Real-time adaptation of a greenhouse microclimate model using an online parameter estimator based on a bat algorithm variant
•An online estimator for the time-varying parameters of a greenhouse microclimate model was developed.•The online estimator is based on an enhanced bat algorithm with adaptive search space.•Air temperature and solar radiation are the microclimate variables under study.•Assessments were performed in...
Saved in:
| Published in | Computers and electronics in agriculture Vol. 192; p. 106627 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.01.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-1699 1872-7107 |
| DOI | 10.1016/j.compag.2021.106627 |
Cover
| Abstract | •An online estimator for the time-varying parameters of a greenhouse microclimate model was developed.•The online estimator is based on an enhanced bat algorithm with adaptive search space.•Air temperature and solar radiation are the microclimate variables under study.•Assessments were performed in a commercial-sized greenhouse with grown crops and active natural ventilation.•Adaptation of the microclimate model has been successfully performed in real-time.
Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of the phenomenon and the uncertainty of the involved physical and non-physical parameters. The uncertainty stems from the fact that the majority of these parameters are unmeasurable or difficult to be measured and some of them are time-varying, signifying the necessity to estimate them. In this paper, a methodology for online parameter estimation is proposed to deal with the estimation of the time-varying parameters of a simplified greenhouse temperature model for real-time model adaptation purposes. An online estimator is developed based on an enhanced variant of the Bat Algorithm called the Random Scaling-based Bat Algorithm. It allows the continuous adaptation of the internal air temperature model and the internal solar radiation sub-model, through estimating their parameters at the same time step by minimizing a cost function, intending to achieve global optimality. Constraints on the search ranges are imposed to respect the physical sense. The adaptation of the models was tested with recorded datasets of different agri-seasons and on a real greenhouse in real time. The evolutions of the time-varying parameters were graphically presented and thoroughly discussed. The experimental results illustrate the successful model adaptation, presenting an average error of less than 0.28 °C for air temperature prediction and 20Wm-2 for solar radiation simulation. This proves the usefulness of the proposed methodology under changing environmental conditions. |
|---|---|
| AbstractList | •An online estimator for the time-varying parameters of a greenhouse microclimate model was developed.•The online estimator is based on an enhanced bat algorithm with adaptive search space.•Air temperature and solar radiation are the microclimate variables under study.•Assessments were performed in a commercial-sized greenhouse with grown crops and active natural ventilation.•Adaptation of the microclimate model has been successfully performed in real-time.
Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of the phenomenon and the uncertainty of the involved physical and non-physical parameters. The uncertainty stems from the fact that the majority of these parameters are unmeasurable or difficult to be measured and some of them are time-varying, signifying the necessity to estimate them. In this paper, a methodology for online parameter estimation is proposed to deal with the estimation of the time-varying parameters of a simplified greenhouse temperature model for real-time model adaptation purposes. An online estimator is developed based on an enhanced variant of the Bat Algorithm called the Random Scaling-based Bat Algorithm. It allows the continuous adaptation of the internal air temperature model and the internal solar radiation sub-model, through estimating their parameters at the same time step by minimizing a cost function, intending to achieve global optimality. Constraints on the search ranges are imposed to respect the physical sense. The adaptation of the models was tested with recorded datasets of different agri-seasons and on a real greenhouse in real time. The evolutions of the time-varying parameters were graphically presented and thoroughly discussed. The experimental results illustrate the successful model adaptation, presenting an average error of less than 0.28 °C for air temperature prediction and 20Wm-2 for solar radiation simulation. This proves the usefulness of the proposed methodology under changing environmental conditions. Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of the phenomenon and the uncertainty of the involved physical and non-physical parameters. The uncertainty stems from the fact that the majority of these parameters are unmeasurable or difficult to be measured and some of them are time-varying, signifying the necessity to estimate them. In this paper, a methodology for online parameter estimation is proposed to deal with the estimation of the time-varying parameters of a simplified greenhouse temperature model for real-time model adaptation purposes. An online estimator is developed based on an enhanced variant of the Bat Algorithm called the Random Scaling-based Bat Algorithm. It allows the continuous adaptation of the internal air temperature model and the internal solar radiation sub-model, through estimating their parameters at the same time step by minimizing a cost function, intending to achieve global optimality. Constraints on the search ranges are imposed to respect the physical sense. The adaptation of the models was tested with recorded datasets of different agri-seasons and on a real greenhouse in real time. The evolutions of the time-varying parameters were graphically presented and thoroughly discussed. The experimental results illustrate the successful model adaptation, presenting an average error of less than 0.28 °C for air temperature prediction and 20Wm-2 for solar radiation simulation. This proves the usefulness of the proposed methodology under changing environmental conditions. |
| ArticleNumber | 106627 |
| Author | Guesbaya, Mounir Megherbi, Hassina García-Mañas, Francisco Rodríguez, Francisco |
| Author_xml | – sequence: 1 givenname: Mounir surname: Guesbaya fullname: Guesbaya, Mounir email: mounir.guesbaya@univ-biskra.dz organization: University of Biskra, Department of Electrical Engineering, LI3CUB Laboratory, BP 145 RP, Biskra 07000, Algeria – sequence: 2 givenname: Francisco surname: García-Mañas fullname: García-Mañas, Francisco email: francisco.gm@ual.es organization: University of Almería, Department of Informatics, CIESOL, ceiA3, E04120 Almería, Spain – sequence: 3 givenname: Hassina surname: Megherbi fullname: Megherbi, Hassina email: h.megherbi@univ-biskra.dz organization: University of Biskra, LARHYSS Laboratory, BP 145 RP, Biskra 07000, Algeria – sequence: 4 givenname: Francisco surname: Rodríguez fullname: Rodríguez, Francisco email: frrodrig@ual.es organization: University of Almería, Department of Informatics, CIESOL, ceiA3, E04120 Almería, Spain |
| BookMark | eNqFkU-LFDEQxYOs4OzqN_AQ8OKlxyTdk-72IMjiP1gQRM-hklTPZuhO2iSzIPjhraE97UEhEKrye0XlvWt2FVNExl5KsZdC6jenvUvLCse9EkpSS2vVP2E7OfSq6aXor9iOsKGRehyfsetSToLqceh37Pc3hLmpYUEOHtYKNaTI08SBHzNivE_ngnwJLic3hwUqFcnjzM8lxCMHYuMcIvIVMixYMXMs9QKmzC0U9ATQMAuVw3xMOdT7hT9ADhDrc_Z0grngi7_3Dfvx8cP328_N3ddPX27f3zWu1X1tRtcp5btD59B61w5WjlYDym6yum8PuhN0bCtE76RyQoKfrHCt91ait_Ryw15vc9ecfp5pP7OE4nCeISL9zyjd6oPqdCsJffUIPaVzjrQdUWoUw6HTI1FvN4psKSXjZFzYrKsZwmykMJdgzMlswZhLMGYLhsTdI_GaybD863-yd5sMyamHgNkUFzA69CGjq8an8O8BfwC8tq2F |
| CitedBy_id | crossref_primary_10_1016_j_rser_2024_115214 crossref_primary_10_1007_s44291_024_00001_6 crossref_primary_10_1016_j_solener_2023_112280 crossref_primary_10_1109_TASE_2023_3271896 crossref_primary_10_1142_S1464333223500205 crossref_primary_10_1016_j_ifacol_2024_08_110 crossref_primary_10_1016_j_atech_2023_100237 crossref_primary_10_2478_amns_2025_0126 crossref_primary_10_1051_bioconf_202516705004 crossref_primary_10_1016_j_applthermaleng_2024_123176 crossref_primary_10_1016_j_enbuild_2023_113120 crossref_primary_10_1016_j_jclepro_2022_133753 crossref_primary_10_1016_j_ifacol_2024_08_104 crossref_primary_10_1007_s11356_024_34418_z crossref_primary_10_1007_s40095_022_00514_4 crossref_primary_10_1016_j_compag_2022_107417 crossref_primary_10_1016_j_applthermaleng_2023_122240 crossref_primary_10_3390_s23031250 |
| Cites_doi | 10.1016/j.asoc.2017.10.023 10.1016/S1537-5110(02)00239-8 10.1016/j.compag.2009.01.012 10.1016/B978-0-12-416743-8.00001-4 10.1016/j.compag.2019.04.013 10.1109/ICAEE47123.2019.9015190 10.1016/j.applthermaleng.2018.06.014 10.1016/j.solener.2019.08.042 10.1016/j.compag.2016.01.019 10.1016/j.neucom.2014.02.052 10.1201/b10321 10.1504/IJBIC.2013.055093 10.18280/ijdne.150306 10.1016/j.biosystemseng.2011.08.006 10.1007/978-981-15-6403-1_4 10.1016/S0967-0661(97)00145-7 10.1016/j.egypro.2011.05.043 10.1109/ACCESS.2019.2916412 10.1016/j.jesit.2016.10.014 10.1016/j.compag.2019.105096 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Jan 2022 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Jan 2022 |
| DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| DOI | 10.1016/j.compag.2021.106627 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-7107 |
| ExternalDocumentID | 10_1016_j_compag_2021_106627 S016816992100644X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AGCQF AGRNS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-9c422d454cebdc38b19b6ae14fb6735640640b3007c12c01adfb0c3ddb1edb0b3 |
| IEDL.DBID | .~1 |
| ISSN | 0168-1699 |
| IngestDate | Thu Oct 02 10:22:35 EDT 2025 Mon Jul 14 08:50:03 EDT 2025 Thu Oct 02 04:23:16 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Fri Feb 23 02:40:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DE MaxAE Greenhouse modelling ARX ARMAX HS Online estimation SA MIMO GA MISO MSE SCADA R2 EKF RSBA Protected agriculture RMSE PSO Metaheuristic algorithms MAE Model adaptation RE LAI BA |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-9c422d454cebdc38b19b6ae14fb6735640640b3007c12c01adfb0c3ddb1edb0b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2629085469 |
| PQPubID | 2045491 |
| ParticipantIDs | proquest_miscellaneous_2636524631 proquest_journals_2629085469 crossref_citationtrail_10_1016_j_compag_2021_106627 crossref_primary_10_1016_j_compag_2021_106627 elsevier_sciencedirect_doi_10_1016_j_compag_2021_106627 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Hasni, Taibi, Draoui, Boulard (b0045) 2011; 6 In: The 4 Yang, X.Y., 2014. Nature-inspired optimization algorithms Frausto, Pieters, Deltour (b0030) 2003; 84 Atia, El-madany (b0005) 2017; 4 Hoyo, Moreno, Guzman, Rodriguez (b0050) 2019; 7 Ben Ali, Bouadila, Mami (b0010) 2018; 141 International Conference on Electrical Engineering and Control Applications (ICEECA), Constantine, Springer, pp. 47-62. DOI: 10.1007/978-981-15-6403-1_4. Khan, Sahai (b0055) 2012; 4 Ma, Carpenter, Maki, Rehman, Tuinstra, Jin (b0070) 2019; 162 Laktionov, Vovna, Kabanets, Derzhevetska, Zori (b0060) 2020; 15 Boaventura Cunha, Couto, Ruano (b0020) 1997; 5 Speetjens, Stigter, van Straten (b0090) 2009; 67 Choab, Allouhi, El Maakoul, Kousksou, Saadeddine, Jamil (b0015) 2019; 191 Pérez-González, Begovich-Mendoza, Ruiz-León (b0075) 2018; 62 Sánchez-Molina, Ming, Rodríguez, Guzmán, Hui, Xinting (b0085) 2017; 10 Guesbaya, M., Megherbi, H., 2019. Thermal modeling and prediction of soilles greenhouse in arid region based on particle swarm optimization: Experimentally validated Fourati (b0025) 2014; 139 Rodríguez, Berenguel, Guzmán, Ramírez-Arias (b0080) 2015 Yu, Chen, Hassan, Li (b0115) 2016; 122 Van Straten, G., van Willigenburg, G., van Henten, E., van Ooteghem, R., 2010. Optimal control of greenhouse cultivation. s.l.:CRC press. DOI: 10.1201/b10321. In: International Conference on Advanced Electrical Engineering (ICAEE), Algiers, IEEE, pp. 1-6. DOI: 10.1109/ICAEE47123.2019.9015190. Li, Sha, Xue, Chen, Mao, Tan (b0065) 2020; 168 Vanthoor, Van Henten, Stanghellini, De Visser (b0100) 2011; 110 1 ed. s.l.:Elsevier. DOI: 10.1016/C2013-0-01368-0. Guesbaya, M., Megherbi, H., Megherbi, A.C., 2019. Random scaling-based bat algorithm for greenhouse thermal model identification and experimental validation Yang, He (b0110) 2013; 5 Boaventura Cunha (10.1016/j.compag.2021.106627_b0020) 1997; 5 Sánchez-Molina (10.1016/j.compag.2021.106627_b0085) 2017; 10 Frausto (10.1016/j.compag.2021.106627_b0030) 2003; 84 Atia (10.1016/j.compag.2021.106627_b0005) 2017; 4 Ben Ali (10.1016/j.compag.2021.106627_b0010) 2018; 141 Speetjens (10.1016/j.compag.2021.106627_b0090) 2009; 67 Hoyo (10.1016/j.compag.2021.106627_b0050) 2019; 7 10.1016/j.compag.2021.106627_b0040 10.1016/j.compag.2021.106627_b0095 Yu (10.1016/j.compag.2021.106627_b0115) 2016; 122 Ma (10.1016/j.compag.2021.106627_b0070) 2019; 162 10.1016/j.compag.2021.106627_b0105 Vanthoor (10.1016/j.compag.2021.106627_b0100) 2011; 110 10.1016/j.compag.2021.106627_b0035 Hasni (10.1016/j.compag.2021.106627_b0045) 2011; 6 Fourati (10.1016/j.compag.2021.106627_b0025) 2014; 139 Khan (10.1016/j.compag.2021.106627_b0055) 2012; 4 Choab (10.1016/j.compag.2021.106627_b0015) 2019; 191 Li (10.1016/j.compag.2021.106627_b0065) 2020; 168 Rodríguez (10.1016/j.compag.2021.106627_b0080) 2015 Laktionov (10.1016/j.compag.2021.106627_b0060) 2020; 15 Pérez-González (10.1016/j.compag.2021.106627_b0075) 2018; 62 Yang (10.1016/j.compag.2021.106627_b0110) 2013; 5 |
| References_xml | – volume: 10 start-page: 66 year: 2017 end-page: 76 ident: b0085 article-title: Development and test verification of air temperature model for Chinese solar and Spanish Almeria-type greenhouses publication-title: Int. J. Agric. Biol. Eng. – volume: 139 start-page: 138 year: 2014 end-page: 144 ident: b0025 article-title: Multiple neural control of a greenhouse publication-title: Neurocomputing – volume: 62 start-page: 86 year: 2018 end-page: 100 ident: b0075 article-title: Modeling of a greenhouse prototype using PSO and differential evolution algorithms based on a real-time LabView™ application publication-title: Appl. Soft Comput. – volume: 191 start-page: 109 year: 2019 end-page: 113 ident: b0015 article-title: Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies publication-title: Sol. Energy – volume: 4 start-page: 34 year: 2017 end-page: 48 ident: b0005 article-title: Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system publication-title: J. Electr. Syst. Inf. Technol. – volume: 67 start-page: 1 year: 2009 end-page: 8 ident: b0090 article-title: Towards an adaptive model for greenhouse control publication-title: Comput. Electron. Agric. – reference: Guesbaya, M., Megherbi, H., 2019. Thermal modeling and prediction of soilles greenhouse in arid region based on particle swarm optimization: Experimentally validated – volume: 122 start-page: 94 year: 2016 end-page: 102 ident: b0115 article-title: Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO publication-title: Comput. Electron. Agric. – volume: 84 start-page: 147 year: 2003 end-page: 157 ident: b0030 article-title: Modelling greenhouse temperature by means of auto regressive models publication-title: Biosyst. Eng. – reference: 1 ed. s.l.:Elsevier. DOI: 10.1016/C2013-0-01368-0. – reference: In: International Conference on Advanced Electrical Engineering (ICAEE), Algiers, IEEE, pp. 1-6. DOI: 10.1109/ICAEE47123.2019.9015190. – reference: Van Straten, G., van Willigenburg, G., van Henten, E., van Ooteghem, R., 2010. Optimal control of greenhouse cultivation. s.l.:CRC press. DOI: 10.1201/b10321. – year: 2015 ident: b0080 article-title: Modeling and control of greenhouse crop growth publication-title: Sringer International Publishing, Switzerland. – volume: 7 start-page: 64148 year: 2019 end-page: 64161 ident: b0050 article-title: Robust QFT-based feedback linearization controller of the greenhouse diurnal temperature using natural ventilation publication-title: IEEE Access – volume: 168 start-page: 105 year: 2020 end-page: 1096 ident: b0065 article-title: A fast modeling and optimization scheme for greenhouse environmental system using proper orthogonal decomposition and multi-objective genetic algorithm publication-title: Comput. Electron. Agric. – volume: 141 start-page: 798 year: 2018 end-page: 810 ident: b0010 article-title: Development of a fuzzy logic controller applied to an agricultural greenhouse experimentally validated publication-title: Appl. Therm. Eng. – volume: 4 start-page: 23 year: 2012 end-page: 29 ident: b0055 article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context publication-title: Int. J. Intell. Syst. Appl. – reference: Guesbaya, M., Megherbi, H., Megherbi, A.C., 2019. Random scaling-based bat algorithm for greenhouse thermal model identification and experimental validation – volume: 110 start-page: 396 year: 2011 end-page: 412 ident: b0100 article-title: A methodology for model-based greenhouse design: Part 3, sensitivity analysis of a combined greenhouse climate-crop yield model publication-title: Biosyst. Eng. – volume: 6 start-page: 371 year: 2011 end-page: 380 ident: b0045 article-title: Optimization of greenhouse climate model parameters using particle swarm optimization and genetic algorithms publication-title: Energy Procedia – volume: 162 start-page: 134 year: 2019 end-page: 142 ident: b0070 article-title: Greenhouse environment modeling and simulation for microclimate control publication-title: Comput. Electron. Agric. – reference: Yang, X.Y., 2014. Nature-inspired optimization algorithms – volume: 5 start-page: 1473 year: 1997 end-page: 1481 ident: b0020 article-title: Real-time parameter estimation of dynamic temperature models for greenhouse environmental control publication-title: Control Eng. Pract. – volume: 15 start-page: 325 year: 2020 end-page: 336 ident: b0060 article-title: Mathematical model of measuring monitoring and temperature control of growing vegetables in greenhouses publication-title: Int. J. Des. Nat. Ecodyn. – reference: In: The 4 – reference: International Conference on Electrical Engineering and Control Applications (ICEECA), Constantine, Springer, pp. 47-62. DOI: 10.1007/978-981-15-6403-1_4. – volume: 5 start-page: 141 year: 2013 end-page: 149 ident: b0110 article-title: Bat algorithm: literature review and applications publication-title: Int. J. Bio-inspired Computation – volume: 62 start-page: 86 year: 2018 ident: 10.1016/j.compag.2021.106627_b0075 article-title: Modeling of a greenhouse prototype using PSO and differential evolution algorithms based on a real-time LabView™ application publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.023 – volume: 84 start-page: 147 issue: 2 year: 2003 ident: 10.1016/j.compag.2021.106627_b0030 article-title: Modelling greenhouse temperature by means of auto regressive models publication-title: Biosyst. Eng. doi: 10.1016/S1537-5110(02)00239-8 – volume: 67 start-page: 1 issue: 1-2 year: 2009 ident: 10.1016/j.compag.2021.106627_b0090 article-title: Towards an adaptive model for greenhouse control publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2009.01.012 – ident: 10.1016/j.compag.2021.106627_b0105 doi: 10.1016/B978-0-12-416743-8.00001-4 – volume: 162 start-page: 134 year: 2019 ident: 10.1016/j.compag.2021.106627_b0070 article-title: Greenhouse environment modeling and simulation for microclimate control publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.04.013 – ident: 10.1016/j.compag.2021.106627_b0035 doi: 10.1109/ICAEE47123.2019.9015190 – volume: 141 start-page: 798 year: 2018 ident: 10.1016/j.compag.2021.106627_b0010 article-title: Development of a fuzzy logic controller applied to an agricultural greenhouse experimentally validated publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.06.014 – volume: 191 start-page: 109 year: 2019 ident: 10.1016/j.compag.2021.106627_b0015 article-title: Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies publication-title: Sol. Energy doi: 10.1016/j.solener.2019.08.042 – volume: 122 start-page: 94 year: 2016 ident: 10.1016/j.compag.2021.106627_b0115 article-title: Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.01.019 – volume: 139 start-page: 138 year: 2014 ident: 10.1016/j.compag.2021.106627_b0025 article-title: Multiple neural control of a greenhouse publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.052 – ident: 10.1016/j.compag.2021.106627_b0095 doi: 10.1201/b10321 – volume: 5 start-page: 141 issue: 3 year: 2013 ident: 10.1016/j.compag.2021.106627_b0110 article-title: Bat algorithm: literature review and applications publication-title: Int. J. Bio-inspired Computation doi: 10.1504/IJBIC.2013.055093 – volume: 15 start-page: 325 issue: 3 year: 2020 ident: 10.1016/j.compag.2021.106627_b0060 article-title: Mathematical model of measuring monitoring and temperature control of growing vegetables in greenhouses publication-title: Int. J. Des. Nat. Ecodyn. doi: 10.18280/ijdne.150306 – volume: 110 start-page: 396 issue: 4 year: 2011 ident: 10.1016/j.compag.2021.106627_b0100 article-title: A methodology for model-based greenhouse design: Part 3, sensitivity analysis of a combined greenhouse climate-crop yield model publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2011.08.006 – ident: 10.1016/j.compag.2021.106627_b0040 doi: 10.1007/978-981-15-6403-1_4 – volume: 5 start-page: 1473 issue: 10 year: 1997 ident: 10.1016/j.compag.2021.106627_b0020 article-title: Real-time parameter estimation of dynamic temperature models for greenhouse environmental control publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(97)00145-7 – volume: 6 start-page: 371 year: 2011 ident: 10.1016/j.compag.2021.106627_b0045 article-title: Optimization of greenhouse climate model parameters using particle swarm optimization and genetic algorithms publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.05.043 – volume: 7 start-page: 64148 year: 2019 ident: 10.1016/j.compag.2021.106627_b0050 article-title: Robust QFT-based feedback linearization controller of the greenhouse diurnal temperature using natural ventilation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916412 – volume: 4 start-page: 23 issue: 7 year: 2012 ident: 10.1016/j.compag.2021.106627_b0055 article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context publication-title: Int. J. Intell. Syst. Appl. – volume: 4 start-page: 34 issue: 1 year: 2017 ident: 10.1016/j.compag.2021.106627_b0005 article-title: Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system publication-title: J. Electr. Syst. Inf. Technol. doi: 10.1016/j.jesit.2016.10.014 – year: 2015 ident: 10.1016/j.compag.2021.106627_b0080 article-title: Modeling and control of greenhouse crop growth publication-title: Sringer International Publishing, Switzerland. – volume: 168 start-page: 105 year: 2020 ident: 10.1016/j.compag.2021.106627_b0065 article-title: A fast modeling and optimization scheme for greenhouse environmental system using proper orthogonal decomposition and multi-objective genetic algorithm publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105096 – volume: 10 start-page: 66 issue: 4 year: 2017 ident: 10.1016/j.compag.2021.106627_b0085 article-title: Development and test verification of air temperature model for Chinese solar and Spanish Almeria-type greenhouses publication-title: Int. J. Agric. Biol. Eng. |
| SSID | ssj0016987 |
| Score | 2.4360201 |
| Snippet | •An online estimator for the time-varying parameters of a greenhouse microclimate model was developed.•The online estimator is based on an enhanced bat... Greenhouse microclimate modelling is a difficult task mainly due to the strong nonlinearity of the phenomenon and the uncertainty of the involved physical and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106627 |
| SubjectTerms | Adaptation agriculture Air temperature Algorithms Cost function data collection electronics Greenhouse modelling Greenhouses Mathematical models Metaheuristic algorithms Microclimate Model adaptation Online estimation Parameter estimation Parameter uncertainty Physical properties prediction Protected agriculture Radiation Real time Solar radiation uncertainty |
| Title | Real-time adaptation of a greenhouse microclimate model using an online parameter estimator based on a bat algorithm variant |
| URI | https://dx.doi.org/10.1016/j.compag.2021.106627 https://www.proquest.com/docview/2629085469 https://www.proquest.com/docview/2636524631 |
| Volume | 192 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AKRWK dateStart: 19851001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6iFz0s62NxdJQIXtuZdDLpznEQZVTw4APmFvJsZ5kXY-tp2d--Vf0YUFgEj52udDepJPVV56sqQs6FMpbHKJMQuUtEFmSiXLSJz_sqj0HyLFYE2Xs5eha348F4g1y2sTBIq2z2_npPr3brpqXXjGZvOZn0HgGs5EwqBU4L2FUxxgh2kWEVg4u_a5oHCOR1yLQEbwmk2_C5iuNV8bwL8BJTBk2YC_1_5unTRl1Zn-uf5EcDG-mw_rJdshHme2RnWKya1Blhn_x5AMyXYK14arxZ1kfsdBGpoQWSa17Axw90hgQ8N50AUIULLINDkfpeUAOyVdYMitnAZ8iSoZiBY4ZeOUVj50EAHmZNSc20WKwm5cuMvoOvDco5IM_XV0-Xo6SprZA4LrMSFCLS1IuBcMF6x3PLlJUmMBGtzPhACjzhsxwQhGOp6zPjo-077r1lwVu484tszhfzcEioAx8MgB8IRAPuFsgZgJnMusyqvgihQ3g7pNo1icex_sVUtwyz37pWhEZF6FoRHZKsey3rxBtfyGettvSHCaTBNnzRs9sqVzcL-FWnMlWARoVUHXK2vg1LD89TzDyAykCGy0EqJGdH3375MdlOMaCi-qnTJZvl6i2cAMwp7Wk1j0_J1vDmbnT_D6qL_7M |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacqAcKmipWChgpF7Drh9x4mNVtVqg9EBbaW-Wn-lW-9ISOFX97czksRJIqFKPccZJ5LE93xd_HhNyLLV1IiWVxSR8JouoMu2Ty0I50mWKShSpEcheqvGN_DrJJ1vktN8Lg7LKbu5v5_Rmtu5Khl1rDlfT6fAKwErJlNZAWiCuysk2eSZzXiAD-_yw0XmARdnumVZAl8C83z_XiLwaoXcFNJEzKMJk6P-LT__M1E34OX9J9jrcSE_aT3tFtuJin7w4qdZd7ox4QO5_AOjL8LB4aoNdtWvsdJmopRWqa26B5Ec6RwWen00BqcIFnoNDUfteUQu2TdoMiunA5yiToZiCY460nGK0C2AAD3O2pnZWLdfT-nZOfwPZBu-8JjfnZ9en46w7XCHzQhU1eERyHmQufXTBi9Ix7ZSNTCanCpEriUt8TgCE8Iz7EbMhuZEXITgWg4M7h2RnsVzEN4R6IGGA_MAgWeBbYGcBZzLnC6dHMsYBEX2TGt9lHscDMGaml5jdmdYRBh1hWkcMSLaptWozbzxiX_TeMn_1IAPB4ZGaR71zTTeCfxquuAY4KpUekE-b2zD2cEHFLiK4DGyEyrlUgr198ss_kufj6-8X5uLL5bd3ZJfj7ormD88R2anXv-J7wDy1-9D06T-G-QFX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+adaptation+of+a+greenhouse+microclimate+model+using+an+online+parameter+estimator+based+on+a+bat+algorithm+variant&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Guesbaya%2C+Mounir&rft.au=Garc%C3%ADa-Ma%C3%B1as%2C+Francisco&rft.au=Megherbi%2C+Hassina&rft.au=Rodr%C3%ADguez%2C+Francisco&rft.date=2022-01-01&rft.issn=0168-1699&rft.volume=192+p.106627-&rft_id=info:doi/10.1016%2Fj.compag.2021.106627&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |