A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles
The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to al...
Saved in:
| Published in | Energy (Oxford) Vol. 129; pp. 42 - 58 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.06.2017
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 |
| DOI | 10.1016/j.energy.2017.04.090 |
Cover
| Abstract | The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid.
The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Jaopt) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency.
A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Jaopt and the corresponding value of Ω was also developed.
•An PSO algorithm allowing for the dynamic choice of the working fluid is presented.•Thermodynamic optimizations for several heat source temperatures were carried out.•An effective parameter for choosing the best performing working fluids is presented. |
|---|---|
| AbstractList | The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid.The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Jaopt) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency.A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Jaopt and the corresponding value of Ω was also developed. The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid. The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Jaopt) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency. A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Jaopt and the corresponding value of Ω was also developed. •An PSO algorithm allowing for the dynamic choice of the working fluid is presented.•Thermodynamic optimizations for several heat source temperatures were carried out.•An effective parameter for choosing the best performing working fluids is presented. |
| Author | Ardizzon, G. Cavazzini, G. Bari, S. Pavesi, G. |
| Author_xml | – sequence: 1 givenname: G. orcidid: 0000-0003-0829-0965 surname: Cavazzini fullname: Cavazzini, G. email: giovanna.cavazzini@unipd.it – sequence: 2 givenname: S. orcidid: 0000-0003-2911-9569 surname: Bari fullname: Bari, S. – sequence: 3 givenname: G. orcidid: 0000-0002-2315-4358 surname: Pavesi fullname: Pavesi, G. – sequence: 4 givenname: G. orcidid: 0000-0003-1598-1115 surname: Ardizzon fullname: Ardizzon, G. |
| BookMark | eNqFkU2LFDEQhoOs4OzqP_AQ8OKle5NO-suDsAyrKyyM-HEO-aieyZhOxiQtzL837Xjag56Kqnqfonjfa3TlgweEXlNSU0K722MNHuL-XDeE9jXhNRnJM7ShQ8-qrh_aK7QhrCNVy3nzAl2ndCSEtMM4blC4w_Pisq0mt1iDP3_dVUomMFi6fYg2H2Y8hYjzAXACGfUBh-lPpyBlfIJYtrP0GtZ5WlSlC2S1dHgX99Jbjb9I_8N6wNuzdpBeoueTdAle_a036PuH-2_bh-px9_HT9u6x0qzrcyWZMf2kWuCDNGrUfGjGBvqRKKNaCqyfNDemVWPDNO-0IlPxQXZGKWg5Uw27QW8vd08x_FzKr2K2SYNz0kNYkmhWB2hH-lX65on0GJboy3eCjqyhQ9sMrKj4RaVjSCnCJE7RzjKeBSViTUEcxSUFsaYgCBclhYK9e4Jpm2W2wecorfsf_P4CQ3Hql4UokrZQzDY2gs7CBPvvA78BYByomw |
| CitedBy_id | crossref_primary_10_1016_j_est_2021_102461 crossref_primary_10_3390_en14041158 crossref_primary_10_3390_en13071835 crossref_primary_10_1007_s10489_020_01630_6 crossref_primary_10_1016_j_enconman_2018_03_012 crossref_primary_10_1016_j_enconman_2019_111960 crossref_primary_10_1016_j_enconman_2019_112311 crossref_primary_10_3390_e20020089 crossref_primary_10_1016_j_applthermaleng_2020_115598 crossref_primary_10_1016_j_energy_2024_133629 crossref_primary_10_1016_j_energy_2017_11_003 crossref_primary_10_2118_223956_PA crossref_primary_10_1016_j_enconman_2017_11_079 crossref_primary_10_1016_j_applthermaleng_2023_120903 crossref_primary_10_1007_s13369_018_3279_y crossref_primary_10_1016_j_energy_2022_124884 crossref_primary_10_1016_j_egypro_2017_09_192 crossref_primary_10_1080_17452007_2018_1556577 crossref_primary_10_1016_j_egyai_2020_100011 crossref_primary_10_1002_aic_18643 crossref_primary_10_1142_S0218625X19501439 crossref_primary_10_3390_en15031138 crossref_primary_10_1051_matecconf_201713500015 crossref_primary_10_1016_j_apenergy_2020_115186 |
| Cites_doi | 10.1243/09576509JPE372 10.1007/s11431-014-5698-7 10.1016/j.energy.2012.05.030 10.1016/j.rser.2011.07.024 10.1016/S0360-5442(00)00063-3 10.1016/j.ins.2014.12.024 10.1016/j.applthermaleng.2006.04.024 10.1016/j.energy.2006.07.001 10.1016/j.energy.2014.02.050 10.1016/j.energy.2011.02.005 10.3390/en8099751 10.1016/j.energy.2013.11.056 10.1016/j.apenergy.2014.03.067 10.1016/j.energy.2007.01.005 10.1016/j.apenergy.2015.07.005 10.1016/j.enconman.2015.04.043 10.1016/j.cie.2005.01.022 10.1021/ie050351s 10.1016/j.energy.2012.11.010 10.1016/j.apenergy.2015.05.118 10.1016/j.enconman.2008.10.018 10.1016/j.energy.2014.06.012 10.1016/j.energy.2012.11.009 10.1016/j.energy.2016.02.128 10.1016/j.apenergy.2013.11.076 10.1016/j.energy.2014.07.038 10.1016/j.applthermaleng.2011.05.014 10.1016/j.apenergy.2008.09.001 10.1016/j.renene.2010.09.022 10.1016/j.enconman.2013.03.028 10.1016/j.enconman.2010.12.038 10.1016/j.rser.2013.01.028 10.1243/09576509JPE392 10.1016/j.energy.2011.03.041 10.1016/j.egypro.2015.03.220 10.1016/j.apenergy.2011.02.034 10.1016/j.rser.2010.07.006 10.1016/j.applthermaleng.2010.02.009 10.1016/j.energy.2009.06.019 10.1016/j.applthermaleng.2014.11.031 10.3390/e14020370 10.1016/j.renene.2012.06.006 10.1016/j.apenergy.2012.02.033 10.1016/j.apenergy.2012.12.030 10.1016/j.aej.2015.04.011 10.1016/j.applthermaleng.2012.10.042 10.1016/j.apenergy.2012.01.019 10.1016/j.energy.2004.01.004 10.1016/j.apenergy.2011.01.015 10.1016/j.energy.2013.09.068 10.1016/S1359-4311(00)00044-2 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jun 15, 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jun 15, 2017 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2017.04.090 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| EndPage | 58 |
| ExternalDocumentID | 10_1016_j_energy_2017_04_090 S0360544217306564 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-a3dd7fb5e48adb9c48292e790bdb51e37fc4dd5b923c46cb0f016a6dbbe543b23 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 |
| IngestDate | Sat Sep 27 16:57:13 EDT 2025 Wed Aug 13 11:21:51 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Wed Oct 01 01:34:45 EDT 2025 Fri Feb 23 02:32:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | System efficiency Organic Rankine Cycles Critical temperature Waste heat Working fluid PSO |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-a3dd7fb5e48adb9c48292e790bdb51e37fc4dd5b923c46cb0f016a6dbbe543b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2315-4358 0000-0003-0829-0965 0000-0003-1598-1115 0000-0003-2911-9569 |
| PQID | 1932185283 |
| PQPubID | 2045484 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2000516072 proquest_journals_1932185283 crossref_primary_10_1016_j_energy_2017_04_090 crossref_citationtrail_10_1016_j_energy_2017_04_090 elsevier_sciencedirect_doi_10_1016_j_energy_2017_04_090 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-15 |
| PublicationDateYYYYMMDD | 2017-06-15 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Drescher, Bruggemann (bib46) 2007; 27 Guo, Wang, Zhang (bib21) 2011; 36 Fiaschi, Manfrida, Maraschiello (bib6) 2012; 97 Khennich, Galanis (bib24) 2012; 14 Wang, Dai, Gao (bib2) 2009; 86 Li, Zhao, Lin, Qiang (bib52) 2015; 58 Astolfi (bib38) 2015; 69 Astolfi, Romano, Bombarda, Macchi (bib53) 2014; 66 Andersen, Bruno (bib11) 2005 Dai, Wang, Gao (bib22) 2009; 50 Qiu (bib8) 2012; 48 Kennedy, Eberhart (bib42) 1995 Maraver, Rogo, Lemort, Quoillin (bib50) 2014; 117 Saleh, Koglbauer, Wendland, Fischer (bib16) 2007; 32 Mago, Chamra, Somayaji (bib14) 2007; 221 Wang, Ling, Peng, Liu, Tao (bib13) 2013; 50 Xu, Yu (bib49) 2014; 74 Rao SS. Engineering Optimization – Theory and Practice. John Wiley & Sons, Inc., Hoboken, New Jersey. ISBN 978-0-470-18352-6. ANSI/ASHRAE Standard 34 (bib45) 2013 Aljundi (bib48) 2011; 38 Wang, Zhang, Fubin, Songsong, Chang, Bei (bib33) 2015; 8 Liu, Chien, Wang (bib40) 2004; 29 Shi, Eberhart (bib43) 1999 Schuster, Karellas, Aumanna (bib56) 2010; 35 Yamamoto, Furuhata, Arai, Mori (bib18) 2001; 26 He, Liu, Zhou, Xie, Xu, Wu (bib47) 2014; 68 Quoilin, Declaye, Tchanche, Lemort (bib5) 2011; 31 Chen, Goswami, Stefanakos (bib12) 2010; 14 Maizza, Maizza (bib15) 2001; 21 Fan, Liang, Zahara (bib41) 2006; 50 Chys, van den Broek, Vanslambrouck, Paepe (bib10) 2012; 44 Andreasen, Larsen, Knudsen, Pierobon, Haglind (bib30) 2014; 73 Cavazzini, Dal Toso (bib37) 2015; 99 Xu, Liu (bib57) 2013; 63 Vivian, Manente, Lazzaretto (bib51) 2015; 156 Wang, Yan, Wang, Maa, Dai (bib25) 2013; 49 Quoilin, Aumann, Grill, Schuster, Lemort, Spliethoff (bib29) 2011; 88 Mahmoodabadi, Ghavimi, Mahmoudi (bib34) 2015; 54 Wang, Yan, Wang, Li, Dai (bib28) 2013; 71 Bailey, Worrell (bib1) 2005 Avadhanula, Lin (bib36) 2014; 136 Yu, Xu, Sun (bib58) 2014; 88 Cavazzini G, Bari S, Ardizzon G, Pavesi G. Thermodynamic optimization of Organic Rankine Cycles for low and ultra-low grade waste heat recovery applications: influence of the working fluid on the ORC net power output. 8th Int. Conf. on Energy Planning, Energy Saving, Environmental Education, 7–9 November 2015, Rome, Italy. Pezzuolo, Benato, Stoppato, Mirandola (bib23) 2016; 102 Chang, Hung, He, Zhang (bib4) 2015; 155 Vetter, Wiemer, Kuhn (bib54) 2013; 51 Quoilin, Van Den Broek, Declaye, Dewallef, Lemort (bib3) 2013; 22 Shengjun, Huaixin, Tao (bib27) 2011; 88 Guo, Wang, Zhang (bib20) 2011; 52 Tchance, Lambrinos, Frangoudakis, Papadakis (bib55) 2011; 15 Ardizzon, Cavazzini, Pavesi (bib31) 2015; 299 Zheng, Zhao, Wang, Tan (bib7) 2013; 112 Kim, Ahn, Park, Rha (bib39) 2007; 221 Wang, Zhang, Fan, Ouyang, Zhao, Mu (bib17) 2011; 36 Zhao, Bao (bib9) 2014; 130 Wang, Zhao, Wang (bib35) 2012; 94 Lakew, Bolland (bib19) 2010; 30 Madhawa Hettiarachchi, Golubovic, Worek, Ikegami (bib26) 2007; 32 10.1016/j.energy.2017.04.090_bib32 Mahmoodabadi (10.1016/j.energy.2017.04.090_bib34) 2015; 54 Yu (10.1016/j.energy.2017.04.090_bib58) 2014; 88 Andersen (10.1016/j.energy.2017.04.090_bib11) 2005 Liu (10.1016/j.energy.2017.04.090_bib40) 2004; 29 Yamamoto (10.1016/j.energy.2017.04.090_bib18) 2001; 26 Saleh (10.1016/j.energy.2017.04.090_bib16) 2007; 32 Kim (10.1016/j.energy.2017.04.090_bib39) 2007; 221 Xu (10.1016/j.energy.2017.04.090_bib49) 2014; 74 Vetter (10.1016/j.energy.2017.04.090_bib54) 2013; 51 Guo (10.1016/j.energy.2017.04.090_bib20) 2011; 52 Quoilin (10.1016/j.energy.2017.04.090_bib5) 2011; 31 He (10.1016/j.energy.2017.04.090_bib47) 2014; 68 Shengjun (10.1016/j.energy.2017.04.090_bib27) 2011; 88 Astolfi (10.1016/j.energy.2017.04.090_bib38) 2015; 69 Zheng (10.1016/j.energy.2017.04.090_bib7) 2013; 112 Andreasen (10.1016/j.energy.2017.04.090_bib30) 2014; 73 Vivian (10.1016/j.energy.2017.04.090_bib51) 2015; 156 Wang (10.1016/j.energy.2017.04.090_bib25) 2013; 49 Wang (10.1016/j.energy.2017.04.090_bib17) 2011; 36 Cavazzini (10.1016/j.energy.2017.04.090_bib37) 2015; 99 Chang (10.1016/j.energy.2017.04.090_bib4) 2015; 155 Maizza (10.1016/j.energy.2017.04.090_bib15) 2001; 21 Madhawa Hettiarachchi (10.1016/j.energy.2017.04.090_bib26) 2007; 32 Shi (10.1016/j.energy.2017.04.090_bib43) 1999 Zhao (10.1016/j.energy.2017.04.090_bib9) 2014; 130 Dai (10.1016/j.energy.2017.04.090_bib22) 2009; 50 Avadhanula (10.1016/j.energy.2017.04.090_bib36) 2014; 136 Fan (10.1016/j.energy.2017.04.090_bib41) 2006; 50 Aljundi (10.1016/j.energy.2017.04.090_bib48) 2011; 38 Wang (10.1016/j.energy.2017.04.090_bib2) 2009; 86 Chen (10.1016/j.energy.2017.04.090_bib12) 2010; 14 ANSI/ASHRAE Standard 34 (10.1016/j.energy.2017.04.090_bib45) 2013 Drescher (10.1016/j.energy.2017.04.090_bib46) 2007; 27 Tchance (10.1016/j.energy.2017.04.090_bib55) 2011; 15 Wang (10.1016/j.energy.2017.04.090_bib35) 2012; 94 Ardizzon (10.1016/j.energy.2017.04.090_bib31) 2015; 299 Fiaschi (10.1016/j.energy.2017.04.090_bib6) 2012; 97 Xu (10.1016/j.energy.2017.04.090_bib57) 2013; 63 Quoilin (10.1016/j.energy.2017.04.090_bib29) 2011; 88 Guo (10.1016/j.energy.2017.04.090_bib21) 2011; 36 Maraver (10.1016/j.energy.2017.04.090_bib50) 2014; 117 Quoilin (10.1016/j.energy.2017.04.090_bib3) 2013; 22 Mago (10.1016/j.energy.2017.04.090_bib14) 2007; 221 10.1016/j.energy.2017.04.090_bib44 Wang (10.1016/j.energy.2017.04.090_bib33) 2015; 8 Khennich (10.1016/j.energy.2017.04.090_bib24) 2012; 14 Bailey (10.1016/j.energy.2017.04.090_bib1) 2005 Li (10.1016/j.energy.2017.04.090_bib52) 2015; 58 Wang (10.1016/j.energy.2017.04.090_bib13) 2013; 50 Pezzuolo (10.1016/j.energy.2017.04.090_bib23) 2016; 102 Kennedy (10.1016/j.energy.2017.04.090_bib42) 1995 Astolfi (10.1016/j.energy.2017.04.090_bib53) 2014; 66 Wang (10.1016/j.energy.2017.04.090_bib28) 2013; 71 Chys (10.1016/j.energy.2017.04.090_bib10) 2012; 44 Qiu (10.1016/j.energy.2017.04.090_bib8) 2012; 48 Schuster (10.1016/j.energy.2017.04.090_bib56) 2010; 35 Lakew (10.1016/j.energy.2017.04.090_bib19) 2010; 30 |
| References_xml | – volume: 97 start-page: 601 year: 2012 end-page: 608 ident: bib6 article-title: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles publication-title: Appl Energy – volume: 299 start-page: 337 year: 2015 end-page: 378 ident: bib31 article-title: Adaptive acceleration coefficients for a new search diversification strategy in particle swarm optimization algorithms publication-title: Inf Sci – volume: 49 start-page: 356 year: 2013 end-page: 365 ident: bib25 article-title: Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source publication-title: Energy – start-page: 1942 year: 1995 end-page: 1948 ident: bib42 article-title: Particle swarm optimization publication-title: Proceeding of the IEEE Int Conf on Neural Networks, Perth, Australia – volume: 15 start-page: 3963 year: 2011 end-page: 3979 ident: bib55 article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications publication-title: Renew Sustain Energy Rev – volume: 102 start-page: 605 year: 2016 end-page: 620 ident: bib23 article-title: The ORC-PD: a versatile tool for fluid selection and Organic Rankine Cycle unit design publication-title: Energy – volume: 71 start-page: 146 year: 2013 end-page: 158 ident: bib28 article-title: Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm publication-title: Energy Convers Manag – volume: 130 start-page: 748 year: 2014 end-page: 756 ident: bib9 article-title: Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures publication-title: Appl Energy – volume: 63 start-page: 109 year: 2013 end-page: 122 ident: bib57 article-title: Effect of the critical temperature of organic fluids on supercritical pressure organic Rankine cycles publication-title: Energy – volume: 50 start-page: 343 year: 2013 end-page: 352 ident: bib13 article-title: Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation publication-title: Energy – volume: 155 start-page: 150 year: 2015 end-page: 159 ident: bib4 article-title: Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander publication-title: Appl Energy – volume: 112 start-page: 1265 year: 2013 end-page: 1274 ident: bib7 article-title: Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle publication-title: Appl Energy – volume: 32 start-page: 1210 year: 2007 end-page: 1221 ident: bib16 article-title: Working fluids for low-temperature organic Rankine cycles publication-title: Energy – volume: 68 start-page: 283 year: 2014 end-page: 291 ident: bib47 article-title: A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources publication-title: Energy – volume: 30 start-page: 1262 year: 2010 end-page: 1268 ident: bib19 article-title: Working fluids for low-temperature heat source publication-title: Appl Therm Eng – volume: 52 start-page: 2384 year: 2011 end-page: 2391 ident: bib20 article-title: Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system publication-title: Energy Convers Manag – year: 2005 ident: bib1 article-title: Clean energy technologies: a preliminary inventory of the potential for electricity generation – volume: 38 start-page: 1196 year: 2011 end-page: 1202 ident: bib48 article-title: Effects of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle publication-title: Renew Energy – volume: 58 start-page: 138 year: 2015 end-page: 146 ident: bib52 article-title: Working fluid selection based on critical temperature and water temperature in Organic Rankine cycle publication-title: Sci China Technol Sci – volume: 35 start-page: 1033 year: 2010 end-page: 1039 ident: bib56 article-title: Efficiency optimization potential in supercritical organic rankine cycles publication-title: Energy – volume: 51 start-page: 871 year: 2013 end-page: 879 ident: bib54 article-title: Comparison of sub- and super-critical organic Rankine cycles for power generation from low-temperature/low enthalpy geothermal wells, considering specific net power output and efficiency publication-title: Appl Therm Eng – volume: 31 start-page: 2885 year: 2011 end-page: 2893 ident: bib5 article-title: Thermo-economic optimization of waste heat recovery Organic Rankine Cycles publication-title: Appl Therm Eng – volume: 54 start-page: 343 year: 2015 end-page: 350 ident: bib34 article-title: Optimization of power and heating systems based on a new hybrid algorithm publication-title: Alex Eng J – volume: 14 start-page: 3059 year: 2010 end-page: 3067 ident: bib12 article-title: A review of thermodynamic cycles and working fluids for the conversion of low-grade heat publication-title: Renew Sust Energy Rev – volume: 88 start-page: 2 year: 2014 end-page: 13 ident: bib58 article-title: Transcritical pressure Organic Rankine Cycle (ORC) analysis based on the integrated-average temperature difference in evaporators publication-title: Appl Therm Eng – volume: 14 start-page: 370 year: 2012 end-page: 389 ident: bib24 article-title: Optimal design of ORC systems with a low-temperature heat source publication-title: Entropy – volume: 50 start-page: 401 year: 2006 end-page: 425 ident: bib41 article-title: A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search publication-title: Comput Ind Eng – volume: 27 start-page: 223 year: 2007 end-page: 228 ident: bib46 article-title: Fluid selection for the organic Rnakine cycle (ORC) in biomass power and heat plants publication-title: Appl Therm Eng – volume: 44 start-page: 623 year: 2012 end-page: 632 ident: bib10 article-title: Potential of zeotropic mixtures as working fluids in organic Rankine cycles publication-title: Energy – volume: 22 start-page: 168 year: 2013 end-page: 186 ident: bib3 article-title: Techno-economic survey of organic rankine cycle (ORC) systems publication-title: Ren Sustain Energy Rev – volume: 99 start-page: 161 year: 2015 end-page: 175 ident: bib37 article-title: Techno-economic feasibility study of the integration of a commercial small-scale ORC in a real case study publication-title: Energy Convers Manag – volume: 50 start-page: 576 year: 2009 end-page: 582 ident: bib22 article-title: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery publication-title: Energy Convers Manag – volume: 221 start-page: 255 year: 2007 end-page: 263 ident: bib14 article-title: Performance analysis of different working fluids for use in organic Rankine cycles publication-title: Proc IMechE Part A J Power Energy – volume: 88 start-page: 2740 year: 2011 end-page: 2754 ident: bib27 article-title: Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation publication-title: Appl Energy – volume: 36 start-page: 3406 year: 2011 end-page: 3418 ident: bib17 article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery publication-title: Energy – volume: 156 start-page: 727 year: 2015 end-page: 746 ident: bib51 article-title: A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources publication-title: Appl Energy – volume: 48 start-page: 565 year: 2012 end-page: 570 ident: bib8 article-title: Selection of working fluids for micro-CHP systems with ORC publication-title: Renew Energy – volume: 8 start-page: 9751 year: 2015 end-page: 9776 ident: bib33 article-title: Parametric optimization of regenerative organic rankine cycle system for diesel engine based on particle swarm optimization publication-title: Energies – volume: 66 start-page: 423 year: 2014 end-page: 434 ident: bib53 article-title: Binary ORC (organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources - Part A: thermodynamic optimization publication-title: Energy – reference: Rao SS. Engineering Optimization – Theory and Practice. John Wiley & Sons, Inc., Hoboken, New Jersey. ISBN 978-0-470-18352-6. – volume: 94 start-page: 34 year: 2012 end-page: 40 ident: bib35 article-title: An experimental study on the recuperative low temperature solar Rankine cycle using R245fa publication-title: Appl Energy – volume: 136 year: 2014 ident: bib36 article-title: Empirical models for a screw expander based on experimental data from organic Rankine cycle system testing publication-title: J Eng Gas Turbines Power – volume: 26 start-page: 239 year: 2001 end-page: 251 ident: bib18 article-title: Design and testing of the organic Rankine cycle publication-title: Energy – volume: 32 start-page: 1698 year: 2007 end-page: 1706 ident: bib26 article-title: Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources publication-title: Energy – start-page: 5560 year: 2005 end-page: 5566 ident: bib11 article-title: Rapid screening of fluids for chemical stability in organic rankine cycle applications publication-title: Ind Eng Chem Res – volume: 69 start-page: 1100 year: 2015 end-page: 1112 ident: bib38 article-title: Techno-economic optimization of low temperature CSP systems based on ORC with screw expanders publication-title: Energy Procedia – volume: 88 start-page: 2183 year: 2011 end-page: 2190 ident: bib29 article-title: Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles publication-title: Appl Energy – year: 2013 ident: bib45 article-title: Designation and safety classification of refrigerants – volume: 86 start-page: 941 year: 2009 end-page: 948 ident: bib2 article-title: Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry publication-title: Appl Energy – volume: 74 start-page: 719 year: 2014 end-page: 733 ident: bib49 article-title: Critical temperature criterion for selection of working fluids for subcritical pressure organic Rankine cycles publication-title: Energy – volume: 73 start-page: 204 year: 2014 end-page: 213 ident: bib30 article-title: Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles publication-title: Energy – volume: 21 start-page: 381 year: 2001 end-page: 390 ident: bib15 article-title: Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems publication-title: Appl Therm Eng – reference: Cavazzini G, Bari S, Ardizzon G, Pavesi G. Thermodynamic optimization of Organic Rankine Cycles for low and ultra-low grade waste heat recovery applications: influence of the working fluid on the ORC net power output. 8th Int. Conf. on Energy Planning, Energy Saving, Environmental Education, 7–9 November 2015, Rome, Italy. – volume: 29 start-page: 1207 year: 2004 end-page: 1217 ident: bib40 article-title: Effect of working fluids on organic Rankine cycle for waste heat recovery publication-title: Energy – volume: 36 start-page: 2639 year: 2011 end-page: 2649 ident: bib21 article-title: Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources publication-title: Energy – volume: 221 start-page: 705 year: 2007 end-page: 711 ident: bib39 article-title: Scroll expander for power generation from a low-grade steam source publication-title: Proc Inst Mech Eng Part A J Power Energy – start-page: 1945 year: 1999 end-page: 1950 ident: bib43 article-title: Empirical study of particle swarm optimization publication-title: Proceeding of the IEEE Int Congress on Evolutionary Computation, Washington, DC – volume: 117 start-page: 11 year: 2014 end-page: 29 ident: bib50 article-title: Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications publication-title: Appl Energy – volume: 221 start-page: 255 year: 2007 ident: 10.1016/j.energy.2017.04.090_bib14 article-title: Performance analysis of different working fluids for use in organic Rankine cycles publication-title: Proc IMechE Part A J Power Energy doi: 10.1243/09576509JPE372 – volume: 58 start-page: 138 year: 2015 ident: 10.1016/j.energy.2017.04.090_bib52 article-title: Working fluid selection based on critical temperature and water temperature in Organic Rankine cycle publication-title: Sci China Technol Sci doi: 10.1007/s11431-014-5698-7 – volume: 44 start-page: 623 year: 2012 ident: 10.1016/j.energy.2017.04.090_bib10 article-title: Potential of zeotropic mixtures as working fluids in organic Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2012.05.030 – volume: 15 start-page: 3963 issue: 8 year: 2011 ident: 10.1016/j.energy.2017.04.090_bib55 article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.07.024 – volume: 26 start-page: 239 year: 2001 ident: 10.1016/j.energy.2017.04.090_bib18 article-title: Design and testing of the organic Rankine cycle publication-title: Energy doi: 10.1016/S0360-5442(00)00063-3 – volume: 299 start-page: 337 year: 2015 ident: 10.1016/j.energy.2017.04.090_bib31 article-title: Adaptive acceleration coefficients for a new search diversification strategy in particle swarm optimization algorithms publication-title: Inf Sci doi: 10.1016/j.ins.2014.12.024 – volume: 27 start-page: 223 year: 2007 ident: 10.1016/j.energy.2017.04.090_bib46 article-title: Fluid selection for the organic Rnakine cycle (ORC) in biomass power and heat plants publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.04.024 – volume: 32 start-page: 1210 year: 2007 ident: 10.1016/j.energy.2017.04.090_bib16 article-title: Working fluids for low-temperature organic Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2006.07.001 – volume: 68 start-page: 283 year: 2014 ident: 10.1016/j.energy.2017.04.090_bib47 article-title: A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources publication-title: Energy doi: 10.1016/j.energy.2014.02.050 – volume: 36 start-page: 2639 year: 2011 ident: 10.1016/j.energy.2017.04.090_bib21 article-title: Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources publication-title: Energy doi: 10.1016/j.energy.2011.02.005 – volume: 8 start-page: 9751 year: 2015 ident: 10.1016/j.energy.2017.04.090_bib33 article-title: Parametric optimization of regenerative organic rankine cycle system for diesel engine based on particle swarm optimization publication-title: Energies doi: 10.3390/en8099751 – volume: 66 start-page: 423 year: 2014 ident: 10.1016/j.energy.2017.04.090_bib53 article-title: Binary ORC (organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources - Part A: thermodynamic optimization publication-title: Energy doi: 10.1016/j.energy.2013.11.056 – volume: 130 start-page: 748 year: 2014 ident: 10.1016/j.energy.2017.04.090_bib9 article-title: Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.03.067 – volume: 32 start-page: 1698 year: 2007 ident: 10.1016/j.energy.2017.04.090_bib26 article-title: Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources publication-title: Energy doi: 10.1016/j.energy.2007.01.005 – volume: 156 start-page: 727 year: 2015 ident: 10.1016/j.energy.2017.04.090_bib51 article-title: A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.07.005 – volume: 99 start-page: 161 year: 2015 ident: 10.1016/j.energy.2017.04.090_bib37 article-title: Techno-economic feasibility study of the integration of a commercial small-scale ORC in a real case study publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.04.043 – volume: 50 start-page: 401 year: 2006 ident: 10.1016/j.energy.2017.04.090_bib41 article-title: A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search publication-title: Comput Ind Eng doi: 10.1016/j.cie.2005.01.022 – year: 2013 ident: 10.1016/j.energy.2017.04.090_bib45 – ident: 10.1016/j.energy.2017.04.090_bib32 – start-page: 5560 year: 2005 ident: 10.1016/j.energy.2017.04.090_bib11 article-title: Rapid screening of fluids for chemical stability in organic rankine cycle applications publication-title: Ind Eng Chem Res doi: 10.1021/ie050351s – volume: 50 start-page: 343 year: 2013 ident: 10.1016/j.energy.2017.04.090_bib13 article-title: Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation publication-title: Energy doi: 10.1016/j.energy.2012.11.010 – volume: 155 start-page: 150 year: 2015 ident: 10.1016/j.energy.2017.04.090_bib4 article-title: Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.118 – volume: 50 start-page: 576 year: 2009 ident: 10.1016/j.energy.2017.04.090_bib22 article-title: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2008.10.018 – volume: 73 start-page: 204 year: 2014 ident: 10.1016/j.energy.2017.04.090_bib30 article-title: Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2014.06.012 – volume: 49 start-page: 356 year: 2013 ident: 10.1016/j.energy.2017.04.090_bib25 article-title: Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source publication-title: Energy doi: 10.1016/j.energy.2012.11.009 – volume: 102 start-page: 605 year: 2016 ident: 10.1016/j.energy.2017.04.090_bib23 article-title: The ORC-PD: a versatile tool for fluid selection and Organic Rankine Cycle unit design publication-title: Energy doi: 10.1016/j.energy.2016.02.128 – volume: 136 year: 2014 ident: 10.1016/j.energy.2017.04.090_bib36 article-title: Empirical models for a screw expander based on experimental data from organic Rankine cycle system testing publication-title: J Eng Gas Turbines Power – volume: 117 start-page: 11 year: 2014 ident: 10.1016/j.energy.2017.04.090_bib50 article-title: Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.11.076 – volume: 74 start-page: 719 year: 2014 ident: 10.1016/j.energy.2017.04.090_bib49 article-title: Critical temperature criterion for selection of working fluids for subcritical pressure organic Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2014.07.038 – volume: 31 start-page: 2885 year: 2011 ident: 10.1016/j.energy.2017.04.090_bib5 article-title: Thermo-economic optimization of waste heat recovery Organic Rankine Cycles publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.05.014 – volume: 86 start-page: 941 year: 2009 ident: 10.1016/j.energy.2017.04.090_bib2 article-title: Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.09.001 – volume: 38 start-page: 1196 year: 2011 ident: 10.1016/j.energy.2017.04.090_bib48 article-title: Effects of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle publication-title: Renew Energy doi: 10.1016/j.renene.2010.09.022 – volume: 71 start-page: 146 year: 2013 ident: 10.1016/j.energy.2017.04.090_bib28 article-title: Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.03.028 – year: 2005 ident: 10.1016/j.energy.2017.04.090_bib1 – volume: 52 start-page: 2384 year: 2011 ident: 10.1016/j.energy.2017.04.090_bib20 article-title: Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.12.038 – volume: 22 start-page: 168 year: 2013 ident: 10.1016/j.energy.2017.04.090_bib3 article-title: Techno-economic survey of organic rankine cycle (ORC) systems publication-title: Ren Sustain Energy Rev doi: 10.1016/j.rser.2013.01.028 – volume: 221 start-page: 705 issue: 5 year: 2007 ident: 10.1016/j.energy.2017.04.090_bib39 article-title: Scroll expander for power generation from a low-grade steam source publication-title: Proc Inst Mech Eng Part A J Power Energy doi: 10.1243/09576509JPE392 – volume: 36 start-page: 3406 year: 2011 ident: 10.1016/j.energy.2017.04.090_bib17 article-title: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2011.03.041 – volume: 69 start-page: 1100 year: 2015 ident: 10.1016/j.energy.2017.04.090_bib38 article-title: Techno-economic optimization of low temperature CSP systems based on ORC with screw expanders publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.03.220 – volume: 88 start-page: 2740 year: 2011 ident: 10.1016/j.energy.2017.04.090_bib27 article-title: Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.02.034 – volume: 14 start-page: 3059 year: 2010 ident: 10.1016/j.energy.2017.04.090_bib12 article-title: A review of thermodynamic cycles and working fluids for the conversion of low-grade heat publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2010.07.006 – volume: 30 start-page: 1262 year: 2010 ident: 10.1016/j.energy.2017.04.090_bib19 article-title: Working fluids for low-temperature heat source publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2010.02.009 – ident: 10.1016/j.energy.2017.04.090_bib44 – volume: 35 start-page: 1033 year: 2010 ident: 10.1016/j.energy.2017.04.090_bib56 article-title: Efficiency optimization potential in supercritical organic rankine cycles publication-title: Energy doi: 10.1016/j.energy.2009.06.019 – volume: 88 start-page: 2 year: 2014 ident: 10.1016/j.energy.2017.04.090_bib58 article-title: Transcritical pressure Organic Rankine Cycle (ORC) analysis based on the integrated-average temperature difference in evaporators publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.11.031 – start-page: 1942 year: 1995 ident: 10.1016/j.energy.2017.04.090_bib42 article-title: Particle swarm optimization – volume: 14 start-page: 370 year: 2012 ident: 10.1016/j.energy.2017.04.090_bib24 article-title: Optimal design of ORC systems with a low-temperature heat source publication-title: Entropy doi: 10.3390/e14020370 – volume: 48 start-page: 565 year: 2012 ident: 10.1016/j.energy.2017.04.090_bib8 article-title: Selection of working fluids for micro-CHP systems with ORC publication-title: Renew Energy doi: 10.1016/j.renene.2012.06.006 – volume: 97 start-page: 601 year: 2012 ident: 10.1016/j.energy.2017.04.090_bib6 article-title: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.02.033 – volume: 112 start-page: 1265 year: 2013 ident: 10.1016/j.energy.2017.04.090_bib7 article-title: Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.030 – volume: 54 start-page: 343 year: 2015 ident: 10.1016/j.energy.2017.04.090_bib34 article-title: Optimization of power and heating systems based on a new hybrid algorithm publication-title: Alex Eng J doi: 10.1016/j.aej.2015.04.011 – volume: 51 start-page: 871 year: 2013 ident: 10.1016/j.energy.2017.04.090_bib54 article-title: Comparison of sub- and super-critical organic Rankine cycles for power generation from low-temperature/low enthalpy geothermal wells, considering specific net power output and efficiency publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.10.042 – volume: 94 start-page: 34 year: 2012 ident: 10.1016/j.energy.2017.04.090_bib35 article-title: An experimental study on the recuperative low temperature solar Rankine cycle using R245fa publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.01.019 – volume: 29 start-page: 1207 year: 2004 ident: 10.1016/j.energy.2017.04.090_bib40 article-title: Effect of working fluids on organic Rankine cycle for waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2004.01.004 – volume: 88 start-page: 2183 year: 2011 ident: 10.1016/j.energy.2017.04.090_bib29 article-title: Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.01.015 – volume: 63 start-page: 109 year: 2013 ident: 10.1016/j.energy.2017.04.090_bib57 article-title: Effect of the critical temperature of organic fluids on supercritical pressure organic Rankine cycles publication-title: Energy doi: 10.1016/j.energy.2013.09.068 – volume: 21 start-page: 381 year: 2001 ident: 10.1016/j.energy.2017.04.090_bib15 article-title: Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(00)00044-2 – start-page: 1945 year: 1999 ident: 10.1016/j.energy.2017.04.090_bib43 article-title: Empirical study of particle swarm optimization |
| SSID | ssj0005899 |
| Score | 2.3367958 |
| Snippet | The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most... The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 42 |
| SubjectTerms | Algorithms Critical temperature Cycle ratio Data processing Heat Inspection Optimization Optimization algorithms Organic Rankine Cycles PSO swarms System efficiency Temperature Temperature effects Thermodynamics Vapors Waste heat Working fluid |
| Title | A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles |
| URI | https://dx.doi.org/10.1016/j.energy.2017.04.090 https://www.proquest.com/docview/1932185283 https://www.proquest.com/docview/2000516072 |
| Volume | 129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Complete Freedom Collection customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heoBL1fIQ21JkJK7uhsSJk-NqBdoW8VApEjfLz3bRdrMiuwcu_PbOJA60lRBSj3bGSuSxZ75R5psBOEp1CFonGdciOAxQguFVoiW3qTfocLwvEyI4n18Ukxvx9Ta_XYNxz4WhtMpo-zub3lrrODOMuzlcTKfDa7S9iDcEYmrqfl5QTVAhJHUx-Pz4R5pH2faQJGFO0j19rs3x8i2_jhK8ZFfwNHnJPf1jqFvvc_oO3kbYyEbdl72HNT_fgo2eVdxswe7JM2MNBeOVbbahHrE2aZCH2Wrq2NX1JSfP5Zie_ajvp8ufvxjiVoY4kHWnntWhHRn8DLZ45hXQfLMy3MbmCKyjcVr2TVP7Bc_GD5RhtwM3pyffxxMeuyxwmxVyyXXmnAwm96LUzlRWlGmVelklxpn82GcyWOFcbhAJWlFYkwTcO104Y3wuMpNmu7A-r-d-DxjGmtK6FEMubzDw8pXPUy2tll4icNPlALJ-c5WNJcipE8ZM9blmd6pTiSKVqEQoVMkA-NOqRVeC4xV52etN_XWUFHqJV1bu92pW8So3ihAuMczLbACHT4_xEtKfFT339aqhXp5o3IpEph_---UfYZNGlIZ2nO_D-vJ-5T8h4Fmag_ZEH8Cb0ZezycVv9SUClg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VciiXCgoVSwsYiavZ1HHi5FitWi3QFkRbqTfLn2XRslk1uwcu_HZmEqcFJFSJY_yhRB575o3yngfgrTAxGpPl3MjoMUGJlteZUdyJYDHghFBlJHA-PSunl_LDVXG1AZNBC0O0yuT7e5_eeevUMk6rOV7OZuNz9L2INyRiaqp-XsoH8FAWQlEG9u7nbzyPqisiSaM5DR_0cx3JK3QCO2J4qf7G0-xf8ekvT92Fn-PHsJ1wIzvsP-0JbITFDmwNsuJ2B3aP7iRrODCd2fYpNIesYw3yOF_PPPt8_olT6PLMzK-bm9nq63eGwJUhEGT9tmdN7J4sfgZb3gkLqL1dW-5SdQTW6zgd-2Ko_kJgkx9EsXsGl8dHF5MpT2UWuMtLteIm915FWwRZGW9rJytRi6DqzHpbHIRcRSe9LyxCQSdLZ7OIa2dKb20oZG5Fvgubi2YRngPDZFM5LzDnChYzr1CHQhjljAoKkZupRpAPi6tduoOcSmHM9UA2-6Z7k2gyic6kRpOMgN_OWvZ3cNwzXg1203_sJY1h4p6Z-4OZdTrLrSaISxLzKh_Bm9tuPIX0a8UsQrNuqZgnercyU-LFf7_8NWxNL05P9Mn7s4978Ih6iJN2UOzD5upmHV4i-lnZV93u_gXecwQr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-fluid+PSO-based+algorithm+for+the+search+of+the+best+performance+of+sub-critical+Organic+Rankine+Cycles&rft.jtitle=Energy+%28Oxford%29&rft.au=Cavazzini%2C+G.&rft.au=Bari%2C+S.&rft.au=Pavesi%2C+G.&rft.au=Ardizzon%2C+G.&rft.date=2017-06-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=129&rft.spage=42&rft.epage=58&rft_id=info:doi/10.1016%2Fj.energy.2017.04.090&rft.externalDocID=S0360544217306564 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |