Real-time adaptation of a greenhouse microclimate model using an online parameter estimator based on a bat algorithm variant

•An online estimator for the time-varying parameters of a greenhouse microclimate model was developed.•The online estimator is based on an enhanced bat algorithm with adaptive search space.•Air temperature and solar radiation are the microclimate variables under study.•Assessments were performed in...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 192; p. 106627
Main Authors Guesbaya, Mounir, García-Mañas, Francisco, Megherbi, Hassina, Rodríguez, Francisco
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0168-1699
1872-7107
DOI10.1016/j.compag.2021.106627

Cover

Abstract •An online estimator for the time-varying parameters of a greenhouse microclimate model was developed.•The online estimator is based on an enhanced bat algorithm with adaptive search space.•Air temperature and solar radiation are the microclimate variables under study.•Assessments were performed in a commercial-sized greenhouse with grown crops and active natural ventilation.•Adaptation of the microclimate model has been successfully performed in real-time. Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of the phenomenon and the uncertainty of the involved physical and non-physical parameters. The uncertainty stems from the fact that the majority of these parameters are unmeasurable or difficult to be measured and some of them are time-varying, signifying the necessity to estimate them. In this paper, a methodology for online parameter estimation is proposed to deal with the estimation of the time-varying parameters of a simplified greenhouse temperature model for real-time model adaptation purposes. An online estimator is developed based on an enhanced variant of the Bat Algorithm called the Random Scaling-based Bat Algorithm. It allows the continuous adaptation of the internal air temperature model and the internal solar radiation sub-model, through estimating their parameters at the same time step by minimizing a cost function, intending to achieve global optimality. Constraints on the search ranges are imposed to respect the physical sense. The adaptation of the models was tested with recorded datasets of different agri-seasons and on a real greenhouse in real time. The evolutions of the time-varying parameters were graphically presented and thoroughly discussed. The experimental results illustrate the successful model adaptation, presenting an average error of less than 0.28 °C for air temperature prediction and 20Wm-2 for solar radiation simulation. This proves the usefulness of the proposed methodology under changing environmental conditions.
AbstractList •An online estimator for the time-varying parameters of a greenhouse microclimate model was developed.•The online estimator is based on an enhanced bat algorithm with adaptive search space.•Air temperature and solar radiation are the microclimate variables under study.•Assessments were performed in a commercial-sized greenhouse with grown crops and active natural ventilation.•Adaptation of the microclimate model has been successfully performed in real-time. Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of the phenomenon and the uncertainty of the involved physical and non-physical parameters. The uncertainty stems from the fact that the majority of these parameters are unmeasurable or difficult to be measured and some of them are time-varying, signifying the necessity to estimate them. In this paper, a methodology for online parameter estimation is proposed to deal with the estimation of the time-varying parameters of a simplified greenhouse temperature model for real-time model adaptation purposes. An online estimator is developed based on an enhanced variant of the Bat Algorithm called the Random Scaling-based Bat Algorithm. It allows the continuous adaptation of the internal air temperature model and the internal solar radiation sub-model, through estimating their parameters at the same time step by minimizing a cost function, intending to achieve global optimality. Constraints on the search ranges are imposed to respect the physical sense. The adaptation of the models was tested with recorded datasets of different agri-seasons and on a real greenhouse in real time. The evolutions of the time-varying parameters were graphically presented and thoroughly discussed. The experimental results illustrate the successful model adaptation, presenting an average error of less than 0.28 °C for air temperature prediction and 20Wm-2 for solar radiation simulation. This proves the usefulness of the proposed methodology under changing environmental conditions.
Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of the phenomenon and the uncertainty of the involved physical and non-physical parameters. The uncertainty stems from the fact that the majority of these parameters are unmeasurable or difficult to be measured and some of them are time-varying, signifying the necessity to estimate them. In this paper, a methodology for online parameter estimation is proposed to deal with the estimation of the time-varying parameters of a simplified greenhouse temperature model for real-time model adaptation purposes. An online estimator is developed based on an enhanced variant of the Bat Algorithm called the Random Scaling-based Bat Algorithm. It allows the continuous adaptation of the internal air temperature model and the internal solar radiation sub-model, through estimating their parameters at the same time step by minimizing a cost function, intending to achieve global optimality. Constraints on the search ranges are imposed to respect the physical sense. The adaptation of the models was tested with recorded datasets of different agri-seasons and on a real greenhouse in real time. The evolutions of the time-varying parameters were graphically presented and thoroughly discussed. The experimental results illustrate the successful model adaptation, presenting an average error of less than 0.28 °C for air temperature prediction and 20Wm-2 for solar radiation simulation. This proves the usefulness of the proposed methodology under changing environmental conditions.
ArticleNumber 106627
Author Guesbaya, Mounir
Megherbi, Hassina
García-Mañas, Francisco
Rodríguez, Francisco
Author_xml – sequence: 1
  givenname: Mounir
  surname: Guesbaya
  fullname: Guesbaya, Mounir
  email: mounir.guesbaya@univ-biskra.dz
  organization: University of Biskra, Department of Electrical Engineering, LI3CUB Laboratory, BP 145 RP, Biskra 07000, Algeria
– sequence: 2
  givenname: Francisco
  surname: García-Mañas
  fullname: García-Mañas, Francisco
  email: francisco.gm@ual.es
  organization: University of Almería, Department of Informatics, CIESOL, ceiA3, E04120 Almería, Spain
– sequence: 3
  givenname: Hassina
  surname: Megherbi
  fullname: Megherbi, Hassina
  email: h.megherbi@univ-biskra.dz
  organization: University of Biskra, LARHYSS Laboratory, BP 145 RP, Biskra 07000, Algeria
– sequence: 4
  givenname: Francisco
  surname: Rodríguez
  fullname: Rodríguez, Francisco
  email: frrodrig@ual.es
  organization: University of Almería, Department of Informatics, CIESOL, ceiA3, E04120 Almería, Spain
BookMark eNqFkU-LFDEQxYOs4OzqN_AQ8OKlxyTdk-72IMjiP1gQRM-hklTPZuhO2iSzIPjhraE97UEhEKrye0XlvWt2FVNExl5KsZdC6jenvUvLCse9EkpSS2vVP2E7OfSq6aXor9iOsKGRehyfsetSToLqceh37Pc3hLmpYUEOHtYKNaTI08SBHzNivE_ngnwJLic3hwUqFcnjzM8lxCMHYuMcIvIVMixYMXMs9QKmzC0U9ATQMAuVw3xMOdT7hT9ADhDrc_Z0grngi7_3Dfvx8cP328_N3ddPX27f3zWu1X1tRtcp5btD59B61w5WjlYDym6yum8PuhN0bCtE76RyQoKfrHCt91ait_Ryw15vc9ecfp5pP7OE4nCeISL9zyjd6oPqdCsJffUIPaVzjrQdUWoUw6HTI1FvN4psKSXjZFzYrKsZwmykMJdgzMlswZhLMGYLhsTdI_GaybD863-yd5sMyamHgNkUFzA69CGjq8an8O8BfwC8tq2F
CitedBy_id crossref_primary_10_1016_j_rser_2024_115214
crossref_primary_10_1007_s44291_024_00001_6
crossref_primary_10_1016_j_solener_2023_112280
crossref_primary_10_1109_TASE_2023_3271896
crossref_primary_10_1142_S1464333223500205
crossref_primary_10_1016_j_ifacol_2024_08_110
crossref_primary_10_1016_j_atech_2023_100237
crossref_primary_10_2478_amns_2025_0126
crossref_primary_10_1051_bioconf_202516705004
crossref_primary_10_1016_j_applthermaleng_2024_123176
crossref_primary_10_1016_j_enbuild_2023_113120
crossref_primary_10_1016_j_jclepro_2022_133753
crossref_primary_10_1016_j_ifacol_2024_08_104
crossref_primary_10_1007_s11356_024_34418_z
crossref_primary_10_1007_s40095_022_00514_4
crossref_primary_10_1016_j_compag_2022_107417
crossref_primary_10_1016_j_applthermaleng_2023_122240
crossref_primary_10_3390_s23031250
Cites_doi 10.1016/j.asoc.2017.10.023
10.1016/S1537-5110(02)00239-8
10.1016/j.compag.2009.01.012
10.1016/B978-0-12-416743-8.00001-4
10.1016/j.compag.2019.04.013
10.1109/ICAEE47123.2019.9015190
10.1016/j.applthermaleng.2018.06.014
10.1016/j.solener.2019.08.042
10.1016/j.compag.2016.01.019
10.1016/j.neucom.2014.02.052
10.1201/b10321
10.1504/IJBIC.2013.055093
10.18280/ijdne.150306
10.1016/j.biosystemseng.2011.08.006
10.1007/978-981-15-6403-1_4
10.1016/S0967-0661(97)00145-7
10.1016/j.egypro.2011.05.043
10.1109/ACCESS.2019.2916412
10.1016/j.jesit.2016.10.014
10.1016/j.compag.2019.105096
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2021.106627
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2021_106627
S016816992100644X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c367t-9c422d454cebdc38b19b6ae14fb6735640640b3007c12c01adfb0c3ddb1edb0b3
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Thu Oct 02 10:22:35 EDT 2025
Mon Jul 14 08:50:03 EDT 2025
Thu Oct 02 04:23:16 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Fri Feb 23 02:40:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DE
MaxAE
Greenhouse modelling
ARX
ARMAX
HS
Online estimation
SA
MIMO
GA
MISO
MSE
SCADA
R2
EKF
RSBA
Protected agriculture
RMSE
PSO
Metaheuristic algorithms
MAE
Model adaptation
RE
LAI
BA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-9c422d454cebdc38b19b6ae14fb6735640640b3007c12c01adfb0c3ddb1edb0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2629085469
PQPubID 2045491
ParticipantIDs proquest_miscellaneous_2636524631
proquest_journals_2629085469
crossref_citationtrail_10_1016_j_compag_2021_106627
crossref_primary_10_1016_j_compag_2021_106627
elsevier_sciencedirect_doi_10_1016_j_compag_2021_106627
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Hasni, Taibi, Draoui, Boulard (b0045) 2011; 6
In: The 4
Yang, X.Y., 2014. Nature-inspired optimization algorithms
Frausto, Pieters, Deltour (b0030) 2003; 84
Atia, El-madany (b0005) 2017; 4
Hoyo, Moreno, Guzman, Rodriguez (b0050) 2019; 7
Ben Ali, Bouadila, Mami (b0010) 2018; 141
International Conference on Electrical Engineering and Control Applications (ICEECA), Constantine, Springer, pp. 47-62. DOI: 10.1007/978-981-15-6403-1_4.
Khan, Sahai (b0055) 2012; 4
Ma, Carpenter, Maki, Rehman, Tuinstra, Jin (b0070) 2019; 162
Laktionov, Vovna, Kabanets, Derzhevetska, Zori (b0060) 2020; 15
Boaventura Cunha, Couto, Ruano (b0020) 1997; 5
Speetjens, Stigter, van Straten (b0090) 2009; 67
Choab, Allouhi, El Maakoul, Kousksou, Saadeddine, Jamil (b0015) 2019; 191
Pérez-González, Begovich-Mendoza, Ruiz-León (b0075) 2018; 62
Sánchez-Molina, Ming, Rodríguez, Guzmán, Hui, Xinting (b0085) 2017; 10
Guesbaya, M., Megherbi, H., 2019. Thermal modeling and prediction of soilles greenhouse in arid region based on particle swarm optimization: Experimentally validated
Fourati (b0025) 2014; 139
Rodríguez, Berenguel, Guzmán, Ramírez-Arias (b0080) 2015
Yu, Chen, Hassan, Li (b0115) 2016; 122
Van Straten, G., van Willigenburg, G., van Henten, E., van Ooteghem, R., 2010. Optimal control of greenhouse cultivation. s.l.:CRC press. DOI: 10.1201/b10321.
In: International Conference on Advanced Electrical Engineering (ICAEE), Algiers, IEEE, pp. 1-6. DOI: 10.1109/ICAEE47123.2019.9015190.
Li, Sha, Xue, Chen, Mao, Tan (b0065) 2020; 168
Vanthoor, Van Henten, Stanghellini, De Visser (b0100) 2011; 110
1 ed. s.l.:Elsevier. DOI: 10.1016/C2013-0-01368-0.
Guesbaya, M., Megherbi, H., Megherbi, A.C., 2019. Random scaling-based bat algorithm for greenhouse thermal model identification and experimental validation
Yang, He (b0110) 2013; 5
Boaventura Cunha (10.1016/j.compag.2021.106627_b0020) 1997; 5
Sánchez-Molina (10.1016/j.compag.2021.106627_b0085) 2017; 10
Frausto (10.1016/j.compag.2021.106627_b0030) 2003; 84
Atia (10.1016/j.compag.2021.106627_b0005) 2017; 4
Ben Ali (10.1016/j.compag.2021.106627_b0010) 2018; 141
Speetjens (10.1016/j.compag.2021.106627_b0090) 2009; 67
Hoyo (10.1016/j.compag.2021.106627_b0050) 2019; 7
10.1016/j.compag.2021.106627_b0040
10.1016/j.compag.2021.106627_b0095
Yu (10.1016/j.compag.2021.106627_b0115) 2016; 122
Ma (10.1016/j.compag.2021.106627_b0070) 2019; 162
10.1016/j.compag.2021.106627_b0105
Vanthoor (10.1016/j.compag.2021.106627_b0100) 2011; 110
10.1016/j.compag.2021.106627_b0035
Hasni (10.1016/j.compag.2021.106627_b0045) 2011; 6
Fourati (10.1016/j.compag.2021.106627_b0025) 2014; 139
Khan (10.1016/j.compag.2021.106627_b0055) 2012; 4
Choab (10.1016/j.compag.2021.106627_b0015) 2019; 191
Li (10.1016/j.compag.2021.106627_b0065) 2020; 168
Rodríguez (10.1016/j.compag.2021.106627_b0080) 2015
Laktionov (10.1016/j.compag.2021.106627_b0060) 2020; 15
Pérez-González (10.1016/j.compag.2021.106627_b0075) 2018; 62
Yang (10.1016/j.compag.2021.106627_b0110) 2013; 5
References_xml – volume: 10
  start-page: 66
  year: 2017
  end-page: 76
  ident: b0085
  article-title: Development and test verification of air temperature model for Chinese solar and Spanish Almeria-type greenhouses
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 139
  start-page: 138
  year: 2014
  end-page: 144
  ident: b0025
  article-title: Multiple neural control of a greenhouse
  publication-title: Neurocomputing
– volume: 62
  start-page: 86
  year: 2018
  end-page: 100
  ident: b0075
  article-title: Modeling of a greenhouse prototype using PSO and differential evolution algorithms based on a real-time LabView™ application
  publication-title: Appl. Soft Comput.
– volume: 191
  start-page: 109
  year: 2019
  end-page: 113
  ident: b0015
  article-title: Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies
  publication-title: Sol. Energy
– volume: 4
  start-page: 34
  year: 2017
  end-page: 48
  ident: b0005
  article-title: Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system
  publication-title: J. Electr. Syst. Inf. Technol.
– volume: 67
  start-page: 1
  year: 2009
  end-page: 8
  ident: b0090
  article-title: Towards an adaptive model for greenhouse control
  publication-title: Comput. Electron. Agric.
– reference: Guesbaya, M., Megherbi, H., 2019. Thermal modeling and prediction of soilles greenhouse in arid region based on particle swarm optimization: Experimentally validated
– volume: 122
  start-page: 94
  year: 2016
  end-page: 102
  ident: b0115
  article-title: Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO
  publication-title: Comput. Electron. Agric.
– volume: 84
  start-page: 147
  year: 2003
  end-page: 157
  ident: b0030
  article-title: Modelling greenhouse temperature by means of auto regressive models
  publication-title: Biosyst. Eng.
– reference: 1 ed. s.l.:Elsevier. DOI: 10.1016/C2013-0-01368-0.
– reference: In: International Conference on Advanced Electrical Engineering (ICAEE), Algiers, IEEE, pp. 1-6. DOI: 10.1109/ICAEE47123.2019.9015190.
– reference: Van Straten, G., van Willigenburg, G., van Henten, E., van Ooteghem, R., 2010. Optimal control of greenhouse cultivation. s.l.:CRC press. DOI: 10.1201/b10321.
– year: 2015
  ident: b0080
  article-title: Modeling and control of greenhouse crop growth
  publication-title: Sringer International Publishing, Switzerland.
– volume: 7
  start-page: 64148
  year: 2019
  end-page: 64161
  ident: b0050
  article-title: Robust QFT-based feedback linearization controller of the greenhouse diurnal temperature using natural ventilation
  publication-title: IEEE Access
– volume: 168
  start-page: 105
  year: 2020
  end-page: 1096
  ident: b0065
  article-title: A fast modeling and optimization scheme for greenhouse environmental system using proper orthogonal decomposition and multi-objective genetic algorithm
  publication-title: Comput. Electron. Agric.
– volume: 141
  start-page: 798
  year: 2018
  end-page: 810
  ident: b0010
  article-title: Development of a fuzzy logic controller applied to an agricultural greenhouse experimentally validated
  publication-title: Appl. Therm. Eng.
– volume: 4
  start-page: 23
  year: 2012
  end-page: 29
  ident: b0055
  article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context
  publication-title: Int. J. Intell. Syst. Appl.
– reference: Guesbaya, M., Megherbi, H., Megherbi, A.C., 2019. Random scaling-based bat algorithm for greenhouse thermal model identification and experimental validation
– volume: 110
  start-page: 396
  year: 2011
  end-page: 412
  ident: b0100
  article-title: A methodology for model-based greenhouse design: Part 3, sensitivity analysis of a combined greenhouse climate-crop yield model
  publication-title: Biosyst. Eng.
– volume: 6
  start-page: 371
  year: 2011
  end-page: 380
  ident: b0045
  article-title: Optimization of greenhouse climate model parameters using particle swarm optimization and genetic algorithms
  publication-title: Energy Procedia
– volume: 162
  start-page: 134
  year: 2019
  end-page: 142
  ident: b0070
  article-title: Greenhouse environment modeling and simulation for microclimate control
  publication-title: Comput. Electron. Agric.
– reference: Yang, X.Y., 2014. Nature-inspired optimization algorithms
– volume: 5
  start-page: 1473
  year: 1997
  end-page: 1481
  ident: b0020
  article-title: Real-time parameter estimation of dynamic temperature models for greenhouse environmental control
  publication-title: Control Eng. Pract.
– volume: 15
  start-page: 325
  year: 2020
  end-page: 336
  ident: b0060
  article-title: Mathematical model of measuring monitoring and temperature control of growing vegetables in greenhouses
  publication-title: Int. J. Des. Nat. Ecodyn.
– reference: In: The 4
– reference: International Conference on Electrical Engineering and Control Applications (ICEECA), Constantine, Springer, pp. 47-62. DOI: 10.1007/978-981-15-6403-1_4.
– volume: 5
  start-page: 141
  year: 2013
  end-page: 149
  ident: b0110
  article-title: Bat algorithm: literature review and applications
  publication-title: Int. J. Bio-inspired Computation
– volume: 62
  start-page: 86
  year: 2018
  ident: 10.1016/j.compag.2021.106627_b0075
  article-title: Modeling of a greenhouse prototype using PSO and differential evolution algorithms based on a real-time LabView™ application
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.10.023
– volume: 84
  start-page: 147
  issue: 2
  year: 2003
  ident: 10.1016/j.compag.2021.106627_b0030
  article-title: Modelling greenhouse temperature by means of auto regressive models
  publication-title: Biosyst. Eng.
  doi: 10.1016/S1537-5110(02)00239-8
– volume: 67
  start-page: 1
  issue: 1-2
  year: 2009
  ident: 10.1016/j.compag.2021.106627_b0090
  article-title: Towards an adaptive model for greenhouse control
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2009.01.012
– ident: 10.1016/j.compag.2021.106627_b0105
  doi: 10.1016/B978-0-12-416743-8.00001-4
– volume: 162
  start-page: 134
  year: 2019
  ident: 10.1016/j.compag.2021.106627_b0070
  article-title: Greenhouse environment modeling and simulation for microclimate control
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.04.013
– ident: 10.1016/j.compag.2021.106627_b0035
  doi: 10.1109/ICAEE47123.2019.9015190
– volume: 141
  start-page: 798
  year: 2018
  ident: 10.1016/j.compag.2021.106627_b0010
  article-title: Development of a fuzzy logic controller applied to an agricultural greenhouse experimentally validated
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.06.014
– volume: 191
  start-page: 109
  year: 2019
  ident: 10.1016/j.compag.2021.106627_b0015
  article-title: Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.08.042
– volume: 122
  start-page: 94
  year: 2016
  ident: 10.1016/j.compag.2021.106627_b0115
  article-title: Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.01.019
– volume: 139
  start-page: 138
  year: 2014
  ident: 10.1016/j.compag.2021.106627_b0025
  article-title: Multiple neural control of a greenhouse
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.052
– ident: 10.1016/j.compag.2021.106627_b0095
  doi: 10.1201/b10321
– volume: 5
  start-page: 141
  issue: 3
  year: 2013
  ident: 10.1016/j.compag.2021.106627_b0110
  article-title: Bat algorithm: literature review and applications
  publication-title: Int. J. Bio-inspired Computation
  doi: 10.1504/IJBIC.2013.055093
– volume: 15
  start-page: 325
  issue: 3
  year: 2020
  ident: 10.1016/j.compag.2021.106627_b0060
  article-title: Mathematical model of measuring monitoring and temperature control of growing vegetables in greenhouses
  publication-title: Int. J. Des. Nat. Ecodyn.
  doi: 10.18280/ijdne.150306
– volume: 110
  start-page: 396
  issue: 4
  year: 2011
  ident: 10.1016/j.compag.2021.106627_b0100
  article-title: A methodology for model-based greenhouse design: Part 3, sensitivity analysis of a combined greenhouse climate-crop yield model
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2011.08.006
– ident: 10.1016/j.compag.2021.106627_b0040
  doi: 10.1007/978-981-15-6403-1_4
– volume: 5
  start-page: 1473
  issue: 10
  year: 1997
  ident: 10.1016/j.compag.2021.106627_b0020
  article-title: Real-time parameter estimation of dynamic temperature models for greenhouse environmental control
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(97)00145-7
– volume: 6
  start-page: 371
  year: 2011
  ident: 10.1016/j.compag.2021.106627_b0045
  article-title: Optimization of greenhouse climate model parameters using particle swarm optimization and genetic algorithms
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.05.043
– volume: 7
  start-page: 64148
  year: 2019
  ident: 10.1016/j.compag.2021.106627_b0050
  article-title: Robust QFT-based feedback linearization controller of the greenhouse diurnal temperature using natural ventilation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916412
– volume: 4
  start-page: 23
  issue: 7
  year: 2012
  ident: 10.1016/j.compag.2021.106627_b0055
  article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context
  publication-title: Int. J. Intell. Syst. Appl.
– volume: 4
  start-page: 34
  issue: 1
  year: 2017
  ident: 10.1016/j.compag.2021.106627_b0005
  article-title: Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system
  publication-title: J. Electr. Syst. Inf. Technol.
  doi: 10.1016/j.jesit.2016.10.014
– year: 2015
  ident: 10.1016/j.compag.2021.106627_b0080
  article-title: Modeling and control of greenhouse crop growth
  publication-title: Sringer International Publishing, Switzerland.
– volume: 168
  start-page: 105
  year: 2020
  ident: 10.1016/j.compag.2021.106627_b0065
  article-title: A fast modeling and optimization scheme for greenhouse environmental system using proper orthogonal decomposition and multi-objective genetic algorithm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105096
– volume: 10
  start-page: 66
  issue: 4
  year: 2017
  ident: 10.1016/j.compag.2021.106627_b0085
  article-title: Development and test verification of air temperature model for Chinese solar and Spanish Almeria-type greenhouses
  publication-title: Int. J. Agric. Biol. Eng.
SSID ssj0016987
Score 2.4360201
Snippet •An online estimator for the time-varying parameters of a greenhouse microclimate model was developed.•The online estimator is based on an enhanced bat...
Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of the phenomenon and the uncertainty of the involved physical and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106627
SubjectTerms Adaptation
agriculture
Air temperature
Algorithms
Cost function
data collection
electronics
Greenhouse modelling
Greenhouses
Mathematical models
Metaheuristic algorithms
Microclimate
Model adaptation
Online estimation
Parameter estimation
Parameter uncertainty
Physical properties
prediction
Protected agriculture
Radiation
Real time
Solar radiation
uncertainty
Title Real-time adaptation of a greenhouse microclimate model using an online parameter estimator based on a bat algorithm variant
URI https://dx.doi.org/10.1016/j.compag.2021.106627
https://www.proquest.com/docview/2629085469
https://www.proquest.com/docview/2636524631
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AKRWK
  dateStart: 19851001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6iFz0s62NxdJQIXtuZdDLpznEQZVTw4APmFvJsZ5kXY-tp2d--Vf0YUFgEj52udDepJPVV56sqQs6FMpbHKJMQuUtEFmSiXLSJz_sqj0HyLFYE2Xs5eha348F4g1y2sTBIq2z2_npPr3brpqXXjGZvOZn0HgGs5EwqBU4L2FUxxgh2kWEVg4u_a5oHCOR1yLQEbwmk2_C5iuNV8bwL8BJTBk2YC_1_5unTRl1Zn-uf5EcDG-mw_rJdshHme2RnWKya1Blhn_x5AMyXYK14arxZ1kfsdBGpoQWSa17Axw90hgQ8N50AUIULLINDkfpeUAOyVdYMitnAZ8iSoZiBY4ZeOUVj50EAHmZNSc20WKwm5cuMvoOvDco5IM_XV0-Xo6SprZA4LrMSFCLS1IuBcMF6x3PLlJUmMBGtzPhACjzhsxwQhGOp6zPjo-077r1lwVu484tszhfzcEioAx8MgB8IRAPuFsgZgJnMusyqvgihQ3g7pNo1icex_sVUtwyz37pWhEZF6FoRHZKsey3rxBtfyGettvSHCaTBNnzRs9sqVzcL-FWnMlWARoVUHXK2vg1LD89TzDyAykCGy0EqJGdH3375MdlOMaCi-qnTJZvl6i2cAMwp7Wk1j0_J1vDmbnT_D6qL_7M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacqAcKmipWChgpF7Drh9x4mNVtVqg9EBbaW-Wn-lW-9ISOFX97czksRJIqFKPccZJ5LE93xd_HhNyLLV1IiWVxSR8JouoMu2Ty0I50mWKShSpEcheqvGN_DrJJ1vktN8Lg7LKbu5v5_Rmtu5Khl1rDlfT6fAKwErJlNZAWiCuysk2eSZzXiAD-_yw0XmARdnumVZAl8C83z_XiLwaoXcFNJEzKMJk6P-LT__M1E34OX9J9jrcSE_aT3tFtuJin7w4qdZd7ox4QO5_AOjL8LB4aoNdtWvsdJmopRWqa26B5Ec6RwWen00BqcIFnoNDUfteUQu2TdoMiunA5yiToZiCY460nGK0C2AAD3O2pnZWLdfT-nZOfwPZBu-8JjfnZ9en46w7XCHzQhU1eERyHmQufXTBi9Ix7ZSNTCanCpEriUt8TgCE8Iz7EbMhuZEXITgWg4M7h2RnsVzEN4R6IGGA_MAgWeBbYGcBZzLnC6dHMsYBEX2TGt9lHscDMGaml5jdmdYRBh1hWkcMSLaptWozbzxiX_TeMn_1IAPB4ZGaR71zTTeCfxquuAY4KpUekE-b2zD2cEHFLiK4DGyEyrlUgr198ss_kufj6-8X5uLL5bd3ZJfj7ormD88R2anXv-J7wDy1-9D06T-G-QFX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+adaptation+of+a+greenhouse+microclimate+model+using+an+online+parameter+estimator+based+on+a+bat+algorithm+variant&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Guesbaya%2C+Mounir&rft.au=Garc%C3%ADa-Ma%C3%B1as%2C+Francisco&rft.au=Megherbi%2C+Hassina&rft.au=Rodr%C3%ADguez%2C+Francisco&rft.date=2022-01-01&rft.issn=0168-1699&rft.volume=192+p.106627-&rft_id=info:doi/10.1016%2Fj.compag.2021.106627&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon