Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm
The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are forced to enhance their operational flexibility by applying heat-power decoupling technologies. Power-to-heat devices, including electric boilers...
Saved in:
| Published in | Energy (Oxford) Vol. 214; p. 119022 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.01.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 1873-6785 |
| DOI | 10.1016/j.energy.2020.119022 |
Cover
| Abstract | The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are forced to enhance their operational flexibility by applying heat-power decoupling technologies. Power-to-heat devices, including electric boilers and heat pumps, are capable to enhance the operational flexibility of coal-fired CHP stations. The problem regarding the operation scheduling of a CHP station with multiple CHP units and power-to-heat devices is addressed in this study. Operation optimization models integrated with detail CHP unit models are developed, and the particle swarm optimization algorithm is utilized as the optimization algorithm. Then, a case study are carried out. Results show that the unequal distribution of heating and power loads among coal-fired CHP units can decrease the total irreversibility caused by heating steam pressure regulation. The operation scheduling method provided in this study can decrease the total coal consumption by 14.14 and 14.70 t/day for the CHP station integrated with an electric boiler and a heat pump, respectively. As a result, 1204.7 and 1252.44 ton CO2, and an additional ∼182 and ∼190 kUSD/year can be saved for the reference CHP station integrated with an electric boiler and a heat pump, respectively.
•Power to heat devices are applied to achieve heat-power decoupling of CHP station.•Operation optimization models integrated with detail CHP unit models were developed.•Energy consumption characteristics within the operation domain are obtained.•Total exergy destruction is decreased by heat and power load distribution.•Over 180 kUSD/year can be saved by the proposed operation scheduling strategy. |
|---|---|
| AbstractList | The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are forced to enhance their operational flexibility by applying heat-power decoupling technologies. Power-to-heat devices, including electric boilers and heat pumps, are capable to enhance the operational flexibility of coal-fired CHP stations. The problem regarding the operation scheduling of a CHP station with multiple CHP units and power-to-heat devices is addressed in this study. Operation optimization models integrated with detail CHP unit models are developed, and the particle swarm optimization algorithm is utilized as the optimization algorithm. Then, a case study are carried out. Results show that the unequal distribution of heating and power loads among coal-fired CHP units can decrease the total irreversibility caused by heating steam pressure regulation. The operation scheduling method provided in this study can decrease the total coal consumption by 14.14 and 14.70 t/day for the CHP station integrated with an electric boiler and a heat pump, respectively. As a result, 1204.7 and 1252.44 ton CO2, and an additional ∼182 and ∼190 kUSD/year can be saved for the reference CHP station integrated with an electric boiler and a heat pump, respectively. The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are forced to enhance their operational flexibility by applying heat-power decoupling technologies. Power-to-heat devices, including electric boilers and heat pumps, are capable to enhance the operational flexibility of coal-fired CHP stations. The problem regarding the operation scheduling of a CHP station with multiple CHP units and power-to-heat devices is addressed in this study. Operation optimization models integrated with detail CHP unit models are developed, and the particle swarm optimization algorithm is utilized as the optimization algorithm. Then, a case study are carried out. Results show that the unequal distribution of heating and power loads among coal-fired CHP units can decrease the total irreversibility caused by heating steam pressure regulation. The operation scheduling method provided in this study can decrease the total coal consumption by 14.14 and 14.70 t/day for the CHP station integrated with an electric boiler and a heat pump, respectively. As a result, 1204.7 and 1252.44 ton CO2, and an additional ∼182 and ∼190 kUSD/year can be saved for the reference CHP station integrated with an electric boiler and a heat pump, respectively. •Power to heat devices are applied to achieve heat-power decoupling of CHP station.•Operation optimization models integrated with detail CHP unit models were developed.•Energy consumption characteristics within the operation domain are obtained.•Total exergy destruction is decreased by heat and power load distribution.•Over 180 kUSD/year can be saved by the proposed operation scheduling strategy. |
| ArticleNumber | 119022 |
| Author | Yan, Junjie Liu, Ming Wang, Shan |
| Author_xml | – sequence: 1 givenname: Ming surname: Liu fullname: Liu, Ming – sequence: 2 givenname: Shan surname: Wang fullname: Wang, Shan – sequence: 3 givenname: Junjie surname: Yan fullname: Yan, Junjie email: yanjj@mail.xjtu.edu.cn |
| BookMark | eNqFkUFvFCEYhompidvqP_BA4sXLrMAwMOPBxGxsa9KkHtozYeCbXTYzMALjZv0r_lmp46kHPZF8vM8HeZ9LdOGDB4TeUrKlhIoPxy14iPvzlhFWRrQjjL1AG9rKuhKybS7QhtSCVA3n7BW6TOlICGnartugX_czRJ1d8DiZA9hldH6Pw4A1NkGP1eAiWLy7_YZTXmPOZ9gXpIxPLh_wHE4QqxyqA-iMLfxwBtJ6ZSFrN_6hF-8ynoKFMeH-jGcdszMj4HTSccJhzm5yP9cH9LgPseDTa_Ry0GOCN3_PK_R4_eVhd1vd3d983X2-q0wtZK5aJmgvBm6bjvW6p4PpCO8tI8DN0GimO0o1b1sprdBCM0OgNlyaBmoQuu_rK_R-3TvH8H2BlNXkkoFx1B7CkhRrJK95S1lTou-eRY9hib78TjEuJZOMdKKkPq4pE0NKEQZl3NpejqUQRYl68qaOavWmnryp1VuB-TN4jm7S8fw_7NOKlYaLA4gqGQfegC0GTVY2uH8v-A1g2Lkz |
| CitedBy_id | crossref_primary_10_1016_j_ijggc_2023_104011 crossref_primary_10_1109_ACCESS_2021_3087449 crossref_primary_10_1016_j_applthermaleng_2023_120314 crossref_primary_10_1016_j_energy_2020_119534 crossref_primary_10_1016_j_est_2022_106353 crossref_primary_10_3390_en15249337 crossref_primary_10_1016_j_est_2024_111869 crossref_primary_10_1007_s11708_021_0785_5 crossref_primary_10_1016_j_energy_2024_131501 crossref_primary_10_1016_j_applthermaleng_2022_119762 crossref_primary_10_1016_j_enconman_2021_114920 crossref_primary_10_1016_j_energy_2023_127041 crossref_primary_10_1016_j_renene_2022_08_112 crossref_primary_10_1016_j_csite_2022_101768 crossref_primary_10_1016_j_energy_2022_123230 crossref_primary_10_1016_j_apenergy_2023_120763 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122478 crossref_primary_10_1038_s41598_024_69191_z crossref_primary_10_1016_j_energy_2022_125779 crossref_primary_10_1007_s10098_024_02746_w crossref_primary_10_1016_j_apenergy_2022_119683 crossref_primary_10_1016_j_energy_2023_127837 crossref_primary_10_1007_s11081_023_09848_2 crossref_primary_10_1016_j_applthermaleng_2021_117030 crossref_primary_10_1016_j_egyr_2022_05_235 crossref_primary_10_1016_j_applthermaleng_2024_122848 crossref_primary_10_1016_j_energy_2021_122060 crossref_primary_10_1016_j_ijepes_2024_110198 crossref_primary_10_1016_j_energy_2021_120077 crossref_primary_10_1016_j_energy_2021_121048 crossref_primary_10_3390_en14051458 crossref_primary_10_3390_en15165977 crossref_primary_10_1016_j_applthermaleng_2025_125771 crossref_primary_10_1016_j_jclepro_2022_132860 crossref_primary_10_1016_j_energy_2022_125988 crossref_primary_10_1016_j_energy_2023_129969 crossref_primary_10_1016_j_energy_2022_123846 crossref_primary_10_1016_j_energy_2025_134512 crossref_primary_10_1016_j_renene_2021_07_127 crossref_primary_10_1080_15567036_2024_2380879 crossref_primary_10_1088_1755_1315_983_1_012030 crossref_primary_10_1016_j_prime_2021_100023 crossref_primary_10_1049_rpg2_12627 crossref_primary_10_1016_j_egyr_2024_10_032 crossref_primary_10_3390_en16196860 crossref_primary_10_1016_j_energy_2021_121398 crossref_primary_10_1016_j_apenergy_2024_123812 crossref_primary_10_1016_j_energy_2021_120263 crossref_primary_10_1016_j_enconman_2022_115561 crossref_primary_10_1016_j_ijepes_2022_108498 crossref_primary_10_1016_j_energy_2022_125917 crossref_primary_10_1016_j_energy_2021_122529 crossref_primary_10_1016_j_applthermaleng_2025_126195 crossref_primary_10_1016_j_energy_2024_131031 crossref_primary_10_1371_journal_pone_0301333 crossref_primary_10_1016_j_energy_2025_135654 crossref_primary_10_1016_j_enconman_2024_118207 crossref_primary_10_1016_j_energy_2022_124480 crossref_primary_10_1016_j_applthermaleng_2022_118041 crossref_primary_10_1016_j_enconman_2023_117215 crossref_primary_10_2478_rtuect_2021_0061 crossref_primary_10_1016_j_enconman_2023_116801 crossref_primary_10_1016_j_energy_2021_121064 crossref_primary_10_1016_j_applthermaleng_2023_121192 crossref_primary_10_1016_j_jclepro_2021_130002 crossref_primary_10_1109_ACCESS_2023_3344679 crossref_primary_10_30724_1998_9903_2023_25_2_12_25 crossref_primary_10_1016_j_energy_2021_121068 crossref_primary_10_1016_j_energy_2023_128534 crossref_primary_10_1016_j_renene_2024_120502 crossref_primary_10_3390_su16072969 crossref_primary_10_3390_en17194986 crossref_primary_10_1016_j_applthermaleng_2023_120182 |
| Cites_doi | 10.1016/0196-8904(82)90053-X 10.1016/j.energy.2019.116074 10.1126/science.1212741 10.1016/j.apenergy.2015.01.092 10.1016/j.apenergy.2011.09.038 10.1038/nature14677 10.1016/j.energy.2019.05.122 10.3390/en8042493 10.1016/j.energy.2016.06.082 10.1080/07373937.2016.1166438 10.1016/j.apenergy.2018.01.017 10.1109/TIA.2018.2866475 10.1016/j.apenergy.2015.04.096 10.1016/j.apenergy.2018.02.039 10.1016/j.energy.2015.01.022 10.1016/j.energy.2006.10.017 10.1088/1755-1315/227/4/042043 10.1016/j.energy.2017.04.138 10.1002/we.224 10.1016/j.energy.2019.03.092 10.1016/j.energy.2012.10.026 10.1038/nenergy.2016.61 10.1016/j.jpowsour.2012.05.081 10.1016/j.apenergy.2017.06.092 10.1016/j.enconman.2018.01.049 10.1016/j.enbuild.2017.06.012 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jan 1, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jan 1, 2021 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2020.119022 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2020_119022 S0360544220321290 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-8261b6f4d592bab1fc904bd20e4cf5a2a911a48877d6a6a2c0e3c47c5e3e6abb3 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 |
| IngestDate | Thu Oct 02 05:56:46 EDT 2025 Wed Aug 13 08:36:08 EDT 2025 Thu Oct 09 00:33:44 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Fri Feb 23 02:46:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Operation scheduling CHP Energy saving Flexibility Particle swarm optimization algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-8261b6f4d592bab1fc904bd20e4cf5a2a911a48877d6a6a2c0e3c47c5e3e6abb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2477272096 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2574348125 proquest_journals_2477272096 crossref_citationtrail_10_1016_j_energy_2020_119022 crossref_primary_10_1016_j_energy_2020_119022 elsevier_sciencedirect_doi_10_1016_j_energy_2020_119022 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Mikkola, Lund (bib27) 2016; 112 PIA (bib23) 2019; 55 Liu, Zhang, Ma, Yan (bib33) 2018; 161 National Development (bib3) 2016 D, F (bib9) 2015 Leadbetter, Swan (bib13) 2012; 216 Hou, Wu, Yang, Hu, Chen (bib31) 2015; 160 Zhao, Wang, Liu, Chong, Yan (bib7) 2018; 212 Lu, McElroy, Peng, Liu, Nielsen, Wang (bib5) 2016; 1 Blarke (bib24) 2012; 91 Liu, Wang, Zhao, Tang, Yan (bib30) 2019; 188 (bib4) 2014 Romanchenko, Odenberger, Göransson, Johnsson (bib28) 2017; 204 Böttger, Götz, Theofilidi, Bruckner (bib22) 2015; 82 Dunn, Kamath, Tarascon (bib14) 2011; 334 Liu, Li, Han, Qin, Zhai, Yan (bib29) 2017; 35 Hu, Wang, Zhang, Zhou, Chen, Wang (bib11) 2019; 227 Wang, Zhao, Liu, Qiao, Chong, Yan (bib6) 2018; 216 Lund (bib1) 2007; 32 Scholz, Musgens (bib26) 2015 Meibom, Kiviluoma, Barth, Brand, Weber, Larsen (bib17) 2007; 10 Hansen, Breyer, Lund (bib2) 2019; 175 Popovski, Aydemir, Fleiter, Bellstädt, Büchele, Steinbach (bib18) 2019; 180 Mohamed, Hamdy, Hasan, Sirén (bib21) 2015; 152 Liu, Guan, Wei, Davis, Ciais, Bai (bib34) 2015; 524 Energy (bib10) 2012 Jiang (bib35) 2013 Kopiske, Spieker, Tsatsaronis (bib8) 2017; 137 Abdoly, Rapp (bib15) 1982; 22 Knizley, Mago, Tobermann (bib25) 2015; 2 Moncho-Esteve, Gasque, González-Altozano, Palau-Salvador (bib16) 2017; 150 Bottger, Gotz, Lehr, Kondziella, Bruckner (bib19) 2014 Liu, Wang, Zhao, Tang, Yan (bib12) 2019; 188 Zakeri, Rinne, Syri (bib20) 2015; 8 Liu, Yan, Chong, Liu, Wang (bib32) 2013; 49 Bottger (10.1016/j.energy.2020.119022_bib19) 2014 Scholz (10.1016/j.energy.2020.119022_bib26) 2015 Leadbetter (10.1016/j.energy.2020.119022_bib13) 2012; 216 Abdoly (10.1016/j.energy.2020.119022_bib15) 1982; 22 Mikkola (10.1016/j.energy.2020.119022_bib27) 2016; 112 Hansen (10.1016/j.energy.2020.119022_bib2) 2019; 175 Liu (10.1016/j.energy.2020.119022_bib33) 2018; 161 Liu (10.1016/j.energy.2020.119022_bib34) 2015; 524 Energy (10.1016/j.energy.2020.119022_bib10) 2012 Zakeri (10.1016/j.energy.2020.119022_bib20) 2015; 8 Hu (10.1016/j.energy.2020.119022_bib11) 2019; 227 Moncho-Esteve (10.1016/j.energy.2020.119022_bib16) 2017; 150 Mohamed (10.1016/j.energy.2020.119022_bib21) 2015; 152 Wang (10.1016/j.energy.2020.119022_bib6) 2018; 216 Böttger (10.1016/j.energy.2020.119022_bib22) 2015; 82 Lund (10.1016/j.energy.2020.119022_bib1) 2007; 32 Liu (10.1016/j.energy.2020.119022_bib32) 2013; 49 National Development (10.1016/j.energy.2020.119022_bib3) 2016 (10.1016/j.energy.2020.119022_bib4) 2014 PIA (10.1016/j.energy.2020.119022_bib23) 2019; 55 Dunn (10.1016/j.energy.2020.119022_bib14) 2011; 334 Meibom (10.1016/j.energy.2020.119022_bib17) 2007; 10 Knizley (10.1016/j.energy.2020.119022_bib25) 2015; 2 Romanchenko (10.1016/j.energy.2020.119022_bib28) 2017; 204 Liu (10.1016/j.energy.2020.119022_bib29) 2017; 35 D (10.1016/j.energy.2020.119022_bib9) 2015 Hou (10.1016/j.energy.2020.119022_bib31) 2015; 160 Zhao (10.1016/j.energy.2020.119022_bib7) 2018; 212 Jiang (10.1016/j.energy.2020.119022_bib35) 2013 Blarke (10.1016/j.energy.2020.119022_bib24) 2012; 91 Liu (10.1016/j.energy.2020.119022_bib12) 2019; 188 Liu (10.1016/j.energy.2020.119022_bib30) 2019; 188 Popovski (10.1016/j.energy.2020.119022_bib18) 2019; 180 Lu (10.1016/j.energy.2020.119022_bib5) 2016; 1 Kopiske (10.1016/j.energy.2020.119022_bib8) 2017; 137 |
| References_xml | – volume: 112 start-page: 364 year: 2016 end-page: 375 ident: bib27 article-title: Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes publication-title: Energy – volume: 161 start-page: 243 year: 2018 end-page: 253 ident: bib33 article-title: Thermo-economic analyses on a new conceptual system of waste heat recovery integrated with an S-CO2 cycle for coal-fired power plants publication-title: Energy Convers Manag – start-page: 1 year: 2015 end-page: 5 ident: bib9 article-title: Increasing flexibility of combined heat and power plants with power-to-heat publication-title: 2015 12th international conference on the European energy market – year: 2012 ident: bib10 article-title: Combined heat and power law – volume: 82 start-page: 157 year: 2015 end-page: 167 ident: bib22 article-title: Control power provision with power-to-heat plants in systems with high shares of renewable energy sources – an illustrative analysis for Germany based on the use of electric boilers in district heating grids publication-title: Energy – volume: 152 start-page: 94 year: 2015 end-page: 108 ident: bib21 article-title: The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions publication-title: Appl Energy – volume: 35 start-page: 203 year: 2017 end-page: 217 ident: bib29 article-title: Energy and exergy analyses of a lignite-fired power plant integrated with a steam dryer at rated and partial loads publication-title: Dry Technol – volume: 524 start-page: 335 year: 2015 ident: bib34 article-title: Reduced carbon emission estimates from fossil fuel combustion and cement production in China publication-title: Nature – volume: 150 start-page: 625 year: 2017 end-page: 638 ident: bib16 article-title: Simple inlet devices and their influence on thermal stratification in a hot water storage tank publication-title: Energy Build – volume: 55 start-page: 35 year: 2019 end-page: 42 ident: bib23 article-title: District heating technologies: is it chance for CHP plants in variable and competitive operation conditions? publication-title: IEEE Trans Ind Appl – volume: 175 start-page: 471 year: 2019 end-page: 480 ident: bib2 article-title: Status and perspectives on 100% renewable energy systems publication-title: Energy – year: 2014 ident: bib4 publication-title: Act on the development of renewable energy sources – start-page: 246 year: 2014 end-page: 253 ident: bib19 article-title: Potential of the power-to-heat technology in district heating grids in Germany publication-title: Energy procedia – year: 2013 ident: bib35 article-title: Research on accommodating curtailed wind power by CHP installed electric boilers – volume: 212 start-page: 1295 year: 2018 end-page: 1309 ident: bib7 article-title: Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: a dynamic simulation publication-title: Appl Energy – volume: 2 year: 2015 ident: bib25 article-title: Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis publication-title: Cognet Eng – volume: 49 start-page: 107 year: 2013 end-page: 118 ident: bib32 article-title: Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant publication-title: Energy – volume: 91 start-page: 349 year: 2012 end-page: 365 ident: bib24 article-title: Towards an intermittency-friendly energy system: comparing electric boilers and heat pumps in distributed cogeneration publication-title: Appl Energy – volume: 1 start-page: 16061 year: 2016 ident: bib5 article-title: Challenges faced by China compared with the US in developing wind power publication-title: Nat Energy – volume: 137 start-page: 823 year: 2017 end-page: 833 ident: bib8 article-title: Value of power plant flexibility in power systems with high shares of variable renewables: a scenario outlook for Germany 2035 publication-title: Energy – volume: 180 start-page: 918 year: 2019 end-page: 933 ident: bib18 article-title: The role and costs of large-scale heat pumps in decarbonising existing district heating networks – a case study for the city of Herten in Germany publication-title: Energy – volume: 10 start-page: 321 year: 2007 end-page: 337 ident: bib17 article-title: Value of electric heat boilers and heat pumps for wind power integration publication-title: Wind Energy – year: 2016 ident: bib3 article-title: The 13th five-year plan for electric power development(2016-2020 ) – volume: 204 start-page: 16 year: 2017 end-page: 30 ident: bib28 article-title: Impact of electricity price fluctuations on the operation of district heating systems: a case study of district heating in Göteborg, Sweden publication-title: Appl Energy – volume: 188 start-page: 116074 year: 2019 ident: bib30 article-title: Heat–power decoupling technologies for coal-fired CHP plants: operation flexibility and thermodynamic performance publication-title: Energy – volume: 160 start-page: 873 year: 2015 end-page: 881 ident: bib31 article-title: Performance of a solar aided power plant in fuel saving mode publication-title: Appl Energy – volume: 32 start-page: 912 year: 2007 end-page: 919 ident: bib1 article-title: Renewable energy strategies for sustainable development publication-title: Energy – volume: 188 start-page: 116074 year: 2019 ident: bib12 article-title: Heat–power decoupling technologies for coal-fired CHP plants: operation flexibility and thermodynamic performance publication-title: Energy – year: 2015 ident: bib26 article-title: Increasing flexibility of combined heat and power plants with Power-to-Heat publication-title: 12th international conference on the European energy market – volume: 22 start-page: 275 year: 1982 end-page: 285 ident: bib15 article-title: Theoretical and experimental studies of stratified thermocline storage of hot water publication-title: Energy Convers Manag – volume: 334 start-page: 928 year: 2011 ident: bib14 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science – volume: 227 start-page: 42043 year: 2019 ident: bib11 article-title: Theoretical investigation on heat-electricity decoupling technology of low-pressure steam turbine renovation for CHPs publication-title: IOP Conf Ser Earth Environ Sci – volume: 8 start-page: 2493 year: 2015 end-page: 2527 ident: bib20 article-title: Wind integration into energy systems with a high share of nuclear power—what are the compromises? publication-title: Energies – volume: 216 start-page: 212 year: 2018 end-page: 223 ident: bib6 article-title: Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio publication-title: Appl Energy – volume: 216 start-page: 376 year: 2012 end-page: 386 ident: bib13 article-title: Selection of battery technology to support grid-integrated renewable electricity publication-title: J Power Sources – volume: 22 start-page: 275 year: 1982 ident: 10.1016/j.energy.2020.119022_bib15 article-title: Theoretical and experimental studies of stratified thermocline storage of hot water publication-title: Energy Convers Manag doi: 10.1016/0196-8904(82)90053-X – volume: 188 start-page: 116074 year: 2019 ident: 10.1016/j.energy.2020.119022_bib12 article-title: Heat–power decoupling technologies for coal-fired CHP plants: operation flexibility and thermodynamic performance publication-title: Energy doi: 10.1016/j.energy.2019.116074 – volume: 334 start-page: 928 year: 2011 ident: 10.1016/j.energy.2020.119022_bib14 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science doi: 10.1126/science.1212741 – start-page: 246 year: 2014 ident: 10.1016/j.energy.2020.119022_bib19 article-title: Potential of the power-to-heat technology in district heating grids in Germany – volume: 160 start-page: 873 year: 2015 ident: 10.1016/j.energy.2020.119022_bib31 article-title: Performance of a solar aided power plant in fuel saving mode publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.092 – volume: 91 start-page: 349 year: 2012 ident: 10.1016/j.energy.2020.119022_bib24 article-title: Towards an intermittency-friendly energy system: comparing electric boilers and heat pumps in distributed cogeneration publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.09.038 – volume: 524 start-page: 335 year: 2015 ident: 10.1016/j.energy.2020.119022_bib34 article-title: Reduced carbon emission estimates from fossil fuel combustion and cement production in China publication-title: Nature doi: 10.1038/nature14677 – volume: 180 start-page: 918 year: 2019 ident: 10.1016/j.energy.2020.119022_bib18 article-title: The role and costs of large-scale heat pumps in decarbonising existing district heating networks – a case study for the city of Herten in Germany publication-title: Energy doi: 10.1016/j.energy.2019.05.122 – start-page: 1 year: 2015 ident: 10.1016/j.energy.2020.119022_bib9 article-title: Increasing flexibility of combined heat and power plants with power-to-heat – year: 2012 ident: 10.1016/j.energy.2020.119022_bib10 – volume: 8 start-page: 2493 year: 2015 ident: 10.1016/j.energy.2020.119022_bib20 article-title: Wind integration into energy systems with a high share of nuclear power—what are the compromises? publication-title: Energies doi: 10.3390/en8042493 – volume: 112 start-page: 364 year: 2016 ident: 10.1016/j.energy.2020.119022_bib27 article-title: Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes publication-title: Energy doi: 10.1016/j.energy.2016.06.082 – volume: 35 start-page: 203 year: 2017 ident: 10.1016/j.energy.2020.119022_bib29 article-title: Energy and exergy analyses of a lignite-fired power plant integrated with a steam dryer at rated and partial loads publication-title: Dry Technol doi: 10.1080/07373937.2016.1166438 – volume: 212 start-page: 1295 year: 2018 ident: 10.1016/j.energy.2020.119022_bib7 article-title: Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: a dynamic simulation publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.01.017 – volume: 55 start-page: 35 year: 2019 ident: 10.1016/j.energy.2020.119022_bib23 article-title: District heating technologies: is it chance for CHP plants in variable and competitive operation conditions? publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2018.2866475 – volume: 152 start-page: 94 year: 2015 ident: 10.1016/j.energy.2020.119022_bib21 article-title: The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.04.096 – year: 2016 ident: 10.1016/j.energy.2020.119022_bib3 – volume: 216 start-page: 212 year: 2018 ident: 10.1016/j.energy.2020.119022_bib6 article-title: Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.039 – volume: 82 start-page: 157 year: 2015 ident: 10.1016/j.energy.2020.119022_bib22 article-title: Control power provision with power-to-heat plants in systems with high shares of renewable energy sources – an illustrative analysis for Germany based on the use of electric boilers in district heating grids publication-title: Energy doi: 10.1016/j.energy.2015.01.022 – year: 2013 ident: 10.1016/j.energy.2020.119022_bib35 – volume: 32 start-page: 912 year: 2007 ident: 10.1016/j.energy.2020.119022_bib1 article-title: Renewable energy strategies for sustainable development publication-title: Energy doi: 10.1016/j.energy.2006.10.017 – volume: 227 start-page: 42043 year: 2019 ident: 10.1016/j.energy.2020.119022_bib11 article-title: Theoretical investigation on heat-electricity decoupling technology of low-pressure steam turbine renovation for CHPs publication-title: IOP Conf Ser Earth Environ Sci doi: 10.1088/1755-1315/227/4/042043 – volume: 137 start-page: 823 year: 2017 ident: 10.1016/j.energy.2020.119022_bib8 article-title: Value of power plant flexibility in power systems with high shares of variable renewables: a scenario outlook for Germany 2035 publication-title: Energy doi: 10.1016/j.energy.2017.04.138 – volume: 10 start-page: 321 year: 2007 ident: 10.1016/j.energy.2020.119022_bib17 article-title: Value of electric heat boilers and heat pumps for wind power integration publication-title: Wind Energy doi: 10.1002/we.224 – volume: 175 start-page: 471 year: 2019 ident: 10.1016/j.energy.2020.119022_bib2 article-title: Status and perspectives on 100% renewable energy systems publication-title: Energy doi: 10.1016/j.energy.2019.03.092 – year: 2014 ident: 10.1016/j.energy.2020.119022_bib4 – volume: 49 start-page: 107 year: 2013 ident: 10.1016/j.energy.2020.119022_bib32 article-title: Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant publication-title: Energy doi: 10.1016/j.energy.2012.10.026 – volume: 1 start-page: 16061 year: 2016 ident: 10.1016/j.energy.2020.119022_bib5 article-title: Challenges faced by China compared with the US in developing wind power publication-title: Nat Energy doi: 10.1038/nenergy.2016.61 – year: 2015 ident: 10.1016/j.energy.2020.119022_bib26 article-title: Increasing flexibility of combined heat and power plants with Power-to-Heat – volume: 216 start-page: 376 year: 2012 ident: 10.1016/j.energy.2020.119022_bib13 article-title: Selection of battery technology to support grid-integrated renewable electricity publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.05.081 – volume: 2 year: 2015 ident: 10.1016/j.energy.2020.119022_bib25 article-title: Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis publication-title: Cognet Eng – volume: 204 start-page: 16 year: 2017 ident: 10.1016/j.energy.2020.119022_bib28 article-title: Impact of electricity price fluctuations on the operation of district heating systems: a case study of district heating in Göteborg, Sweden publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.092 – volume: 188 start-page: 116074 year: 2019 ident: 10.1016/j.energy.2020.119022_bib30 article-title: Heat–power decoupling technologies for coal-fired CHP plants: operation flexibility and thermodynamic performance publication-title: Energy doi: 10.1016/j.energy.2019.116074 – volume: 161 start-page: 243 year: 2018 ident: 10.1016/j.energy.2020.119022_bib33 article-title: Thermo-economic analyses on a new conceptual system of waste heat recovery integrated with an S-CO2 cycle for coal-fired power plants publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.01.049 – volume: 150 start-page: 625 year: 2017 ident: 10.1016/j.energy.2020.119022_bib16 article-title: Simple inlet devices and their influence on thermal stratification in a hot water storage tank publication-title: Energy Build doi: 10.1016/j.enbuild.2017.06.012 |
| SSID | ssj0005899 |
| Score | 2.614375 |
| Snippet | The accommodation of high-penetration renewable power poses a considerable challenge to power grids. Coal-fired combined heat and power (CHP) stations are... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119022 |
| SubjectTerms | Algorithms Boilers Carbon dioxide case studies CHP Coal Coal-fired power plants Cogeneration Decoupling Electric power distribution Electric power grids energy Energy saving Flexibility heat Heat exchangers Heat pumps Heating Operation scheduling Optimization algorithms Particle swarm optimization Particle swarm optimization algorithm Renewable energy steam |
| Title | Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2020.119022 https://www.proquest.com/docview/2477272096 https://www.proquest.com/docview/2574348125 |
| Volume | 214 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection eJournals customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lPuiLaLV4WssU-hpvL5sP97EcLWcLbaEW-haSbFYqd7fL7R3ii_-I_6yTjz2rIAVfNzPsbib5zSSZX4aQYyNT1UVaKF9RLieSVsKVlNnIxJS1q2OW76Wc3fLzO3G3Q6YDFyakVWbsT5ge0To_GefeHHf39-MbxF6MNzgLNcDDbkpgsHMVqhh8-PEgzeNjrCEZhGmQHuhzMcfLR34drhJZwI6qYOxf7ukvoI7e5-wFeZ7DRjhJX_aS7PjlHnk6sIr7PbJ_-puxhoJ5yvavyM-rzicrAy5k0bEE_jm0DRhwrZnTBv-_hunsGvp0Kg_bGyRqCLu00IVCanTd0oDbUPuILakpJaBG7Q1iA8S6Oj3Y79DlToT-m1ktoEVkWmTKJ5j5l3aF6ovX5Pbs9PN0RnNFBupKqdYU1yITKxtei4pZYyeNqwpua1Z47hphmEHoNAgJStXSSMNc4UvHlRO-9NJYW-6T3WW79G8IKIWhApeWG1bxRqHL8MKyUqAxK3xsRqQcDKFdvq48VM2Y6yEv7atO5tPBfDqZb0ToVqtL13U8Iq8GG-s_hp1Gj_KI5sEwJHSe9r1mXMWD7UqOyNG2GSdsOIUxS99uUEZg0MYxrhJv__vl78gzFnJr4lbQAdldrzb-PQZHa3sYR_8heXLy6WJ2-QtCRBCU |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcigXBIWKQAEjcTXZeP3oHlHUKkApSLRSb5bt9aJWSXaVTVRx4Y_wZxk_NjwkVImrPaNdeTzfzNgzHoDXRqaui7RQvqJcTiSthCsps7ESU9aujlm-Z3J2wd9fissdmA61MCGtMmN_wvSI1nlknFdz3F1djb8g9qK_wVnoAR5OU-7AXS6YChHYm--_5XkcxSaSgZoG8qF-LiZ5-Vhgh2EiC-BRFYz9yz79hdTR_Jw8gPvZbyRv0689hB2_3Ie9oay434eD418la0iYdbZ_BD8-dT6JmWAki5YlFKCTtiGGuNbMaYMLUJPp7DPp07U82T4hUZNwTEu60EmNrlsagJvUPoJLmkoZqJF7g-BAYmOdnthvpMurSPobs1qQFqFpkWs-iZl_bVfIvngMFyfH59MZzS0ZqCulWlMMRiZWNrwWFbPGThpXFdzWrPDcNcIwg9hpEBOUqqWRhrnCl44rJ3zppbG2PIDdZbv0T4Aohb4Cl5YbVvFGoc3wwrJSoDQrHDYjKAdBaJffKw9tM-Z6SEy71kl8OohPJ_GNgG65uvRexy30apCx_mPfaTQpt3AeDltCZ73vNeMq3mxXcgSvttOoseEaxix9u0EagV4bR8dKPP3vj7-Evdn5x1N9-u7swzO4x0KiTTwXOoTd9Wrjn6OntLYvoib8BGwlEik |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operation+scheduling+of+a+coal-fired+CHP+station+integrated+with+power-to-heat+devices+with+detail+CHP+unit+models+by+particle+swarm+optimization+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Liu%2C+Ming&rft.au=Wang%2C+Shan&rft.au=Yan%2C+Junjie&rft.date=2021-01-01&rft.issn=0360-5442&rft.volume=214+p.119022-&rft_id=info:doi/10.1016%2Fj.energy.2020.119022&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |