Computing uncertainty in the optimum nitrogen rate using a generalized cost function
[Display omitted] •Methods of the “EONR” Python package are clearly described and documented.•Environmental penalties are considered when computing the optimum nitrogen rate.•A statistical basis is offered for interpreting uncertainty of the optimum rate.•The use of this package should help to bette...
Saved in:
| Published in | Computers and electronics in agriculture Vol. 167; p. 105030 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.12.2019
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-1699 1872-7107 |
| DOI | 10.1016/j.compag.2019.105030 |
Cover
| Abstract | [Display omitted]
•Methods of the “EONR” Python package are clearly described and documented.•Environmental penalties are considered when computing the optimum nitrogen rate.•A statistical basis is offered for interpreting uncertainty of the optimum rate.•The use of this package should help to better tailor nitrogen fertilizer recommendations.
A Python package, “EONR”, was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under economic conditions defined by the user. This work was motivated by the need to improve nitrogen fertilizer recommendations using the maximum return to nitrogen approach, specifically to make it easier for researchers and other practitioners to calculate uncertainty and consider externalities to the cost function while computing the EONR. The “EONR” package fits yield response data to a re-parameterized quadratic-plateau model, which is generally accepted as the most appropriate model for describing yield response to nitrogen in maize (the package also supports the quadratic model). Although grain price and fertilizer cost are typically the only economic factors producers consider for determining the EONR, this package allows the user to also consider variable costs and/or externalities. A general cost function may be desired if the user wishes to consider costs to the farm operation (e.g., equipment, technology, labor, etc.) or environmental costs/penalties that may result from excess fertilizer application (e.g., water treatment or health costs that result from pollution) in addition to the traditional fertilizer to grain price ratio. In addition to the development of the “EONR” Python package, the objectives of this work were to: (i) design an algorithm that utilizes a general cost function for computing the EONR and its profile-likelihood CIs for any crop and (ii) clearly document the methodology and algorithms used. The “EONR” Python package can be downloaded from the Python Package Index (https://pypi.org/), and installation instructions, tutorials, and supplementary background information can be found in the online documentation (https://eonr.readthedocs.io). |
|---|---|
| AbstractList | A Python package, “EONR”, was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under economic conditions defined by the user. This work was motivated by the need to improve nitrogen fertilizer recommendations using the maximum return to nitrogen approach, specifically to make it easier for researchers and other practitioners to calculate uncertainty and consider externalities to the cost function while computing the EONR. The “EONR” package fits yield response data to a re-parameterized quadratic-plateau model, which is generally accepted as the most appropriate model for describing yield response to nitrogen in maize (the package also supports the quadratic model). Although grain price and fertilizer cost are typically the only economic factors producers consider for determining the EONR, this package allows the user to also consider variable costs and/or externalities. A general cost function may be desired if the user wishes to consider costs to the farm operation (e.g., equipment, technology, labor, etc.) or environmental costs/penalties that may result from excess fertilizer application (e.g., water treatment or health costs that result from pollution) in addition to the traditional fertilizer to grain price ratio. In addition to the development of the “EONR” Python package, the objectives of this work were to: (i) design an algorithm that utilizes a general cost function for computing the EONR and its profile-likelihood CIs for any crop and (ii) clearly document the methodology and algorithms used. The “EONR” Python package can be downloaded from the Python Package Index (https://pypi.org/), and installation instructions, tutorials, and supplementary background information can be found in the online documentation (https://eonr.readthedocs.io). [Display omitted] •Methods of the “EONR” Python package are clearly described and documented.•Environmental penalties are considered when computing the optimum nitrogen rate.•A statistical basis is offered for interpreting uncertainty of the optimum rate.•The use of this package should help to better tailor nitrogen fertilizer recommendations. A Python package, “EONR”, was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under economic conditions defined by the user. This work was motivated by the need to improve nitrogen fertilizer recommendations using the maximum return to nitrogen approach, specifically to make it easier for researchers and other practitioners to calculate uncertainty and consider externalities to the cost function while computing the EONR. The “EONR” package fits yield response data to a re-parameterized quadratic-plateau model, which is generally accepted as the most appropriate model for describing yield response to nitrogen in maize (the package also supports the quadratic model). Although grain price and fertilizer cost are typically the only economic factors producers consider for determining the EONR, this package allows the user to also consider variable costs and/or externalities. A general cost function may be desired if the user wishes to consider costs to the farm operation (e.g., equipment, technology, labor, etc.) or environmental costs/penalties that may result from excess fertilizer application (e.g., water treatment or health costs that result from pollution) in addition to the traditional fertilizer to grain price ratio. In addition to the development of the “EONR” Python package, the objectives of this work were to: (i) design an algorithm that utilizes a general cost function for computing the EONR and its profile-likelihood CIs for any crop and (ii) clearly document the methodology and algorithms used. The “EONR” Python package can be downloaded from the Python Package Index (https://pypi.org/), and installation instructions, tutorials, and supplementary background information can be found in the online documentation (https://eonr.readthedocs.io). |
| ArticleNumber | 105030 |
| Author | Nigon, Tyler J. Mulla, David J. Kaiser, Daniel E. Yang, Ce |
| Author_xml | – sequence: 1 givenname: Tyler J. surname: Nigon fullname: Nigon, Tyler J. organization: Department of Soil, Water, & Climate, University of Minnesota, United States – sequence: 2 givenname: Ce surname: Yang fullname: Yang, Ce email: ceyang@umn.edu organization: Department of Soil, Water, & Climate, University of Minnesota, United States – sequence: 3 givenname: David J. surname: Mulla fullname: Mulla, David J. organization: Department of Soil, Water, & Climate, University of Minnesota, United States – sequence: 4 givenname: Daniel E. surname: Kaiser fullname: Kaiser, Daniel E. organization: Department of Soil, Water, & Climate, University of Minnesota, United States |
| BookMark | eNqFkU9r3DAQxUVJoJtNvkEPglx68VZj-Y_UQyEsaVMI9LI5C6083mqxpa0kB5JPHxnntIf0NOjxfo-Zpyty4bxDQr4A2wCD5ttxY_x40odNyUBmqWacfSIrEG1ZtMDaC7LKNlFAI-VnchXjkeW3FO2K7LaZnJJ1Bzo5gyFp69ILtY6mv0j9KdlxGqmzKfgDOhp0QjrF2a5pFjDowb5iR42PifY5Ilnvrsllr4eIN-9zTZ5-3u-2D8Xjn1-_t3ePheFNmwoJVSkQ-0YD7GEvJGDeS3RGg65qaOq-FLxBVjFT9YJj37FZRFHvUUhW8zX5uuSegv83YUxqtNHgMGiHfoqqrLisWMskZOvtmfXop-DydqrkvGqB8zzX5PviMsHHGLBXxiY9n5SCtoMCpubC1VEthau5cLUUnuHqDD4FO-rw8j_sx4JhburZYlDRWMx_0dmAJqnO248D3gChCJ4T |
| CitedBy_id | crossref_primary_10_1016_j_agrformet_2021_108668 crossref_primary_10_1007_s11119_024_10113_4 crossref_primary_10_1007_s11119_024_10178_1 crossref_primary_10_1080_03650340_2023_2228257 crossref_primary_10_1002_agj2_21612 crossref_primary_10_1002_agj2_21265 crossref_primary_10_1016_j_ecolecon_2023_107815 crossref_primary_10_1007_s12230_021_09843_2 crossref_primary_10_1007_s11119_025_10224_6 crossref_primary_10_1016_j_fcr_2020_108041 crossref_primary_10_1016_j_fcr_2024_109259 crossref_primary_10_1080_17565529_2024_2365939 crossref_primary_10_3390_agronomy11112337 crossref_primary_10_1016_j_esd_2024_101648 crossref_primary_10_1002_ael2_20075 crossref_primary_10_4081_ija_2021_1951 crossref_primary_10_1007_s11540_023_09644_6 |
| Cites_doi | 10.1016/j.matlet.2012.07.083 10.2134/agronj2017.02.0112 10.1007/s11119-008-9069-x 10.2134/agronj1990.00021962008200010030x 10.2134/jeq2016.05.0182 10.1093/comjnl/7.4.308 10.2134/agronj2017.04.0207 10.2134/agronj2017.10.0583 10.1371/journal.pone.0210953 10.2134/agronj2006.0187 10.1007/s11119-010-9168-3 10.2134/agronj1994.00021962008600010033x 10.1111/j.2517-6161.1971.tb00877.x 10.1080/01621459.1990.10476233 10.2134/agronj2007.0273 10.1080/00401706.1987.10488184 10.1126/sciadv.1600219 10.1016/j.agee.2017.12.002 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Dec 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Dec 2019 |
| DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| DOI | 10.1016/j.compag.2019.105030 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-7107 |
| ExternalDocumentID | 10_1016_j_compag_2019_105030 S0168169919309354 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AGCQF AGRNS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-91428eef6a11b1b891e0018dca1a45165f2836e040c4f83efd0165fe85be89053 |
| IEDL.DBID | .~1 |
| ISSN | 0168-1699 |
| IngestDate | Sat Sep 27 16:30:47 EDT 2025 Fri Jul 25 05:56:13 EDT 2025 Thu Oct 02 04:27:11 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Fri Feb 23 02:49:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Social cost of nitrogen CI SONR AONR Quadratic-plateau model RTN EONR ONR Profile-likelihood confidence intervals Economic optimum nitrogen rate (EONR) MRTN Python LSE |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-91428eef6a11b1b891e0018dca1a45165f2836e040c4f83efd0165fe85be89053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2334713323 |
| PQPubID | 2045491 |
| ParticipantIDs | proquest_miscellaneous_2439407091 proquest_journals_2334713323 crossref_citationtrail_10_1016_j_compag_2019_105030 crossref_primary_10_1016_j_compag_2019_105030 elsevier_sciencedirect_doi_10_1016_j_compag_2019_105030 |
| PublicationCentury | 2000 |
| PublicationDate | December 2019 2019-12-00 20191201 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Cerrato, Blackmer (b0020) 1990; 82 Donaldson, Schnabel (b0030) 1987; 29 Sawyer, J., Nafziger, E., Randall, G., Bundy, L., Rehm, G., Joern, B. 2006. Concepts and rationale for regional nitrogen rate guidelines for corn concepts and rationale for regional nitrogen rate guidelines for corn. Iowa State University, University Extension. Kitchen, Shanahan, Ransom, Bandura, Bean, Camberato, Shafer (b0065) 2017; 109 Jaynes (b0050) 2011; 12 Bachmaier, Gandorfer (b0010) 2009; 10 Nigon, T.J. 2019. EONR Documentation. Retrieved September 27, 2019, from Ren, Xia (b0090) 2019; 14 Sela, van Es, Moebius-Clune, Marjerison, Moebius-Clune, Schindelbeck, Young (b0105) 2017; 46 . Morris, Murrell, Beegle, Camberato, Ferguson, Grove, Yang (b0070) 2018; 110 Hernandez, Mulla (b0040) 2008; 100 Cook, Weisberg (b0025) 1990; 85 Nelder, Mead (b0075) 1965; 7 Jones, E., Oliphant, T., Peterson, P. 2001. SciPy: Open source scientific tools for python. Retrieved September 27, 2019, from Keeler, Gourevitch, Polasky, Isbell, Tessum, Hill, Marshall (b0060) 2016; 2 Bullock, Bullock (b0015) 1994; 86 Gourevitch, Keeler, Ricketts (b0035) 2018; 254 Hudson (b0045) 1971; 33 Schmidt, Hong, Dellinger, Beegle, Lin (b0100) 2007; 99 Alotaibi, Cambouris, St. Luce, Ziadi, Tremblay (b0005) 2018; 110 Pawitan (b0085) 2013 Kitchen (10.1016/j.compag.2019.105030_b0065) 2017; 109 Bachmaier (10.1016/j.compag.2019.105030_b0010) 2009; 10 Gourevitch (10.1016/j.compag.2019.105030_b0035) 2018; 254 Alotaibi (10.1016/j.compag.2019.105030_b0005) 2018; 110 Schmidt (10.1016/j.compag.2019.105030_b0100) 2007; 99 Hudson (10.1016/j.compag.2019.105030_b0045) 1971; 33 Jaynes (10.1016/j.compag.2019.105030_b0050) 2011; 12 Morris (10.1016/j.compag.2019.105030_b0070) 2018; 110 Nelder (10.1016/j.compag.2019.105030_b0075) 1965; 7 Pawitan (10.1016/j.compag.2019.105030_b0085) 2013 Cerrato (10.1016/j.compag.2019.105030_b0020) 1990; 82 Cook (10.1016/j.compag.2019.105030_b0025) 1990; 85 10.1016/j.compag.2019.105030_b0055 Hernandez (10.1016/j.compag.2019.105030_b0040) 2008; 100 10.1016/j.compag.2019.105030_b0080 Ren (10.1016/j.compag.2019.105030_b0090) 2019; 14 Donaldson (10.1016/j.compag.2019.105030_b0030) 1987; 29 Keeler (10.1016/j.compag.2019.105030_b0060) 2016; 2 10.1016/j.compag.2019.105030_b0095 Bullock (10.1016/j.compag.2019.105030_b0015) 1994; 86 Sela (10.1016/j.compag.2019.105030_b0105) 2017; 46 |
| References_xml | – volume: 100 start-page: 1221 year: 2008 end-page: 1229 ident: b0040 article-title: Estimating uncertainty of economically optimum fertilizer rates publication-title: Agron. J. – volume: 254 start-page: 292 year: 2018 end-page: 299 ident: b0035 article-title: Determining socially optimal rates of nitrogen fertilizer application publication-title: Agric. Ecosyst. Environ. – volume: 86 start-page: 191 year: 1994 ident: b0015 article-title: Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn: a comparison publication-title: Agron. J. – year: 2013 ident: b0085 article-title: In All Likelihood: Statistical Modelling and Inference Using Likelihood – volume: 110 start-page: 2233 year: 2018 end-page: 2242 ident: b0005 article-title: Economic optimum nitrogen fertilizer rate and residual soil nitrate as influenced by soil texture in corn production publication-title: Agron. J. – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: b0075 article-title: A simplex method for function minimization publication-title: Comput. J. – volume: 82 start-page: 138 year: 1990 ident: b0020 article-title: Comparison of models for describing corn yield response to nitrogen fertilizer publication-title: Agron. J. – volume: 85 start-page: 544 year: 1990 end-page: 551 ident: b0025 article-title: Confidence curves in nonlinear regression publication-title: J. Am. Stat. Assoc. – volume: 10 start-page: 95 year: 2009 end-page: 110 ident: b0010 article-title: A conceptual framework for judging the precision agriculture hypothesis with regard to site-specific nitrogen application publication-title: Precis. Agric. – volume: 109 start-page: 2371 year: 2017 end-page: 2388 ident: b0065 article-title: A public–industry partnership for enhancing corn nitrogen research and datasets: Project description, methodology, and outcomes publication-title: Agron. J. – volume: 14 start-page: 1 year: 2019 end-page: 10 ident: b0090 article-title: An algorithm for computing profile likelihood based pointwise confidence intervals for nonlinear dose-response models publication-title: PLoS ONE – reference: Sawyer, J., Nafziger, E., Randall, G., Bundy, L., Rehm, G., Joern, B. 2006. Concepts and rationale for regional nitrogen rate guidelines for corn concepts and rationale for regional nitrogen rate guidelines for corn. Iowa State University, University Extension. – volume: 29 start-page: 67 year: 1987 end-page: 82 ident: b0030 article-title: Computational experience with confidence regions and confidence intervals for nonlinear least squares publication-title: Technometrics – reference: . – volume: 2 year: 2016 ident: b0060 article-title: The social costs of nitrogen publication-title: Science Advances – volume: 33 start-page: 256 year: 1971 end-page: 262 ident: b0045 article-title: Interval estimation from the likelihood function publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.) – volume: 99 start-page: 229 year: 2007 end-page: 237 ident: b0100 article-title: Hillslope variability in corn response to nitrogen linked to in-season soil moisture redistribution publication-title: Agron. J. – volume: 46 start-page: 311 year: 2017 ident: b0105 article-title: Dynamic model improves agronomic and environmental outcomes for maize nitrogen management over static approach publication-title: J. Environ. Qual. – volume: 12 start-page: 196 year: 2011 end-page: 213 ident: b0050 article-title: Confidence bands for measured economically optimal nitrogen rates publication-title: Precis. Agric. – reference: Nigon, T.J. 2019. EONR Documentation. Retrieved September 27, 2019, from – volume: 110 start-page: 1 year: 2018 end-page: 37 ident: b0070 article-title: Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement publication-title: Published Agron. J. – reference: Jones, E., Oliphant, T., Peterson, P. 2001. SciPy: Open source scientific tools for python. Retrieved September 27, 2019, from – ident: 10.1016/j.compag.2019.105030_b0055 – ident: 10.1016/j.compag.2019.105030_b0080 – ident: 10.1016/j.compag.2019.105030_b0095 doi: 10.1016/j.matlet.2012.07.083 – volume: 110 start-page: 1 year: 2018 ident: 10.1016/j.compag.2019.105030_b0070 article-title: Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement publication-title: Published Agron. J. doi: 10.2134/agronj2017.02.0112 – volume: 10 start-page: 95 issue: 2 year: 2009 ident: 10.1016/j.compag.2019.105030_b0010 article-title: A conceptual framework for judging the precision agriculture hypothesis with regard to site-specific nitrogen application publication-title: Precis. Agric. doi: 10.1007/s11119-008-9069-x – volume: 82 start-page: 138 issue: 1 year: 1990 ident: 10.1016/j.compag.2019.105030_b0020 article-title: Comparison of models for describing corn yield response to nitrogen fertilizer publication-title: Agron. J. doi: 10.2134/agronj1990.00021962008200010030x – volume: 46 start-page: 311 issue: 2 year: 2017 ident: 10.1016/j.compag.2019.105030_b0105 article-title: Dynamic model improves agronomic and environmental outcomes for maize nitrogen management over static approach publication-title: J. Environ. Qual. doi: 10.2134/jeq2016.05.0182 – volume: 7 start-page: 308 issue: 4 year: 1965 ident: 10.1016/j.compag.2019.105030_b0075 article-title: A simplex method for function minimization publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 109 start-page: 2371 issue: 5 year: 2017 ident: 10.1016/j.compag.2019.105030_b0065 article-title: A public–industry partnership for enhancing corn nitrogen research and datasets: Project description, methodology, and outcomes publication-title: Agron. J. doi: 10.2134/agronj2017.04.0207 – volume: 110 start-page: 2233 issue: 6 year: 2018 ident: 10.1016/j.compag.2019.105030_b0005 article-title: Economic optimum nitrogen fertilizer rate and residual soil nitrate as influenced by soil texture in corn production publication-title: Agron. J. doi: 10.2134/agronj2017.10.0583 – volume: 14 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compag.2019.105030_b0090 article-title: An algorithm for computing profile likelihood based pointwise confidence intervals for nonlinear dose-response models publication-title: PLoS ONE doi: 10.1371/journal.pone.0210953 – volume: 99 start-page: 229 year: 2007 ident: 10.1016/j.compag.2019.105030_b0100 article-title: Hillslope variability in corn response to nitrogen linked to in-season soil moisture redistribution publication-title: Agron. J. doi: 10.2134/agronj2006.0187 – volume: 12 start-page: 196 issue: 2 year: 2011 ident: 10.1016/j.compag.2019.105030_b0050 article-title: Confidence bands for measured economically optimal nitrogen rates publication-title: Precis. Agric. doi: 10.1007/s11119-010-9168-3 – volume: 86 start-page: 191 issue: 1 year: 1994 ident: 10.1016/j.compag.2019.105030_b0015 article-title: Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn: a comparison publication-title: Agron. J. doi: 10.2134/agronj1994.00021962008600010033x – volume: 33 start-page: 256 issue: 2 year: 1971 ident: 10.1016/j.compag.2019.105030_b0045 article-title: Interval estimation from the likelihood function publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1971.tb00877.x – volume: 85 start-page: 544 issue: 410 year: 1990 ident: 10.1016/j.compag.2019.105030_b0025 article-title: Confidence curves in nonlinear regression publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1990.10476233 – volume: 100 start-page: 1221 issue: 5 year: 2008 ident: 10.1016/j.compag.2019.105030_b0040 article-title: Estimating uncertainty of economically optimum fertilizer rates publication-title: Agron. J. doi: 10.2134/agronj2007.0273 – volume: 29 start-page: 67 issue: 1 year: 1987 ident: 10.1016/j.compag.2019.105030_b0030 article-title: Computational experience with confidence regions and confidence intervals for nonlinear least squares publication-title: Technometrics doi: 10.1080/00401706.1987.10488184 – year: 2013 ident: 10.1016/j.compag.2019.105030_b0085 – volume: 2 issue: 10 year: 2016 ident: 10.1016/j.compag.2019.105030_b0060 article-title: The social costs of nitrogen publication-title: Science Advances doi: 10.1126/sciadv.1600219 – volume: 254 start-page: 292 year: 2018 ident: 10.1016/j.compag.2019.105030_b0035 article-title: Determining socially optimal rates of nitrogen fertilizer application publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.12.002 |
| SSID | ssj0016987 |
| Score | 2.3670259 |
| Snippet | [Display omitted]
•Methods of the “EONR” Python package are clearly described and documented.•Environmental penalties are considered when computing the optimum... A Python package, "EONR", was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under... A Python package, “EONR”, was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105030 |
| SubjectTerms | Algorithms computer software confidence interval Confidence intervals corn Cost function Costs Economic conditions Economic factors Economic models Economic optimum nitrogen rate (EONR) Externality Farms fertilizer application Fertilizers Grain labor Mathematical analysis Nitrogen nitrogen fertilizers pollution prices Profile-likelihood confidence intervals Python Quadratic-plateau model Social cost of nitrogen Uncertainty variable costs Water pollution Water treatment |
| Title | Computing uncertainty in the optimum nitrogen rate using a generalized cost function |
| URI | https://dx.doi.org/10.1016/j.compag.2019.105030 https://www.proquest.com/docview/2334713323 https://www.proquest.com/docview/2439407091 |
| Volume | 167 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AKRWK dateStart: 19851001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGK1lhW8xpJskm6OpViqYi-20NuySXZDxCalTQ968Lc7k90UFEHwmM2EhJmdx2a-mSHkloc-D6X2QJG4wl832om9mDtpEIM70FoZST9Pw8ncf1wEixYZNbUwCKu0tt_Y9Npa25W-5WZ_lef9FwhWuBtCfBPV2TzsCer7A5xicPe5g3kAATcl0yGcloC6KZ-rMV41zjtDgFeEA29rLPTv7umHoa69z_iIHNqwkQ7Nlx2TlipOyMEwW9vWGeqUzMyABnBFFHyVyfRX7zQvKMR4tATTsNwuKWjwuoRNQ7FFBEXUe0YlzUzz6fxDpTQpNxVFd4ciOyPz8f1sNHHszAQnYeGgApbDeUIpHUrXjd2YR67CuXtpIl2JM3kDDfFEqEB1E19zpnSK9Uxa8SBWPAKNPCftoizUBaFpBKsskoq7CQgxkAkmeGWs0yhlQao7hDWsEoltKI5zLd5Egxx7FYbBAhksDIM7xNk9tTINNf6gHzRSEN82hgCb_8eT3UZowirmRniM-Xgu91iH3Oxug0phnkQWqtwCDVYLgymM3Mt_v_yK7OOVAb50Sbtab9U1hC9V3Kv3Z4_sDR-eJtMvnFnvfA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qHtSD-MT6XMFrLHl2cxSxVG17sYK3ZTfZLRWblDY96MHf7kw2KShCwWt2l4SZnVfmmxmAax4FPJLGQ0Himn7dGEd5ijtpqNAcGKMtp_uDqPsSPL6Grw24q2thCFZZ6X6r00ttXT1pVdRsTcfj1jM6K9yN0L-Jy2xesAYbQei1KQK7-VriPHAHtzXTEYZLuL2unytBXiXQe0QIr5gm3pZg6L_t0y9NXZqfzi7sVH4ju7WftgcNne3D9u1oVvXO0AcwtBMa0BYxNFY21V98sHHG0MljOeqGyWLCUIRnOd4aRj0iGMHeR0yyke0-Pf7UKUvyecHI3hHPDuGlcz-86zrV0AQn8aN2gTTHgEJrE0nXVa7isatp8F6aSFfSUN7QoEMRaZTdJDDc1yalgiajeag0j1Ekj2A9yzN9DCyN8akfS83dBLkYyoQyvFKZNE79MDVN8GtSiaTqKE6DLd5FDR17E5bAgggsLIGb4CxPTW1HjRX72zUXxI-bIVDprzh5VjNNVJI5F57vBxSYe34TrpbLKFOUKJGZzhe4h8qFURfG7sm_X34Jm91hvyd6D4OnU9iiFYuCOYP1YrbQ5-jLFOqivKvfLb3xEQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+uncertainty+in+the+optimum+nitrogen+rate+using+a+generalized+cost+function&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Nigon%2C+Tyler+J&rft.au=Yang%2C+Ce&rft.au=Mulla%2C+David+J&rft.au=Kaiser%2C+Daniel+E&rft.date=2019-12-01&rft.issn=0168-1699&rft.volume=167+p.105030-&rft_id=info:doi/10.1016%2Fj.compag.2019.105030&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |