwioGxw-_uXmMYw1JJGZI3YfPRR-vEOPrwErk2XHGuVLZv9TTX4I6ap_z5-RZgo30pPuzXbIV6j3ypI8qXu6R_bNfEWtAmLbs8gX5Me2c0WlTUgB7FHNRpUTKtKpj09dmRefV93XlKUDFW2rvKbrD31BDfXWDVUXop4tTmrza56HFx1jmE4lwBFB4vlnQ0LZNu9x8CZbDolmgvw3Fm_F0OPiSXJ2ffZnOWCrDwFxeqBUz0nuXO7DjrMlKY6y3sgReZj5YAF8WAIkXDma69EIFMOGM4zCjfpwFI1UY5ftku27q8IpQKZwJuVEqOCNEGMEouQFz3vFSOVPaAcn72dcu5SjHUhlz3TujfdMdzzTyTHc8GxC26XXX5eh4hF71jNV_rDUNauSRngf9OtBpry81L8CEBcNwMh6Qt5vXsEvx6sXUoVkjTV4AFAO49_q_P_6GPOUYezHKWCYPyPaqXYdDQEQrexSX_BHZObn4MLv8CfKZDrE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigXBIWKhQJG4uru2rHj3SNaWm2hrZBopd4sv1JSdpM2u3vohd_AT2YmcZaHhCpxi5yxE3nsmW_seRDyzgXgKrcFG-eFYlJp2HOgBthET6wqpAeVjAf6p2f57EJ-vFSXW2Tax8KgW2WS_Z1Mb6V1ahmm2RzelOXwC8hewBtSCKyUJTDt9gOphEYL7OD7b34e47aIJFIzJO_j51onr9gG2IGZKPgBF9CZ_0s__SWpW_Vz9Jg8SriRvu9-7QnZitUu2enDipe7ZO_wV8gaEKY9u3xKfkw7b3RaFxTQHsVkVCmTMi2rtulrvaLz8nZdBgpY8Rt1dxT94a-opaG8wrIi9PPxB5rc2uexwce2zicS4Qig8UK9oLFp6ma5-RKsh0W9QIcbilfj6XTwGbk4Ojyfzliqw8B8lusVsyoEn3kw5JzlhbUuOFUAM3mIDtCXA0QSpIeZLoLUEWw46wXMaBjzaJWOo2yPbFd1FZ8TqqS3MbNaR2-ljCMYJbNgz3tRaG8LNyBZP_vGpyTlWCtjbnpvtGvT8cwgz0zHswFhm143XZKOe-h1z1jzx2IzoEfu6bnfrwOTNvvSiBxsWLAMJ-MBebt5DdsU715sFes10mQ5YDHAey_---NvyM7s_PTEnByffXpJHgoMxBhxxtU-2V416_gK4NHKvW6X_08SkxBG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+the+temperature+in+the+hot+liquid+tank+by+using+a+digital+PID+controller+considering+the+random+errors+of+the+thermometer+indications&rft.jtitle=Energy+%28Oxford%29&rft.au=Taler%2C+Dawid&rft.au=Sobota%2C+Tomasz&rft.au=Jaremkiewicz%2C+Magdalena&rft.au=Taler%2C+Jan&rft.date=2022-01-15&rft.issn=0360-5442&rft.volume=239+p.122771-&rft_id=info:doi/10.1016%2Fj.energy.2021.122771&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon