Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling

The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and market harmonisation in the European markets, accurate price forecasting becomes difficult for electricity market participants to obtain becau...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 237; p. 121543
Main Authors Li, Wei, Becker, Denis Mike
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2021.121543

Cover

Abstract The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and market harmonisation in the European markets, accurate price forecasting becomes difficult for electricity market participants to obtain because electricity forecasting requires the consideration of features from ever-growing coupling markets. This study provides a method of exploring the influence of market coupling on electricity price prediction. We apply state-of-the-art long short-term memory (LSTM) deep neural networks combined with feature selection algorithms for electricity price prediction under the consideration of market coupling. LSTM models have a good performance in handling nonlinear and complex problems and processing time series data. In our empirical study of the Nordic market, the proposed models obtain considerably accurate results. The results show that feature selection is essential to achieving accurate prediction, and features from integrated markets have an impact on prediction. The feature importance analysis implies that the German market has a salient role in the price generation of Nord Pool. •Propose three LSTM-based deep learning hybrid architectures for electricity price forecasting, considering market coupling.•Apply a broad set of explanatory variables from the Nord Pool and its six integrated markets.•Conduct comprehensive comparisons for various feature selection algorithms.•Detect the feature importance from integrated markets by applying a Shapley value-based approach.•Conclude that the influence of feature selection is significant on the forecasting accuracy of LSTM-based hybrid models.
AbstractList The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and market harmonisation in the European markets, accurate price forecasting becomes difficult for electricity market participants to obtain because electricity forecasting requires the consideration of features from ever-growing coupling markets. This study provides a method of exploring the influence of market coupling on electricity price prediction. We apply state-of-the-art long short-term memory (LSTM) deep neural networks combined with feature selection algorithms for electricity price prediction under the consideration of market coupling. LSTM models have a good performance in handling nonlinear and complex problems and processing time series data. In our empirical study of the Nordic market, the proposed models obtain considerably accurate results. The results show that feature selection is essential to achieving accurate prediction, and features from integrated markets have an impact on prediction. The feature importance analysis implies that the German market has a salient role in the price generation of Nord Pool.
The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and market harmonisation in the European markets, accurate price forecasting becomes difficult for electricity market participants to obtain because electricity forecasting requires the consideration of features from ever-growing coupling markets. This study provides a method of exploring the influence of market coupling on electricity price prediction. We apply state-of-the-art long short-term memory (LSTM) deep neural networks combined with feature selection algorithms for electricity price prediction under the consideration of market coupling. LSTM models have a good performance in handling nonlinear and complex problems and processing time series data. In our empirical study of the Nordic market, the proposed models obtain considerably accurate results. The results show that feature selection is essential to achieving accurate prediction, and features from integrated markets have an impact on prediction. The feature importance analysis implies that the German market has a salient role in the price generation of Nord Pool. •Propose three LSTM-based deep learning hybrid architectures for electricity price forecasting, considering market coupling.•Apply a broad set of explanatory variables from the Nord Pool and its six integrated markets.•Conduct comprehensive comparisons for various feature selection algorithms.•Detect the feature importance from integrated markets by applying a Shapley value-based approach.•Conclude that the influence of feature selection is significant on the forecasting accuracy of LSTM-based hybrid models.
ArticleNumber 121543
Author Li, Wei
Becker, Denis Mike
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-2506-7004
  surname: Li
  fullname: Li, Wei
  email: wei.n.li@ntnu.no
– sequence: 2
  givenname: Denis Mike
  orcidid: 0000-0002-3303-9775
  surname: Becker
  fullname: Becker, Denis Mike
  email: denis.becker@ntnu.no
BookMark eNqFkc2OFCEUhYkZE3tG38AFiRs31UJRVRQuTMz4MyZtXDiuCQW3umlpKIEyqUfyLaW7ZjUL3XAJnHMu3O8aXfngAaGXlGwpod2b4xY8xP2yrUlNt7SmbcOeoA3tOas63rdXaENYR6q2aepn6DqlIyGk7YXYoD8f1FKpAyiDwYHO0WqbFzyVCmUFY3W2wWM1TW6xfo8PyxCtwadgwCUcRrz7fv-1GlQCgw3AhB2o6M_KE-RDMAkrb_AIKs8RcLo0uQS6fYg2H04Jz95AxDr4ZMtGXa5L8EnFn5DL-Ty5kvccPR2VS_Diod6gH58-3t_eVbtvn7_cvt9VmnU8V4rVytRaqJE0oyK0H0euWd8Jrg1nAwjNmemgF40Azk0_No0wRLdiUNANbc9u0Os1d4rh1wwpy5NNGpxTHsKcZN2xrq1pw8_SV4-kxzBHX15XVERQ2jLSFtXbVaVjSCnCKMuIL7_MUVknKZFnivIoV4ryTFGuFIu5eWQuaMpklv_Z3q22Agl-W4gyaQteF56xAJAm2H8H_AWPGL89
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_137353
crossref_primary_10_1016_j_renene_2022_02_047
crossref_primary_10_3390_en17122909
crossref_primary_10_1016_j_gsf_2023_101670
crossref_primary_10_3390_en16196767
crossref_primary_10_1002_for_3103
crossref_primary_10_1016_j_egyr_2022_08_087
crossref_primary_10_1016_j_energy_2023_127321
crossref_primary_10_1007_s10614_024_10769_0
crossref_primary_10_1016_j_energy_2024_132877
crossref_primary_10_3390_su142114101
crossref_primary_10_1080_14697688_2022_2118071
crossref_primary_10_1016_j_ijforecast_2022_03_001
crossref_primary_10_21076_vizyoner_1450934
crossref_primary_10_1016_j_apenergy_2024_123553
crossref_primary_10_1016_j_renene_2021_12_136
crossref_primary_10_1016_j_resourpol_2023_103360
crossref_primary_10_1109_TAI_2024_3455313
crossref_primary_10_1016_j_ijepes_2024_110206
crossref_primary_10_1016_j_apacoust_2022_108849
crossref_primary_10_1016_j_eneco_2023_107241
crossref_primary_10_1007_s10669_024_09998_3
crossref_primary_10_1016_j_jestch_2023_101538
crossref_primary_10_1007_s00477_023_02556_4
crossref_primary_10_1016_j_epsr_2023_109300
crossref_primary_10_1109_TPWRS_2023_3301442
crossref_primary_10_1016_j_energy_2024_132069
crossref_primary_10_3390_en15228445
crossref_primary_10_1016_j_compeleceng_2022_107808
crossref_primary_10_1002_widm_1519
crossref_primary_10_1016_j_energy_2024_134167
crossref_primary_10_1007_s44196_023_00387_3
crossref_primary_10_1109_TPWRS_2024_3380834
crossref_primary_10_1002_for_2981
crossref_primary_10_1016_j_ijepes_2024_109975
crossref_primary_10_1016_j_egyr_2022_07_148
crossref_primary_10_1016_j_apenergy_2022_120042
crossref_primary_10_1016_j_heliyon_2023_e23434
crossref_primary_10_1016_j_apr_2022_101358
crossref_primary_10_35234_fumbd_1473145
crossref_primary_10_1016_j_apenergy_2023_122079
crossref_primary_10_3390_a16040177
crossref_primary_10_1016_j_energy_2022_124212
crossref_primary_10_1016_j_jobe_2025_112055
crossref_primary_10_1016_j_neunet_2023_08_051
crossref_primary_10_1016_j_esr_2024_101436
crossref_primary_10_3390_en17194885
crossref_primary_10_17482_uumfd_1296479
crossref_primary_10_1007_s42835_024_02040_1
crossref_primary_10_1016_j_physa_2023_128685
crossref_primary_10_3390_en17112687
crossref_primary_10_1016_j_energy_2024_130350
crossref_primary_10_3390_app142110032
crossref_primary_10_3390_en14227473
crossref_primary_10_30798_makuiibf_1097686
crossref_primary_10_3390_en18071624
crossref_primary_10_1016_j_energy_2022_126099
crossref_primary_10_1016_j_renene_2024_122045
crossref_primary_10_1016_j_techfore_2024_123846
crossref_primary_10_1016_j_apenergy_2023_122284
crossref_primary_10_17233_sosyoekonomi_2023_03_09
crossref_primary_10_1109_ACCESS_2023_3280857
crossref_primary_10_1109_TPWRS_2024_3353759
crossref_primary_10_1016_j_petsci_2022_05_005
crossref_primary_10_9728_dcs_2023_24_1_141
crossref_primary_10_1016_j_ijepes_2025_110589
crossref_primary_10_1109_ACCESS_2024_3419226
crossref_primary_10_1016_j_asej_2022_101793
crossref_primary_10_1016_j_asoc_2023_110939
crossref_primary_10_3390_forecast5030028
crossref_primary_10_3390_math10142366
crossref_primary_10_1016_j_renene_2024_122051
crossref_primary_10_1016_j_engappai_2024_109602
crossref_primary_10_1016_j_ifacol_2024_08_451
crossref_primary_10_1016_j_enbuild_2024_115207
crossref_primary_10_1109_JSYST_2022_3205142
crossref_primary_10_3233_JIFS_224142
crossref_primary_10_1016_j_buildenv_2022_109152
crossref_primary_10_1016_j_egyai_2023_100250
crossref_primary_10_1016_j_energy_2022_124752
crossref_primary_10_3390_en16041570
crossref_primary_10_1016_j_eneco_2024_108008
crossref_primary_10_1155_2022_1587251
crossref_primary_10_1007_s10700_022_09406_y
crossref_primary_10_1007_s10614_023_10416_0
crossref_primary_10_1016_j_jup_2022_101456
crossref_primary_10_1007_s00521_023_08734_3
crossref_primary_10_1016_j_apenergy_2023_122059
crossref_primary_10_1016_j_apenergy_2024_123920
crossref_primary_10_2166_hydro_2023_001
crossref_primary_10_1007_s10479_024_06277_x
crossref_primary_10_1016_j_egyai_2023_100259
Cites_doi 10.1016/j.energy.2019.07.134
10.1016/j.cherd.2019.06.034
10.1038/s42256-019-0138-9
10.1016/j.energy.2019.05.230
10.1016/j.patrec.2006.03.013
10.1186/s12859-018-2451-4
10.1016/j.apenergy.2020.115527
10.1016/j.apenergy.2018.02.069
10.1186/1471-2105-7-91
10.1016/j.neucom.2005.12.126
10.1198/073500102753410444
10.1016/j.epsr.2006.09.022
10.3390/su10041280
10.1016/j.apenergy.2016.03.089
10.1109/TPWRS.2002.1007902
10.1016/j.ijforecast.2014.08.008
10.1016/j.eneco.2015.08.005
10.1016/j.neucom.2013.01.065
10.1023/A:1012487302797
10.1007/s00500-016-2128-8
10.1016/j.rser.2017.05.234
10.1016/j.apenergy.2017.11.098
10.1016/j.asoc.2019.04.019
10.1109/TPWRS.2017.2700287
10.1016/j.neunet.2005.06.042
10.1186/s12859-016-1423-9
10.1109/TPWRS.2009.2030380
10.1007/s00500-016-2093-2
10.1016/j.energy.2020.118368
10.1016/j.ijforecast.2004.12.005
10.1007/978-3-319-97982-3_6
10.1109/TPAMI.2005.159
10.1145/3136625
10.3390/en9080621
10.1109/TCBB.2010.13
10.1016/j.enpol.2003.10.013
10.1007/s00521-015-2141-3
10.1016/j.rser.2016.11.155
10.1162/neco.1997.9.8.1735
10.1016/j.ijforecast.2008.08.004
10.1109/5.823996
10.1109/72.279181
10.1016/j.asoc.2015.03.036
10.1016/j.energy.2018.09.093
10.1016/S0169-2070(96)00719-4
10.1016/j.eswa.2014.11.024
10.1007/BF00175354
10.1016/j.energy.2020.117894
10.1016/j.compeleceng.2013.11.024
10.1016/j.ejor.2015.05.063
10.1109/MSP.2012.2205597
10.1016/j.apenergy.2015.09.087
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2021.121543
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2021_121543
S0360544221017916
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-a32ad2c9af04fa018ff7c38697cd73be9c73d6e8949e77d8f449d0c59bae6b583
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Wed Oct 01 14:02:20 EDT 2025
Wed Aug 13 07:20:38 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
Thu Oct 09 00:41:00 EDT 2025
Fri Feb 23 02:43:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Electricity price forecasting (EPF)
Feature selection
The Nord Pool system price
Electricity market coupling
Long short-term memory (LSTM)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-a32ad2c9af04fa018ff7c38697cd73be9c73d6e8949e77d8f449d0c59bae6b583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2506-7004
0000-0002-3303-9775
PQID 2609115305
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2636521478
proquest_journals_2609115305
crossref_citationtrail_10_1016_j_energy_2021_121543
crossref_primary_10_1016_j_energy_2021_121543
elsevier_sciencedirect_doi_10_1016_j_energy_2021_121543
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Graves (bib45) 2013
Li, Cheng, Wang, Morstatter, Trevino, Tang (bib26) 2017; 50
Shao, Yang, Gao, Zhou, Lin (bib70) 2017; 70
Harvey, Leybourne, Newbold (bib57) 1997; 13
Islyaev, Date (bib10) 2015; 247
Peter, Raglend (bib17) 2017; 28
Ziel, Steinert, Husmann (bib27) 2015; 51
Chyzhyk, Savio, Graña (bib48) 2014; 128
Chang, Zhang, Chen (bib23) 2019; 187
Lago, Ridder, Schutter (bib22) 2018; 221
Shi, Chen, Wang, Yeung, Wk, Wc (bib55) 2015
Sanz, Valim, Oller, Reverter (bib82) 2018; 19
Ahila, Sadasivam, Manimala (bib49) 2015; 32
Kim, Cho (bib72) 2018
Shang, Zhou, Liu (bib36) 2016; 20
Zareipour, Canizares, Bhattacharya (bib78) 2010; 25
Herceg, Željka Ujević, Bolf (bib81) 2019; 149
Li, Yuan, Gao (bib20) 2018; 165
Weron (bib5) 2014; 30
Lago, De Ridder, Vrancx, De Schutter (bib29) 2018; 211
Chen, Zeng, van Alphen (bib34) 2006; 27
Sutskever, Vinyals, Le (bib54) 2014
Guyon, Elisseeff (bib83) 2003; 3
Panapakidis, Dagoumas (bib28) 2016; 172
Bunn (bib4) 2000; 88
Keles, Scelle, Paraschiv, Fichtner (bib16) 2016; 162
Bahdanau, Cho, Bengio (bib19) 2014
Luo, Zhu, Han, Chen (bib39) 2018
Weron (bib1) 2006
Ventosa, Baillo, Ramos, Rivie (bib7) 2005; 33
Drucker, Burges, Kaufman, Smola, Vapnik (bib52) 1997; vol. 9
Guyon, Weston, Barnhill, Vapnik (bib84) 2002; 46
Nguyen, Xue, Liu, Andreae, Zhang (bib35) 2016; 20
Bunn (bib2) 2004
Nogales, Contreras, Conejo, Espinola (bib3) 2002; 17
Gers, Schmidhuber (bib42) 2000; vol. 3
Kiose, Voudouris (bib8) 2015; 42
Yu, Liu (bib66) 2004; 5
Misiorek, Trueck, Weron (bib13) 2006; 10
Lundberg, Erion, Chen, DeGrave, Prutkin, Nair (bib61) 2020; 2
Gonzalez, Roque, Pérez (bib14) 2018; 33
Varma, Simon (bib58) 2006; 7
Lundberg, Lee (bib64) 2017
Zhang, Wang, Ji (bib50) 2015; 2015
Weron, Misiorek (bib11) 2008; 24
Kuo, Huang (bib24) 2018; 10
Zhou, Zhou, Gong, Jiang (bib37) 2020; 204
Tibshirani (bib85) 1996; 58
Greenfish (bib40) 2019
Nawaz, Javaid, Mangla, Munir, Ihsan, Javaid (bib75) 2020
Jamian, Abdullah, Mokhlis, Mustafa, Bakar (bib68) 2014
Uribe, Mosquera-López, Guillen (bib30) 2020; 208
Hochreiter, Schmidhuber (bib41) 1997; 74
Graves, Schmidhuber (bib43) 2005; 18
Conejo, Contreras, Espínola, Plazas (bib12) 2005; 21
Somu, Raman, Ramamritham (bib69) 2021; 110591
Leerbeck, Bacher, Junker, Goranović, Corradi, Ebrahimy (bib77) 2020; 277
Johannesen, Kolhe, Goodwin (bib32) 2019
Hastie, Tibshirani, Friedman (bib25) 2009
Brusaferri, Fagiano, Matteucci, Vitali (bib76) 2019-July
Chandrashekar, Sahin (bib33) 2014; 40
Goodfellow, Bengio, Courville (bib59) 2016
Kim, Cho (bib73) 2019; 182
McHugh, Coleman, Kerr, McGlynn (bib60) 2019
Sultana, Khan, Javaid, Aimal, Fatima, Shabbir (bib74) 2019
Langley (bib67) 1994
Bengio, Simard, Frasconi (bib21) 1994; 5
Peng, Long, Ding (bib65) 2005; 27
Nowotarski, Weron (bib6) 2018; 81
Krishnan G, S (bib38) 2019; 80
Burger, Schindlmayr, Graeber (bib9) 2007
Hinton, Deng, Yu, Dahl, rahman Mohamed, Jaitly (bib18) 2012; 29
Janzing, Minorics, Blöbaum (bib62) 2019
Whitley (bib51) 1994; 4
Marcjasz, Lago, Weron (bib31) 2020
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (bib53) 2015
Li, Paraschiv (bib86) 2021
Saraswathi, Sundaram, Sundararajan, Zimmermann, Nilsen-Hamilton (bib47) 2011; 8
Diebold, Mariano (bib56) 2002; 20
Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk (bib44) 2014
Huang, Zhu, Siew (bib46) 2006; 70
Sundararajan, Najmi (bib63) 2020
Uniejewski, Nowotarski, Weron (bib79) 2016; 9
Catalao, Mariano, Mendes, Ferreira (bib15) 2007; 77
Radovic, Ghalwash, Filipovic, Obradovic (bib71) 2017; 18
Kaminski (bib80) 2013
Goodfellow (10.1016/j.energy.2021.121543_bib59) 2016
Uniejewski (10.1016/j.energy.2021.121543_bib79) 2016; 9
Conejo (10.1016/j.energy.2021.121543_bib12) 2005; 21
Sundararajan (10.1016/j.energy.2021.121543_bib63) 2020
Sanz (10.1016/j.energy.2021.121543_bib82) 2018; 19
Chen (10.1016/j.energy.2021.121543_bib34) 2006; 27
Misiorek (10.1016/j.energy.2021.121543_bib13) 2006; 10
Somu (10.1016/j.energy.2021.121543_bib69) 2021; 110591
Bahdanau (10.1016/j.energy.2021.121543_bib19) 2014
Harvey (10.1016/j.energy.2021.121543_bib57) 1997; 13
Shao (10.1016/j.energy.2021.121543_bib70) 2017; 70
Bunn (10.1016/j.energy.2021.121543_bib4) 2000; 88
Chang (10.1016/j.energy.2021.121543_bib23) 2019; 187
Kim (10.1016/j.energy.2021.121543_bib72) 2018
Kaminski (10.1016/j.energy.2021.121543_bib80) 2013
Herceg (10.1016/j.energy.2021.121543_bib81) 2019; 149
Chandrashekar (10.1016/j.energy.2021.121543_bib33) 2014; 40
Sultana (10.1016/j.energy.2021.121543_bib74) 2019
Weron (10.1016/j.energy.2021.121543_bib1) 2006
Shang (10.1016/j.energy.2021.121543_bib36) 2016; 20
Huang (10.1016/j.energy.2021.121543_bib46) 2006; 70
Li (10.1016/j.energy.2021.121543_bib86) 2021
Saraswathi (10.1016/j.energy.2021.121543_bib47) 2011; 8
McHugh (10.1016/j.energy.2021.121543_bib60) 2019
Radovic (10.1016/j.energy.2021.121543_bib71) 2017; 18
Ahila (10.1016/j.energy.2021.121543_bib49) 2015; 32
Catalao (10.1016/j.energy.2021.121543_bib15) 2007; 77
Marcjasz (10.1016/j.energy.2021.121543_bib31) 2020
Zareipour (10.1016/j.energy.2021.121543_bib78) 2010; 25
Gonzalez (10.1016/j.energy.2021.121543_bib14) 2018; 33
Diebold (10.1016/j.energy.2021.121543_bib56) 2002; 20
Burger (10.1016/j.energy.2021.121543_bib9) 2007
Bengio (10.1016/j.energy.2021.121543_bib21) 1994; 5
Kim (10.1016/j.energy.2021.121543_bib73) 2019; 182
Graves (10.1016/j.energy.2021.121543_bib45) 2013
Uribe (10.1016/j.energy.2021.121543_bib30) 2020; 208
Chyzhyk (10.1016/j.energy.2021.121543_bib48) 2014; 128
Peng (10.1016/j.energy.2021.121543_bib65) 2005; 27
Li (10.1016/j.energy.2021.121543_bib20) 2018; 165
Langley (10.1016/j.energy.2021.121543_bib67) 1994
Yu (10.1016/j.energy.2021.121543_bib66) 2004; 5
Janzing (10.1016/j.energy.2021.121543_bib62) 2019
Lundberg (10.1016/j.energy.2021.121543_bib64) 2017
Islyaev (10.1016/j.energy.2021.121543_bib10) 2015; 247
Nguyen (10.1016/j.energy.2021.121543_bib35) 2016; 20
Krishnan G (10.1016/j.energy.2021.121543_bib38) 2019; 80
Nogales (10.1016/j.energy.2021.121543_bib3) 2002; 17
Peter (10.1016/j.energy.2021.121543_bib17) 2017; 28
Zhou (10.1016/j.energy.2021.121543_bib37) 2020; 204
Hinton (10.1016/j.energy.2021.121543_bib18) 2012; 29
Tibshirani (10.1016/j.energy.2021.121543_bib85) 1996; 58
Gers (10.1016/j.energy.2021.121543_bib42) 2000; vol. 3
Leerbeck (10.1016/j.energy.2021.121543_bib77) 2020; 277
Ventosa (10.1016/j.energy.2021.121543_bib7) 2005; 33
Johannesen (10.1016/j.energy.2021.121543_bib32) 2019
Shi (10.1016/j.energy.2021.121543_bib55) 2015
Hastie (10.1016/j.energy.2021.121543_bib25) 2009
Lago (10.1016/j.energy.2021.121543_bib22) 2018; 221
Ziel (10.1016/j.energy.2021.121543_bib27) 2015; 51
Lago (10.1016/j.energy.2021.121543_bib29) 2018; 211
Nawaz (10.1016/j.energy.2021.121543_bib75) 2020
Nowotarski (10.1016/j.energy.2021.121543_bib6) 2018; 81
Kuo (10.1016/j.energy.2021.121543_bib24) 2018; 10
Luo (10.1016/j.energy.2021.121543_bib39) 2018
Graves (10.1016/j.energy.2021.121543_bib43) 2005; 18
Cho (10.1016/j.energy.2021.121543_bib44) 2014
Weron (10.1016/j.energy.2021.121543_bib11) 2008; 24
Bunn (10.1016/j.energy.2021.121543_bib2) 2004
Lundberg (10.1016/j.energy.2021.121543_bib61) 2020; 2
Keles (10.1016/j.energy.2021.121543_bib16) 2016; 162
Greenfish (10.1016/j.energy.2021.121543_bib40) 2019
Jamian (10.1016/j.energy.2021.121543_bib68) 2014
Li (10.1016/j.energy.2021.121543_bib26) 2017; 50
Panapakidis (10.1016/j.energy.2021.121543_bib28) 2016; 172
Brusaferri (10.1016/j.energy.2021.121543_bib76) 2019
Guyon (10.1016/j.energy.2021.121543_bib83) 2003; 3
Guyon (10.1016/j.energy.2021.121543_bib84) 2002; 46
Weron (10.1016/j.energy.2021.121543_bib5) 2014; 30
Kiose (10.1016/j.energy.2021.121543_bib8) 2015; 42
Sutskever (10.1016/j.energy.2021.121543_bib54) 2014
Drucker (10.1016/j.energy.2021.121543_bib52) 1997; vol. 9
Whitley (10.1016/j.energy.2021.121543_bib51) 1994; 4
Szegedy (10.1016/j.energy.2021.121543_bib53) 2015
Varma (10.1016/j.energy.2021.121543_bib58) 2006; 7
Zhang (10.1016/j.energy.2021.121543_bib50) 2015; 2015
Hochreiter (10.1016/j.energy.2021.121543_bib41) 1997; 74
References_xml – year: 2009
  ident: bib25
  article-title: The elements of statistical learning: data mining, inference and prediction
– volume: 172
  start-page: 132
  year: 2016
  end-page: 151
  ident: bib28
  article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models
  publication-title: Appl Energy
– start-page: 259
  year: 2019
  end-page: 270
  ident: bib74
  article-title: Data analytics for load and price forecasting via enhanced support vector regression
  publication-title: Advances in internet, data and web technologies
– volume: 182
  start-page: 72
  year: 2019
  end-page: 81
  ident: bib73
  article-title: Predicting residential energy consumption using cnn-lstm neural networks
  publication-title: Energy
– year: 2004
  ident: bib2
  article-title: Modelling prices in competitive electricity markets
– volume: 17
  start-page: 342
  year: 2002
  end-page: 348
  ident: bib3
  article-title: Forecasting next-day electricity prices by time series models
  publication-title: IEEE Trans Power Syst
– volume: 204
  start-page: 117894
  year: 2020
  ident: bib37
  article-title: Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine
  publication-title: Energy
– year: 2014
  ident: bib44
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
– volume: 128
  start-page: 73
  year: 2014
  end-page: 80
  ident: bib48
  article-title: Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI
  publication-title: Neurocomputing
– volume: 42
  start-page: 2731
  year: 2015
  end-page: 2748
  ident: bib8
  article-title: The acewem framework: an integrated agent-based and statistical modelling laboratory for repeated power auctions
  publication-title: Expert Syst Appl
– volume: 50
  year: 2017
  ident: bib26
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput Surv
– volume: 20
  start-page: 3927
  year: 2016
  end-page: 3946
  ident: bib35
  article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection
  publication-title: Soft Comput.
– start-page: 521
  year: 2020
  end-page: 533
  ident: bib75
  article-title: An approximate forecasting of electricity load and price of a smart home using nearest neighbor
  publication-title: Complex, intelligent, and software intensive systems
– volume: 30
  start-page: 1030
  year: 2014
  end-page: 1081
  ident: bib5
  article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
– volume: 10
  year: 2006
  ident: bib13
  article-title: Point and interval forecasting of spot electricity prices: linear vs non-linear time series models
  publication-title: Stud Nonlinear Dynam Econom
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib85
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Stat Soc Soc B (Methodological)
– volume: 19
  year: 2018
  ident: bib82
  article-title: SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
  publication-title: BMC Bioinf
– volume: 277
  year: 2020
  ident: bib77
  article-title: Short-term forecasting of CO2 emission intensity in power grids by machine learning
  publication-title: Appl Energy
– volume: 77
  start-page: 1297
  year: 2007
  end-page: 1304
  ident: bib15
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Elec Power Syst Res
– volume: 13
  start-page: 281
  year: 1997
  end-page: 291
  ident: bib57
  article-title: Testing the equality of prediction mean squared errors
  publication-title: Int J Forecast
– volume: 10
  year: 2018
  ident: bib24
  article-title: An electricity price forecasting model by hybrid structured deep neural networks
  publication-title: Sustainability
– year: 2013
  ident: bib80
  article-title: Energy markets. Risk book
– start-page: 1051
  year: 2019-July
  end-page: 1056
  ident: bib76
  article-title: Day ahead electricity price forecast by NARX model with LASSO based features selection
  publication-title: IEEE international conference on industrial informatics (INDIN) 2019
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib46
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– start-page: 802
  year: 2015
  end-page: 810
  ident: bib55
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Advances in neural information processing systems 28
– year: 2019
  ident: bib62
  article-title: Feature relevance quantification in explainable ai: a causal problem
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib53
  article-title: Going deeper with convolutions
  publication-title: 2015 IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib83
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– start-page: 140
  year: 1994
  end-page: 144
  ident: bib67
  article-title: Selection of relevant features in machine learning
  publication-title: In Proceedings of the AAAI Fall symposium on relevance
– volume: 162
  start-page: 218
  year: 2016
  end-page: 230
  ident: bib16
  article-title: Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks
  publication-title: Appl Energy
– volume: 74
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib41
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 70
  start-page: 330
  year: 2017
  end-page: 341
  ident: bib70
  article-title: A new electricity price prediction strategy using mutual information-based svm-rfe classification
  publication-title: Renew Sustain Energy Rev
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: bib21
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans Neural Network
– volume: 18
  start-page: 9
  year: 2017
  ident: bib71
  article-title: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
  publication-title: BMC Bioinf
– volume: vol. 3
  start-page: 189
  year: 2000
  end-page: 194
  ident: bib42
  article-title: Recurrent nets that time and count
  publication-title: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. Neural computing: new challenges and perspectives for the new millennium
– start-page: 1932
  year: 2019
  end-page: 1938
  ident: bib32
  article-title: Deregulated electric energy price forecasting in nordpool market using regression techniques
  publication-title: In: 2019 IEEE sustainable power and energy conference (iSPEC)
– volume: 149
  start-page: 95
  year: 2019
  end-page: 103
  ident: bib81
  article-title: Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models
  publication-title: Chem Eng Res Des
– volume: vol. 9
  year: 1997
  ident: bib52
  article-title: Support vector regression machines
  publication-title: Advances in neural information processing systems
– volume: 20
  start-page: 3821
  year: 2016
  end-page: 3834
  ident: bib36
  article-title: Particle swarm optimization-based feature selection in sentiment classification
  publication-title: Soft Comput.
– volume: 80
  start-page: 525
  year: 2019
  end-page: 533
  ident: bib38
  article-title: A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data
  publication-title: Appl. Soft Comput. J.
– year: 2014
  ident: bib19
  article-title: Neural machine translation by jointly learning to align and translate
– start-page: 481
  year: 2018
  end-page: 490
  ident: bib72
  article-title: Predicting the household power consumption using cnn-lstm hybrid networks
  publication-title: Intelligent data engineering and automated learning – ideal 2018
– volume: 21
  start-page: 435
  year: 2005
  end-page: 462
  ident: bib12
  article-title: Forecasting electricity prices for a day-ahead pool-based electric energy market
  publication-title: Int J Forecast
– volume: 33
  start-page: 545
  year: 2018
  end-page: 556
  ident: bib14
  article-title: Forecasting functional time series with a new Hilbertian ARMAX model: application to electricity price forecasting
  publication-title: IEEE Trans. Power Syst.
– start-page: 71
  year: 2019
  end-page: 82
  ident: bib60
  article-title: Daily energy price forecasting using a polynomial narmax model
  publication-title: Advances in computational intelligence systems
– year: 2007
  ident: bib9
  article-title: Managing energy risk: an integrated view on power and other energy markets
– volume: 32
  start-page: 23
  year: 2015
  end-page: 37
  ident: bib49
  article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances
  publication-title: Appl Soft Comput
– volume: 20
  start-page: 134
  year: 2002
  end-page: 144
  ident: bib56
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: bib33
  article-title: A survey on feature selection methods
  publication-title: Comput Electr Eng
– year: 2021
  ident: bib86
  article-title: Modelling the evolution of wind and solar power infeed forecasts
  publication-title: J Commod Mark
– volume: 81
  start-page: 1548
  year: 2018
  end-page: 1568
  ident: bib6
  article-title: Recent advances in electricity price forecasting: a review of probabilistic forecasting
  publication-title: Renew Sustain Energy Rev
– year: 2017
  ident: bib64
  article-title: A unified approach to interpreting model predictions
– volume: 24
  start-page: 744
  year: 2008
  end-page: 763
  ident: bib11
  article-title: Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models
  publication-title: Int J Forecast
– volume: 27
  start-page: 1685
  year: 2006
  end-page: 1691
  ident: bib34
  article-title: Multi-class feature selection for texture classification
  publication-title: Pattern Recogn Lett
– volume: 165
  start-page: 340
  year: 2018
  end-page: 349
  ident: bib20
  article-title: Maximization of energy absorption for a wave energy converter using the deep machine learning
  publication-title: Energy
– year: 2019
  ident: bib40
  article-title: Shaping our electrical future: moving towards an integrated european network
– volume: 4
  start-page: 65
  year: 1994
  end-page: 85
  ident: bib51
  article-title: A genetic algorithm tutorial
  publication-title: Stat Comput
– volume: 33
  start-page: 897
  year: 2005
  end-page: 913
  ident: bib7
  article-title: Electricity market modeling trends
  publication-title: Energy Pol
– volume: 28
  start-page: 2277
  year: 2017
  end-page: 2292
  ident: bib17
  article-title: Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for indian energy exchange
  publication-title: Neural Comput Appl
– volume: 7
  start-page: 91
  year: 2006
  ident: bib58
  article-title: Bias in error estimation when using cross-validation for model selection
  publication-title: BMC Bioinf
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: bib65
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib84
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
– volume: 211
  start-page: 890
  year: 2018
  end-page: 903
  ident: bib29
  article-title: Forecasting day-ahead electricity prices in europe: the importance of considering market integration
  publication-title: Appl Energy
– year: 2020
  ident: bib31
  article-title: Neural networks in day-ahead electricity price forecasting: single vs. multiple outputs
– year: 2014
  ident: bib68
  article-title: Global particle swarm optimization for high dimension numerical functions analysis
  publication-title: J Appl Math
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: bib43
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Network
– volume: 2015
  start-page: 931256
  year: 2015
  ident: bib50
  article-title: A comprehensive survey on particle swarm optimization algorithm and its applications
  publication-title: Math Probl Eng
– volume: 221
  start-page: 386
  year: 2018
  end-page: 405
  ident: bib22
  article-title: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms
  publication-title: Appl Energy
– volume: 51
  start-page: 430
  year: 2015
  end-page: 444
  ident: bib27
  article-title: Forecasting day ahead electricity spot prices: the impact of the exaa to other european electricity markets
  publication-title: Energy Econ
– volume: 25
  start-page: 254
  year: 2010
  end-page: 262
  ident: bib78
  article-title: Economic impact of electricity market price forecasting errors: a demand-side analysis
  publication-title: IEEE Trans. Power Syst.
– year: 2016
  ident: bib59
  article-title: Deep learning
– volume: 9
  year: 2016
  ident: bib79
  article-title: Automated variable selection and shrinkage for day-ahead electricity price forecasting
  publication-title: Energies
– volume: 208
  start-page: 118368
  year: 2020
  ident: bib30
  article-title: Characterizing electricity market integration in nord pool
  publication-title: Energy
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: bib61
  article-title: From local explanations to global understanding with explainable ai for trees
  publication-title: Nat. Mach. Intell.
– year: 2013
  ident: bib45
  article-title: Generating sequences with recurrent neural networks
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: bib54
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in neural information processing systems 27
– volume: 110591
  start-page: 137
  year: 2021
  ident: bib69
  article-title: A deep learning framework for building energy consumption forecast
  publication-title: Renew Sustain Energy Rev
– volume: 187
  start-page: 115804
  year: 2019
  ident: bib23
  article-title: Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform
  publication-title: Energy
– volume: 88
  start-page: 163
  year: 2000
  end-page: 169
  ident: bib4
  article-title: Forecasting loads and prices in competitive power markets
  publication-title: Proc IEEE
– year: 2018
  ident: bib39
  article-title: Short-term photovoltaic generation forecasting based on similar day selection and extreme learning machine
  publication-title: IEEE power and energy society general meeting 2018
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib18
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag
– volume: 8
  start-page: 452
  year: 2011
  end-page: 463
  ident: bib47
  article-title: ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented
  publication-title: IEEE ACM Trans Comput Biol Bioinf
– year: 2006
  ident: bib1
  article-title: Modeling and forecasting electricity loads and prices: a statistical approach
– volume: 247
  start-page: 144
  year: 2015
  end-page: 154
  ident: bib10
  article-title: Electricity futures price models: calibration and forecasting
  publication-title: Eur J Oper Res
– year: 2020
  ident: bib63
  article-title: The many shapley values for model explanation
– volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: bib66
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J Mach Learn Res
– volume: 187
  start-page: 115804
  year: 2019
  ident: 10.1016/j.energy.2021.121543_bib23
  article-title: Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.134
– volume: 149
  start-page: 95
  year: 2019
  ident: 10.1016/j.energy.2021.121543_bib81
  article-title: Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.06.034
– volume: 2
  start-page: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.energy.2021.121543_bib61
  article-title: From local explanations to global understanding with explainable ai for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 182
  start-page: 72
  year: 2019
  ident: 10.1016/j.energy.2021.121543_bib73
  article-title: Predicting residential energy consumption using cnn-lstm neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– year: 2021
  ident: 10.1016/j.energy.2021.121543_bib86
  article-title: Modelling the evolution of wind and solar power infeed forecasts
  publication-title: J Commod Mark
– year: 2007
  ident: 10.1016/j.energy.2021.121543_bib9
– volume: 27
  start-page: 1685
  issue: 14
  year: 2006
  ident: 10.1016/j.energy.2021.121543_bib34
  article-title: Multi-class feature selection for texture classification
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2006.03.013
– start-page: 481
  year: 2018
  ident: 10.1016/j.energy.2021.121543_bib72
  article-title: Predicting the household power consumption using cnn-lstm hybrid networks
– volume: 19
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2021.121543_bib82
  article-title: SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-018-2451-4
– volume: 277
  year: 2020
  ident: 10.1016/j.energy.2021.121543_bib77
  article-title: Short-term forecasting of CO2 emission intensity in power grids by machine learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115527
– volume: 221
  start-page: 386
  year: 2018
  ident: 10.1016/j.energy.2021.121543_bib22
  article-title: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.069
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.energy.2021.121543_bib83
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 7
  start-page: 91
  year: 2006
  ident: 10.1016/j.energy.2021.121543_bib58
  article-title: Bias in error estimation when using cross-validation for model selection
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-7-91
– start-page: 259
  year: 2019
  ident: 10.1016/j.energy.2021.121543_bib74
  article-title: Data analytics for load and price forecasting via enhanced support vector regression
– start-page: 1
  year: 2015
  ident: 10.1016/j.energy.2021.121543_bib53
  article-title: Going deeper with convolutions
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1016/j.energy.2021.121543_bib46
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– year: 2020
  ident: 10.1016/j.energy.2021.121543_bib31
– volume: 20
  start-page: 134
  issue: 1
  year: 2002
  ident: 10.1016/j.energy.2021.121543_bib56
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
  doi: 10.1198/073500102753410444
– volume: 2015
  start-page: 931256
  year: 2015
  ident: 10.1016/j.energy.2021.121543_bib50
  article-title: A comprehensive survey on particle swarm optimization algorithm and its applications
  publication-title: Math Probl Eng
– year: 2019
  ident: 10.1016/j.energy.2021.121543_bib40
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.energy.2021.121543_bib85
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Stat Soc Soc B (Methodological)
– year: 2019
  ident: 10.1016/j.energy.2021.121543_bib62
– volume: 77
  start-page: 1297
  issue: 10
  year: 2007
  ident: 10.1016/j.energy.2021.121543_bib15
  article-title: Short-term electricity prices forecasting in a competitive market: a neural network approach
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2006.09.022
– volume: 5
  start-page: 1205
  year: 2004
  ident: 10.1016/j.energy.2021.121543_bib66
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J Mach Learn Res
– year: 2020
  ident: 10.1016/j.energy.2021.121543_bib63
– volume: 10
  issue: 4
  year: 2018
  ident: 10.1016/j.energy.2021.121543_bib24
  article-title: An electricity price forecasting model by hybrid structured deep neural networks
  publication-title: Sustainability
  doi: 10.3390/su10041280
– volume: 110591
  start-page: 137
  year: 2021
  ident: 10.1016/j.energy.2021.121543_bib69
  article-title: A deep learning framework for building energy consumption forecast
  publication-title: Renew Sustain Energy Rev
– year: 2013
  ident: 10.1016/j.energy.2021.121543_bib80
– volume: 172
  start-page: 132
  year: 2016
  ident: 10.1016/j.energy.2021.121543_bib28
  article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.089
– volume: 17
  start-page: 342
  issue: 2
  year: 2002
  ident: 10.1016/j.energy.2021.121543_bib3
  article-title: Forecasting next-day electricity prices by time series models
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2002.1007902
– start-page: 1932
  year: 2019
  ident: 10.1016/j.energy.2021.121543_bib32
  article-title: Deregulated electric energy price forecasting in nordpool market using regression techniques
– volume: 30
  start-page: 1030
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2021.121543_bib5
  article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2014.08.008
– volume: 51
  start-page: 430
  year: 2015
  ident: 10.1016/j.energy.2021.121543_bib27
  article-title: Forecasting day ahead electricity spot prices: the impact of the exaa to other european electricity markets
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2015.08.005
– volume: 128
  start-page: 73
  year: 2014
  ident: 10.1016/j.energy.2021.121543_bib48
  article-title: Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.065
– year: 2018
  ident: 10.1016/j.energy.2021.121543_bib39
  article-title: Short-term photovoltaic generation forecasting based on similar day selection and extreme learning machine
– year: 2014
  ident: 10.1016/j.energy.2021.121543_bib44
– volume: 46
  start-page: 389
  issue: 1
  year: 2002
  ident: 10.1016/j.energy.2021.121543_bib84
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– volume: 20
  start-page: 3927
  year: 2016
  ident: 10.1016/j.energy.2021.121543_bib35
  article-title: New mechanism for archive maintenance in PSO-based multi-objective feature selection
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2128-8
– volume: 81
  start-page: 1548
  year: 2018
  ident: 10.1016/j.energy.2021.121543_bib6
  article-title: Recent advances in electricity price forecasting: a review of probabilistic forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.234
– volume: 211
  start-page: 890
  year: 2018
  ident: 10.1016/j.energy.2021.121543_bib29
  article-title: Forecasting day-ahead electricity prices in europe: the importance of considering market integration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.098
– start-page: 140
  year: 1994
  ident: 10.1016/j.energy.2021.121543_bib67
  article-title: Selection of relevant features in machine learning
– volume: 80
  start-page: 525
  year: 2019
  ident: 10.1016/j.energy.2021.121543_bib38
  article-title: A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.04.019
– volume: 33
  start-page: 545
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2021.121543_bib14
  article-title: Forecasting functional time series with a new Hilbertian ARMAX model: application to electricity price forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2700287
– volume: 18
  start-page: 602
  issue: 5
  year: 2005
  ident: 10.1016/j.energy.2021.121543_bib43
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Network
  doi: 10.1016/j.neunet.2005.06.042
– start-page: 802
  year: 2015
  ident: 10.1016/j.energy.2021.121543_bib55
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
– volume: 18
  start-page: 9
  issue: 1
  year: 2017
  ident: 10.1016/j.energy.2021.121543_bib71
  article-title: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-016-1423-9
– volume: 25
  start-page: 254
  issue: 1
  year: 2010
  ident: 10.1016/j.energy.2021.121543_bib78
  article-title: Economic impact of electricity market price forecasting errors: a demand-side analysis
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2030380
– volume: 20
  start-page: 3821
  year: 2016
  ident: 10.1016/j.energy.2021.121543_bib36
  article-title: Particle swarm optimization-based feature selection in sentiment classification
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2093-2
– year: 2004
  ident: 10.1016/j.energy.2021.121543_bib2
– volume: 208
  start-page: 118368
  year: 2020
  ident: 10.1016/j.energy.2021.121543_bib30
  article-title: Characterizing electricity market integration in nord pool
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118368
– volume: 21
  start-page: 435
  issue: 3
  year: 2005
  ident: 10.1016/j.energy.2021.121543_bib12
  article-title: Forecasting electricity prices for a day-ahead pool-based electric energy market
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2004.12.005
– start-page: 71
  year: 2019
  ident: 10.1016/j.energy.2021.121543_bib60
  article-title: Daily energy price forecasting using a polynomial narmax model
  doi: 10.1007/978-3-319-97982-3_6
– start-page: 3104
  year: 2014
  ident: 10.1016/j.energy.2021.121543_bib54
  article-title: Sequence to sequence learning with neural networks
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.energy.2021.121543_bib65
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– year: 2014
  ident: 10.1016/j.energy.2021.121543_bib68
  article-title: Global particle swarm optimization for high dimension numerical functions analysis
  publication-title: J Appl Math
– year: 2014
  ident: 10.1016/j.energy.2021.121543_bib19
– volume: 50
  issue: 6
  year: 2017
  ident: 10.1016/j.energy.2021.121543_bib26
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput Surv
  doi: 10.1145/3136625
– volume: 9
  issue: 8
  year: 2016
  ident: 10.1016/j.energy.2021.121543_bib79
  article-title: Automated variable selection and shrinkage for day-ahead electricity price forecasting
  publication-title: Energies
  doi: 10.3390/en9080621
– start-page: 1051
  year: 2019
  ident: 10.1016/j.energy.2021.121543_bib76
  article-title: Day ahead electricity price forecast by NARX model with LASSO based features selection
– volume: 8
  start-page: 452
  issue: 2
  year: 2011
  ident: 10.1016/j.energy.2021.121543_bib47
  article-title: ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented
  publication-title: IEEE ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2010.13
– volume: vol. 3
  start-page: 189
  year: 2000
  ident: 10.1016/j.energy.2021.121543_bib42
  article-title: Recurrent nets that time and count
– year: 2009
  ident: 10.1016/j.energy.2021.121543_bib25
– start-page: 521
  year: 2020
  ident: 10.1016/j.energy.2021.121543_bib75
  article-title: An approximate forecasting of electricity load and price of a smart home using nearest neighbor
– volume: 33
  start-page: 897
  issue: 7
  year: 2005
  ident: 10.1016/j.energy.2021.121543_bib7
  article-title: Electricity market modeling trends
  publication-title: Energy Pol
  doi: 10.1016/j.enpol.2003.10.013
– volume: 28
  start-page: 2277
  year: 2017
  ident: 10.1016/j.energy.2021.121543_bib17
  article-title: Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for indian energy exchange
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2141-3
– volume: vol. 9
  year: 1997
  ident: 10.1016/j.energy.2021.121543_bib52
  article-title: Support vector regression machines
– volume: 70
  start-page: 330
  year: 2017
  ident: 10.1016/j.energy.2021.121543_bib70
  article-title: A new electricity price prediction strategy using mutual information-based svm-rfe classification
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.11.155
– volume: 74
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.energy.2021.121543_bib41
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 24
  start-page: 744
  issue: 4
  year: 2008
  ident: 10.1016/j.energy.2021.121543_bib11
  article-title: Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2008.08.004
– volume: 88
  start-page: 163
  issue: 2
  year: 2000
  ident: 10.1016/j.energy.2021.121543_bib4
  article-title: Forecasting loads and prices in competitive power markets
  publication-title: Proc IEEE
  doi: 10.1109/5.823996
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.energy.2021.121543_bib21
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans Neural Network
  doi: 10.1109/72.279181
– volume: 32
  start-page: 23
  year: 2015
  ident: 10.1016/j.energy.2021.121543_bib49
  article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.03.036
– volume: 165
  start-page: 340
  year: 2018
  ident: 10.1016/j.energy.2021.121543_bib20
  article-title: Maximization of energy absorption for a wave energy converter using the deep machine learning
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.093
– volume: 13
  start-page: 281
  issue: 2
  year: 1997
  ident: 10.1016/j.energy.2021.121543_bib57
  article-title: Testing the equality of prediction mean squared errors
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(96)00719-4
– volume: 42
  start-page: 2731
  issue: 5
  year: 2015
  ident: 10.1016/j.energy.2021.121543_bib8
  article-title: The acewem framework: an integrated agent-based and statistical modelling laboratory for repeated power auctions
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.11.024
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  ident: 10.1016/j.energy.2021.121543_bib51
  article-title: A genetic algorithm tutorial
  publication-title: Stat Comput
  doi: 10.1007/BF00175354
– volume: 10
  issue: 3
  year: 2006
  ident: 10.1016/j.energy.2021.121543_bib13
  article-title: Point and interval forecasting of spot electricity prices: linear vs non-linear time series models
  publication-title: Stud Nonlinear Dynam Econom
– year: 2016
  ident: 10.1016/j.energy.2021.121543_bib59
– volume: 204
  start-page: 117894
  year: 2020
  ident: 10.1016/j.energy.2021.121543_bib37
  article-title: Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117894
– year: 2006
  ident: 10.1016/j.energy.2021.121543_bib1
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.energy.2021.121543_bib33
  article-title: A survey on feature selection methods
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 247
  start-page: 144
  issue: 1
  year: 2015
  ident: 10.1016/j.energy.2021.121543_bib10
  article-title: Electricity futures price models: calibration and forecasting
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.05.063
– volume: 29
  start-page: 82
  year: 2012
  ident: 10.1016/j.energy.2021.121543_bib18
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– volume: 162
  start-page: 218
  year: 2016
  ident: 10.1016/j.energy.2021.121543_bib16
  article-title: Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.09.087
– year: 2013
  ident: 10.1016/j.energy.2021.121543_bib45
– year: 2017
  ident: 10.1016/j.energy.2021.121543_bib64
SSID ssj0005899
Score 2.658128
Snippet The availability of accurate day-ahead electricity price forecasts is pivotal for electricity market participants. In the context of trade liberalisation and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121543
SubjectTerms Algorithms
Artificial neural networks
Deep learning
Economic forecasting
Electricity
electricity costs
Electricity market coupling
Electricity price forecasting (EPF)
Electricity pricing
Empirical analysis
empirical research
energy
Feature selection
Long short-term memory
Long short-term memory (LSTM)
Machine learning
markets
Mathematical models
Neural networks
prediction
Predictions
prices
The Nord Pool system price
time series analysis
Trade liberalization
Title Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling
URI https://dx.doi.org/10.1016/j.energy.2021.121543
https://www.proquest.com/docview/2609115305
https://www.proquest.com/docview/2636521478
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQPbSXqqVFTQvIlXp1s7u2194j4qEUChdA4rby-hFSwSbKJgcu_T_8S2a8XvqQKqReImUz9kYZ-5vZeL75CPlivNdNqR3jgIsM4rFhTWYk07oJ-Ge-rCzync_Oy8mVOLmW1xvkYODCYFllwv4e0yNapyvj9GuOF7PZ-AKwF_INURRxVeXYdlsIhSoGX3_-Vuaho4YkGjO0HuhzscbLR34dPCUWeWyzIPi_wtNfQB2jz_Eb8jqljXS__2ZvyYZvt8jLgVXcbZHto1-MNTBMW7Z7Rx4OzT0zALmO9pI3MwuJN11gMyF4xXMa9A3Fk2ykPNGbeyRx0SiR09F5oN8vLs8YRjtHnfcLmoQmprRXn-6oaR0NPnYIpV28SZzwdjpfzlY3dx1FotqS2qQNGtcCTnwXGddwfY204Ol7cnV8dHkwYUmfgVleqhUzvDCusJUJmQgmy3UIynJdVso6xRtfWcVd6XUlKq-U00GIymVWVo3xZSM13yab7bz1HwgVCjLJJkhT5EFkIdc2hxFcG20MTKhHhA9uqW1qXo4aGrf1UKX2o-6dWaMz696ZI8KeRi365h3P2KvB4_Ufi7CG-PLMyJ1hgdQJBLoaHhUhlEhA1BH5_PQxbF88kzGtn6_RhpcStaL0x_---SfyCt9hkU0ud8jmarn2u5AqrZq9uBf2yIv9b6eT80fOzBfc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQLKoWKhRaMxNVsEtuxc0R9aIHdXrqVerMcP7aL2uxqs3vopf-n_xKP45SChCpxycEZO1HGnhnH882H0GftnKxLaQkNdpEEf6xJnWlOpKw9_MznlQG88-SsHF2w75f8cgsd9VgYSKtMtr-z6dFap5Zh-prD5Xw-PA-2N8QbrCjirMrLZ-g544WAHdiXu0d5HjKSSII0AfEePxeTvFwE2IVtYpHHOguM_ss__WWpo_s53UUvU9yIv3av9gptuWYP7fSw4nYP7Z_8hqwFwbRm29fo_ljfEh1srsUd583chMgbL6GaULjCQQ0oB8NRNmCe8NUtoLhw5Mhp8cLj8fl0QsDdWWydW-LENDHDHf10i3VjsXexRChu40PigNezxWq-vrppMSDVVtgkctA4GWDgmwi5Du0bwAXP3qCL05Pp0YgkggZiaCnWRNNC28JU2mfM6yyX3gtDZVkJYwWtXWUEtaWTFaucEFZ6xiqbGV7V2pU1l3QfbTeLxr1FmIkQStae6yL3LPO5NHnoQaWWWocB5QDRXi3KpOrlQKJxrfo0tZ-qU6YCZapOmQNEHnotu-odT8iLXuPqj1mogoN5oudBP0FUsgKtCnvF4Et4MKkD9Onhdli_cCijG7fYgAwtOZBFyXf__fCPaGc0nYzV-NvZj_foBdyBjJucH6Dt9WrjDkPctK4_xHXxCxmhGXE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-ahead+electricity+price+prediction+applying+hybrid+models+of+LSTM-based+deep+learning+methods+and+feature+selection+algorithms+under+consideration+of+market+coupling&rft.jtitle=Energy+%28Oxford%29&rft.au=Li%2C+Wei&rft.au=Becker%2C+Denis+Mike&rft.date=2021-12-15&rft.issn=0360-5442&rft.volume=237+p.121543-&rft_id=info:doi/10.1016%2Fj.energy.2021.121543&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon