Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm

The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are forced to enhance their operational flexibility by applying heat-power decoupling technologies. Power-to-heat devices, including electric boilers...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 214; p. 119022
Main Authors Liu, Ming, Wang, Shan, Yan, Junjie
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2020.119022

Cover

Abstract The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are forced to enhance their operational flexibility by applying heat-power decoupling technologies. Power-to-heat devices, including electric boilers and heat pumps, are capable to enhance the operational flexibility of coal-fired CHP stations. The problem regarding the operation scheduling of a CHP station with multiple CHP units and power-to-heat devices is addressed in this study. Operation optimization models integrated with detail CHP unit models are developed, and the particle swarm optimization algorithm is utilized as the optimization algorithm. Then, a case study are carried out. Results show that the unequal distribution of heating and power loads among coal-fired CHP units can decrease the total irreversibility caused by heating steam pressure regulation. The operation scheduling method provided in this study can decrease the total coal consumption by 14.14 and 14.70 t/day for the CHP station integrated with an electric boiler and a heat pump, respectively. As a result, 1204.7 and 1252.44 ton CO2, and an additional ∼182 and ∼190 kUSD/year can be saved for the reference CHP station integrated with an electric boiler and a heat pump, respectively. •Power to heat devices are applied to achieve heat-power decoupling of CHP station.•Operation optimization models integrated with detail CHP unit models were developed.•Energy consumption characteristics within the operation domain are obtained.•Total exergy destruction is decreased by heat and power load distribution.•Over 180 kUSD/year can be saved by the proposed operation scheduling strategy.
AbstractList The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are forced to enhance their operational flexibility by applying heat-power decoupling technologies. Power-to-heat devices, including electric boilers and heat pumps, are capable to enhance the operational flexibility of coal-fired CHP stations. The problem regarding the operation scheduling of a CHP station with multiple CHP units and power-to-heat devices is addressed in this study. Operation optimization models integrated with detail CHP unit models are developed, and the particle swarm optimization algorithm is utilized as the optimization algorithm. Then, a case study are carried out. Results show that the unequal distribution of heating and power loads among coal-fired CHP units can decrease the total irreversibility caused by heating steam pressure regulation. The operation scheduling method provided in this study can decrease the total coal consumption by 14.14 and 14.70 t/day for the CHP station integrated with an electric boiler and a heat pump, respectively. As a result, 1204.7 and 1252.44 ton CO2, and an additional ∼182 and ∼190 kUSD/year can be saved for the reference CHP station integrated with an electric boiler and a heat pump, respectively.
The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are forced to enhance their operational flexibility by applying heat-power decoupling technologies. Power-to-heat devices, including electric boilers and heat pumps, are capable to enhance the operational flexibility of coal-fired CHP stations. The problem regarding the operation scheduling of a CHP station with multiple CHP units and power-to-heat devices is addressed in this study. Operation optimization models integrated with detail CHP unit models are developed, and the particle swarm optimization algorithm is utilized as the optimization algorithm. Then, a case study are carried out. Results show that the unequal distribution of heating and power loads among coal-fired CHP units can decrease the total irreversibility caused by heating steam pressure regulation. The operation scheduling method provided in this study can decrease the total coal consumption by 14.14 and 14.70 t/day for the CHP station integrated with an electric boiler and a heat pump, respectively. As a result, 1204.7 and 1252.44 ton CO2, and an additional ∼182 and ∼190 kUSD/year can be saved for the reference CHP station integrated with an electric boiler and a heat pump, respectively. •Power to heat devices are applied to achieve heat-power decoupling of CHP station.•Operation optimization models integrated with detail CHP unit models were developed.•Energy consumption characteristics within the operation domain are obtained.•Total exergy destruction is decreased by heat and power load distribution.•Over 180 kUSD/year can be saved by the proposed operation scheduling strategy.
ArticleNumber 119022
Author Yan, Junjie
Liu, Ming
Wang, Shan
Author_xml – sequence: 1
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
– sequence: 2
  givenname: Shan
  surname: Wang
  fullname: Wang, Shan
– sequence: 3
  givenname: Junjie
  surname: Yan
  fullname: Yan, Junjie
  email: yanjj@mail.xjtu.edu.cn
BookMark eNqFkUFvFCEYhompidvqP_BA4sXLrMAwMOPBxGxsa9KkHtozYeCbXTYzMALjZv0r_lmp46kHPZF8vM8HeZ9LdOGDB4TeUrKlhIoPxy14iPvzlhFWRrQjjL1AG9rKuhKybS7QhtSCVA3n7BW6TOlICGnartugX_czRJ1d8DiZA9hldH6Pw4A1NkGP1eAiWLy7_YZTXmPOZ9gXpIxPLh_wHE4QqxyqA-iMLfxwBtJ6ZSFrN_6hF-8ynoKFMeH-jGcdszMj4HTSccJhzm5yP9cH9LgPseDTa_Ry0GOCN3_PK_R4_eVhd1vd3d983X2-q0wtZK5aJmgvBm6bjvW6p4PpCO8tI8DN0GimO0o1b1sprdBCM0OgNlyaBmoQuu_rK_R-3TvH8H2BlNXkkoFx1B7CkhRrJK95S1lTou-eRY9hib78TjEuJZOMdKKkPq4pE0NKEQZl3NpejqUQRYl68qaOavWmnryp1VuB-TN4jm7S8fw_7NOKlYaLA4gqGQfegC0GTVY2uH8v-A1g2Lkz
CitedBy_id crossref_primary_10_1016_j_ijggc_2023_104011
crossref_primary_10_1109_ACCESS_2021_3087449
crossref_primary_10_1016_j_applthermaleng_2023_120314
crossref_primary_10_1016_j_energy_2020_119534
crossref_primary_10_1016_j_est_2022_106353
crossref_primary_10_3390_en15249337
crossref_primary_10_1016_j_est_2024_111869
crossref_primary_10_1007_s11708_021_0785_5
crossref_primary_10_1016_j_energy_2024_131501
crossref_primary_10_1016_j_applthermaleng_2022_119762
crossref_primary_10_1016_j_enconman_2021_114920
crossref_primary_10_1016_j_energy_2023_127041
crossref_primary_10_1016_j_renene_2022_08_112
crossref_primary_10_1016_j_csite_2022_101768
crossref_primary_10_1016_j_energy_2022_123230
crossref_primary_10_1016_j_apenergy_2023_120763
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122478
crossref_primary_10_1038_s41598_024_69191_z
crossref_primary_10_1016_j_energy_2022_125779
crossref_primary_10_1007_s10098_024_02746_w
crossref_primary_10_1016_j_apenergy_2022_119683
crossref_primary_10_1016_j_energy_2023_127837
crossref_primary_10_1007_s11081_023_09848_2
crossref_primary_10_1016_j_applthermaleng_2021_117030
crossref_primary_10_1016_j_egyr_2022_05_235
crossref_primary_10_1016_j_applthermaleng_2024_122848
crossref_primary_10_1016_j_energy_2021_122060
crossref_primary_10_1016_j_ijepes_2024_110198
crossref_primary_10_1016_j_energy_2021_120077
crossref_primary_10_1016_j_energy_2021_121048
crossref_primary_10_3390_en14051458
crossref_primary_10_3390_en15165977
crossref_primary_10_1016_j_applthermaleng_2025_125771
crossref_primary_10_1016_j_jclepro_2022_132860
crossref_primary_10_1016_j_energy_2022_125988
crossref_primary_10_1016_j_energy_2023_129969
crossref_primary_10_1016_j_energy_2022_123846
crossref_primary_10_1016_j_energy_2025_134512
crossref_primary_10_1016_j_renene_2021_07_127
crossref_primary_10_1080_15567036_2024_2380879
crossref_primary_10_1088_1755_1315_983_1_012030
crossref_primary_10_1016_j_prime_2021_100023
crossref_primary_10_1049_rpg2_12627
crossref_primary_10_1016_j_egyr_2024_10_032
crossref_primary_10_3390_en16196860
crossref_primary_10_1016_j_energy_2021_121398
crossref_primary_10_1016_j_apenergy_2024_123812
crossref_primary_10_1016_j_energy_2021_120263
crossref_primary_10_1016_j_enconman_2022_115561
crossref_primary_10_1016_j_ijepes_2022_108498
crossref_primary_10_1016_j_energy_2022_125917
crossref_primary_10_1016_j_energy_2021_122529
crossref_primary_10_1016_j_applthermaleng_2025_126195
crossref_primary_10_1016_j_energy_2024_131031
crossref_primary_10_1371_journal_pone_0301333
crossref_primary_10_1016_j_energy_2025_135654
crossref_primary_10_1016_j_enconman_2024_118207
crossref_primary_10_1016_j_energy_2022_124480
crossref_primary_10_1016_j_applthermaleng_2022_118041
crossref_primary_10_1016_j_enconman_2023_117215
crossref_primary_10_2478_rtuect_2021_0061
crossref_primary_10_1016_j_enconman_2023_116801
crossref_primary_10_1016_j_energy_2021_121064
crossref_primary_10_1016_j_applthermaleng_2023_121192
crossref_primary_10_1016_j_jclepro_2021_130002
crossref_primary_10_1109_ACCESS_2023_3344679
crossref_primary_10_30724_1998_9903_2023_25_2_12_25
crossref_primary_10_1016_j_energy_2021_121068
crossref_primary_10_1016_j_energy_2023_128534
crossref_primary_10_1016_j_renene_2024_120502
crossref_primary_10_3390_su16072969
crossref_primary_10_3390_en17194986
crossref_primary_10_1016_j_applthermaleng_2023_120182
Cites_doi 10.1016/0196-8904(82)90053-X
10.1016/j.energy.2019.116074
10.1126/science.1212741
10.1016/j.apenergy.2015.01.092
10.1016/j.apenergy.2011.09.038
10.1038/nature14677
10.1016/j.energy.2019.05.122
10.3390/en8042493
10.1016/j.energy.2016.06.082
10.1080/07373937.2016.1166438
10.1016/j.apenergy.2018.01.017
10.1109/TIA.2018.2866475
10.1016/j.apenergy.2015.04.096
10.1016/j.apenergy.2018.02.039
10.1016/j.energy.2015.01.022
10.1016/j.energy.2006.10.017
10.1088/1755-1315/227/4/042043
10.1016/j.energy.2017.04.138
10.1002/we.224
10.1016/j.energy.2019.03.092
10.1016/j.energy.2012.10.026
10.1038/nenergy.2016.61
10.1016/j.jpowsour.2012.05.081
10.1016/j.apenergy.2017.06.092
10.1016/j.enconman.2018.01.049
10.1016/j.enbuild.2017.06.012
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jan 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 1, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2020.119022
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2020_119022
S0360544220321290
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-8261b6f4d592bab1fc904bd20e4cf5a2a911a48877d6a6a2c0e3c47c5e3e6abb3
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Thu Oct 02 05:56:46 EDT 2025
Wed Aug 13 08:36:08 EDT 2025
Thu Oct 09 00:33:44 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Fri Feb 23 02:46:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Operation scheduling
CHP
Energy saving
Flexibility
Particle swarm optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-8261b6f4d592bab1fc904bd20e4cf5a2a911a48877d6a6a2c0e3c47c5e3e6abb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2477272096
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2574348125
proquest_journals_2477272096
crossref_citationtrail_10_1016_j_energy_2020_119022
crossref_primary_10_1016_j_energy_2020_119022
elsevier_sciencedirect_doi_10_1016_j_energy_2020_119022
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mikkola, Lund (bib27) 2016; 112
PIA (bib23) 2019; 55
Liu, Zhang, Ma, Yan (bib33) 2018; 161
National Development (bib3) 2016
D, F (bib9) 2015
Leadbetter, Swan (bib13) 2012; 216
Hou, Wu, Yang, Hu, Chen (bib31) 2015; 160
Zhao, Wang, Liu, Chong, Yan (bib7) 2018; 212
Lu, McElroy, Peng, Liu, Nielsen, Wang (bib5) 2016; 1
Blarke (bib24) 2012; 91
Liu, Wang, Zhao, Tang, Yan (bib30) 2019; 188
(bib4) 2014
Romanchenko, Odenberger, Göransson, Johnsson (bib28) 2017; 204
Böttger, Götz, Theofilidi, Bruckner (bib22) 2015; 82
Dunn, Kamath, Tarascon (bib14) 2011; 334
Liu, Li, Han, Qin, Zhai, Yan (bib29) 2017; 35
Hu, Wang, Zhang, Zhou, Chen, Wang (bib11) 2019; 227
Wang, Zhao, Liu, Qiao, Chong, Yan (bib6) 2018; 216
Lund (bib1) 2007; 32
Scholz, Musgens (bib26) 2015
Meibom, Kiviluoma, Barth, Brand, Weber, Larsen (bib17) 2007; 10
Hansen, Breyer, Lund (bib2) 2019; 175
Popovski, Aydemir, Fleiter, Bellstädt, Büchele, Steinbach (bib18) 2019; 180
Mohamed, Hamdy, Hasan, Sirén (bib21) 2015; 152
Liu, Guan, Wei, Davis, Ciais, Bai (bib34) 2015; 524
Energy (bib10) 2012
Jiang (bib35) 2013
Kopiske, Spieker, Tsatsaronis (bib8) 2017; 137
Abdoly, Rapp (bib15) 1982; 22
Knizley, Mago, Tobermann (bib25) 2015; 2
Moncho-Esteve, Gasque, González-Altozano, Palau-Salvador (bib16) 2017; 150
Bottger, Gotz, Lehr, Kondziella, Bruckner (bib19) 2014
Liu, Wang, Zhao, Tang, Yan (bib12) 2019; 188
Zakeri, Rinne, Syri (bib20) 2015; 8
Liu, Yan, Chong, Liu, Wang (bib32) 2013; 49
Bottger (10.1016/j.energy.2020.119022_bib19) 2014
Scholz (10.1016/j.energy.2020.119022_bib26) 2015
Leadbetter (10.1016/j.energy.2020.119022_bib13) 2012; 216
Abdoly (10.1016/j.energy.2020.119022_bib15) 1982; 22
Mikkola (10.1016/j.energy.2020.119022_bib27) 2016; 112
Hansen (10.1016/j.energy.2020.119022_bib2) 2019; 175
Liu (10.1016/j.energy.2020.119022_bib33) 2018; 161
Liu (10.1016/j.energy.2020.119022_bib34) 2015; 524
Energy (10.1016/j.energy.2020.119022_bib10) 2012
Zakeri (10.1016/j.energy.2020.119022_bib20) 2015; 8
Hu (10.1016/j.energy.2020.119022_bib11) 2019; 227
Moncho-Esteve (10.1016/j.energy.2020.119022_bib16) 2017; 150
Mohamed (10.1016/j.energy.2020.119022_bib21) 2015; 152
Wang (10.1016/j.energy.2020.119022_bib6) 2018; 216
Böttger (10.1016/j.energy.2020.119022_bib22) 2015; 82
Lund (10.1016/j.energy.2020.119022_bib1) 2007; 32
Liu (10.1016/j.energy.2020.119022_bib32) 2013; 49
National Development (10.1016/j.energy.2020.119022_bib3) 2016
(10.1016/j.energy.2020.119022_bib4) 2014
PIA (10.1016/j.energy.2020.119022_bib23) 2019; 55
Dunn (10.1016/j.energy.2020.119022_bib14) 2011; 334
Meibom (10.1016/j.energy.2020.119022_bib17) 2007; 10
Knizley (10.1016/j.energy.2020.119022_bib25) 2015; 2
Romanchenko (10.1016/j.energy.2020.119022_bib28) 2017; 204
Liu (10.1016/j.energy.2020.119022_bib29) 2017; 35
D (10.1016/j.energy.2020.119022_bib9) 2015
Hou (10.1016/j.energy.2020.119022_bib31) 2015; 160
Zhao (10.1016/j.energy.2020.119022_bib7) 2018; 212
Jiang (10.1016/j.energy.2020.119022_bib35) 2013
Blarke (10.1016/j.energy.2020.119022_bib24) 2012; 91
Liu (10.1016/j.energy.2020.119022_bib12) 2019; 188
Liu (10.1016/j.energy.2020.119022_bib30) 2019; 188
Popovski (10.1016/j.energy.2020.119022_bib18) 2019; 180
Lu (10.1016/j.energy.2020.119022_bib5) 2016; 1
Kopiske (10.1016/j.energy.2020.119022_bib8) 2017; 137
References_xml – volume: 112
  start-page: 364
  year: 2016
  end-page: 375
  ident: bib27
  article-title: Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes
  publication-title: Energy
– volume: 161
  start-page: 243
  year: 2018
  end-page: 253
  ident: bib33
  article-title: Thermo-economic analyses on a new conceptual system of waste heat recovery integrated with an S-CO2 cycle for coal-fired power plants
  publication-title: Energy Convers Manag
– start-page: 1
  year: 2015
  end-page: 5
  ident: bib9
  article-title: Increasing flexibility of combined heat and power plants with power-to-heat
  publication-title: 2015 12th international conference on the European energy market
– year: 2012
  ident: bib10
  article-title: Combined heat and power law
– volume: 82
  start-page: 157
  year: 2015
  end-page: 167
  ident: bib22
  article-title: Control power provision with power-to-heat plants in systems with high shares of renewable energy sources – an illustrative analysis for Germany based on the use of electric boilers in district heating grids
  publication-title: Energy
– volume: 152
  start-page: 94
  year: 2015
  end-page: 108
  ident: bib21
  article-title: The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions
  publication-title: Appl Energy
– volume: 35
  start-page: 203
  year: 2017
  end-page: 217
  ident: bib29
  article-title: Energy and exergy analyses of a lignite-fired power plant integrated with a steam dryer at rated and partial loads
  publication-title: Dry Technol
– volume: 524
  start-page: 335
  year: 2015
  ident: bib34
  article-title: Reduced carbon emission estimates from fossil fuel combustion and cement production in China
  publication-title: Nature
– volume: 150
  start-page: 625
  year: 2017
  end-page: 638
  ident: bib16
  article-title: Simple inlet devices and their influence on thermal stratification in a hot water storage tank
  publication-title: Energy Build
– volume: 55
  start-page: 35
  year: 2019
  end-page: 42
  ident: bib23
  article-title: District heating technologies: is it chance for CHP plants in variable and competitive operation conditions?
  publication-title: IEEE Trans Ind Appl
– volume: 175
  start-page: 471
  year: 2019
  end-page: 480
  ident: bib2
  article-title: Status and perspectives on 100% renewable energy systems
  publication-title: Energy
– year: 2014
  ident: bib4
  publication-title: Act on the development of renewable energy sources
– start-page: 246
  year: 2014
  end-page: 253
  ident: bib19
  article-title: Potential of the power-to-heat technology in district heating grids in Germany
  publication-title: Energy procedia
– year: 2013
  ident: bib35
  article-title: Research on accommodating curtailed wind power by CHP installed electric boilers
– volume: 212
  start-page: 1295
  year: 2018
  end-page: 1309
  ident: bib7
  article-title: Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: a dynamic simulation
  publication-title: Appl Energy
– volume: 2
  year: 2015
  ident: bib25
  article-title: Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis
  publication-title: Cognet Eng
– volume: 49
  start-page: 107
  year: 2013
  end-page: 118
  ident: bib32
  article-title: Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant
  publication-title: Energy
– volume: 91
  start-page: 349
  year: 2012
  end-page: 365
  ident: bib24
  article-title: Towards an intermittency-friendly energy system: comparing electric boilers and heat pumps in distributed cogeneration
  publication-title: Appl Energy
– volume: 1
  start-page: 16061
  year: 2016
  ident: bib5
  article-title: Challenges faced by China compared with the US in developing wind power
  publication-title: Nat Energy
– volume: 137
  start-page: 823
  year: 2017
  end-page: 833
  ident: bib8
  article-title: Value of power plant flexibility in power systems with high shares of variable renewables: a scenario outlook for Germany 2035
  publication-title: Energy
– volume: 180
  start-page: 918
  year: 2019
  end-page: 933
  ident: bib18
  article-title: The role and costs of large-scale heat pumps in decarbonising existing district heating networks – a case study for the city of Herten in Germany
  publication-title: Energy
– volume: 10
  start-page: 321
  year: 2007
  end-page: 337
  ident: bib17
  article-title: Value of electric heat boilers and heat pumps for wind power integration
  publication-title: Wind Energy
– year: 2016
  ident: bib3
  article-title: The 13th five-year plan for electric power development(2016-2020 )
– volume: 204
  start-page: 16
  year: 2017
  end-page: 30
  ident: bib28
  article-title: Impact of electricity price fluctuations on the operation of district heating systems: a case study of district heating in Göteborg, Sweden
  publication-title: Appl Energy
– volume: 188
  start-page: 116074
  year: 2019
  ident: bib30
  article-title: Heat–power decoupling technologies for coal-fired CHP plants: operation flexibility and thermodynamic performance
  publication-title: Energy
– volume: 160
  start-page: 873
  year: 2015
  end-page: 881
  ident: bib31
  article-title: Performance of a solar aided power plant in fuel saving mode
  publication-title: Appl Energy
– volume: 32
  start-page: 912
  year: 2007
  end-page: 919
  ident: bib1
  article-title: Renewable energy strategies for sustainable development
  publication-title: Energy
– volume: 188
  start-page: 116074
  year: 2019
  ident: bib12
  article-title: Heat–power decoupling technologies for coal-fired CHP plants: operation flexibility and thermodynamic performance
  publication-title: Energy
– year: 2015
  ident: bib26
  article-title: Increasing flexibility of combined heat and power plants with Power-to-Heat
  publication-title: 12th international conference on the European energy market
– volume: 22
  start-page: 275
  year: 1982
  end-page: 285
  ident: bib15
  article-title: Theoretical and experimental studies of stratified thermocline storage of hot water
  publication-title: Energy Convers Manag
– volume: 334
  start-page: 928
  year: 2011
  ident: bib14
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
– volume: 227
  start-page: 42043
  year: 2019
  ident: bib11
  article-title: Theoretical investigation on heat-electricity decoupling technology of low-pressure steam turbine renovation for CHPs
  publication-title: IOP Conf Ser Earth Environ Sci
– volume: 8
  start-page: 2493
  year: 2015
  end-page: 2527
  ident: bib20
  article-title: Wind integration into energy systems with a high share of nuclear power—what are the compromises?
  publication-title: Energies
– volume: 216
  start-page: 212
  year: 2018
  end-page: 223
  ident: bib6
  article-title: Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio
  publication-title: Appl Energy
– volume: 216
  start-page: 376
  year: 2012
  end-page: 386
  ident: bib13
  article-title: Selection of battery technology to support grid-integrated renewable electricity
  publication-title: J Power Sources
– volume: 22
  start-page: 275
  year: 1982
  ident: 10.1016/j.energy.2020.119022_bib15
  article-title: Theoretical and experimental studies of stratified thermocline storage of hot water
  publication-title: Energy Convers Manag
  doi: 10.1016/0196-8904(82)90053-X
– volume: 188
  start-page: 116074
  year: 2019
  ident: 10.1016/j.energy.2020.119022_bib12
  article-title: Heat–power decoupling technologies for coal-fired CHP plants: operation flexibility and thermodynamic performance
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116074
– volume: 334
  start-page: 928
  year: 2011
  ident: 10.1016/j.energy.2020.119022_bib14
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
– start-page: 246
  year: 2014
  ident: 10.1016/j.energy.2020.119022_bib19
  article-title: Potential of the power-to-heat technology in district heating grids in Germany
– volume: 160
  start-page: 873
  year: 2015
  ident: 10.1016/j.energy.2020.119022_bib31
  article-title: Performance of a solar aided power plant in fuel saving mode
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.092
– volume: 91
  start-page: 349
  year: 2012
  ident: 10.1016/j.energy.2020.119022_bib24
  article-title: Towards an intermittency-friendly energy system: comparing electric boilers and heat pumps in distributed cogeneration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.09.038
– volume: 524
  start-page: 335
  year: 2015
  ident: 10.1016/j.energy.2020.119022_bib34
  article-title: Reduced carbon emission estimates from fossil fuel combustion and cement production in China
  publication-title: Nature
  doi: 10.1038/nature14677
– volume: 180
  start-page: 918
  year: 2019
  ident: 10.1016/j.energy.2020.119022_bib18
  article-title: The role and costs of large-scale heat pumps in decarbonising existing district heating networks – a case study for the city of Herten in Germany
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.122
– start-page: 1
  year: 2015
  ident: 10.1016/j.energy.2020.119022_bib9
  article-title: Increasing flexibility of combined heat and power plants with power-to-heat
– year: 2012
  ident: 10.1016/j.energy.2020.119022_bib10
– volume: 8
  start-page: 2493
  year: 2015
  ident: 10.1016/j.energy.2020.119022_bib20
  article-title: Wind integration into energy systems with a high share of nuclear power—what are the compromises?
  publication-title: Energies
  doi: 10.3390/en8042493
– volume: 112
  start-page: 364
  year: 2016
  ident: 10.1016/j.energy.2020.119022_bib27
  article-title: Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.082
– volume: 35
  start-page: 203
  year: 2017
  ident: 10.1016/j.energy.2020.119022_bib29
  article-title: Energy and exergy analyses of a lignite-fired power plant integrated with a steam dryer at rated and partial loads
  publication-title: Dry Technol
  doi: 10.1080/07373937.2016.1166438
– volume: 212
  start-page: 1295
  year: 2018
  ident: 10.1016/j.energy.2020.119022_bib7
  article-title: Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: a dynamic simulation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.01.017
– volume: 55
  start-page: 35
  year: 2019
  ident: 10.1016/j.energy.2020.119022_bib23
  article-title: District heating technologies: is it chance for CHP plants in variable and competitive operation conditions?
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2018.2866475
– volume: 152
  start-page: 94
  year: 2015
  ident: 10.1016/j.energy.2020.119022_bib21
  article-title: The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.04.096
– year: 2016
  ident: 10.1016/j.energy.2020.119022_bib3
– volume: 216
  start-page: 212
  year: 2018
  ident: 10.1016/j.energy.2020.119022_bib6
  article-title: Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.039
– volume: 82
  start-page: 157
  year: 2015
  ident: 10.1016/j.energy.2020.119022_bib22
  article-title: Control power provision with power-to-heat plants in systems with high shares of renewable energy sources – an illustrative analysis for Germany based on the use of electric boilers in district heating grids
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.022
– year: 2013
  ident: 10.1016/j.energy.2020.119022_bib35
– volume: 32
  start-page: 912
  year: 2007
  ident: 10.1016/j.energy.2020.119022_bib1
  article-title: Renewable energy strategies for sustainable development
  publication-title: Energy
  doi: 10.1016/j.energy.2006.10.017
– volume: 227
  start-page: 42043
  year: 2019
  ident: 10.1016/j.energy.2020.119022_bib11
  article-title: Theoretical investigation on heat-electricity decoupling technology of low-pressure steam turbine renovation for CHPs
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/227/4/042043
– volume: 137
  start-page: 823
  year: 2017
  ident: 10.1016/j.energy.2020.119022_bib8
  article-title: Value of power plant flexibility in power systems with high shares of variable renewables: a scenario outlook for Germany 2035
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.138
– volume: 10
  start-page: 321
  year: 2007
  ident: 10.1016/j.energy.2020.119022_bib17
  article-title: Value of electric heat boilers and heat pumps for wind power integration
  publication-title: Wind Energy
  doi: 10.1002/we.224
– volume: 175
  start-page: 471
  year: 2019
  ident: 10.1016/j.energy.2020.119022_bib2
  article-title: Status and perspectives on 100% renewable energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.092
– year: 2014
  ident: 10.1016/j.energy.2020.119022_bib4
– volume: 49
  start-page: 107
  year: 2013
  ident: 10.1016/j.energy.2020.119022_bib32
  article-title: Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.026
– volume: 1
  start-page: 16061
  year: 2016
  ident: 10.1016/j.energy.2020.119022_bib5
  article-title: Challenges faced by China compared with the US in developing wind power
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2016.61
– year: 2015
  ident: 10.1016/j.energy.2020.119022_bib26
  article-title: Increasing flexibility of combined heat and power plants with Power-to-Heat
– volume: 216
  start-page: 376
  year: 2012
  ident: 10.1016/j.energy.2020.119022_bib13
  article-title: Selection of battery technology to support grid-integrated renewable electricity
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.05.081
– volume: 2
  year: 2015
  ident: 10.1016/j.energy.2020.119022_bib25
  article-title: Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis
  publication-title: Cognet Eng
– volume: 204
  start-page: 16
  year: 2017
  ident: 10.1016/j.energy.2020.119022_bib28
  article-title: Impact of electricity price fluctuations on the operation of district heating systems: a case study of district heating in Göteborg, Sweden
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.092
– volume: 188
  start-page: 116074
  year: 2019
  ident: 10.1016/j.energy.2020.119022_bib30
  article-title: Heat–power decoupling technologies for coal-fired CHP plants: operation flexibility and thermodynamic performance
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116074
– volume: 161
  start-page: 243
  year: 2018
  ident: 10.1016/j.energy.2020.119022_bib33
  article-title: Thermo-economic analyses on a new conceptual system of waste heat recovery integrated with an S-CO2 cycle for coal-fired power plants
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.01.049
– volume: 150
  start-page: 625
  year: 2017
  ident: 10.1016/j.energy.2020.119022_bib16
  article-title: Simple inlet devices and their influence on thermal stratification in a hot water storage tank
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.06.012
SSID ssj0005899
Score 2.614375
Snippet The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119022
SubjectTerms Algorithms
Boilers
Carbon dioxide
case studies
CHP
Coal
Coal-fired power plants
Cogeneration
Decoupling
Electric power distribution
Electric power grids
energy
Energy saving
Flexibility
heat
Heat exchangers
Heat pumps
Heating
Operation scheduling
Optimization algorithms
Particle swarm optimization
Particle swarm optimization algorithm
Renewable energy
steam
Title Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm
URI https://dx.doi.org/10.1016/j.energy.2020.119022
https://www.proquest.com/docview/2477272096
https://www.proquest.com/docview/2574348125
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection eJournals
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lPuiLaLV4WssU-hpvL5sP97EcLWcLbaEW-haSbFYqd7fL7R3ii_-I_6yTjz2rIAVfNzPsbib5zSSZX4aQYyNT1UVaKF9RLieSVsKVlNnIxJS1q2OW76Wc3fLzO3G3Q6YDFyakVWbsT5ge0To_GefeHHf39-MbxF6MNzgLNcDDbkpgsHMVqhh8-PEgzeNjrCEZhGmQHuhzMcfLR34drhJZwI6qYOxf7ukvoI7e5-wFeZ7DRjhJX_aS7PjlHnk6sIr7PbJ_-puxhoJ5yvavyM-rzicrAy5k0bEE_jm0DRhwrZnTBv-_hunsGvp0Kg_bGyRqCLu00IVCanTd0oDbUPuILakpJaBG7Q1iA8S6Oj3Y79DlToT-m1ktoEVkWmTKJ5j5l3aF6ovX5Pbs9PN0RnNFBupKqdYU1yITKxtei4pZYyeNqwpua1Z47hphmEHoNAgJStXSSMNc4UvHlRO-9NJYW-6T3WW79G8IKIWhApeWG1bxRqHL8MKyUqAxK3xsRqQcDKFdvq48VM2Y6yEv7atO5tPBfDqZb0ToVqtL13U8Iq8GG-s_hp1Gj_KI5sEwJHSe9r1mXMWD7UqOyNG2GSdsOIUxS99uUEZg0MYxrhJv__vl78gzFnJr4lbQAdldrzb-PQZHa3sYR_8heXLy6WJ2-QtCRBCU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcigXBIWKQAEjcTXZeP3oHlHUKkApSLRSb5bt9aJWSXaVTVRx4Y_wZxk_NjwkVImrPaNdeTzfzNgzHoDXRqaui7RQvqJcTiSthCsps7ESU9aujlm-Z3J2wd9fissdmA61MCGtMmN_wvSI1nlknFdz3F1djb8g9qK_wVnoAR5OU-7AXS6YChHYm--_5XkcxSaSgZoG8qF-LiZ5-Vhgh2EiC-BRFYz9yz79hdTR_Jw8gPvZbyRv0689hB2_3Ie9oay434eD418la0iYdbZ_BD8-dT6JmWAki5YlFKCTtiGGuNbMaYMLUJPp7DPp07U82T4hUZNwTEu60EmNrlsagJvUPoJLmkoZqJF7g-BAYmOdnthvpMurSPobs1qQFqFpkWs-iZl_bVfIvngMFyfH59MZzS0ZqCulWlMMRiZWNrwWFbPGThpXFdzWrPDcNcIwg9hpEBOUqqWRhrnCl44rJ3zppbG2PIDdZbv0T4Aohb4Cl5YbVvFGoc3wwrJSoDQrHDYjKAdBaJffKw9tM-Z6SEy71kl8OohPJ_GNgG65uvRexy30apCx_mPfaTQpt3AeDltCZ73vNeMq3mxXcgSvttOoseEaxix9u0EagV4bR8dKPP3vj7-Evdn5x1N9-u7swzO4x0KiTTwXOoTd9Wrjn6OntLYvoib8BGwlEik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operation+scheduling+of+a+coal-fired+CHP+station+integrated+with+power-to-heat+devices+with+detail+CHP+unit+models+by+particle+swarm+optimization+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Liu%2C+Ming&rft.au=Wang%2C+Shan&rft.au=Yan%2C+Junjie&rft.date=2021-01-01&rft.issn=0360-5442&rft.volume=214+p.119022-&rft_id=info:doi/10.1016%2Fj.energy.2020.119022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon