Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling
The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and market harmonisation in the European markets, accurate price forecasting becomes difficult for electricity market participants to obtain becau...
Saved in:
| Published in | Energy (Oxford) Vol. 237; p. 121543 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.12.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 |
| DOI | 10.1016/j.energy.2021.121543 |
Cover
| Abstract | The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and market harmonisation in the European markets, accurate price forecasting becomes difficult for electricity market participants to obtain because electricity forecasting requires the consideration of features from ever-growing coupling markets. This study provides a method of exploring the influence of market coupling on electricity price prediction. We apply state-of-the-art long short-term memory (LSTM) deep neural networks combined with feature selection algorithms for electricity price prediction under the consideration of market coupling. LSTM models have a good performance in handling nonlinear and complex problems and processing time series data. In our empirical study of the Nordic market, the proposed models obtain considerably accurate results. The results show that feature selection is essential to achieving accurate prediction, and features from integrated markets have an impact on prediction. The feature importance analysis implies that the German market has a salient role in the price generation of Nord Pool.
•Propose three LSTM-based deep learning hybrid architectures for electricity price forecasting, considering market coupling.•Apply a broad set of explanatory variables from the Nord Pool and its six integrated markets.•Conduct comprehensive comparisons for various feature selection algorithms.•Detect the feature importance from integrated markets by applying a Shapley value-based approach.•Conclude that the influence of feature selection is significant on the forecasting accuracy of LSTM-based hybrid models. |
|---|---|
| AbstractList | The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and market harmonisation in the European markets, accurate price forecasting becomes difficult for electricity market participants to obtain because electricity forecasting requires the consideration of features from ever-growing coupling markets. This study provides a method of exploring the influence of market coupling on electricity price prediction. We apply state-of-the-art long short-term memory (LSTM) deep neural networks combined with feature selection algorithms for electricity price prediction under the consideration of market coupling. LSTM models have a good performance in handling nonlinear and complex problems and processing time series data. In our empirical study of the Nordic market, the proposed models obtain considerably accurate results. The results show that feature selection is essential to achieving accurate prediction, and features from integrated markets have an impact on prediction. The feature importance analysis implies that the German market has a salient role in the price generation of Nord Pool. The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and market harmonisation in the European markets, accurate price forecasting becomes difficult for electricity market participants to obtain because electricity forecasting requires the consideration of features from ever-growing coupling markets. This study provides a method of exploring the influence of market coupling on electricity price prediction. We apply state-of-the-art long short-term memory (LSTM) deep neural networks combined with feature selection algorithms for electricity price prediction under the consideration of market coupling. LSTM models have a good performance in handling nonlinear and complex problems and processing time series data. In our empirical study of the Nordic market, the proposed models obtain considerably accurate results. The results show that feature selection is essential to achieving accurate prediction, and features from integrated markets have an impact on prediction. The feature importance analysis implies that the German market has a salient role in the price generation of Nord Pool. •Propose three LSTM-based deep learning hybrid architectures for electricity price forecasting, considering market coupling.•Apply a broad set of explanatory variables from the Nord Pool and its six integrated markets.•Conduct comprehensive comparisons for various feature selection algorithms.•Detect the feature importance from integrated markets by applying a Shapley value-based approach.•Conclude that the influence of feature selection is significant on the forecasting accuracy of LSTM-based hybrid models. |
| ArticleNumber | 121543 |
| Author | Li, Wei Becker, Denis Mike |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-2506-7004 surname: Li fullname: Li, Wei email: wei.n.li@ntnu.no – sequence: 2 givenname: Denis Mike orcidid: 0000-0002-3303-9775 surname: Becker fullname: Becker, Denis Mike email: denis.becker@ntnu.no |
| BookMark | eNqFkc2OFCEUhYkZE3tG38AFiRs31UJRVRQuTMz4MyZtXDiuCQW3umlpKIEyqUfyLaW7ZjUL3XAJnHMu3O8aXfngAaGXlGwpod2b4xY8xP2yrUlNt7SmbcOeoA3tOas63rdXaENYR6q2aepn6DqlIyGk7YXYoD8f1FKpAyiDwYHO0WqbFzyVCmUFY3W2wWM1TW6xfo8PyxCtwadgwCUcRrz7fv-1GlQCgw3AhB2o6M_KE-RDMAkrb_AIKs8RcLo0uQS6fYg2H04Jz95AxDr4ZMtGXa5L8EnFn5DL-Ty5kvccPR2VS_Diod6gH58-3t_eVbtvn7_cvt9VmnU8V4rVytRaqJE0oyK0H0euWd8Jrg1nAwjNmemgF40Azk0_No0wRLdiUNANbc9u0Os1d4rh1wwpy5NNGpxTHsKcZN2xrq1pw8_SV4-kxzBHX15XVERQ2jLSFtXbVaVjSCnCKMuIL7_MUVknKZFnivIoV4ryTFGuFIu5eWQuaMpklv_Z3q22Agl-W4gyaQteF56xAJAm2H8H_AWPGL89 |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_137353 crossref_primary_10_1016_j_renene_2022_02_047 crossref_primary_10_3390_en17122909 crossref_primary_10_1016_j_gsf_2023_101670 crossref_primary_10_3390_en16196767 crossref_primary_10_1002_for_3103 crossref_primary_10_1016_j_egyr_2022_08_087 crossref_primary_10_1016_j_energy_2023_127321 crossref_primary_10_1007_s10614_024_10769_0 crossref_primary_10_1016_j_energy_2024_132877 crossref_primary_10_3390_su142114101 crossref_primary_10_1080_14697688_2022_2118071 crossref_primary_10_1016_j_ijforecast_2022_03_001 crossref_primary_10_21076_vizyoner_1450934 crossref_primary_10_1016_j_apenergy_2024_123553 crossref_primary_10_1016_j_renene_2021_12_136 crossref_primary_10_1016_j_resourpol_2023_103360 crossref_primary_10_1109_TAI_2024_3455313 crossref_primary_10_1016_j_ijepes_2024_110206 crossref_primary_10_1016_j_apacoust_2022_108849 crossref_primary_10_1016_j_eneco_2023_107241 crossref_primary_10_1007_s10669_024_09998_3 crossref_primary_10_1016_j_jestch_2023_101538 crossref_primary_10_1007_s00477_023_02556_4 crossref_primary_10_1016_j_epsr_2023_109300 crossref_primary_10_1109_TPWRS_2023_3301442 crossref_primary_10_1016_j_energy_2024_132069 crossref_primary_10_3390_en15228445 crossref_primary_10_1016_j_compeleceng_2022_107808 crossref_primary_10_1002_widm_1519 crossref_primary_10_1016_j_energy_2024_134167 crossref_primary_10_1007_s44196_023_00387_3 crossref_primary_10_1109_TPWRS_2024_3380834 crossref_primary_10_1002_for_2981 crossref_primary_10_1016_j_ijepes_2024_109975 crossref_primary_10_1016_j_egyr_2022_07_148 crossref_primary_10_1016_j_apenergy_2022_120042 crossref_primary_10_1016_j_heliyon_2023_e23434 crossref_primary_10_1016_j_apr_2022_101358 crossref_primary_10_35234_fumbd_1473145 crossref_primary_10_1016_j_apenergy_2023_122079 crossref_primary_10_3390_a16040177 crossref_primary_10_1016_j_energy_2022_124212 crossref_primary_10_1016_j_jobe_2025_112055 crossref_primary_10_1016_j_neunet_2023_08_051 crossref_primary_10_1016_j_esr_2024_101436 crossref_primary_10_3390_en17194885 crossref_primary_10_17482_uumfd_1296479 crossref_primary_10_1007_s42835_024_02040_1 crossref_primary_10_1016_j_physa_2023_128685 crossref_primary_10_3390_en17112687 crossref_primary_10_1016_j_energy_2024_130350 crossref_primary_10_3390_app142110032 crossref_primary_10_3390_en14227473 crossref_primary_10_30798_makuiibf_1097686 crossref_primary_10_3390_en18071624 crossref_primary_10_1016_j_energy_2022_126099 crossref_primary_10_1016_j_renene_2024_122045 crossref_primary_10_1016_j_techfore_2024_123846 crossref_primary_10_1016_j_apenergy_2023_122284 crossref_primary_10_17233_sosyoekonomi_2023_03_09 crossref_primary_10_1109_ACCESS_2023_3280857 crossref_primary_10_1109_TPWRS_2024_3353759 crossref_primary_10_1016_j_petsci_2022_05_005 crossref_primary_10_9728_dcs_2023_24_1_141 crossref_primary_10_1016_j_ijepes_2025_110589 crossref_primary_10_1109_ACCESS_2024_3419226 crossref_primary_10_1016_j_asej_2022_101793 crossref_primary_10_1016_j_asoc_2023_110939 crossref_primary_10_3390_forecast5030028 crossref_primary_10_3390_math10142366 crossref_primary_10_1016_j_renene_2024_122051 crossref_primary_10_1016_j_engappai_2024_109602 crossref_primary_10_1016_j_ifacol_2024_08_451 crossref_primary_10_1016_j_enbuild_2024_115207 crossref_primary_10_1109_JSYST_2022_3205142 crossref_primary_10_3233_JIFS_224142 crossref_primary_10_1016_j_buildenv_2022_109152 crossref_primary_10_1016_j_egyai_2023_100250 crossref_primary_10_1016_j_energy_2022_124752 crossref_primary_10_3390_en16041570 crossref_primary_10_1016_j_eneco_2024_108008 crossref_primary_10_1155_2022_1587251 crossref_primary_10_1007_s10700_022_09406_y crossref_primary_10_1007_s10614_023_10416_0 crossref_primary_10_1016_j_jup_2022_101456 crossref_primary_10_1007_s00521_023_08734_3 crossref_primary_10_1016_j_apenergy_2023_122059 crossref_primary_10_1016_j_apenergy_2024_123920 crossref_primary_10_2166_hydro_2023_001 crossref_primary_10_1007_s10479_024_06277_x crossref_primary_10_1016_j_egyai_2023_100259 |
| Cites_doi | 10.1016/j.energy.2019.07.134 10.1016/j.cherd.2019.06.034 10.1038/s42256-019-0138-9 10.1016/j.energy.2019.05.230 10.1016/j.patrec.2006.03.013 10.1186/s12859-018-2451-4 10.1016/j.apenergy.2020.115527 10.1016/j.apenergy.2018.02.069 10.1186/1471-2105-7-91 10.1016/j.neucom.2005.12.126 10.1198/073500102753410444 10.1016/j.epsr.2006.09.022 10.3390/su10041280 10.1016/j.apenergy.2016.03.089 10.1109/TPWRS.2002.1007902 10.1016/j.ijforecast.2014.08.008 10.1016/j.eneco.2015.08.005 10.1016/j.neucom.2013.01.065 10.1023/A:1012487302797 10.1007/s00500-016-2128-8 10.1016/j.rser.2017.05.234 10.1016/j.apenergy.2017.11.098 10.1016/j.asoc.2019.04.019 10.1109/TPWRS.2017.2700287 10.1016/j.neunet.2005.06.042 10.1186/s12859-016-1423-9 10.1109/TPWRS.2009.2030380 10.1007/s00500-016-2093-2 10.1016/j.energy.2020.118368 10.1016/j.ijforecast.2004.12.005 10.1007/978-3-319-97982-3_6 10.1109/TPAMI.2005.159 10.1145/3136625 10.3390/en9080621 10.1109/TCBB.2010.13 10.1016/j.enpol.2003.10.013 10.1007/s00521-015-2141-3 10.1016/j.rser.2016.11.155 10.1162/neco.1997.9.8.1735 10.1016/j.ijforecast.2008.08.004 10.1109/5.823996 10.1109/72.279181 10.1016/j.asoc.2015.03.036 10.1016/j.energy.2018.09.093 10.1016/S0169-2070(96)00719-4 10.1016/j.eswa.2014.11.024 10.1007/BF00175354 10.1016/j.energy.2020.117894 10.1016/j.compeleceng.2013.11.024 10.1016/j.ejor.2015.05.063 10.1109/MSP.2012.2205597 10.1016/j.apenergy.2015.09.087 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 15, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2021 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2021.121543 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2021_121543 S0360544221017916 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-a32ad2c9af04fa018ff7c38697cd73be9c73d6e8949e77d8f449d0c59bae6b583 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 |
| IngestDate | Wed Oct 01 14:02:20 EDT 2025 Wed Aug 13 07:20:38 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Thu Oct 09 00:41:00 EDT 2025 Fri Feb 23 02:43:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Electricity price forecasting (EPF) Feature selection The Nord Pool system price Electricity market coupling Long short-term memory (LSTM) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-a32ad2c9af04fa018ff7c38697cd73be9c73d6e8949e77d8f449d0c59bae6b583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2506-7004 0000-0002-3303-9775 |
| PQID | 2609115305 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2636521478 proquest_journals_2609115305 crossref_citationtrail_10_1016_j_energy_2021_121543 crossref_primary_10_1016_j_energy_2021_121543 elsevier_sciencedirect_doi_10_1016_j_energy_2021_121543 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Graves (bib45) 2013 Li, Cheng, Wang, Morstatter, Trevino, Tang (bib26) 2017; 50 Shao, Yang, Gao, Zhou, Lin (bib70) 2017; 70 Harvey, Leybourne, Newbold (bib57) 1997; 13 Islyaev, Date (bib10) 2015; 247 Peter, Raglend (bib17) 2017; 28 Ziel, Steinert, Husmann (bib27) 2015; 51 Chyzhyk, Savio, Graña (bib48) 2014; 128 Chang, Zhang, Chen (bib23) 2019; 187 Lago, Ridder, Schutter (bib22) 2018; 221 Shi, Chen, Wang, Yeung, Wk, Wc (bib55) 2015 Sanz, Valim, Oller, Reverter (bib82) 2018; 19 Ahila, Sadasivam, Manimala (bib49) 2015; 32 Kim, Cho (bib72) 2018 Shang, Zhou, Liu (bib36) 2016; 20 Zareipour, Canizares, Bhattacharya (bib78) 2010; 25 Herceg, Željka Ujević, Bolf (bib81) 2019; 149 Li, Yuan, Gao (bib20) 2018; 165 Weron (bib5) 2014; 30 Lago, De Ridder, Vrancx, De Schutter (bib29) 2018; 211 Chen, Zeng, van Alphen (bib34) 2006; 27 Sutskever, Vinyals, Le (bib54) 2014 Guyon, Elisseeff (bib83) 2003; 3 Panapakidis, Dagoumas (bib28) 2016; 172 Bunn (bib4) 2000; 88 Keles, Scelle, Paraschiv, Fichtner (bib16) 2016; 162 Bahdanau, Cho, Bengio (bib19) 2014 Luo, Zhu, Han, Chen (bib39) 2018 Weron (bib1) 2006 Ventosa, Baillo, Ramos, Rivie (bib7) 2005; 33 Drucker, Burges, Kaufman, Smola, Vapnik (bib52) 1997; vol. 9 Guyon, Weston, Barnhill, Vapnik (bib84) 2002; 46 Nguyen, Xue, Liu, Andreae, Zhang (bib35) 2016; 20 Bunn (bib2) 2004 Nogales, Contreras, Conejo, Espinola (bib3) 2002; 17 Gers, Schmidhuber (bib42) 2000; vol. 3 Kiose, Voudouris (bib8) 2015; 42 Yu, Liu (bib66) 2004; 5 Misiorek, Trueck, Weron (bib13) 2006; 10 Lundberg, Erion, Chen, DeGrave, Prutkin, Nair (bib61) 2020; 2 Gonzalez, Roque, Pérez (bib14) 2018; 33 Varma, Simon (bib58) 2006; 7 Lundberg, Lee (bib64) 2017 Zhang, Wang, Ji (bib50) 2015; 2015 Weron, Misiorek (bib11) 2008; 24 Kuo, Huang (bib24) 2018; 10 Zhou, Zhou, Gong, Jiang (bib37) 2020; 204 Tibshirani (bib85) 1996; 58 Greenfish (bib40) 2019 Nawaz, Javaid, Mangla, Munir, Ihsan, Javaid (bib75) 2020 Jamian, Abdullah, Mokhlis, Mustafa, Bakar (bib68) 2014 Uribe, Mosquera-López, Guillen (bib30) 2020; 208 Hochreiter, Schmidhuber (bib41) 1997; 74 Graves, Schmidhuber (bib43) 2005; 18 Conejo, Contreras, Espínola, Plazas (bib12) 2005; 21 Somu, Raman, Ramamritham (bib69) 2021; 110591 Leerbeck, Bacher, Junker, Goranović, Corradi, Ebrahimy (bib77) 2020; 277 Johannesen, Kolhe, Goodwin (bib32) 2019 Hastie, Tibshirani, Friedman (bib25) 2009 Brusaferri, Fagiano, Matteucci, Vitali (bib76) 2019-July Chandrashekar, Sahin (bib33) 2014; 40 Goodfellow, Bengio, Courville (bib59) 2016 Kim, Cho (bib73) 2019; 182 McHugh, Coleman, Kerr, McGlynn (bib60) 2019 Sultana, Khan, Javaid, Aimal, Fatima, Shabbir (bib74) 2019 Langley (bib67) 1994 Bengio, Simard, Frasconi (bib21) 1994; 5 Peng, Long, Ding (bib65) 2005; 27 Nowotarski, Weron (bib6) 2018; 81 Krishnan G, S (bib38) 2019; 80 Burger, Schindlmayr, Graeber (bib9) 2007 Hinton, Deng, Yu, Dahl, rahman Mohamed, Jaitly (bib18) 2012; 29 Janzing, Minorics, Blöbaum (bib62) 2019 Whitley (bib51) 1994; 4 Marcjasz, Lago, Weron (bib31) 2020 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (bib53) 2015 Li, Paraschiv (bib86) 2021 Saraswathi, Sundaram, Sundararajan, Zimmermann, Nilsen-Hamilton (bib47) 2011; 8 Diebold, Mariano (bib56) 2002; 20 Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk (bib44) 2014 Huang, Zhu, Siew (bib46) 2006; 70 Sundararajan, Najmi (bib63) 2020 Uniejewski, Nowotarski, Weron (bib79) 2016; 9 Catalao, Mariano, Mendes, Ferreira (bib15) 2007; 77 Radovic, Ghalwash, Filipovic, Obradovic (bib71) 2017; 18 Kaminski (bib80) 2013 Goodfellow (10.1016/j.energy.2021.121543_bib59) 2016 Uniejewski (10.1016/j.energy.2021.121543_bib79) 2016; 9 Conejo (10.1016/j.energy.2021.121543_bib12) 2005; 21 Sundararajan (10.1016/j.energy.2021.121543_bib63) 2020 Sanz (10.1016/j.energy.2021.121543_bib82) 2018; 19 Chen (10.1016/j.energy.2021.121543_bib34) 2006; 27 Misiorek (10.1016/j.energy.2021.121543_bib13) 2006; 10 Somu (10.1016/j.energy.2021.121543_bib69) 2021; 110591 Bahdanau (10.1016/j.energy.2021.121543_bib19) 2014 Harvey (10.1016/j.energy.2021.121543_bib57) 1997; 13 Shao (10.1016/j.energy.2021.121543_bib70) 2017; 70 Bunn (10.1016/j.energy.2021.121543_bib4) 2000; 88 Chang (10.1016/j.energy.2021.121543_bib23) 2019; 187 Kim (10.1016/j.energy.2021.121543_bib72) 2018 Kaminski (10.1016/j.energy.2021.121543_bib80) 2013 Herceg (10.1016/j.energy.2021.121543_bib81) 2019; 149 Chandrashekar (10.1016/j.energy.2021.121543_bib33) 2014; 40 Sultana (10.1016/j.energy.2021.121543_bib74) 2019 Weron (10.1016/j.energy.2021.121543_bib1) 2006 Shang (10.1016/j.energy.2021.121543_bib36) 2016; 20 Huang (10.1016/j.energy.2021.121543_bib46) 2006; 70 Li (10.1016/j.energy.2021.121543_bib86) 2021 Saraswathi (10.1016/j.energy.2021.121543_bib47) 2011; 8 McHugh (10.1016/j.energy.2021.121543_bib60) 2019 Radovic (10.1016/j.energy.2021.121543_bib71) 2017; 18 Ahila (10.1016/j.energy.2021.121543_bib49) 2015; 32 Catalao (10.1016/j.energy.2021.121543_bib15) 2007; 77 Marcjasz (10.1016/j.energy.2021.121543_bib31) 2020 Zareipour (10.1016/j.energy.2021.121543_bib78) 2010; 25 Gonzalez (10.1016/j.energy.2021.121543_bib14) 2018; 33 Diebold (10.1016/j.energy.2021.121543_bib56) 2002; 20 Burger (10.1016/j.energy.2021.121543_bib9) 2007 Bengio (10.1016/j.energy.2021.121543_bib21) 1994; 5 Kim (10.1016/j.energy.2021.121543_bib73) 2019; 182 Graves (10.1016/j.energy.2021.121543_bib45) 2013 Uribe (10.1016/j.energy.2021.121543_bib30) 2020; 208 Chyzhyk (10.1016/j.energy.2021.121543_bib48) 2014; 128 Peng (10.1016/j.energy.2021.121543_bib65) 2005; 27 Li (10.1016/j.energy.2021.121543_bib20) 2018; 165 Langley (10.1016/j.energy.2021.121543_bib67) 1994 Yu (10.1016/j.energy.2021.121543_bib66) 2004; 5 Janzing (10.1016/j.energy.2021.121543_bib62) 2019 Lundberg (10.1016/j.energy.2021.121543_bib64) 2017 Islyaev (10.1016/j.energy.2021.121543_bib10) 2015; 247 Nguyen (10.1016/j.energy.2021.121543_bib35) 2016; 20 Krishnan G (10.1016/j.energy.2021.121543_bib38) 2019; 80 Nogales (10.1016/j.energy.2021.121543_bib3) 2002; 17 Peter (10.1016/j.energy.2021.121543_bib17) 2017; 28 Zhou (10.1016/j.energy.2021.121543_bib37) 2020; 204 Hinton (10.1016/j.energy.2021.121543_bib18) 2012; 29 Tibshirani (10.1016/j.energy.2021.121543_bib85) 1996; 58 Gers (10.1016/j.energy.2021.121543_bib42) 2000; vol. 3 Leerbeck (10.1016/j.energy.2021.121543_bib77) 2020; 277 Ventosa (10.1016/j.energy.2021.121543_bib7) 2005; 33 Johannesen (10.1016/j.energy.2021.121543_bib32) 2019 Shi (10.1016/j.energy.2021.121543_bib55) 2015 Hastie (10.1016/j.energy.2021.121543_bib25) 2009 Lago (10.1016/j.energy.2021.121543_bib22) 2018; 221 Ziel (10.1016/j.energy.2021.121543_bib27) 2015; 51 Lago (10.1016/j.energy.2021.121543_bib29) 2018; 211 Nawaz (10.1016/j.energy.2021.121543_bib75) 2020 Nowotarski (10.1016/j.energy.2021.121543_bib6) 2018; 81 Kuo (10.1016/j.energy.2021.121543_bib24) 2018; 10 Luo (10.1016/j.energy.2021.121543_bib39) 2018 Graves (10.1016/j.energy.2021.121543_bib43) 2005; 18 Cho (10.1016/j.energy.2021.121543_bib44) 2014 Weron (10.1016/j.energy.2021.121543_bib11) 2008; 24 Bunn (10.1016/j.energy.2021.121543_bib2) 2004 Lundberg (10.1016/j.energy.2021.121543_bib61) 2020; 2 Keles (10.1016/j.energy.2021.121543_bib16) 2016; 162 Greenfish (10.1016/j.energy.2021.121543_bib40) 2019 Jamian (10.1016/j.energy.2021.121543_bib68) 2014 Li (10.1016/j.energy.2021.121543_bib26) 2017; 50 Panapakidis (10.1016/j.energy.2021.121543_bib28) 2016; 172 Brusaferri (10.1016/j.energy.2021.121543_bib76) 2019 Guyon (10.1016/j.energy.2021.121543_bib83) 2003; 3 Guyon (10.1016/j.energy.2021.121543_bib84) 2002; 46 Weron (10.1016/j.energy.2021.121543_bib5) 2014; 30 Kiose (10.1016/j.energy.2021.121543_bib8) 2015; 42 Sutskever (10.1016/j.energy.2021.121543_bib54) 2014 Drucker (10.1016/j.energy.2021.121543_bib52) 1997; vol. 9 Whitley (10.1016/j.energy.2021.121543_bib51) 1994; 4 Szegedy (10.1016/j.energy.2021.121543_bib53) 2015 Varma (10.1016/j.energy.2021.121543_bib58) 2006; 7 Zhang (10.1016/j.energy.2021.121543_bib50) 2015; 2015 Hochreiter (10.1016/j.energy.2021.121543_bib41) 1997; 74 |
| References_xml | – year: 2009 ident: bib25 article-title: The elements of statistical learning: data mining, inference and prediction – volume: 172 start-page: 132 year: 2016 end-page: 151 ident: bib28 article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models publication-title: Appl Energy – start-page: 259 year: 2019 end-page: 270 ident: bib74 article-title: Data analytics for load and price forecasting via enhanced support vector regression publication-title: Advances in internet, data and web technologies – volume: 182 start-page: 72 year: 2019 end-page: 81 ident: bib73 article-title: Predicting residential energy consumption using cnn-lstm neural networks publication-title: Energy – year: 2004 ident: bib2 article-title: Modelling prices in competitive electricity markets – volume: 17 start-page: 342 year: 2002 end-page: 348 ident: bib3 article-title: Forecasting next-day electricity prices by time series models publication-title: IEEE Trans Power Syst – volume: 204 start-page: 117894 year: 2020 ident: bib37 article-title: Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine publication-title: Energy – year: 2014 ident: bib44 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation – volume: 128 start-page: 73 year: 2014 end-page: 80 ident: bib48 article-title: Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI publication-title: Neurocomputing – volume: 42 start-page: 2731 year: 2015 end-page: 2748 ident: bib8 article-title: The acewem framework: an integrated agent-based and statistical modelling laboratory for repeated power auctions publication-title: Expert Syst Appl – volume: 50 year: 2017 ident: bib26 article-title: Feature selection: a data perspective publication-title: ACM Comput Surv – volume: 20 start-page: 3927 year: 2016 end-page: 3946 ident: bib35 article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection publication-title: Soft Comput. – start-page: 521 year: 2020 end-page: 533 ident: bib75 article-title: An approximate forecasting of electricity load and price of a smart home using nearest neighbor publication-title: Complex, intelligent, and software intensive systems – volume: 30 start-page: 1030 year: 2014 end-page: 1081 ident: bib5 article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future publication-title: Int J Forecast – volume: 10 year: 2006 ident: bib13 article-title: Point and interval forecasting of spot electricity prices: linear vs non-linear time series models publication-title: Stud Nonlinear Dynam Econom – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib85 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Stat Soc Soc B (Methodological) – volume: 19 year: 2018 ident: bib82 article-title: SVM-RFE: selection and visualization of the most relevant features through non-linear kernels publication-title: BMC Bioinf – volume: 277 year: 2020 ident: bib77 article-title: Short-term forecasting of CO2 emission intensity in power grids by machine learning publication-title: Appl Energy – volume: 77 start-page: 1297 year: 2007 end-page: 1304 ident: bib15 article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach publication-title: Elec Power Syst Res – volume: 13 start-page: 281 year: 1997 end-page: 291 ident: bib57 article-title: Testing the equality of prediction mean squared errors publication-title: Int J Forecast – volume: 10 year: 2018 ident: bib24 article-title: An electricity price forecasting model by hybrid structured deep neural networks publication-title: Sustainability – year: 2013 ident: bib80 article-title: Energy markets. Risk book – start-page: 1051 year: 2019-July end-page: 1056 ident: bib76 article-title: Day ahead electricity price forecast by NARX model with LASSO based features selection publication-title: IEEE international conference on industrial informatics (INDIN) 2019 – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bib46 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – start-page: 802 year: 2015 end-page: 810 ident: bib55 article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting publication-title: Advances in neural information processing systems 28 – year: 2019 ident: bib62 article-title: Feature relevance quantification in explainable ai: a causal problem – start-page: 1 year: 2015 end-page: 9 ident: bib53 article-title: Going deeper with convolutions publication-title: 2015 IEEE conference on computer vision and pattern recognition (CVPR) – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib83 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – start-page: 140 year: 1994 end-page: 144 ident: bib67 article-title: Selection of relevant features in machine learning publication-title: In Proceedings of the AAAI Fall symposium on relevance – volume: 162 start-page: 218 year: 2016 end-page: 230 ident: bib16 article-title: Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks publication-title: Appl Energy – volume: 74 start-page: 1735 year: 1997 end-page: 1780 ident: bib41 article-title: Long short-term memory publication-title: Neural Comput. – volume: 70 start-page: 330 year: 2017 end-page: 341 ident: bib70 article-title: A new electricity price prediction strategy using mutual information-based svm-rfe classification publication-title: Renew Sustain Energy Rev – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: bib21 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans Neural Network – volume: 18 start-page: 9 year: 2017 ident: bib71 article-title: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data publication-title: BMC Bioinf – volume: vol. 3 start-page: 189 year: 2000 end-page: 194 ident: bib42 article-title: Recurrent nets that time and count publication-title: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. Neural computing: new challenges and perspectives for the new millennium – start-page: 1932 year: 2019 end-page: 1938 ident: bib32 article-title: Deregulated electric energy price forecasting in nordpool market using regression techniques publication-title: In: 2019 IEEE sustainable power and energy conference (iSPEC) – volume: 149 start-page: 95 year: 2019 end-page: 103 ident: bib81 article-title: Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models publication-title: Chem Eng Res Des – volume: vol. 9 year: 1997 ident: bib52 article-title: Support vector regression machines publication-title: Advances in neural information processing systems – volume: 20 start-page: 3821 year: 2016 end-page: 3834 ident: bib36 article-title: Particle swarm optimization-based feature selection in sentiment classification publication-title: Soft Comput. – volume: 80 start-page: 525 year: 2019 end-page: 533 ident: bib38 article-title: A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data publication-title: Appl. Soft Comput. J. – year: 2014 ident: bib19 article-title: Neural machine translation by jointly learning to align and translate – start-page: 481 year: 2018 end-page: 490 ident: bib72 article-title: Predicting the household power consumption using cnn-lstm hybrid networks publication-title: Intelligent data engineering and automated learning – ideal 2018 – volume: 21 start-page: 435 year: 2005 end-page: 462 ident: bib12 article-title: Forecasting electricity prices for a day-ahead pool-based electric energy market publication-title: Int J Forecast – volume: 33 start-page: 545 year: 2018 end-page: 556 ident: bib14 article-title: Forecasting functional time series with a new Hilbertian ARMAX model: application to electricity price forecasting publication-title: IEEE Trans. Power Syst. – start-page: 71 year: 2019 end-page: 82 ident: bib60 article-title: Daily energy price forecasting using a polynomial narmax model publication-title: Advances in computational intelligence systems – year: 2007 ident: bib9 article-title: Managing energy risk: an integrated view on power and other energy markets – volume: 32 start-page: 23 year: 2015 end-page: 37 ident: bib49 article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances publication-title: Appl Soft Comput – volume: 20 start-page: 134 year: 2002 end-page: 144 ident: bib56 article-title: Comparing predictive accuracy publication-title: J Bus Econ Stat – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: bib33 article-title: A survey on feature selection methods publication-title: Comput Electr Eng – year: 2021 ident: bib86 article-title: Modelling the evolution of wind and solar power infeed forecasts publication-title: J Commod Mark – volume: 81 start-page: 1548 year: 2018 end-page: 1568 ident: bib6 article-title: Recent advances in electricity price forecasting: a review of probabilistic forecasting publication-title: Renew Sustain Energy Rev – year: 2017 ident: bib64 article-title: A unified approach to interpreting model predictions – volume: 24 start-page: 744 year: 2008 end-page: 763 ident: bib11 article-title: Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models publication-title: Int J Forecast – volume: 27 start-page: 1685 year: 2006 end-page: 1691 ident: bib34 article-title: Multi-class feature selection for texture classification publication-title: Pattern Recogn Lett – volume: 165 start-page: 340 year: 2018 end-page: 349 ident: bib20 article-title: Maximization of energy absorption for a wave energy converter using the deep machine learning publication-title: Energy – year: 2019 ident: bib40 article-title: Shaping our electrical future: moving towards an integrated european network – volume: 4 start-page: 65 year: 1994 end-page: 85 ident: bib51 article-title: A genetic algorithm tutorial publication-title: Stat Comput – volume: 33 start-page: 897 year: 2005 end-page: 913 ident: bib7 article-title: Electricity market modeling trends publication-title: Energy Pol – volume: 28 start-page: 2277 year: 2017 end-page: 2292 ident: bib17 article-title: Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for indian energy exchange publication-title: Neural Comput Appl – volume: 7 start-page: 91 year: 2006 ident: bib58 article-title: Bias in error estimation when using cross-validation for model selection publication-title: BMC Bioinf – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib65 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib84 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn – volume: 211 start-page: 890 year: 2018 end-page: 903 ident: bib29 article-title: Forecasting day-ahead electricity prices in europe: the importance of considering market integration publication-title: Appl Energy – year: 2020 ident: bib31 article-title: Neural networks in day-ahead electricity price forecasting: single vs. multiple outputs – year: 2014 ident: bib68 article-title: Global particle swarm optimization for high dimension numerical functions analysis publication-title: J Appl Math – volume: 18 start-page: 602 year: 2005 end-page: 610 ident: bib43 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Network – volume: 2015 start-page: 931256 year: 2015 ident: bib50 article-title: A comprehensive survey on particle swarm optimization algorithm and its applications publication-title: Math Probl Eng – volume: 221 start-page: 386 year: 2018 end-page: 405 ident: bib22 article-title: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms publication-title: Appl Energy – volume: 51 start-page: 430 year: 2015 end-page: 444 ident: bib27 article-title: Forecasting day ahead electricity spot prices: the impact of the exaa to other european electricity markets publication-title: Energy Econ – volume: 25 start-page: 254 year: 2010 end-page: 262 ident: bib78 article-title: Economic impact of electricity market price forecasting errors: a demand-side analysis publication-title: IEEE Trans. Power Syst. – year: 2016 ident: bib59 article-title: Deep learning – volume: 9 year: 2016 ident: bib79 article-title: Automated variable selection and shrinkage for day-ahead electricity price forecasting publication-title: Energies – volume: 208 start-page: 118368 year: 2020 ident: bib30 article-title: Characterizing electricity market integration in nord pool publication-title: Energy – volume: 2 start-page: 56 year: 2020 end-page: 67 ident: bib61 article-title: From local explanations to global understanding with explainable ai for trees publication-title: Nat. Mach. Intell. – year: 2013 ident: bib45 article-title: Generating sequences with recurrent neural networks – start-page: 3104 year: 2014 end-page: 3112 ident: bib54 article-title: Sequence to sequence learning with neural networks publication-title: Advances in neural information processing systems 27 – volume: 110591 start-page: 137 year: 2021 ident: bib69 article-title: A deep learning framework for building energy consumption forecast publication-title: Renew Sustain Energy Rev – volume: 187 start-page: 115804 year: 2019 ident: bib23 article-title: Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform publication-title: Energy – volume: 88 start-page: 163 year: 2000 end-page: 169 ident: bib4 article-title: Forecasting loads and prices in competitive power markets publication-title: Proc IEEE – year: 2018 ident: bib39 article-title: Short-term photovoltaic generation forecasting based on similar day selection and extreme learning machine publication-title: IEEE power and energy society general meeting 2018 – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: bib18 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process Mag – volume: 8 start-page: 452 year: 2011 end-page: 463 ident: bib47 article-title: ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented publication-title: IEEE ACM Trans Comput Biol Bioinf – year: 2006 ident: bib1 article-title: Modeling and forecasting electricity loads and prices: a statistical approach – volume: 247 start-page: 144 year: 2015 end-page: 154 ident: bib10 article-title: Electricity futures price models: calibration and forecasting publication-title: Eur J Oper Res – year: 2020 ident: bib63 article-title: The many shapley values for model explanation – volume: 5 start-page: 1205 year: 2004 end-page: 1224 ident: bib66 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J Mach Learn Res – volume: 187 start-page: 115804 year: 2019 ident: 10.1016/j.energy.2021.121543_bib23 article-title: Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform publication-title: Energy doi: 10.1016/j.energy.2019.07.134 – volume: 149 start-page: 95 year: 2019 ident: 10.1016/j.energy.2021.121543_bib81 article-title: Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.06.034 – volume: 2 start-page: 56 issue: 1 year: 2020 ident: 10.1016/j.energy.2021.121543_bib61 article-title: From local explanations to global understanding with explainable ai for trees publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – volume: 182 start-page: 72 year: 2019 ident: 10.1016/j.energy.2021.121543_bib73 article-title: Predicting residential energy consumption using cnn-lstm neural networks publication-title: Energy doi: 10.1016/j.energy.2019.05.230 – year: 2021 ident: 10.1016/j.energy.2021.121543_bib86 article-title: Modelling the evolution of wind and solar power infeed forecasts publication-title: J Commod Mark – year: 2007 ident: 10.1016/j.energy.2021.121543_bib9 – volume: 27 start-page: 1685 issue: 14 year: 2006 ident: 10.1016/j.energy.2021.121543_bib34 article-title: Multi-class feature selection for texture classification publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2006.03.013 – start-page: 481 year: 2018 ident: 10.1016/j.energy.2021.121543_bib72 article-title: Predicting the household power consumption using cnn-lstm hybrid networks – volume: 19 issue: 1 year: 2018 ident: 10.1016/j.energy.2021.121543_bib82 article-title: SVM-RFE: selection and visualization of the most relevant features through non-linear kernels publication-title: BMC Bioinf doi: 10.1186/s12859-018-2451-4 – volume: 277 year: 2020 ident: 10.1016/j.energy.2021.121543_bib77 article-title: Short-term forecasting of CO2 emission intensity in power grids by machine learning publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115527 – volume: 221 start-page: 386 year: 2018 ident: 10.1016/j.energy.2021.121543_bib22 article-title: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.069 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.energy.2021.121543_bib83 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – volume: 7 start-page: 91 year: 2006 ident: 10.1016/j.energy.2021.121543_bib58 article-title: Bias in error estimation when using cross-validation for model selection publication-title: BMC Bioinf doi: 10.1186/1471-2105-7-91 – start-page: 259 year: 2019 ident: 10.1016/j.energy.2021.121543_bib74 article-title: Data analytics for load and price forecasting via enhanced support vector regression – start-page: 1 year: 2015 ident: 10.1016/j.energy.2021.121543_bib53 article-title: Going deeper with convolutions – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 10.1016/j.energy.2021.121543_bib46 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – year: 2020 ident: 10.1016/j.energy.2021.121543_bib31 – volume: 20 start-page: 134 issue: 1 year: 2002 ident: 10.1016/j.energy.2021.121543_bib56 article-title: Comparing predictive accuracy publication-title: J Bus Econ Stat doi: 10.1198/073500102753410444 – volume: 2015 start-page: 931256 year: 2015 ident: 10.1016/j.energy.2021.121543_bib50 article-title: A comprehensive survey on particle swarm optimization algorithm and its applications publication-title: Math Probl Eng – year: 2019 ident: 10.1016/j.energy.2021.121543_bib40 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.energy.2021.121543_bib85 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Stat Soc Soc B (Methodological) – year: 2019 ident: 10.1016/j.energy.2021.121543_bib62 – volume: 77 start-page: 1297 issue: 10 year: 2007 ident: 10.1016/j.energy.2021.121543_bib15 article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2006.09.022 – volume: 5 start-page: 1205 year: 2004 ident: 10.1016/j.energy.2021.121543_bib66 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J Mach Learn Res – year: 2020 ident: 10.1016/j.energy.2021.121543_bib63 – volume: 10 issue: 4 year: 2018 ident: 10.1016/j.energy.2021.121543_bib24 article-title: An electricity price forecasting model by hybrid structured deep neural networks publication-title: Sustainability doi: 10.3390/su10041280 – volume: 110591 start-page: 137 year: 2021 ident: 10.1016/j.energy.2021.121543_bib69 article-title: A deep learning framework for building energy consumption forecast publication-title: Renew Sustain Energy Rev – year: 2013 ident: 10.1016/j.energy.2021.121543_bib80 – volume: 172 start-page: 132 year: 2016 ident: 10.1016/j.energy.2021.121543_bib28 article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.089 – volume: 17 start-page: 342 issue: 2 year: 2002 ident: 10.1016/j.energy.2021.121543_bib3 article-title: Forecasting next-day electricity prices by time series models publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2002.1007902 – start-page: 1932 year: 2019 ident: 10.1016/j.energy.2021.121543_bib32 article-title: Deregulated electric energy price forecasting in nordpool market using regression techniques – volume: 30 start-page: 1030 issue: 4 year: 2014 ident: 10.1016/j.energy.2021.121543_bib5 article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2014.08.008 – volume: 51 start-page: 430 year: 2015 ident: 10.1016/j.energy.2021.121543_bib27 article-title: Forecasting day ahead electricity spot prices: the impact of the exaa to other european electricity markets publication-title: Energy Econ doi: 10.1016/j.eneco.2015.08.005 – volume: 128 start-page: 73 year: 2014 ident: 10.1016/j.energy.2021.121543_bib48 article-title: Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.065 – year: 2018 ident: 10.1016/j.energy.2021.121543_bib39 article-title: Short-term photovoltaic generation forecasting based on similar day selection and extreme learning machine – year: 2014 ident: 10.1016/j.energy.2021.121543_bib44 – volume: 46 start-page: 389 issue: 1 year: 2002 ident: 10.1016/j.energy.2021.121543_bib84 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn doi: 10.1023/A:1012487302797 – volume: 20 start-page: 3927 year: 2016 ident: 10.1016/j.energy.2021.121543_bib35 article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection publication-title: Soft Comput. doi: 10.1007/s00500-016-2128-8 – volume: 81 start-page: 1548 year: 2018 ident: 10.1016/j.energy.2021.121543_bib6 article-title: Recent advances in electricity price forecasting: a review of probabilistic forecasting publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.234 – volume: 211 start-page: 890 year: 2018 ident: 10.1016/j.energy.2021.121543_bib29 article-title: Forecasting day-ahead electricity prices in europe: the importance of considering market integration publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.11.098 – start-page: 140 year: 1994 ident: 10.1016/j.energy.2021.121543_bib67 article-title: Selection of relevant features in machine learning – volume: 80 start-page: 525 year: 2019 ident: 10.1016/j.energy.2021.121543_bib38 article-title: A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2019.04.019 – volume: 33 start-page: 545 issue: 1 year: 2018 ident: 10.1016/j.energy.2021.121543_bib14 article-title: Forecasting functional time series with a new Hilbertian ARMAX model: application to electricity price forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2700287 – volume: 18 start-page: 602 issue: 5 year: 2005 ident: 10.1016/j.energy.2021.121543_bib43 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Network doi: 10.1016/j.neunet.2005.06.042 – start-page: 802 year: 2015 ident: 10.1016/j.energy.2021.121543_bib55 article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting – volume: 18 start-page: 9 issue: 1 year: 2017 ident: 10.1016/j.energy.2021.121543_bib71 article-title: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data publication-title: BMC Bioinf doi: 10.1186/s12859-016-1423-9 – volume: 25 start-page: 254 issue: 1 year: 2010 ident: 10.1016/j.energy.2021.121543_bib78 article-title: Economic impact of electricity market price forecasting errors: a demand-side analysis publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2030380 – volume: 20 start-page: 3821 year: 2016 ident: 10.1016/j.energy.2021.121543_bib36 article-title: Particle swarm optimization-based feature selection in sentiment classification publication-title: Soft Comput. doi: 10.1007/s00500-016-2093-2 – year: 2004 ident: 10.1016/j.energy.2021.121543_bib2 – volume: 208 start-page: 118368 year: 2020 ident: 10.1016/j.energy.2021.121543_bib30 article-title: Characterizing electricity market integration in nord pool publication-title: Energy doi: 10.1016/j.energy.2020.118368 – volume: 21 start-page: 435 issue: 3 year: 2005 ident: 10.1016/j.energy.2021.121543_bib12 article-title: Forecasting electricity prices for a day-ahead pool-based electric energy market publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2004.12.005 – start-page: 71 year: 2019 ident: 10.1016/j.energy.2021.121543_bib60 article-title: Daily energy price forecasting using a polynomial narmax model doi: 10.1007/978-3-319-97982-3_6 – start-page: 3104 year: 2014 ident: 10.1016/j.energy.2021.121543_bib54 article-title: Sequence to sequence learning with neural networks – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.energy.2021.121543_bib65 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – year: 2014 ident: 10.1016/j.energy.2021.121543_bib68 article-title: Global particle swarm optimization for high dimension numerical functions analysis publication-title: J Appl Math – year: 2014 ident: 10.1016/j.energy.2021.121543_bib19 – volume: 50 issue: 6 year: 2017 ident: 10.1016/j.energy.2021.121543_bib26 article-title: Feature selection: a data perspective publication-title: ACM Comput Surv doi: 10.1145/3136625 – volume: 9 issue: 8 year: 2016 ident: 10.1016/j.energy.2021.121543_bib79 article-title: Automated variable selection and shrinkage for day-ahead electricity price forecasting publication-title: Energies doi: 10.3390/en9080621 – start-page: 1051 year: 2019 ident: 10.1016/j.energy.2021.121543_bib76 article-title: Day ahead electricity price forecast by NARX model with LASSO based features selection – volume: 8 start-page: 452 issue: 2 year: 2011 ident: 10.1016/j.energy.2021.121543_bib47 article-title: ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented publication-title: IEEE ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2010.13 – volume: vol. 3 start-page: 189 year: 2000 ident: 10.1016/j.energy.2021.121543_bib42 article-title: Recurrent nets that time and count – year: 2009 ident: 10.1016/j.energy.2021.121543_bib25 – start-page: 521 year: 2020 ident: 10.1016/j.energy.2021.121543_bib75 article-title: An approximate forecasting of electricity load and price of a smart home using nearest neighbor – volume: 33 start-page: 897 issue: 7 year: 2005 ident: 10.1016/j.energy.2021.121543_bib7 article-title: Electricity market modeling trends publication-title: Energy Pol doi: 10.1016/j.enpol.2003.10.013 – volume: 28 start-page: 2277 year: 2017 ident: 10.1016/j.energy.2021.121543_bib17 article-title: Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for indian energy exchange publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2141-3 – volume: vol. 9 year: 1997 ident: 10.1016/j.energy.2021.121543_bib52 article-title: Support vector regression machines – volume: 70 start-page: 330 year: 2017 ident: 10.1016/j.energy.2021.121543_bib70 article-title: A new electricity price prediction strategy using mutual information-based svm-rfe classification publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.11.155 – volume: 74 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.energy.2021.121543_bib41 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 24 start-page: 744 issue: 4 year: 2008 ident: 10.1016/j.energy.2021.121543_bib11 article-title: Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2008.08.004 – volume: 88 start-page: 163 issue: 2 year: 2000 ident: 10.1016/j.energy.2021.121543_bib4 article-title: Forecasting loads and prices in competitive power markets publication-title: Proc IEEE doi: 10.1109/5.823996 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 10.1016/j.energy.2021.121543_bib21 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans Neural Network doi: 10.1109/72.279181 – volume: 32 start-page: 23 year: 2015 ident: 10.1016/j.energy.2021.121543_bib49 article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.03.036 – volume: 165 start-page: 340 year: 2018 ident: 10.1016/j.energy.2021.121543_bib20 article-title: Maximization of energy absorption for a wave energy converter using the deep machine learning publication-title: Energy doi: 10.1016/j.energy.2018.09.093 – volume: 13 start-page: 281 issue: 2 year: 1997 ident: 10.1016/j.energy.2021.121543_bib57 article-title: Testing the equality of prediction mean squared errors publication-title: Int J Forecast doi: 10.1016/S0169-2070(96)00719-4 – volume: 42 start-page: 2731 issue: 5 year: 2015 ident: 10.1016/j.energy.2021.121543_bib8 article-title: The acewem framework: an integrated agent-based and statistical modelling laboratory for repeated power auctions publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.11.024 – volume: 4 start-page: 65 issue: 2 year: 1994 ident: 10.1016/j.energy.2021.121543_bib51 article-title: A genetic algorithm tutorial publication-title: Stat Comput doi: 10.1007/BF00175354 – volume: 10 issue: 3 year: 2006 ident: 10.1016/j.energy.2021.121543_bib13 article-title: Point and interval forecasting of spot electricity prices: linear vs non-linear time series models publication-title: Stud Nonlinear Dynam Econom – year: 2016 ident: 10.1016/j.energy.2021.121543_bib59 – volume: 204 start-page: 117894 year: 2020 ident: 10.1016/j.energy.2021.121543_bib37 article-title: Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2020.117894 – year: 2006 ident: 10.1016/j.energy.2021.121543_bib1 – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.energy.2021.121543_bib33 article-title: A survey on feature selection methods publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.024 – volume: 247 start-page: 144 issue: 1 year: 2015 ident: 10.1016/j.energy.2021.121543_bib10 article-title: Electricity futures price models: calibration and forecasting publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.05.063 – volume: 29 start-page: 82 year: 2012 ident: 10.1016/j.energy.2021.121543_bib18 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – volume: 162 start-page: 218 year: 2016 ident: 10.1016/j.energy.2021.121543_bib16 article-title: Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.09.087 – year: 2013 ident: 10.1016/j.energy.2021.121543_bib45 – year: 2017 ident: 10.1016/j.energy.2021.121543_bib64 |
| SSID | ssj0005899 |
| Score | 2.658128 |
| Snippet | The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121543 |
| SubjectTerms | Algorithms Artificial neural networks Deep learning Economic forecasting Electricity electricity costs Electricity market coupling Electricity price forecasting (EPF) Electricity pricing Empirical analysis empirical research energy Feature selection Long short-term memory Long short-term memory (LSTM) Machine learning markets Mathematical models Neural networks prediction Predictions prices The Nord Pool system price time series analysis Trade liberalization |
| Title | Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling |
| URI | https://dx.doi.org/10.1016/j.energy.2021.121543 https://www.proquest.com/docview/2609115305 https://www.proquest.com/docview/2636521478 |
| Volume | 237 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQPbSXqqVFTQvIlXp1s7u2194j4qEUChdA4rby-hFSwSbKJgcu_T_8S2a8XvqQKqReImUz9kYZ-5vZeL75CPlivNdNqR3jgIsM4rFhTWYk07oJ-Ge-rCzync_Oy8mVOLmW1xvkYODCYFllwv4e0yNapyvj9GuOF7PZ-AKwF_INURRxVeXYdlsIhSoGX3_-Vuaho4YkGjO0HuhzscbLR34dPCUWeWyzIPi_wtNfQB2jz_Eb8jqljXS__2ZvyYZvt8jLgVXcbZHto1-MNTBMW7Z7Rx4OzT0zALmO9pI3MwuJN11gMyF4xXMa9A3Fk2ykPNGbeyRx0SiR09F5oN8vLs8YRjtHnfcLmoQmprRXn-6oaR0NPnYIpV28SZzwdjpfzlY3dx1FotqS2qQNGtcCTnwXGddwfY204Ol7cnV8dHkwYUmfgVleqhUzvDCusJUJmQgmy3UIynJdVso6xRtfWcVd6XUlKq-U00GIymVWVo3xZSM13yab7bz1HwgVCjLJJkhT5EFkIdc2hxFcG20MTKhHhA9uqW1qXo4aGrf1UKX2o-6dWaMz696ZI8KeRi365h3P2KvB4_Ufi7CG-PLMyJ1hgdQJBLoaHhUhlEhA1BH5_PQxbF88kzGtn6_RhpcStaL0x_---SfyCt9hkU0ud8jmarn2u5AqrZq9uBf2yIv9b6eT80fOzBfc |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQLKoWKhRaMxNVsEtuxc0R9aIHdXrqVerMcP7aL2uxqs3vopf-n_xKP45SChCpxycEZO1HGnhnH882H0GftnKxLaQkNdpEEf6xJnWlOpKw9_MznlQG88-SsHF2w75f8cgsd9VgYSKtMtr-z6dFap5Zh-prD5Xw-PA-2N8QbrCjirMrLZ-g544WAHdiXu0d5HjKSSII0AfEePxeTvFwE2IVtYpHHOguM_ss__WWpo_s53UUvU9yIv3av9gptuWYP7fSw4nYP7Z_8hqwFwbRm29fo_ljfEh1srsUd583chMgbL6GaULjCQQ0oB8NRNmCe8NUtoLhw5Mhp8cLj8fl0QsDdWWydW-LENDHDHf10i3VjsXexRChu40PigNezxWq-vrppMSDVVtgkctA4GWDgmwi5Du0bwAXP3qCL05Pp0YgkggZiaCnWRNNC28JU2mfM6yyX3gtDZVkJYwWtXWUEtaWTFaucEFZ6xiqbGV7V2pU1l3QfbTeLxr1FmIkQStae6yL3LPO5NHnoQaWWWocB5QDRXi3KpOrlQKJxrfo0tZ-qU6YCZapOmQNEHnotu-odT8iLXuPqj1mogoN5oudBP0FUsgKtCnvF4Et4MKkD9Onhdli_cCijG7fYgAwtOZBFyXf__fCPaGc0nYzV-NvZj_foBdyBjJucH6Dt9WrjDkPctK4_xHXxCxmhGXE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-ahead+electricity+price+prediction+applying+hybrid+models+of+LSTM-based+deep+learning+methods+and+feature+selection+algorithms+under+consideration+of+market+coupling&rft.jtitle=Energy+%28Oxford%29&rft.au=Li%2C+Wei&rft.au=Becker%2C+Denis+Mike&rft.date=2021-12-15&rft.issn=0360-5442&rft.volume=237+p.121543-&rft_id=info:doi/10.1016%2Fj.energy.2021.121543&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |