A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles

The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to al...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 129; pp. 42 - 58
Main Authors Cavazzini, G., Bari, S., Pavesi, G., Ardizzon, G.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.06.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2017.04.090

Cover

Abstract The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid. The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Jaopt) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency. A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Jaopt and the corresponding value of Ω was also developed. •An PSO algorithm allowing for the dynamic choice of the working fluid is presented.•Thermodynamic optimizations for several heat source temperatures were carried out.•An effective parameter for choosing the best performing working fluids is presented.
AbstractList The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid.The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Jaopt) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency.A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Jaopt and the corresponding value of Ω was also developed.
The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid. The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Jaopt) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency. A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Jaopt and the corresponding value of Ω was also developed. •An PSO algorithm allowing for the dynamic choice of the working fluid is presented.•Thermodynamic optimizations for several heat source temperatures were carried out.•An effective parameter for choosing the best performing working fluids is presented.
Author Ardizzon, G.
Cavazzini, G.
Bari, S.
Pavesi, G.
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0000-0003-0829-0965
  surname: Cavazzini
  fullname: Cavazzini, G.
  email: giovanna.cavazzini@unipd.it
– sequence: 2
  givenname: S.
  orcidid: 0000-0003-2911-9569
  surname: Bari
  fullname: Bari, S.
– sequence: 3
  givenname: G.
  orcidid: 0000-0002-2315-4358
  surname: Pavesi
  fullname: Pavesi, G.
– sequence: 4
  givenname: G.
  orcidid: 0000-0003-1598-1115
  surname: Ardizzon
  fullname: Ardizzon, G.
BookMark eNqFkU2LFDEQhoOs4OzqP_AQ8OKle5NO-suDsAyrKyyM-HEO-aieyZhOxiQtzL837Xjag56Kqnqfonjfa3TlgweEXlNSU0K722MNHuL-XDeE9jXhNRnJM7ShQ8-qrh_aK7QhrCNVy3nzAl2ndCSEtMM4blC4w_Pisq0mt1iDP3_dVUomMFi6fYg2H2Y8hYjzAXACGfUBh-lPpyBlfIJYtrP0GtZ5WlSlC2S1dHgX99Jbjb9I_8N6wNuzdpBeoueTdAle_a036PuH-2_bh-px9_HT9u6x0qzrcyWZMf2kWuCDNGrUfGjGBvqRKKNaCqyfNDemVWPDNO-0IlPxQXZGKWg5Uw27QW8vd08x_FzKr2K2SYNz0kNYkmhWB2hH-lX65on0GJboy3eCjqyhQ9sMrKj4RaVjSCnCJE7RzjKeBSViTUEcxSUFsaYgCBclhYK9e4Jpm2W2wecorfsf_P4CQ3Hql4UokrZQzDY2gs7CBPvvA78BYByomw
CitedBy_id crossref_primary_10_1016_j_est_2021_102461
crossref_primary_10_3390_en14041158
crossref_primary_10_3390_en13071835
crossref_primary_10_1007_s10489_020_01630_6
crossref_primary_10_1016_j_enconman_2018_03_012
crossref_primary_10_1016_j_enconman_2019_111960
crossref_primary_10_1016_j_enconman_2019_112311
crossref_primary_10_3390_e20020089
crossref_primary_10_1016_j_applthermaleng_2020_115598
crossref_primary_10_1016_j_energy_2024_133629
crossref_primary_10_1016_j_energy_2017_11_003
crossref_primary_10_2118_223956_PA
crossref_primary_10_1016_j_enconman_2017_11_079
crossref_primary_10_1016_j_applthermaleng_2023_120903
crossref_primary_10_1007_s13369_018_3279_y
crossref_primary_10_1016_j_energy_2022_124884
crossref_primary_10_1016_j_egypro_2017_09_192
crossref_primary_10_1080_17452007_2018_1556577
crossref_primary_10_1016_j_egyai_2020_100011
crossref_primary_10_1002_aic_18643
crossref_primary_10_1142_S0218625X19501439
crossref_primary_10_3390_en15031138
crossref_primary_10_1051_matecconf_201713500015
crossref_primary_10_1016_j_apenergy_2020_115186
Cites_doi 10.1243/09576509JPE372
10.1007/s11431-014-5698-7
10.1016/j.energy.2012.05.030
10.1016/j.rser.2011.07.024
10.1016/S0360-5442(00)00063-3
10.1016/j.ins.2014.12.024
10.1016/j.applthermaleng.2006.04.024
10.1016/j.energy.2006.07.001
10.1016/j.energy.2014.02.050
10.1016/j.energy.2011.02.005
10.3390/en8099751
10.1016/j.energy.2013.11.056
10.1016/j.apenergy.2014.03.067
10.1016/j.energy.2007.01.005
10.1016/j.apenergy.2015.07.005
10.1016/j.enconman.2015.04.043
10.1016/j.cie.2005.01.022
10.1021/ie050351s
10.1016/j.energy.2012.11.010
10.1016/j.apenergy.2015.05.118
10.1016/j.enconman.2008.10.018
10.1016/j.energy.2014.06.012
10.1016/j.energy.2012.11.009
10.1016/j.energy.2016.02.128
10.1016/j.apenergy.2013.11.076
10.1016/j.energy.2014.07.038
10.1016/j.applthermaleng.2011.05.014
10.1016/j.apenergy.2008.09.001
10.1016/j.renene.2010.09.022
10.1016/j.enconman.2013.03.028
10.1016/j.enconman.2010.12.038
10.1016/j.rser.2013.01.028
10.1243/09576509JPE392
10.1016/j.energy.2011.03.041
10.1016/j.egypro.2015.03.220
10.1016/j.apenergy.2011.02.034
10.1016/j.rser.2010.07.006
10.1016/j.applthermaleng.2010.02.009
10.1016/j.energy.2009.06.019
10.1016/j.applthermaleng.2014.11.031
10.3390/e14020370
10.1016/j.renene.2012.06.006
10.1016/j.apenergy.2012.02.033
10.1016/j.apenergy.2012.12.030
10.1016/j.aej.2015.04.011
10.1016/j.applthermaleng.2012.10.042
10.1016/j.apenergy.2012.01.019
10.1016/j.energy.2004.01.004
10.1016/j.apenergy.2011.01.015
10.1016/j.energy.2013.09.068
10.1016/S1359-4311(00)00044-2
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Jun 15, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 15, 2017
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2017.04.090
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 58
ExternalDocumentID 10_1016_j_energy_2017_04_090
S0360544217306564
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-a3dd7fb5e48adb9c48292e790bdb51e37fc4dd5b923c46cb0f016a6dbbe543b23
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Sat Sep 27 16:57:13 EDT 2025
Wed Aug 13 11:21:51 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Wed Oct 01 01:34:45 EDT 2025
Fri Feb 23 02:32:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords System efficiency
Organic Rankine Cycles
Critical temperature
Waste heat
Working fluid
PSO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-a3dd7fb5e48adb9c48292e790bdb51e37fc4dd5b923c46cb0f016a6dbbe543b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2315-4358
0000-0003-0829-0965
0000-0003-1598-1115
0000-0003-2911-9569
PQID 1932185283
PQPubID 2045484
PageCount 17
ParticipantIDs proquest_miscellaneous_2000516072
proquest_journals_1932185283
crossref_primary_10_1016_j_energy_2017_04_090
crossref_citationtrail_10_1016_j_energy_2017_04_090
elsevier_sciencedirect_doi_10_1016_j_energy_2017_04_090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-15
PublicationDateYYYYMMDD 2017-06-15
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Drescher, Bruggemann (bib46) 2007; 27
Guo, Wang, Zhang (bib21) 2011; 36
Fiaschi, Manfrida, Maraschiello (bib6) 2012; 97
Khennich, Galanis (bib24) 2012; 14
Wang, Dai, Gao (bib2) 2009; 86
Li, Zhao, Lin, Qiang (bib52) 2015; 58
Astolfi (bib38) 2015; 69
Astolfi, Romano, Bombarda, Macchi (bib53) 2014; 66
Andersen, Bruno (bib11) 2005
Dai, Wang, Gao (bib22) 2009; 50
Qiu (bib8) 2012; 48
Kennedy, Eberhart (bib42) 1995
Maraver, Rogo, Lemort, Quoillin (bib50) 2014; 117
Saleh, Koglbauer, Wendland, Fischer (bib16) 2007; 32
Mago, Chamra, Somayaji (bib14) 2007; 221
Wang, Ling, Peng, Liu, Tao (bib13) 2013; 50
Xu, Yu (bib49) 2014; 74
Rao SS. Engineering Optimization – Theory and Practice. John Wiley & Sons, Inc., Hoboken, New Jersey. ISBN 978-0-470-18352-6.
ANSI/ASHRAE Standard 34 (bib45) 2013
Aljundi (bib48) 2011; 38
Wang, Zhang, Fubin, Songsong, Chang, Bei (bib33) 2015; 8
Liu, Chien, Wang (bib40) 2004; 29
Shi, Eberhart (bib43) 1999
Schuster, Karellas, Aumanna (bib56) 2010; 35
Yamamoto, Furuhata, Arai, Mori (bib18) 2001; 26
He, Liu, Zhou, Xie, Xu, Wu (bib47) 2014; 68
Quoilin, Declaye, Tchanche, Lemort (bib5) 2011; 31
Chen, Goswami, Stefanakos (bib12) 2010; 14
Maizza, Maizza (bib15) 2001; 21
Fan, Liang, Zahara (bib41) 2006; 50
Chys, van den Broek, Vanslambrouck, Paepe (bib10) 2012; 44
Andreasen, Larsen, Knudsen, Pierobon, Haglind (bib30) 2014; 73
Cavazzini, Dal Toso (bib37) 2015; 99
Xu, Liu (bib57) 2013; 63
Vivian, Manente, Lazzaretto (bib51) 2015; 156
Wang, Yan, Wang, Maa, Dai (bib25) 2013; 49
Quoilin, Aumann, Grill, Schuster, Lemort, Spliethoff (bib29) 2011; 88
Mahmoodabadi, Ghavimi, Mahmoudi (bib34) 2015; 54
Wang, Yan, Wang, Li, Dai (bib28) 2013; 71
Bailey, Worrell (bib1) 2005
Avadhanula, Lin (bib36) 2014; 136
Yu, Xu, Sun (bib58) 2014; 88
Cavazzini G, Bari S, Ardizzon G, Pavesi G. Thermodynamic optimization of Organic Rankine Cycles for low and ultra-low grade waste heat recovery applications: influence of the working fluid on the ORC net power output. 8th Int. Conf. on Energy Planning, Energy Saving, Environmental Education, 7–9 November 2015, Rome, Italy.
Pezzuolo, Benato, Stoppato, Mirandola (bib23) 2016; 102
Chang, Hung, He, Zhang (bib4) 2015; 155
Vetter, Wiemer, Kuhn (bib54) 2013; 51
Quoilin, Van Den Broek, Declaye, Dewallef, Lemort (bib3) 2013; 22
Shengjun, Huaixin, Tao (bib27) 2011; 88
Guo, Wang, Zhang (bib20) 2011; 52
Tchance, Lambrinos, Frangoudakis, Papadakis (bib55) 2011; 15
Ardizzon, Cavazzini, Pavesi (bib31) 2015; 299
Zheng, Zhao, Wang, Tan (bib7) 2013; 112
Kim, Ahn, Park, Rha (bib39) 2007; 221
Wang, Zhang, Fan, Ouyang, Zhao, Mu (bib17) 2011; 36
Zhao, Bao (bib9) 2014; 130
Wang, Zhao, Wang (bib35) 2012; 94
Lakew, Bolland (bib19) 2010; 30
Madhawa Hettiarachchi, Golubovic, Worek, Ikegami (bib26) 2007; 32
10.1016/j.energy.2017.04.090_bib32
Mahmoodabadi (10.1016/j.energy.2017.04.090_bib34) 2015; 54
Yu (10.1016/j.energy.2017.04.090_bib58) 2014; 88
Andersen (10.1016/j.energy.2017.04.090_bib11) 2005
Liu (10.1016/j.energy.2017.04.090_bib40) 2004; 29
Yamamoto (10.1016/j.energy.2017.04.090_bib18) 2001; 26
Saleh (10.1016/j.energy.2017.04.090_bib16) 2007; 32
Kim (10.1016/j.energy.2017.04.090_bib39) 2007; 221
Xu (10.1016/j.energy.2017.04.090_bib49) 2014; 74
Vetter (10.1016/j.energy.2017.04.090_bib54) 2013; 51
Guo (10.1016/j.energy.2017.04.090_bib20) 2011; 52
Quoilin (10.1016/j.energy.2017.04.090_bib5) 2011; 31
He (10.1016/j.energy.2017.04.090_bib47) 2014; 68
Shengjun (10.1016/j.energy.2017.04.090_bib27) 2011; 88
Astolfi (10.1016/j.energy.2017.04.090_bib38) 2015; 69
Zheng (10.1016/j.energy.2017.04.090_bib7) 2013; 112
Andreasen (10.1016/j.energy.2017.04.090_bib30) 2014; 73
Vivian (10.1016/j.energy.2017.04.090_bib51) 2015; 156
Wang (10.1016/j.energy.2017.04.090_bib25) 2013; 49
Wang (10.1016/j.energy.2017.04.090_bib17) 2011; 36
Cavazzini (10.1016/j.energy.2017.04.090_bib37) 2015; 99
Chang (10.1016/j.energy.2017.04.090_bib4) 2015; 155
Maizza (10.1016/j.energy.2017.04.090_bib15) 2001; 21
Madhawa Hettiarachchi (10.1016/j.energy.2017.04.090_bib26) 2007; 32
Shi (10.1016/j.energy.2017.04.090_bib43) 1999
Zhao (10.1016/j.energy.2017.04.090_bib9) 2014; 130
Dai (10.1016/j.energy.2017.04.090_bib22) 2009; 50
Avadhanula (10.1016/j.energy.2017.04.090_bib36) 2014; 136
Fan (10.1016/j.energy.2017.04.090_bib41) 2006; 50
Aljundi (10.1016/j.energy.2017.04.090_bib48) 2011; 38
Wang (10.1016/j.energy.2017.04.090_bib2) 2009; 86
Chen (10.1016/j.energy.2017.04.090_bib12) 2010; 14
ANSI/ASHRAE Standard 34 (10.1016/j.energy.2017.04.090_bib45) 2013
Drescher (10.1016/j.energy.2017.04.090_bib46) 2007; 27
Tchance (10.1016/j.energy.2017.04.090_bib55) 2011; 15
Wang (10.1016/j.energy.2017.04.090_bib35) 2012; 94
Ardizzon (10.1016/j.energy.2017.04.090_bib31) 2015; 299
Fiaschi (10.1016/j.energy.2017.04.090_bib6) 2012; 97
Xu (10.1016/j.energy.2017.04.090_bib57) 2013; 63
Quoilin (10.1016/j.energy.2017.04.090_bib29) 2011; 88
Guo (10.1016/j.energy.2017.04.090_bib21) 2011; 36
Maraver (10.1016/j.energy.2017.04.090_bib50) 2014; 117
Quoilin (10.1016/j.energy.2017.04.090_bib3) 2013; 22
Mago (10.1016/j.energy.2017.04.090_bib14) 2007; 221
10.1016/j.energy.2017.04.090_bib44
Wang (10.1016/j.energy.2017.04.090_bib33) 2015; 8
Khennich (10.1016/j.energy.2017.04.090_bib24) 2012; 14
Bailey (10.1016/j.energy.2017.04.090_bib1) 2005
Li (10.1016/j.energy.2017.04.090_bib52) 2015; 58
Wang (10.1016/j.energy.2017.04.090_bib13) 2013; 50
Pezzuolo (10.1016/j.energy.2017.04.090_bib23) 2016; 102
Kennedy (10.1016/j.energy.2017.04.090_bib42) 1995
Astolfi (10.1016/j.energy.2017.04.090_bib53) 2014; 66
Wang (10.1016/j.energy.2017.04.090_bib28) 2013; 71
Chys (10.1016/j.energy.2017.04.090_bib10) 2012; 44
Qiu (10.1016/j.energy.2017.04.090_bib8) 2012; 48
Schuster (10.1016/j.energy.2017.04.090_bib56) 2010; 35
Lakew (10.1016/j.energy.2017.04.090_bib19) 2010; 30
References_xml – volume: 97
  start-page: 601
  year: 2012
  end-page: 608
  ident: bib6
  article-title: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles
  publication-title: Appl Energy
– volume: 299
  start-page: 337
  year: 2015
  end-page: 378
  ident: bib31
  article-title: Adaptive acceleration coefficients for a new search diversification strategy in particle swarm optimization algorithms
  publication-title: Inf Sci
– volume: 49
  start-page: 356
  year: 2013
  end-page: 365
  ident: bib25
  article-title: Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source
  publication-title: Energy
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib42
  article-title: Particle swarm optimization
  publication-title: Proceeding of the IEEE Int Conf on Neural Networks, Perth, Australia
– volume: 15
  start-page: 3963
  year: 2011
  end-page: 3979
  ident: bib55
  article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications
  publication-title: Renew Sustain Energy Rev
– volume: 102
  start-page: 605
  year: 2016
  end-page: 620
  ident: bib23
  article-title: The ORC-PD: a versatile tool for fluid selection and Organic Rankine Cycle unit design
  publication-title: Energy
– volume: 71
  start-page: 146
  year: 2013
  end-page: 158
  ident: bib28
  article-title: Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm
  publication-title: Energy Convers Manag
– volume: 130
  start-page: 748
  year: 2014
  end-page: 756
  ident: bib9
  article-title: Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures
  publication-title: Appl Energy
– volume: 63
  start-page: 109
  year: 2013
  end-page: 122
  ident: bib57
  article-title: Effect of the critical temperature of organic fluids on supercritical pressure organic Rankine cycles
  publication-title: Energy
– volume: 50
  start-page: 343
  year: 2013
  end-page: 352
  ident: bib13
  article-title: Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation
  publication-title: Energy
– volume: 155
  start-page: 150
  year: 2015
  end-page: 159
  ident: bib4
  article-title: Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander
  publication-title: Appl Energy
– volume: 112
  start-page: 1265
  year: 2013
  end-page: 1274
  ident: bib7
  article-title: Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle
  publication-title: Appl Energy
– volume: 32
  start-page: 1210
  year: 2007
  end-page: 1221
  ident: bib16
  article-title: Working fluids for low-temperature organic Rankine cycles
  publication-title: Energy
– volume: 68
  start-page: 283
  year: 2014
  end-page: 291
  ident: bib47
  article-title: A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources
  publication-title: Energy
– volume: 30
  start-page: 1262
  year: 2010
  end-page: 1268
  ident: bib19
  article-title: Working fluids for low-temperature heat source
  publication-title: Appl Therm Eng
– volume: 52
  start-page: 2384
  year: 2011
  end-page: 2391
  ident: bib20
  article-title: Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system
  publication-title: Energy Convers Manag
– year: 2005
  ident: bib1
  article-title: Clean energy technologies: a preliminary inventory of the potential for electricity generation
– volume: 38
  start-page: 1196
  year: 2011
  end-page: 1202
  ident: bib48
  article-title: Effects of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle
  publication-title: Renew Energy
– volume: 58
  start-page: 138
  year: 2015
  end-page: 146
  ident: bib52
  article-title: Working fluid selection based on critical temperature and water temperature in Organic Rankine cycle
  publication-title: Sci China Technol Sci
– volume: 35
  start-page: 1033
  year: 2010
  end-page: 1039
  ident: bib56
  article-title: Efficiency optimization potential in supercritical organic rankine cycles
  publication-title: Energy
– volume: 51
  start-page: 871
  year: 2013
  end-page: 879
  ident: bib54
  article-title: Comparison of sub- and super-critical organic Rankine cycles for power generation from low-temperature/low enthalpy geothermal wells, considering specific net power output and efficiency
  publication-title: Appl Therm Eng
– volume: 31
  start-page: 2885
  year: 2011
  end-page: 2893
  ident: bib5
  article-title: Thermo-economic optimization of waste heat recovery Organic Rankine Cycles
  publication-title: Appl Therm Eng
– volume: 54
  start-page: 343
  year: 2015
  end-page: 350
  ident: bib34
  article-title: Optimization of power and heating systems based on a new hybrid algorithm
  publication-title: Alex Eng J
– volume: 14
  start-page: 3059
  year: 2010
  end-page: 3067
  ident: bib12
  article-title: A review of thermodynamic cycles and working fluids for the conversion of low-grade heat
  publication-title: Renew Sust Energy Rev
– volume: 88
  start-page: 2
  year: 2014
  end-page: 13
  ident: bib58
  article-title: Transcritical pressure Organic Rankine Cycle (ORC) analysis based on the integrated-average temperature difference in evaporators
  publication-title: Appl Therm Eng
– volume: 14
  start-page: 370
  year: 2012
  end-page: 389
  ident: bib24
  article-title: Optimal design of ORC systems with a low-temperature heat source
  publication-title: Entropy
– volume: 50
  start-page: 401
  year: 2006
  end-page: 425
  ident: bib41
  article-title: A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search
  publication-title: Comput Ind Eng
– volume: 27
  start-page: 223
  year: 2007
  end-page: 228
  ident: bib46
  article-title: Fluid selection for the organic Rnakine cycle (ORC) in biomass power and heat plants
  publication-title: Appl Therm Eng
– volume: 44
  start-page: 623
  year: 2012
  end-page: 632
  ident: bib10
  article-title: Potential of zeotropic mixtures as working fluids in organic Rankine cycles
  publication-title: Energy
– volume: 22
  start-page: 168
  year: 2013
  end-page: 186
  ident: bib3
  article-title: Techno-economic survey of organic rankine cycle (ORC) systems
  publication-title: Ren Sustain Energy Rev
– volume: 99
  start-page: 161
  year: 2015
  end-page: 175
  ident: bib37
  article-title: Techno-economic feasibility study of the integration of a commercial small-scale ORC in a real case study
  publication-title: Energy Convers Manag
– volume: 50
  start-page: 576
  year: 2009
  end-page: 582
  ident: bib22
  article-title: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery
  publication-title: Energy Convers Manag
– volume: 221
  start-page: 255
  year: 2007
  end-page: 263
  ident: bib14
  article-title: Performance analysis of different working fluids for use in organic Rankine cycles
  publication-title: Proc IMechE Part A J Power Energy
– volume: 88
  start-page: 2740
  year: 2011
  end-page: 2754
  ident: bib27
  article-title: Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation
  publication-title: Appl Energy
– volume: 36
  start-page: 3406
  year: 2011
  end-page: 3418
  ident: bib17
  article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
  publication-title: Energy
– volume: 156
  start-page: 727
  year: 2015
  end-page: 746
  ident: bib51
  article-title: A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources
  publication-title: Appl Energy
– volume: 48
  start-page: 565
  year: 2012
  end-page: 570
  ident: bib8
  article-title: Selection of working fluids for micro-CHP systems with ORC
  publication-title: Renew Energy
– volume: 8
  start-page: 9751
  year: 2015
  end-page: 9776
  ident: bib33
  article-title: Parametric optimization of regenerative organic rankine cycle system for diesel engine based on particle swarm optimization
  publication-title: Energies
– volume: 66
  start-page: 423
  year: 2014
  end-page: 434
  ident: bib53
  article-title: Binary ORC (organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources - Part A: thermodynamic optimization
  publication-title: Energy
– reference: Rao SS. Engineering Optimization – Theory and Practice. John Wiley & Sons, Inc., Hoboken, New Jersey. ISBN 978-0-470-18352-6.
– volume: 94
  start-page: 34
  year: 2012
  end-page: 40
  ident: bib35
  article-title: An experimental study on the recuperative low temperature solar Rankine cycle using R245fa
  publication-title: Appl Energy
– volume: 136
  year: 2014
  ident: bib36
  article-title: Empirical models for a screw expander based on experimental data from organic Rankine cycle system testing
  publication-title: J Eng Gas Turbines Power
– volume: 26
  start-page: 239
  year: 2001
  end-page: 251
  ident: bib18
  article-title: Design and testing of the organic Rankine cycle
  publication-title: Energy
– volume: 32
  start-page: 1698
  year: 2007
  end-page: 1706
  ident: bib26
  article-title: Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources
  publication-title: Energy
– start-page: 5560
  year: 2005
  end-page: 5566
  ident: bib11
  article-title: Rapid screening of fluids for chemical stability in organic rankine cycle applications
  publication-title: Ind Eng Chem Res
– volume: 69
  start-page: 1100
  year: 2015
  end-page: 1112
  ident: bib38
  article-title: Techno-economic optimization of low temperature CSP systems based on ORC with screw expanders
  publication-title: Energy Procedia
– volume: 88
  start-page: 2183
  year: 2011
  end-page: 2190
  ident: bib29
  article-title: Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles
  publication-title: Appl Energy
– year: 2013
  ident: bib45
  article-title: Designation and safety classification of refrigerants
– volume: 86
  start-page: 941
  year: 2009
  end-page: 948
  ident: bib2
  article-title: Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry
  publication-title: Appl Energy
– volume: 74
  start-page: 719
  year: 2014
  end-page: 733
  ident: bib49
  article-title: Critical temperature criterion for selection of working fluids for subcritical pressure organic Rankine cycles
  publication-title: Energy
– volume: 73
  start-page: 204
  year: 2014
  end-page: 213
  ident: bib30
  article-title: Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles
  publication-title: Energy
– volume: 21
  start-page: 381
  year: 2001
  end-page: 390
  ident: bib15
  article-title: Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems
  publication-title: Appl Therm Eng
– reference: Cavazzini G, Bari S, Ardizzon G, Pavesi G. Thermodynamic optimization of Organic Rankine Cycles for low and ultra-low grade waste heat recovery applications: influence of the working fluid on the ORC net power output. 8th Int. Conf. on Energy Planning, Energy Saving, Environmental Education, 7–9 November 2015, Rome, Italy.
– volume: 29
  start-page: 1207
  year: 2004
  end-page: 1217
  ident: bib40
  article-title: Effect of working fluids on organic Rankine cycle for waste heat recovery
  publication-title: Energy
– volume: 36
  start-page: 2639
  year: 2011
  end-page: 2649
  ident: bib21
  article-title: Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources
  publication-title: Energy
– volume: 221
  start-page: 705
  year: 2007
  end-page: 711
  ident: bib39
  article-title: Scroll expander for power generation from a low-grade steam source
  publication-title: Proc Inst Mech Eng Part A J Power Energy
– start-page: 1945
  year: 1999
  end-page: 1950
  ident: bib43
  article-title: Empirical study of particle swarm optimization
  publication-title: Proceeding of the IEEE Int Congress on Evolutionary Computation, Washington, DC
– volume: 117
  start-page: 11
  year: 2014
  end-page: 29
  ident: bib50
  article-title: Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications
  publication-title: Appl Energy
– volume: 221
  start-page: 255
  year: 2007
  ident: 10.1016/j.energy.2017.04.090_bib14
  article-title: Performance analysis of different working fluids for use in organic Rankine cycles
  publication-title: Proc IMechE Part A J Power Energy
  doi: 10.1243/09576509JPE372
– volume: 58
  start-page: 138
  year: 2015
  ident: 10.1016/j.energy.2017.04.090_bib52
  article-title: Working fluid selection based on critical temperature and water temperature in Organic Rankine cycle
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-014-5698-7
– volume: 44
  start-page: 623
  year: 2012
  ident: 10.1016/j.energy.2017.04.090_bib10
  article-title: Potential of zeotropic mixtures as working fluids in organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2012.05.030
– volume: 15
  start-page: 3963
  issue: 8
  year: 2011
  ident: 10.1016/j.energy.2017.04.090_bib55
  article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.07.024
– volume: 26
  start-page: 239
  year: 2001
  ident: 10.1016/j.energy.2017.04.090_bib18
  article-title: Design and testing of the organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/S0360-5442(00)00063-3
– volume: 299
  start-page: 337
  year: 2015
  ident: 10.1016/j.energy.2017.04.090_bib31
  article-title: Adaptive acceleration coefficients for a new search diversification strategy in particle swarm optimization algorithms
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.12.024
– volume: 27
  start-page: 223
  year: 2007
  ident: 10.1016/j.energy.2017.04.090_bib46
  article-title: Fluid selection for the organic Rnakine cycle (ORC) in biomass power and heat plants
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.04.024
– volume: 32
  start-page: 1210
  year: 2007
  ident: 10.1016/j.energy.2017.04.090_bib16
  article-title: Working fluids for low-temperature organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2006.07.001
– volume: 68
  start-page: 283
  year: 2014
  ident: 10.1016/j.energy.2017.04.090_bib47
  article-title: A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.050
– volume: 36
  start-page: 2639
  year: 2011
  ident: 10.1016/j.energy.2017.04.090_bib21
  article-title: Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources
  publication-title: Energy
  doi: 10.1016/j.energy.2011.02.005
– volume: 8
  start-page: 9751
  year: 2015
  ident: 10.1016/j.energy.2017.04.090_bib33
  article-title: Parametric optimization of regenerative organic rankine cycle system for diesel engine based on particle swarm optimization
  publication-title: Energies
  doi: 10.3390/en8099751
– volume: 66
  start-page: 423
  year: 2014
  ident: 10.1016/j.energy.2017.04.090_bib53
  article-title: Binary ORC (organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources - Part A: thermodynamic optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.056
– volume: 130
  start-page: 748
  year: 2014
  ident: 10.1016/j.energy.2017.04.090_bib9
  article-title: Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.067
– volume: 32
  start-page: 1698
  year: 2007
  ident: 10.1016/j.energy.2017.04.090_bib26
  article-title: Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources
  publication-title: Energy
  doi: 10.1016/j.energy.2007.01.005
– volume: 156
  start-page: 727
  year: 2015
  ident: 10.1016/j.energy.2017.04.090_bib51
  article-title: A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.07.005
– volume: 99
  start-page: 161
  year: 2015
  ident: 10.1016/j.energy.2017.04.090_bib37
  article-title: Techno-economic feasibility study of the integration of a commercial small-scale ORC in a real case study
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.04.043
– volume: 50
  start-page: 401
  year: 2006
  ident: 10.1016/j.energy.2017.04.090_bib41
  article-title: A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2005.01.022
– year: 2013
  ident: 10.1016/j.energy.2017.04.090_bib45
– ident: 10.1016/j.energy.2017.04.090_bib32
– start-page: 5560
  year: 2005
  ident: 10.1016/j.energy.2017.04.090_bib11
  article-title: Rapid screening of fluids for chemical stability in organic rankine cycle applications
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie050351s
– volume: 50
  start-page: 343
  year: 2013
  ident: 10.1016/j.energy.2017.04.090_bib13
  article-title: Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.010
– volume: 155
  start-page: 150
  year: 2015
  ident: 10.1016/j.energy.2017.04.090_bib4
  article-title: Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.118
– volume: 50
  start-page: 576
  year: 2009
  ident: 10.1016/j.energy.2017.04.090_bib22
  article-title: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2008.10.018
– volume: 73
  start-page: 204
  year: 2014
  ident: 10.1016/j.energy.2017.04.090_bib30
  article-title: Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.012
– volume: 49
  start-page: 356
  year: 2013
  ident: 10.1016/j.energy.2017.04.090_bib25
  article-title: Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.009
– volume: 102
  start-page: 605
  year: 2016
  ident: 10.1016/j.energy.2017.04.090_bib23
  article-title: The ORC-PD: a versatile tool for fluid selection and Organic Rankine Cycle unit design
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.128
– volume: 136
  year: 2014
  ident: 10.1016/j.energy.2017.04.090_bib36
  article-title: Empirical models for a screw expander based on experimental data from organic Rankine cycle system testing
  publication-title: J Eng Gas Turbines Power
– volume: 117
  start-page: 11
  year: 2014
  ident: 10.1016/j.energy.2017.04.090_bib50
  article-title: Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.11.076
– volume: 74
  start-page: 719
  year: 2014
  ident: 10.1016/j.energy.2017.04.090_bib49
  article-title: Critical temperature criterion for selection of working fluids for subcritical pressure organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.038
– volume: 31
  start-page: 2885
  year: 2011
  ident: 10.1016/j.energy.2017.04.090_bib5
  article-title: Thermo-economic optimization of waste heat recovery Organic Rankine Cycles
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.05.014
– volume: 86
  start-page: 941
  year: 2009
  ident: 10.1016/j.energy.2017.04.090_bib2
  article-title: Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.09.001
– volume: 38
  start-page: 1196
  year: 2011
  ident: 10.1016/j.energy.2017.04.090_bib48
  article-title: Effects of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.09.022
– volume: 71
  start-page: 146
  year: 2013
  ident: 10.1016/j.energy.2017.04.090_bib28
  article-title: Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.03.028
– year: 2005
  ident: 10.1016/j.energy.2017.04.090_bib1
– volume: 52
  start-page: 2384
  year: 2011
  ident: 10.1016/j.energy.2017.04.090_bib20
  article-title: Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.12.038
– volume: 22
  start-page: 168
  year: 2013
  ident: 10.1016/j.energy.2017.04.090_bib3
  article-title: Techno-economic survey of organic rankine cycle (ORC) systems
  publication-title: Ren Sustain Energy Rev
  doi: 10.1016/j.rser.2013.01.028
– volume: 221
  start-page: 705
  issue: 5
  year: 2007
  ident: 10.1016/j.energy.2017.04.090_bib39
  article-title: Scroll expander for power generation from a low-grade steam source
  publication-title: Proc Inst Mech Eng Part A J Power Energy
  doi: 10.1243/09576509JPE392
– volume: 36
  start-page: 3406
  year: 2011
  ident: 10.1016/j.energy.2017.04.090_bib17
  article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.041
– volume: 69
  start-page: 1100
  year: 2015
  ident: 10.1016/j.energy.2017.04.090_bib38
  article-title: Techno-economic optimization of low temperature CSP systems based on ORC with screw expanders
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.03.220
– volume: 88
  start-page: 2740
  year: 2011
  ident: 10.1016/j.energy.2017.04.090_bib27
  article-title: Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.02.034
– volume: 14
  start-page: 3059
  year: 2010
  ident: 10.1016/j.energy.2017.04.090_bib12
  article-title: A review of thermodynamic cycles and working fluids for the conversion of low-grade heat
  publication-title: Renew Sust Energy Rev
  doi: 10.1016/j.rser.2010.07.006
– volume: 30
  start-page: 1262
  year: 2010
  ident: 10.1016/j.energy.2017.04.090_bib19
  article-title: Working fluids for low-temperature heat source
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2010.02.009
– ident: 10.1016/j.energy.2017.04.090_bib44
– volume: 35
  start-page: 1033
  year: 2010
  ident: 10.1016/j.energy.2017.04.090_bib56
  article-title: Efficiency optimization potential in supercritical organic rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.019
– volume: 88
  start-page: 2
  year: 2014
  ident: 10.1016/j.energy.2017.04.090_bib58
  article-title: Transcritical pressure Organic Rankine Cycle (ORC) analysis based on the integrated-average temperature difference in evaporators
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.11.031
– start-page: 1942
  year: 1995
  ident: 10.1016/j.energy.2017.04.090_bib42
  article-title: Particle swarm optimization
– volume: 14
  start-page: 370
  year: 2012
  ident: 10.1016/j.energy.2017.04.090_bib24
  article-title: Optimal design of ORC systems with a low-temperature heat source
  publication-title: Entropy
  doi: 10.3390/e14020370
– volume: 48
  start-page: 565
  year: 2012
  ident: 10.1016/j.energy.2017.04.090_bib8
  article-title: Selection of working fluids for micro-CHP systems with ORC
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.06.006
– volume: 97
  start-page: 601
  year: 2012
  ident: 10.1016/j.energy.2017.04.090_bib6
  article-title: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.02.033
– volume: 112
  start-page: 1265
  year: 2013
  ident: 10.1016/j.energy.2017.04.090_bib7
  article-title: Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.030
– volume: 54
  start-page: 343
  year: 2015
  ident: 10.1016/j.energy.2017.04.090_bib34
  article-title: Optimization of power and heating systems based on a new hybrid algorithm
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2015.04.011
– volume: 51
  start-page: 871
  year: 2013
  ident: 10.1016/j.energy.2017.04.090_bib54
  article-title: Comparison of sub- and super-critical organic Rankine cycles for power generation from low-temperature/low enthalpy geothermal wells, considering specific net power output and efficiency
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.10.042
– volume: 94
  start-page: 34
  year: 2012
  ident: 10.1016/j.energy.2017.04.090_bib35
  article-title: An experimental study on the recuperative low temperature solar Rankine cycle using R245fa
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.01.019
– volume: 29
  start-page: 1207
  year: 2004
  ident: 10.1016/j.energy.2017.04.090_bib40
  article-title: Effect of working fluids on organic Rankine cycle for waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2004.01.004
– volume: 88
  start-page: 2183
  year: 2011
  ident: 10.1016/j.energy.2017.04.090_bib29
  article-title: Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.01.015
– volume: 63
  start-page: 109
  year: 2013
  ident: 10.1016/j.energy.2017.04.090_bib57
  article-title: Effect of the critical temperature of organic fluids on supercritical pressure organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2013.09.068
– volume: 21
  start-page: 381
  year: 2001
  ident: 10.1016/j.energy.2017.04.090_bib15
  article-title: Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems
  publication-title: Appl Therm Eng
  doi: 10.1016/S1359-4311(00)00044-2
– start-page: 1945
  year: 1999
  ident: 10.1016/j.energy.2017.04.090_bib43
  article-title: Empirical study of particle swarm optimization
SSID ssj0005899
Score 2.3367958
Snippet The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most...
The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Algorithms
Critical temperature
Cycle ratio
Data processing
Heat
Inspection
Optimization
Optimization algorithms
Organic Rankine Cycles
PSO
swarms
System efficiency
Temperature
Temperature effects
Thermodynamics
Vapors
Waste heat
Working fluid
Title A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles
URI https://dx.doi.org/10.1016/j.energy.2017.04.090
https://www.proquest.com/docview/1932185283
https://www.proquest.com/docview/2000516072
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Complete Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heoBL1fIQ21JkJK7uhsSJk-NqBdoW8VApEjfLz3bRdrMiuwcu_PbOJA60lRBSj3bGSuSxZ75R5psBOEp1CFonGdciOAxQguFVoiW3qTfocLwvEyI4n18Ukxvx9Ta_XYNxz4WhtMpo-zub3lrrODOMuzlcTKfDa7S9iDcEYmrqfl5QTVAhJHUx-Pz4R5pH2faQJGFO0j19rs3x8i2_jhK8ZFfwNHnJPf1jqFvvc_oO3kbYyEbdl72HNT_fgo2eVdxswe7JM2MNBeOVbbahHrE2aZCH2Wrq2NX1JSfP5Zie_ajvp8ufvxjiVoY4kHWnntWhHRn8DLZ45hXQfLMy3MbmCKyjcVr2TVP7Bc_GD5RhtwM3pyffxxMeuyxwmxVyyXXmnAwm96LUzlRWlGmVelklxpn82GcyWOFcbhAJWlFYkwTcO104Y3wuMpNmu7A-r-d-DxjGmtK6FEMubzDw8pXPUy2tll4icNPlALJ-c5WNJcipE8ZM9blmd6pTiSKVqEQoVMkA-NOqRVeC4xV52etN_XWUFHqJV1bu92pW8So3ihAuMczLbACHT4_xEtKfFT339aqhXp5o3IpEph_---UfYZNGlIZ2nO_D-vJ-5T8h4Fmag_ZEH8Cb0ZezycVv9SUClg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VciiXCgoVSwsYiavZ1HHi5FitWi3QFkRbqTfLn2XRslk1uwcu_HZmEqcFJFSJY_yhRB575o3yngfgrTAxGpPl3MjoMUGJlteZUdyJYDHghFBlJHA-PSunl_LDVXG1AZNBC0O0yuT7e5_eeevUMk6rOV7OZuNz9L2INyRiaqp-XsoH8FAWQlEG9u7nbzyPqisiSaM5DR_0cx3JK3QCO2J4qf7G0-xf8ekvT92Fn-PHsJ1wIzvsP-0JbITFDmwNsuJ2B3aP7iRrODCd2fYpNIesYw3yOF_PPPt8_olT6PLMzK-bm9nq63eGwJUhEGT9tmdN7J4sfgZb3gkLqL1dW-5SdQTW6zgd-2Ko_kJgkx9EsXsGl8dHF5MpT2UWuMtLteIm915FWwRZGW9rJytRi6DqzHpbHIRcRSe9LyxCQSdLZ7OIa2dKb20oZG5Fvgubi2YRngPDZFM5LzDnChYzr1CHQhjljAoKkZupRpAPi6tduoOcSmHM9UA2-6Z7k2gyic6kRpOMgN_OWvZ3cNwzXg1203_sJY1h4p6Z-4OZdTrLrSaISxLzKh_Bm9tuPIX0a8UsQrNuqZgnercyU-LFf7_8NWxNL05P9Mn7s4978Ih6iJN2UOzD5upmHV4i-lnZV93u_gXecwQr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-fluid+PSO-based+algorithm+for+the+search+of+the+best+performance+of+sub-critical+Organic+Rankine+Cycles&rft.jtitle=Energy+%28Oxford%29&rft.au=Cavazzini%2C+G.&rft.au=Bari%2C+S.&rft.au=Pavesi%2C+G.&rft.au=Ardizzon%2C+G.&rft.date=2017-06-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=129&rft.spage=42&rft.epage=58&rft_id=info:doi/10.1016%2Fj.energy.2017.04.090&rft.externalDocID=S0360544217306564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon