Computing uncertainty in the optimum nitrogen rate using a generalized cost function

[Display omitted] •Methods of the “EONR” Python package are clearly described and documented.•Environmental penalties are considered when computing the optimum nitrogen rate.•A statistical basis is offered for interpreting uncertainty of the optimum rate.•The use of this package should help to bette...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 167; p. 105030
Main Authors Nigon, Tyler J., Yang, Ce, Mulla, David J., Kaiser, Daniel E.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0168-1699
1872-7107
DOI10.1016/j.compag.2019.105030

Cover

Abstract [Display omitted] •Methods of the “EONR” Python package are clearly described and documented.•Environmental penalties are considered when computing the optimum nitrogen rate.•A statistical basis is offered for interpreting uncertainty of the optimum rate.•The use of this package should help to better tailor nitrogen fertilizer recommendations. A Python package, “EONR”, was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under economic conditions defined by the user. This work was motivated by the need to improve nitrogen fertilizer recommendations using the maximum return to nitrogen approach, specifically to make it easier for researchers and other practitioners to calculate uncertainty and consider externalities to the cost function while computing the EONR. The “EONR” package fits yield response data to a re-parameterized quadratic-plateau model, which is generally accepted as the most appropriate model for describing yield response to nitrogen in maize (the package also supports the quadratic model). Although grain price and fertilizer cost are typically the only economic factors producers consider for determining the EONR, this package allows the user to also consider variable costs and/or externalities. A general cost function may be desired if the user wishes to consider costs to the farm operation (e.g., equipment, technology, labor, etc.) or environmental costs/penalties that may result from excess fertilizer application (e.g., water treatment or health costs that result from pollution) in addition to the traditional fertilizer to grain price ratio. In addition to the development of the “EONR” Python package, the objectives of this work were to: (i) design an algorithm that utilizes a general cost function for computing the EONR and its profile-likelihood CIs for any crop and (ii) clearly document the methodology and algorithms used. The “EONR” Python package can be downloaded from the Python Package Index (https://pypi.org/), and installation instructions, tutorials, and supplementary background information can be found in the online documentation (https://eonr.readthedocs.io).
AbstractList A Python package, “EONR”, was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under economic conditions defined by the user. This work was motivated by the need to improve nitrogen fertilizer recommendations using the maximum return to nitrogen approach, specifically to make it easier for researchers and other practitioners to calculate uncertainty and consider externalities to the cost function while computing the EONR. The “EONR” package fits yield response data to a re-parameterized quadratic-plateau model, which is generally accepted as the most appropriate model for describing yield response to nitrogen in maize (the package also supports the quadratic model). Although grain price and fertilizer cost are typically the only economic factors producers consider for determining the EONR, this package allows the user to also consider variable costs and/or externalities. A general cost function may be desired if the user wishes to consider costs to the farm operation (e.g., equipment, technology, labor, etc.) or environmental costs/penalties that may result from excess fertilizer application (e.g., water treatment or health costs that result from pollution) in addition to the traditional fertilizer to grain price ratio. In addition to the development of the “EONR” Python package, the objectives of this work were to: (i) design an algorithm that utilizes a general cost function for computing the EONR and its profile-likelihood CIs for any crop and (ii) clearly document the methodology and algorithms used. The “EONR” Python package can be downloaded from the Python Package Index (https://pypi.org/), and installation instructions, tutorials, and supplementary background information can be found in the online documentation (https://eonr.readthedocs.io).
[Display omitted] •Methods of the “EONR” Python package are clearly described and documented.•Environmental penalties are considered when computing the optimum nitrogen rate.•A statistical basis is offered for interpreting uncertainty of the optimum rate.•The use of this package should help to better tailor nitrogen fertilizer recommendations. A Python package, “EONR”, was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under economic conditions defined by the user. This work was motivated by the need to improve nitrogen fertilizer recommendations using the maximum return to nitrogen approach, specifically to make it easier for researchers and other practitioners to calculate uncertainty and consider externalities to the cost function while computing the EONR. The “EONR” package fits yield response data to a re-parameterized quadratic-plateau model, which is generally accepted as the most appropriate model for describing yield response to nitrogen in maize (the package also supports the quadratic model). Although grain price and fertilizer cost are typically the only economic factors producers consider for determining the EONR, this package allows the user to also consider variable costs and/or externalities. A general cost function may be desired if the user wishes to consider costs to the farm operation (e.g., equipment, technology, labor, etc.) or environmental costs/penalties that may result from excess fertilizer application (e.g., water treatment or health costs that result from pollution) in addition to the traditional fertilizer to grain price ratio. In addition to the development of the “EONR” Python package, the objectives of this work were to: (i) design an algorithm that utilizes a general cost function for computing the EONR and its profile-likelihood CIs for any crop and (ii) clearly document the methodology and algorithms used. The “EONR” Python package can be downloaded from the Python Package Index (https://pypi.org/), and installation instructions, tutorials, and supplementary background information can be found in the online documentation (https://eonr.readthedocs.io).
ArticleNumber 105030
Author Nigon, Tyler J.
Mulla, David J.
Kaiser, Daniel E.
Yang, Ce
Author_xml – sequence: 1
  givenname: Tyler J.
  surname: Nigon
  fullname: Nigon, Tyler J.
  organization: Department of Soil, Water, & Climate, University of Minnesota, United States
– sequence: 2
  givenname: Ce
  surname: Yang
  fullname: Yang, Ce
  email: ceyang@umn.edu
  organization: Department of Soil, Water, & Climate, University of Minnesota, United States
– sequence: 3
  givenname: David J.
  surname: Mulla
  fullname: Mulla, David J.
  organization: Department of Soil, Water, & Climate, University of Minnesota, United States
– sequence: 4
  givenname: Daniel E.
  surname: Kaiser
  fullname: Kaiser, Daniel E.
  organization: Department of Soil, Water, & Climate, University of Minnesota, United States
BookMark eNqFkU9r3DAQxUVJoJtNvkEPglx68VZj-Y_UQyEsaVMI9LI5C6083mqxpa0kB5JPHxnntIf0NOjxfo-Zpyty4bxDQr4A2wCD5ttxY_x40odNyUBmqWacfSIrEG1ZtMDaC7LKNlFAI-VnchXjkeW3FO2K7LaZnJJ1Bzo5gyFp69ILtY6mv0j9KdlxGqmzKfgDOhp0QjrF2a5pFjDowb5iR42PifY5Ilnvrsllr4eIN-9zTZ5-3u-2D8Xjn1-_t3ePheFNmwoJVSkQ-0YD7GEvJGDeS3RGg65qaOq-FLxBVjFT9YJj37FZRFHvUUhW8zX5uuSegv83YUxqtNHgMGiHfoqqrLisWMskZOvtmfXop-DydqrkvGqB8zzX5PviMsHHGLBXxiY9n5SCtoMCpubC1VEthau5cLUUnuHqDD4FO-rw8j_sx4JhburZYlDRWMx_0dmAJqnO248D3gChCJ4T
CitedBy_id crossref_primary_10_1016_j_agrformet_2021_108668
crossref_primary_10_1007_s11119_024_10113_4
crossref_primary_10_1007_s11119_024_10178_1
crossref_primary_10_1080_03650340_2023_2228257
crossref_primary_10_1002_agj2_21612
crossref_primary_10_1002_agj2_21265
crossref_primary_10_1016_j_ecolecon_2023_107815
crossref_primary_10_1007_s12230_021_09843_2
crossref_primary_10_1007_s11119_025_10224_6
crossref_primary_10_1016_j_fcr_2020_108041
crossref_primary_10_1016_j_fcr_2024_109259
crossref_primary_10_1080_17565529_2024_2365939
crossref_primary_10_3390_agronomy11112337
crossref_primary_10_1016_j_esd_2024_101648
crossref_primary_10_1002_ael2_20075
crossref_primary_10_4081_ija_2021_1951
crossref_primary_10_1007_s11540_023_09644_6
Cites_doi 10.1016/j.matlet.2012.07.083
10.2134/agronj2017.02.0112
10.1007/s11119-008-9069-x
10.2134/agronj1990.00021962008200010030x
10.2134/jeq2016.05.0182
10.1093/comjnl/7.4.308
10.2134/agronj2017.04.0207
10.2134/agronj2017.10.0583
10.1371/journal.pone.0210953
10.2134/agronj2006.0187
10.1007/s11119-010-9168-3
10.2134/agronj1994.00021962008600010033x
10.1111/j.2517-6161.1971.tb00877.x
10.1080/01621459.1990.10476233
10.2134/agronj2007.0273
10.1080/00401706.1987.10488184
10.1126/sciadv.1600219
10.1016/j.agee.2017.12.002
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Dec 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 2019
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2019.105030
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2019_105030
S0168169919309354
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c367t-91428eef6a11b1b891e0018dca1a45165f2836e040c4f83efd0165fe85be89053
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Sat Sep 27 16:30:47 EDT 2025
Fri Jul 25 05:56:13 EDT 2025
Thu Oct 02 04:27:11 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Fri Feb 23 02:49:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Social cost of nitrogen
CI
SONR
AONR
Quadratic-plateau model
RTN
EONR
ONR
Profile-likelihood confidence intervals
Economic optimum nitrogen rate (EONR)
MRTN
Python
LSE
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-91428eef6a11b1b891e0018dca1a45165f2836e040c4f83efd0165fe85be89053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2334713323
PQPubID 2045491
ParticipantIDs proquest_miscellaneous_2439407091
proquest_journals_2334713323
crossref_citationtrail_10_1016_j_compag_2019_105030
crossref_primary_10_1016_j_compag_2019_105030
elsevier_sciencedirect_doi_10_1016_j_compag_2019_105030
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Cerrato, Blackmer (b0020) 1990; 82
Donaldson, Schnabel (b0030) 1987; 29
Sawyer, J., Nafziger, E., Randall, G., Bundy, L., Rehm, G., Joern, B. 2006. Concepts and rationale for regional nitrogen rate guidelines for corn concepts and rationale for regional nitrogen rate guidelines for corn. Iowa State University, University Extension.
Kitchen, Shanahan, Ransom, Bandura, Bean, Camberato, Shafer (b0065) 2017; 109
Jaynes (b0050) 2011; 12
Bachmaier, Gandorfer (b0010) 2009; 10
Nigon, T.J. 2019. EONR Documentation. Retrieved September 27, 2019, from
Ren, Xia (b0090) 2019; 14
Sela, van Es, Moebius-Clune, Marjerison, Moebius-Clune, Schindelbeck, Young (b0105) 2017; 46
.
Morris, Murrell, Beegle, Camberato, Ferguson, Grove, Yang (b0070) 2018; 110
Hernandez, Mulla (b0040) 2008; 100
Cook, Weisberg (b0025) 1990; 85
Nelder, Mead (b0075) 1965; 7
Jones, E., Oliphant, T., Peterson, P. 2001. SciPy: Open source scientific tools for python. Retrieved September 27, 2019, from
Keeler, Gourevitch, Polasky, Isbell, Tessum, Hill, Marshall (b0060) 2016; 2
Bullock, Bullock (b0015) 1994; 86
Gourevitch, Keeler, Ricketts (b0035) 2018; 254
Hudson (b0045) 1971; 33
Schmidt, Hong, Dellinger, Beegle, Lin (b0100) 2007; 99
Alotaibi, Cambouris, St. Luce, Ziadi, Tremblay (b0005) 2018; 110
Pawitan (b0085) 2013
Kitchen (10.1016/j.compag.2019.105030_b0065) 2017; 109
Bachmaier (10.1016/j.compag.2019.105030_b0010) 2009; 10
Gourevitch (10.1016/j.compag.2019.105030_b0035) 2018; 254
Alotaibi (10.1016/j.compag.2019.105030_b0005) 2018; 110
Schmidt (10.1016/j.compag.2019.105030_b0100) 2007; 99
Hudson (10.1016/j.compag.2019.105030_b0045) 1971; 33
Jaynes (10.1016/j.compag.2019.105030_b0050) 2011; 12
Morris (10.1016/j.compag.2019.105030_b0070) 2018; 110
Nelder (10.1016/j.compag.2019.105030_b0075) 1965; 7
Pawitan (10.1016/j.compag.2019.105030_b0085) 2013
Cerrato (10.1016/j.compag.2019.105030_b0020) 1990; 82
Cook (10.1016/j.compag.2019.105030_b0025) 1990; 85
10.1016/j.compag.2019.105030_b0055
Hernandez (10.1016/j.compag.2019.105030_b0040) 2008; 100
10.1016/j.compag.2019.105030_b0080
Ren (10.1016/j.compag.2019.105030_b0090) 2019; 14
Donaldson (10.1016/j.compag.2019.105030_b0030) 1987; 29
Keeler (10.1016/j.compag.2019.105030_b0060) 2016; 2
10.1016/j.compag.2019.105030_b0095
Bullock (10.1016/j.compag.2019.105030_b0015) 1994; 86
Sela (10.1016/j.compag.2019.105030_b0105) 2017; 46
References_xml – volume: 100
  start-page: 1221
  year: 2008
  end-page: 1229
  ident: b0040
  article-title: Estimating uncertainty of economically optimum fertilizer rates
  publication-title: Agron. J.
– volume: 254
  start-page: 292
  year: 2018
  end-page: 299
  ident: b0035
  article-title: Determining socially optimal rates of nitrogen fertilizer application
  publication-title: Agric. Ecosyst. Environ.
– volume: 86
  start-page: 191
  year: 1994
  ident: b0015
  article-title: Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn: a comparison
  publication-title: Agron. J.
– year: 2013
  ident: b0085
  article-title: In All Likelihood: Statistical Modelling and Inference Using Likelihood
– volume: 110
  start-page: 2233
  year: 2018
  end-page: 2242
  ident: b0005
  article-title: Economic optimum nitrogen fertilizer rate and residual soil nitrate as influenced by soil texture in corn production
  publication-title: Agron. J.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: b0075
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– volume: 82
  start-page: 138
  year: 1990
  ident: b0020
  article-title: Comparison of models for describing corn yield response to nitrogen fertilizer
  publication-title: Agron. J.
– volume: 85
  start-page: 544
  year: 1990
  end-page: 551
  ident: b0025
  article-title: Confidence curves in nonlinear regression
  publication-title: J. Am. Stat. Assoc.
– volume: 10
  start-page: 95
  year: 2009
  end-page: 110
  ident: b0010
  article-title: A conceptual framework for judging the precision agriculture hypothesis with regard to site-specific nitrogen application
  publication-title: Precis. Agric.
– volume: 109
  start-page: 2371
  year: 2017
  end-page: 2388
  ident: b0065
  article-title: A public–industry partnership for enhancing corn nitrogen research and datasets: Project description, methodology, and outcomes
  publication-title: Agron. J.
– volume: 14
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0090
  article-title: An algorithm for computing profile likelihood based pointwise confidence intervals for nonlinear dose-response models
  publication-title: PLoS ONE
– reference: Sawyer, J., Nafziger, E., Randall, G., Bundy, L., Rehm, G., Joern, B. 2006. Concepts and rationale for regional nitrogen rate guidelines for corn concepts and rationale for regional nitrogen rate guidelines for corn. Iowa State University, University Extension.
– volume: 29
  start-page: 67
  year: 1987
  end-page: 82
  ident: b0030
  article-title: Computational experience with confidence regions and confidence intervals for nonlinear least squares
  publication-title: Technometrics
– reference: .
– volume: 2
  year: 2016
  ident: b0060
  article-title: The social costs of nitrogen
  publication-title: Science Advances
– volume: 33
  start-page: 256
  year: 1971
  end-page: 262
  ident: b0045
  article-title: Interval estimation from the likelihood function
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
– volume: 99
  start-page: 229
  year: 2007
  end-page: 237
  ident: b0100
  article-title: Hillslope variability in corn response to nitrogen linked to in-season soil moisture redistribution
  publication-title: Agron. J.
– volume: 46
  start-page: 311
  year: 2017
  ident: b0105
  article-title: Dynamic model improves agronomic and environmental outcomes for maize nitrogen management over static approach
  publication-title: J. Environ. Qual.
– volume: 12
  start-page: 196
  year: 2011
  end-page: 213
  ident: b0050
  article-title: Confidence bands for measured economically optimal nitrogen rates
  publication-title: Precis. Agric.
– reference: Nigon, T.J. 2019. EONR Documentation. Retrieved September 27, 2019, from
– volume: 110
  start-page: 1
  year: 2018
  end-page: 37
  ident: b0070
  article-title: Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement
  publication-title: Published Agron. J.
– reference: Jones, E., Oliphant, T., Peterson, P. 2001. SciPy: Open source scientific tools for python. Retrieved September 27, 2019, from
– ident: 10.1016/j.compag.2019.105030_b0055
– ident: 10.1016/j.compag.2019.105030_b0080
– ident: 10.1016/j.compag.2019.105030_b0095
  doi: 10.1016/j.matlet.2012.07.083
– volume: 110
  start-page: 1
  year: 2018
  ident: 10.1016/j.compag.2019.105030_b0070
  article-title: Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement
  publication-title: Published Agron. J.
  doi: 10.2134/agronj2017.02.0112
– volume: 10
  start-page: 95
  issue: 2
  year: 2009
  ident: 10.1016/j.compag.2019.105030_b0010
  article-title: A conceptual framework for judging the precision agriculture hypothesis with regard to site-specific nitrogen application
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-008-9069-x
– volume: 82
  start-page: 138
  issue: 1
  year: 1990
  ident: 10.1016/j.compag.2019.105030_b0020
  article-title: Comparison of models for describing corn yield response to nitrogen fertilizer
  publication-title: Agron. J.
  doi: 10.2134/agronj1990.00021962008200010030x
– volume: 46
  start-page: 311
  issue: 2
  year: 2017
  ident: 10.1016/j.compag.2019.105030_b0105
  article-title: Dynamic model improves agronomic and environmental outcomes for maize nitrogen management over static approach
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.05.0182
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  ident: 10.1016/j.compag.2019.105030_b0075
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 109
  start-page: 2371
  issue: 5
  year: 2017
  ident: 10.1016/j.compag.2019.105030_b0065
  article-title: A public–industry partnership for enhancing corn nitrogen research and datasets: Project description, methodology, and outcomes
  publication-title: Agron. J.
  doi: 10.2134/agronj2017.04.0207
– volume: 110
  start-page: 2233
  issue: 6
  year: 2018
  ident: 10.1016/j.compag.2019.105030_b0005
  article-title: Economic optimum nitrogen fertilizer rate and residual soil nitrate as influenced by soil texture in corn production
  publication-title: Agron. J.
  doi: 10.2134/agronj2017.10.0583
– volume: 14
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compag.2019.105030_b0090
  article-title: An algorithm for computing profile likelihood based pointwise confidence intervals for nonlinear dose-response models
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210953
– volume: 99
  start-page: 229
  year: 2007
  ident: 10.1016/j.compag.2019.105030_b0100
  article-title: Hillslope variability in corn response to nitrogen linked to in-season soil moisture redistribution
  publication-title: Agron. J.
  doi: 10.2134/agronj2006.0187
– volume: 12
  start-page: 196
  issue: 2
  year: 2011
  ident: 10.1016/j.compag.2019.105030_b0050
  article-title: Confidence bands for measured economically optimal nitrogen rates
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-010-9168-3
– volume: 86
  start-page: 191
  issue: 1
  year: 1994
  ident: 10.1016/j.compag.2019.105030_b0015
  article-title: Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn: a comparison
  publication-title: Agron. J.
  doi: 10.2134/agronj1994.00021962008600010033x
– volume: 33
  start-page: 256
  issue: 2
  year: 1971
  ident: 10.1016/j.compag.2019.105030_b0045
  article-title: Interval estimation from the likelihood function
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1971.tb00877.x
– volume: 85
  start-page: 544
  issue: 410
  year: 1990
  ident: 10.1016/j.compag.2019.105030_b0025
  article-title: Confidence curves in nonlinear regression
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1990.10476233
– volume: 100
  start-page: 1221
  issue: 5
  year: 2008
  ident: 10.1016/j.compag.2019.105030_b0040
  article-title: Estimating uncertainty of economically optimum fertilizer rates
  publication-title: Agron. J.
  doi: 10.2134/agronj2007.0273
– volume: 29
  start-page: 67
  issue: 1
  year: 1987
  ident: 10.1016/j.compag.2019.105030_b0030
  article-title: Computational experience with confidence regions and confidence intervals for nonlinear least squares
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488184
– year: 2013
  ident: 10.1016/j.compag.2019.105030_b0085
– volume: 2
  issue: 10
  year: 2016
  ident: 10.1016/j.compag.2019.105030_b0060
  article-title: The social costs of nitrogen
  publication-title: Science Advances
  doi: 10.1126/sciadv.1600219
– volume: 254
  start-page: 292
  year: 2018
  ident: 10.1016/j.compag.2019.105030_b0035
  article-title: Determining socially optimal rates of nitrogen fertilizer application
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.12.002
SSID ssj0016987
Score 2.3670259
Snippet [Display omitted] •Methods of the “EONR” Python package are clearly described and documented.•Environmental penalties are considered when computing the optimum...
A Python package, "EONR", was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under...
A Python package, “EONR”, was developed for computing the economic optimum nitrogen rate (EONR) and its profile-likelihood confidence intervals (CIs) under...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105030
SubjectTerms Algorithms
computer software
confidence interval
Confidence intervals
corn
Cost function
Costs
Economic conditions
Economic factors
Economic models
Economic optimum nitrogen rate (EONR)
Externality
Farms
fertilizer application
Fertilizers
Grain
labor
Mathematical analysis
Nitrogen
nitrogen fertilizers
pollution
prices
Profile-likelihood confidence intervals
Python
Quadratic-plateau model
Social cost of nitrogen
Uncertainty
variable costs
Water pollution
Water treatment
Title Computing uncertainty in the optimum nitrogen rate using a generalized cost function
URI https://dx.doi.org/10.1016/j.compag.2019.105030
https://www.proquest.com/docview/2334713323
https://www.proquest.com/docview/2439407091
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AKRWK
  dateStart: 19851001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGK1lhW8xpJskm6OpViqYi-20NuySXZDxCalTQ968Lc7k90UFEHwmM2EhJmdx2a-mSHkloc-D6X2QJG4wl832om9mDtpEIM70FoZST9Pw8ncf1wEixYZNbUwCKu0tt_Y9Npa25W-5WZ_lef9FwhWuBtCfBPV2TzsCer7A5xicPe5g3kAATcl0yGcloC6KZ-rMV41zjtDgFeEA29rLPTv7umHoa69z_iIHNqwkQ7Nlx2TlipOyMEwW9vWGeqUzMyABnBFFHyVyfRX7zQvKMR4tATTsNwuKWjwuoRNQ7FFBEXUe0YlzUzz6fxDpTQpNxVFd4ciOyPz8f1sNHHszAQnYeGgApbDeUIpHUrXjd2YR67CuXtpIl2JM3kDDfFEqEB1E19zpnSK9Uxa8SBWPAKNPCftoizUBaFpBKsskoq7CQgxkAkmeGWs0yhlQao7hDWsEoltKI5zLd5Egxx7FYbBAhksDIM7xNk9tTINNf6gHzRSEN82hgCb_8eT3UZowirmRniM-Xgu91iH3Oxug0phnkQWqtwCDVYLgymM3Mt_v_yK7OOVAb50Sbtab9U1hC9V3Kv3Z4_sDR-eJtMvnFnvfA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qHtSD-MT6XMFrLHl2cxSxVG17sYK3ZTfZLRWblDY96MHf7kw2KShCwWt2l4SZnVfmmxmAax4FPJLGQ0Himn7dGEd5ijtpqNAcGKMtp_uDqPsSPL6Grw24q2thCFZZ6X6r00ttXT1pVdRsTcfj1jM6K9yN0L-Jy2xesAYbQei1KQK7-VriPHAHtzXTEYZLuL2unytBXiXQe0QIr5gm3pZg6L_t0y9NXZqfzi7sVH4ju7WftgcNne3D9u1oVvXO0AcwtBMa0BYxNFY21V98sHHG0MljOeqGyWLCUIRnOd4aRj0iGMHeR0yyke0-Pf7UKUvyecHI3hHPDuGlcz-86zrV0AQn8aN2gTTHgEJrE0nXVa7isatp8F6aSFfSUN7QoEMRaZTdJDDc1yalgiajeag0j1Ekj2A9yzN9DCyN8akfS83dBLkYyoQyvFKZNE79MDVN8GtSiaTqKE6DLd5FDR17E5bAgggsLIGb4CxPTW1HjRX72zUXxI-bIVDprzh5VjNNVJI5F57vBxSYe34TrpbLKFOUKJGZzhe4h8qFURfG7sm_X34Jm91hvyd6D4OnU9iiFYuCOYP1YrbQ5-jLFOqivKvfLb3xEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing+uncertainty+in+the+optimum+nitrogen+rate+using+a+generalized+cost+function&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Nigon%2C+Tyler+J&rft.au=Yang%2C+Ce&rft.au=Mulla%2C+David+J&rft.au=Kaiser%2C+Daniel+E&rft.date=2019-12-01&rft.issn=0168-1699&rft.volume=167+p.105030-&rft_id=info:doi/10.1016%2Fj.compag.2019.105030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon