Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications
A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's indications are subject to random errors. The water temperature is determined by solving the inverse problem for a thermometer in the form of a so...
Saved in:
| Published in | Energy (Oxford) Vol. 239; p. 122771 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.01.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 |
| DOI | 10.1016/j.energy.2021.122771 |
Cover
| Abstract | A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's indications are subject to random errors. The water temperature is determined by solving the inverse problem for a thermometer in the form of a solid cylinder inside which the temperature is measured. The water temperature is determined using a first or second-order thermometer model. The use of differential quotients to calculate the first or second derivative after time causes the controller to be unstable. To increase the stability of the PID system operation, digital filters were used to eliminate the influence of random disturbances of the temperature indicated by the thermometer. This ensures stable, much faster, and more accurate operation of the controller. The operation of the PID controller with the proposed technique for determining the medium temperature was illustrated by using the example of an electric storage heater in which the water temperature should be equal to the pre-set temperature. The novelty of the presented PID control system is the determination of the fluid temperature based on the solution of the inverse problem of heat conduction formulated for a thermometer. As a result, the speed and accuracy of the PID controller are significantly improved.
•The random errors in thermometer indication can make the PID controller inaccurate.•A novel inverse method for fluid temperature determination was developed.•A digital PID controller is resistant to random errors in thermometer indications.•A mathematical model of the hot water tank-thermometer system was developed.•The operation of the PID controller was tested for disturbed thermometer data. |
|---|---|
| AbstractList | A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's indications are subject to random errors. The water temperature is determined by solving the inverse problem for a thermometer in the form of a solid cylinder inside which the temperature is measured. The water temperature is determined using a first or second-order thermometer model. The use of differential quotients to calculate the first or second derivative after time causes the controller to be unstable. To increase the stability of the PID system operation, digital filters were used to eliminate the influence of random disturbances of the temperature indicated by the thermometer. This ensures stable, much faster, and more accurate operation of the controller. The operation of the PID controller with the proposed technique for determining the medium temperature was illustrated by using the example of an electric storage heater in which the water temperature should be equal to the pre-set temperature. The novelty of the presented PID control system is the determination of the fluid temperature based on the solution of the inverse problem of heat conduction formulated for a thermometer. As a result, the speed and accuracy of the PID controller are significantly improved. A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's indications are subject to random errors. The water temperature is determined by solving the inverse problem for a thermometer in the form of a solid cylinder inside which the temperature is measured. The water temperature is determined using a first or second-order thermometer model. The use of differential quotients to calculate the first or second derivative after time causes the controller to be unstable. To increase the stability of the PID system operation, digital filters were used to eliminate the influence of random disturbances of the temperature indicated by the thermometer. This ensures stable, much faster, and more accurate operation of the controller. The operation of the PID controller with the proposed technique for determining the medium temperature was illustrated by using the example of an electric storage heater in which the water temperature should be equal to the pre-set temperature. The novelty of the presented PID control system is the determination of the fluid temperature based on the solution of the inverse problem of heat conduction formulated for a thermometer. As a result, the speed and accuracy of the PID controller are significantly improved. •The random errors in thermometer indication can make the PID controller inaccurate.•A novel inverse method for fluid temperature determination was developed.•A digital PID controller is resistant to random errors in thermometer indications.•A mathematical model of the hot water tank-thermometer system was developed.•The operation of the PID controller was tested for disturbed thermometer data. |
| ArticleNumber | 122771 |
| Author | Taler, Jan Taler, Dawid Sobota, Tomasz Jaremkiewicz, Magdalena |
| Author_xml | – sequence: 1 givenname: Dawid surname: Taler fullname: Taler, Dawid email: dtaler@pk.edu.pl organization: Department of Thermal Processes, Air Protection, and Waste Utilization, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Ul. Warszawska 24, 31-155, Cracow, Poland – sequence: 2 givenname: Tomasz surname: Sobota fullname: Sobota, Tomasz email: tomasz.sobota@pk.edu.pl organization: Department of Thermal Processes, Air Protection, and Waste Utilization, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Ul. Warszawska 24, 31-155, Cracow, Poland – sequence: 3 givenname: Magdalena surname: Jaremkiewicz fullname: Jaremkiewicz, Magdalena email: mjaremkiewicz@pk.edu.pl organization: Department of Thermal Processes, Air Protection, and Waste Utilization, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Ul. Warszawska 24, 31-155, Cracow, Poland – sequence: 4 givenname: Jan orcidid: 0000-0002-6717-5599 surname: Taler fullname: Taler, Jan email: jan.taler@pk.edu.pl organization: Department of Energy, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Al. Jana Pawła II 37, 31-864, Cracow, Poland |
| BookMark | eNqFkc1u1DAUhS3USkxb3oCFJTZsMthO4iQskNDwV6lSu4C15dg3Mx4Se3rtIM1b8Mg4BLHoAla2rPMd33vOFbnwwQMhLznbcsblm-MWPOD-vBVM8C0Xomn4M7LhbVMWsmnrC7JhpWRFXVXiObmK8cgYq9uu25Cfu-AThpGGgaYD0ATTCVCnGYE6__vpEBId3ePsLE3af6f9mc7R-T3V1Lq9S3qkD7cfqFmNRsDlGp0FXESLA2pvw0QBMWD8-9MBcAoTpAw4b53RyWXuhlwOeozw4s95Tb59-vh196W4u_98u3t_V5hSNqnQtbWmNFXV9poPWve2r4eu6biFXnLW13VlK5O3HGzVgGiFNiKnY1sOum6Aldfk9ep7wvA4Q0xqctHAOGoPYY5KyFK2Qsi6zdJXT6THMKPP02WVqLpWim5RvV1VBkOMCIMyOZtlp4TajYoztZSljmotSy1lqbWsDFdP4BO6SeP5f9i7FYOc1A8HqKJx4A1Yh2CSssH92-AX-Q-1eQ |
| CitedBy_id | crossref_primary_10_3390_pr10010139 crossref_primary_10_1016_j_energy_2023_129035 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125622 crossref_primary_10_1002_ep_14530 crossref_primary_10_1016_j_jfranklin_2024_106806 crossref_primary_10_3390_en15062032 crossref_primary_10_1088_1742_6596_2711_1_012011 crossref_primary_10_3390_en15166085 crossref_primary_10_1016_j_applthermaleng_2022_119240 crossref_primary_10_1016_j_energy_2022_124042 crossref_primary_10_1016_j_energy_2025_134729 crossref_primary_10_1016_j_measurement_2024_115605 crossref_primary_10_1016_j_ijhydene_2023_04_049 crossref_primary_10_1016_j_applthermaleng_2024_124600 crossref_primary_10_1177_01423312241260107 crossref_primary_10_3390_app14146080 crossref_primary_10_1016_j_applthermaleng_2025_125864 crossref_primary_10_1016_j_jobe_2022_105809 crossref_primary_10_3390_pr12102137 crossref_primary_10_1016_j_eswa_2023_120752 crossref_primary_10_1016_j_mssp_2022_106516 crossref_primary_10_34088_kojose_1278657 crossref_primary_10_1016_j_jiec_2024_07_018 |
| Cites_doi | 10.1016/j.applthermaleng.2021.117234 10.1016/j.energy.2020.117951 10.1016/j.ifacol.2020.12.002 10.1016/j.energy.2021.120560 10.1007/BF02333307 10.1016/j.ijthermalsci.2020.106395 10.1016/j.energy.2017.07.109 10.3390/en12020222 10.1134/S0020441218030120 10.1016/j.energy.2021.121325 10.3390/en13154039 10.1016/j.measurement.2021.109679 10.1016/j.rser.2020.110623 10.1016/j.pnucene.2019.103214 10.1016/j.energy.2021.120906 10.1016/j.energy.2020.118527 10.1016/j.enconman.2015.03.015 10.1016/j.energy.2020.118528 10.1016/j.applthermaleng.2009.05.013 10.1016/j.applthermaleng.2019.03.055 10.1016/j.isatra.2021.02.011 10.1016/j.pnucene.2020.103431 10.1016/j.energy.2021.121490 10.1016/j.renene.2021.03.129 10.1016/j.ijthermalsci.2014.09.002 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 15, 2022 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 15, 2022 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2021.122771 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2021_122771 S0360544221030206 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AATTM AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-a5ddc3c448ba1faabdb5f9791deb610b554d4c005fd47e282ac2202d81ea57e03 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 |
| IngestDate | Thu Oct 02 21:41:42 EDT 2025 Wed Aug 13 03:19:29 EDT 2025 Wed Oct 01 00:59:35 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Sat Nov 16 15:58:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fluid temperature control Fluid temperature measurement A mathematical model of the thermometer Digital smoothing of thermometer readings Domestic water heater |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-a5ddc3c448ba1faabdb5f9791deb610b554d4c005fd47e282ac2202d81ea57e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6717-5599 |
| PQID | 2624986298 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2636822658 proquest_journals_2624986298 crossref_citationtrail_10_1016_j_energy_2021_122771 crossref_primary_10_1016_j_energy_2021_122771 elsevier_sciencedirect_doi_10_1016_j_energy_2021_122771 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-15 |
| PublicationDateYYYYMMDD | 2022-01-15 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | (bib13) 2010 Zarei (bib34) 2020; 127 Ingham, Dunn, Heinzle, Přenosil, Snape (bib36) 2007 Taler, Sobota, Jaremkiewicz, Taler (bib23) 2020; 13 Díaz-Rodríguez, Han, Bhattacharyya (bib25) 2019 Zeng, Jiang, Xie, Yu (bib33) 2020; 121 Wang P, Chen Z, Wan J, Wu S. A multiple-model based internal model control method for power control of small pressurized water reactors. Energy; 210: 118527. Dietmann, Wienand, inventors (bib22) 1996 Jan 18 Sung, Lee, Lee (bib37) 2009 Seborg, Edgar, Mellichamp, Doyle (bib39) 2011 Kalogirou (bib1) 2014 Tan, Ramachandaramurthy, Yong, Tariq (bib7) 2021; 228 Taler (bib24) 2015; 96 Çetin, Özkaraca, Keçebaş (bib32) 2021; 137 Liang, Sang, Wua, Zhang, Zhao (bib30) 2021; 195 Taler, Taler, Jaremkiewicz, Sobota (bib20) 2016 May 30 Soni, Dutt, Das (bib8) 2021; 231 Wan, Xu, Wang, Yang, Li (bib27) 2020; 153 Li, Cui, Jin, Yu, Wang (bib15) 2021; 182 Wang, Liu, Li, Zhou, Wu (bib5) 2020; 204 Wang (bib26) 2020 Lakshmanan, Sæle, Degefa (bib2) 2021; 236 Wang, Tan, Cui (bib29) 2021; 118 Michalski, Eckersdorf, Kucharski, McGhee (bib10) 2001 Taler (bib40) 1996; 31 Araújo, Pereira (bib6) 2017; 138 . Jaremkiewicz, Taler, Dzierwa, Taler (bib19) 2019; 12 Baerts Ch, Van Gerwen P, inventors; Heraeus Electro-Nite Int., assignee. Method for decreasing the response time of a temperature sensor. European patent EP 1 069 416 A1. 2001 Jan 17. Germany. Zhang, Guo (bib28) 2020; 53–2 Jaremkiewicz, Taler, Sobota (bib17) 2015; 87 Yu, Yang, Yu, Zhang, Tian (bib31) 2021; 173 Jaremkiewicz, Taler, Sobota (bib18) 2009; 29 Childs (bib11) 2001 Yao, Cai, Zhang, Zhang, Yang, Lyu (bib14) 2019; 153 Ogata (bib38) 2004 McMillan (bib12) 2010 Behzadi, Arabkoohsar (bib4) 2020; 210 Yildiz, Bilbao, Roberts, Heslop, Dore, Bruce, MacGill, Egan, Sproul (bib3) 2021; 235 Golub, Zhilin, Rylov (bib16) 2018; 61 Press, Teukolsky, Vetterling, Flannery (bib35) 2007 Jaremkiewicz (10.1016/j.energy.2021.122771_bib17) 2015; 87 Zhang (10.1016/j.energy.2021.122771_bib28) 2020; 53–2 Golub (10.1016/j.energy.2021.122771_bib16) 2018; 61 Tan (10.1016/j.energy.2021.122771_bib7) 2021; 228 Ingham (10.1016/j.energy.2021.122771_bib36) 2007 Wang (10.1016/j.energy.2021.122771_bib5) 2020; 204 Jaremkiewicz (10.1016/j.energy.2021.122771_bib18) 2009; 29 Taler (10.1016/j.energy.2021.122771_bib20) 2016 Wan (10.1016/j.energy.2021.122771_bib27) 2020; 153 10.1016/j.energy.2021.122771_bib9 Taler (10.1016/j.energy.2021.122771_bib40) 1996; 31 Wang (10.1016/j.energy.2021.122771_bib26) 2020 Li (10.1016/j.energy.2021.122771_bib15) 2021; 182 Jaremkiewicz (10.1016/j.energy.2021.122771_bib19) 2019; 12 Taler (10.1016/j.energy.2021.122771_bib23) 2020; 13 Araújo (10.1016/j.energy.2021.122771_bib6) 2017; 138 Ogata (10.1016/j.energy.2021.122771_bib38) 2004 Sung (10.1016/j.energy.2021.122771_bib37) 2009 Díaz-Rodríguez (10.1016/j.energy.2021.122771_bib25) 2019 Press (10.1016/j.energy.2021.122771_bib35) 2007 Çetin (10.1016/j.energy.2021.122771_bib32) 2021; 137 Seborg (10.1016/j.energy.2021.122771_bib39) 2011 Soni (10.1016/j.energy.2021.122771_bib8) 2021; 231 Kalogirou (10.1016/j.energy.2021.122771_bib1) 2014 McMillan (10.1016/j.energy.2021.122771_bib12) 2010 Zeng (10.1016/j.energy.2021.122771_bib33) 2020; 121 Lakshmanan (10.1016/j.energy.2021.122771_bib2) 2021; 236 Behzadi (10.1016/j.energy.2021.122771_bib4) 2020; 210 Childs (10.1016/j.energy.2021.122771_bib11) 2001 10.1016/j.energy.2021.122771_bib21 Yildiz (10.1016/j.energy.2021.122771_bib3) 2021; 235 Dietmann (10.1016/j.energy.2021.122771_bib22) 1996 Liang (10.1016/j.energy.2021.122771_bib30) 2021; 195 Zarei (10.1016/j.energy.2021.122771_bib34) 2020; 127 (10.1016/j.energy.2021.122771_bib13) 2010 Michalski (10.1016/j.energy.2021.122771_bib10) 2001 Wang (10.1016/j.energy.2021.122771_bib29) 2021; 118 Yu (10.1016/j.energy.2021.122771_bib31) 2021; 173 Yao (10.1016/j.energy.2021.122771_bib14) 2019; 153 Taler (10.1016/j.energy.2021.122771_bib24) 2015; 96 |
| References_xml | – year: 2010 ident: bib13 publication-title: ASME PTC 19.3 TW-2016 (Revision of ASME PTC 19.3 TW-2010). Thermowells. An American National standard – start-page: 51 year: 2007 end-page: 92 ident: bib36 article-title: Chemical Engineering dynamics: an introduction to modelling and computer simulation – volume: 12 start-page: 1 year: 2019 end-page: 21 ident: bib19 article-title: Determination of transient fluid temperature and thermal stresses in pressure thick-walled elements using a new design thermometer publication-title: Energies – volume: 235 start-page: 121325 year: 2021 ident: bib3 article-title: Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation publication-title: Energy – start-page: 779 year: 2007 end-page: 839 ident: bib35 article-title: Numerical Recipes: the Art of Scientific computing – volume: 236 start-page: 121490 year: 2021 ident: bib2 article-title: Electric water heater flexibility potential and activation impact in system operator perspective-Norwegian scenario case study publication-title: Energy – volume: 87 start-page: 241 year: 2015 end-page: 250 ident: bib17 article-title: Measurement of transient fluid temperature publication-title: Int J Therm Sci – volume: 182 start-page: 109679 year: 2021 ident: bib15 article-title: Dynamic temperature measurement with a dual-thermocouple sensor based on a dual-head one-dimensional convolutional neural network publication-title: Measurement – year: 2016 May 30 ident: bib20 article-title: inventors; Inthersoft Ltd., assignee. Thermocouple sensor for measuring rapidly changing fluid temperatures. Polish patent 225720 – volume: 96 start-page: 452 year: 2015 end-page: 462 ident: bib24 article-title: Mathematical modeling and control of plate fin and tube heat exchangers publication-title: Energy Convers Manag – volume: 138 start-page: 668 year: 2017 end-page: 681 ident: bib6 article-title: Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: proportional flow rate control publication-title: Energy – volume: 13 start-page: 4039 year: 2020 ident: bib23 article-title: Influence of the thermometer inertia on the quality of temperature control in a hot liquid tank heated with electric energy publication-title: Energies – volume: 118 start-page: 83 year: 2021 end-page: 89 ident: bib29 article-title: Tuning of linear active disturbance rejection controllers for second-order underdamped systems with time delay publication-title: ISA T – volume: 127 start-page: 103431 year: 2020 ident: bib34 article-title: A physically based PID controller for the power manoeuvring of nuclear reactors publication-title: Prog Nucl Energy – volume: 121 start-page: 103214 year: 2020 ident: bib33 article-title: Core outlet fuel temperature control of liquid molten salt reactor during load following operation publication-title: Prog Nucl Energy – volume: 61 start-page: 453 year: 2018 end-page: 458 ident: bib16 article-title: A platinum thin-film resistance thermometer publication-title: Instrum and Exper Tech-U – year: 2010 ident: bib12 article-title: Advanced temperature measurement and control – volume: 231 start-page: 120906 year: 2021 ident: bib8 article-title: Dynamic behavior and stability of energy efficient electro-magnetic suspension of rotors involving time delay publication-title: Energy – volume: 153 start-page: 106395 year: 2020 ident: bib27 article-title: Real-time estimation of thermal boundary of unsteady heat conduction system using PID algorithm publication-title: Int J Therm Sci – volume: 173 start-page: 342 year: 2021 end-page: 350 ident: bib31 article-title: Direct approach to optimize PID controller parameters of hydropower plants publication-title: Renew Energy – volume: 31 start-page: 105 year: 1996 end-page: 111 ident: bib40 article-title: A semi-numerical method for solving inverse heat conduction problems publication-title: Heat Mass Tran – year: 2020 ident: bib26 article-title: PID control system design and automatic tuning using Matlab/Simulink – volume: 53–2 start-page: 2189 year: 2020 end-page: 2194 ident: bib28 article-title: PID control of nonlinear stochastic systems with structural uncertainties publication-title: IFAC PapersOnLine – volume: 204 start-page: 117951 year: 2020 ident: bib5 article-title: Optimal scheduling of gas and electricity consumption in a smart home with a hybrid gas boiler and electric heating system publication-title: Energy – start-page: 566 year: 2004 end-page: 607 ident: bib38 article-title: System dynamics – year: 2014 ident: bib1 article-title: Solar energy Engineering processes and systems – start-page: 151 year: 2009 end-page: 168 ident: bib37 article-title: Process identification and PID control – volume: 210 start-page: 118528 year: 2020 ident: bib4 article-title: Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit publication-title: Energy – volume: 195 start-page: 117234 year: 2021 ident: bib30 article-title: High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions publication-title: Appl Therm Eng – volume: 228 start-page: 120560 year: 2021 ident: bib7 article-title: Experimental verification of a vehicle-to-grid charger for power grid load variance reduction publication-title: Energy – reference: . – year: 1996 Jan 18 ident: bib22 article-title: Heraeus Sensor GmbH, assignee. Fast response temperature probe especially for measuring temperature in range minus forty to plus one thousand degrees centigrade – start-page: 217 year: 2011 end-page: 232 ident: bib39 article-title: Process dynamics and control – volume: 153 start-page: 493 year: 2019 end-page: 500 ident: bib14 article-title: A method to measure the tube-wall temperature in CFB boilers publication-title: Appl Therm Eng – year: 2001 ident: bib10 article-title: Temperature measurement – volume: 29 start-page: 3374 year: 2009 end-page: 3379 ident: bib18 article-title: Measuring transient temperature of the medium in power engineering machines and installations publication-title: Appl Therm Eng – year: 2019 ident: bib25 article-title: Analytical design of PID controllers – reference: Wang P, Chen Z, Wan J, Wu S. A multiple-model based internal model control method for power control of small pressurized water reactors. Energy; 210: 118527. – reference: Baerts Ch, Van Gerwen P, inventors; Heraeus Electro-Nite Int., assignee. Method for decreasing the response time of a temperature sensor. European patent EP 1 069 416 A1. 2001 Jan 17. Germany. – year: 2001 ident: bib11 article-title: Practical temperature measurement – volume: 137 start-page: 110623 year: 2021 ident: bib32 article-title: Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant publication-title: Renew Sustain Energy Rev – year: 1996 ident: 10.1016/j.energy.2021.122771_bib22 – volume: 195 start-page: 117234 year: 2021 ident: 10.1016/j.energy.2021.122771_bib30 article-title: High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.117234 – volume: 204 start-page: 117951 year: 2020 ident: 10.1016/j.energy.2021.122771_bib5 article-title: Optimal scheduling of gas and electricity consumption in a smart home with a hybrid gas boiler and electric heating system publication-title: Energy doi: 10.1016/j.energy.2020.117951 – start-page: 217 year: 2011 ident: 10.1016/j.energy.2021.122771_bib39 – year: 2016 ident: 10.1016/j.energy.2021.122771_bib20 – volume: 53–2 start-page: 2189 year: 2020 ident: 10.1016/j.energy.2021.122771_bib28 article-title: PID control of nonlinear stochastic systems with structural uncertainties publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2020.12.002 – year: 2001 ident: 10.1016/j.energy.2021.122771_bib10 – volume: 228 start-page: 120560 year: 2021 ident: 10.1016/j.energy.2021.122771_bib7 article-title: Experimental verification of a vehicle-to-grid charger for power grid load variance reduction publication-title: Energy doi: 10.1016/j.energy.2021.120560 – volume: 31 start-page: 105 year: 1996 ident: 10.1016/j.energy.2021.122771_bib40 article-title: A semi-numerical method for solving inverse heat conduction problems publication-title: Heat Mass Tran doi: 10.1007/BF02333307 – volume: 153 start-page: 106395 year: 2020 ident: 10.1016/j.energy.2021.122771_bib27 article-title: Real-time estimation of thermal boundary of unsteady heat conduction system using PID algorithm publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2020.106395 – volume: 138 start-page: 668 year: 2017 ident: 10.1016/j.energy.2021.122771_bib6 article-title: Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: proportional flow rate control publication-title: Energy doi: 10.1016/j.energy.2017.07.109 – start-page: 51 year: 2007 ident: 10.1016/j.energy.2021.122771_bib36 – volume: 12 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.energy.2021.122771_bib19 article-title: Determination of transient fluid temperature and thermal stresses in pressure thick-walled elements using a new design thermometer publication-title: Energies doi: 10.3390/en12020222 – volume: 61 start-page: 453 issue: 3 year: 2018 ident: 10.1016/j.energy.2021.122771_bib16 article-title: A platinum thin-film resistance thermometer publication-title: Instrum and Exper Tech-U doi: 10.1134/S0020441218030120 – year: 2010 ident: 10.1016/j.energy.2021.122771_bib12 – volume: 235 start-page: 121325 year: 2021 ident: 10.1016/j.energy.2021.122771_bib3 article-title: Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation publication-title: Energy doi: 10.1016/j.energy.2021.121325 – start-page: 779 year: 2007 ident: 10.1016/j.energy.2021.122771_bib35 – volume: 13 start-page: 4039 issue: 15 year: 2020 ident: 10.1016/j.energy.2021.122771_bib23 article-title: Influence of the thermometer inertia on the quality of temperature control in a hot liquid tank heated with electric energy publication-title: Energies doi: 10.3390/en13154039 – volume: 182 start-page: 109679 year: 2021 ident: 10.1016/j.energy.2021.122771_bib15 article-title: Dynamic temperature measurement with a dual-thermocouple sensor based on a dual-head one-dimensional convolutional neural network publication-title: Measurement doi: 10.1016/j.measurement.2021.109679 – year: 2010 ident: 10.1016/j.energy.2021.122771_bib13 – year: 2019 ident: 10.1016/j.energy.2021.122771_bib25 – volume: 137 start-page: 110623 year: 2021 ident: 10.1016/j.energy.2021.122771_bib32 article-title: Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110623 – volume: 121 start-page: 103214 year: 2020 ident: 10.1016/j.energy.2021.122771_bib33 article-title: Core outlet fuel temperature control of liquid molten salt reactor during load following operation publication-title: Prog Nucl Energy doi: 10.1016/j.pnucene.2019.103214 – start-page: 151 year: 2009 ident: 10.1016/j.energy.2021.122771_bib37 – start-page: 566 year: 2004 ident: 10.1016/j.energy.2021.122771_bib38 – volume: 231 start-page: 120906 year: 2021 ident: 10.1016/j.energy.2021.122771_bib8 article-title: Dynamic behavior and stability of energy efficient electro-magnetic suspension of rotors involving time delay publication-title: Energy doi: 10.1016/j.energy.2021.120906 – ident: 10.1016/j.energy.2021.122771_bib9 doi: 10.1016/j.energy.2020.118527 – volume: 96 start-page: 452 year: 2015 ident: 10.1016/j.energy.2021.122771_bib24 article-title: Mathematical modeling and control of plate fin and tube heat exchangers publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.03.015 – year: 2001 ident: 10.1016/j.energy.2021.122771_bib11 – volume: 210 start-page: 118528 year: 2020 ident: 10.1016/j.energy.2021.122771_bib4 article-title: Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit publication-title: Energy doi: 10.1016/j.energy.2020.118528 – volume: 29 start-page: 3374 issue: 16 year: 2009 ident: 10.1016/j.energy.2021.122771_bib18 article-title: Measuring transient temperature of the medium in power engineering machines and installations publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2009.05.013 – year: 2014 ident: 10.1016/j.energy.2021.122771_bib1 – volume: 153 start-page: 493 year: 2019 ident: 10.1016/j.energy.2021.122771_bib14 article-title: A method to measure the tube-wall temperature in CFB boilers publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.03.055 – year: 2020 ident: 10.1016/j.energy.2021.122771_bib26 – ident: 10.1016/j.energy.2021.122771_bib21 – volume: 118 start-page: 83 year: 2021 ident: 10.1016/j.energy.2021.122771_bib29 article-title: Tuning of linear active disturbance rejection controllers for second-order underdamped systems with time delay publication-title: ISA T doi: 10.1016/j.isatra.2021.02.011 – volume: 127 start-page: 103431 year: 2020 ident: 10.1016/j.energy.2021.122771_bib34 article-title: A physically based PID controller for the power manoeuvring of nuclear reactors publication-title: Prog Nucl Energy doi: 10.1016/j.pnucene.2020.103431 – volume: 236 start-page: 121490 year: 2021 ident: 10.1016/j.energy.2021.122771_bib2 article-title: Electric water heater flexibility potential and activation impact in system operator perspective-Norwegian scenario case study publication-title: Energy doi: 10.1016/j.energy.2021.121490 – volume: 173 start-page: 342 year: 2021 ident: 10.1016/j.energy.2021.122771_bib31 article-title: Direct approach to optimize PID controller parameters of hydropower plants publication-title: Renew Energy doi: 10.1016/j.renene.2021.03.129 – volume: 87 start-page: 241 year: 2015 ident: 10.1016/j.energy.2021.122771_bib17 article-title: Measurement of transient fluid temperature publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2014.09.002 |
| SSID | ssj0005899 |
| Score | 2.4842687 |
| Snippet | A digital PID (Proportional-Integral-Derivative) controller to maintain a constant hot water temperature in the tank was proposed. The thermometer's... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122771 |
| SubjectTerms | A mathematical model of the thermometer Conduction heating Conductive heat transfer Control stability Control systems Controllers Digital filters Digital smoothing of thermometer readings Domestic water heater Electric filters energy Fluid filters Fluid temperature control Fluid temperature measurement heat transfer Inverse problems liquids Proportional integral derivative Quotients Random errors thermometers Water temperature |
| Title | Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications |
| URI | https://dx.doi.org/10.1016/j.energy.2021.122771 https://www.proquest.com/docview/2624986298 https://www.proquest.com/docview/2636822658 |
| Volume | 239 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAXRAsVC21lJK7ubhw73j1W21ZbEBUSVOrN8isldDcp2d1DL_0N_GRmHGd5SKgSt8gZO5HHnvnGngch76wHrmamZOOilExIBXsO1ACbqImRpXCgkvFA_-NlMbsS76_l9RaZ9rEw6FaZZH8n06O0Ti3DNJvDu6oafgbZC3hDcI6VsnhMuy2EwioGxw-_uXmMYw1JJGZI3YfPRR-vEOPrwErk2XHGuVLZv9TTX4I6ap_z5-RZgo30pPuzXbIV6j3ypI8qXu6R_bNfEWtAmLbs8gX5Me2c0WlTUgB7FHNRpUTKtKpj09dmRefV93XlKUDFW2rvKbrD31BDfXWDVUXop4tTmrza56HFx1jmE4lwBFB4vlnQ0LZNu9x8CZbDolmgvw3Fm_F0OPiSXJ2ffZnOWCrDwFxeqBUz0nuXO7DjrMlKY6y3sgReZj5YAF8WAIkXDma69EIFMOGM4zCjfpwFI1UY5ftku27q8IpQKZwJuVEqOCNEGMEouQFz3vFSOVPaAcn72dcu5SjHUhlz3TujfdMdzzTyTHc8GxC26XXX5eh4hF71jNV_rDUNauSRngf9OtBpry81L8CEBcNwMh6Qt5vXsEvx6sXUoVkjTV4AFAO49_q_P_6GPOUYezHKWCYPyPaqXYdDQEQrexSX_BHZObn4MLv8CfKZDrE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigXBIWKhQJG4uru2rHj3SNaWm2hrZBopd4sv1JSdpM2u3vohd_AT2YmcZaHhCpxi5yxE3nsmW_seRDyzgXgKrcFG-eFYlJp2HOgBthET6wqpAeVjAf6p2f57EJ-vFSXW2Tax8KgW2WS_Z1Mb6V1ahmm2RzelOXwC8hewBtSCKyUJTDt9gOphEYL7OD7b34e47aIJFIzJO_j51onr9gG2IGZKPgBF9CZ_0s__SWpW_Vz9Jg8SriRvu9-7QnZitUu2enDipe7ZO_wV8gaEKY9u3xKfkw7b3RaFxTQHsVkVCmTMi2rtulrvaLz8nZdBgpY8Rt1dxT94a-opaG8wrIi9PPxB5rc2uexwce2zicS4Qig8UK9oLFp6ma5-RKsh0W9QIcbilfj6XTwGbk4Ojyfzliqw8B8lusVsyoEn3kw5JzlhbUuOFUAM3mIDtCXA0QSpIeZLoLUEWw46wXMaBjzaJWOo2yPbFd1FZ8TqqS3MbNaR2-ljCMYJbNgz3tRaG8LNyBZP_vGpyTlWCtjbnpvtGvT8cwgz0zHswFhm143XZKOe-h1z1jzx2IzoEfu6bnfrwOTNvvSiBxsWLAMJ-MBebt5DdsU715sFes10mQ5YDHAey_---NvyM7s_PTEnByffXpJHgoMxBhxxtU-2V416_gK4NHKvW6X_08SkxBG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+the+temperature+in+the+hot+liquid+tank+by+using+a+digital+PID+controller+considering+the+random+errors+of+the+thermometer+indications&rft.jtitle=Energy+%28Oxford%29&rft.au=Taler%2C+Dawid&rft.au=Sobota%2C+Tomasz&rft.au=Jaremkiewicz%2C+Magdalena&rft.au=Taler%2C+Jan&rft.date=2022-01-15&rft.issn=0360-5442&rft.volume=239+p.122771-&rft_id=info:doi/10.1016%2Fj.energy.2021.122771&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |